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Abstract

As much of the population lives in close proximity to high-traffic roads, there is the potential for health impact assessments based
on regional air quality modeling to underpredict health impacts. We compare the estimated health impacts from fine particulate
matter (PM, s5) using local (0.04 x 0.04 km upscaled to census block group resolution) compared to regional (12 x 12 km
resolution) modeled concentrations for three locations in Connecticut: Hartford, New Haven, and Willimantic. We use concen-
tration estimates from the Comprehensive Air Quality Model with Extensions (CAMXx) regional model and a hybrid model
combining CAMx with a near road model (HYCAMR) in the Environmental Benefits Mapping and Analysis Program—
Community Edition (BenMAP-CE) to calculate the difference in estimated human health impacts using different resolution air
quality estimates from PM, 5 exposure including mortality, emergency room visits, hospitalizations, and asthma exacerbation.
This provides an estimate of the potential underprediction of health impacts resulting from not accounting for the sharp concen-
tration gradients in near road environments in urban areas. The fine-scale estimates capture the elevated concentrations near the
roadways leading to increased estimates of overall mortality and morbidity in the population. We find an increase in the estimated
likelihood of emergency department visits and mortality in the urban core. We also compare the impact of model resolution on the
health impact estimates for different demographic groups. Of the locations investigated, we see the largest differences between
demographic groups in Willimantic, CT. Our results indicate that using regional air pollutant concentrations may lead to an
underprediction of human health impacts from air pollution exposure.
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Introduction

Ground-level particulate matter (PM, 5 or particles with aero-
dynamic diameter < 2.5 pm) has negative impacts on human
health including premature death, increases in hospital admis-
sions for respiratory and cardiovascular diseases, and asthma
exacerbation (Pope et al. 2006; Krewski et al. 2009; Ostro
et al. 2001). As economic growth and technological
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advancements continue, an increasing number of people live
near heavily trafficked roadways and industrial areas (Adar
and Kaufman 2007; Salam et al. 2008). While vehicular emis-
sions factor may have decreased over time, there is still the
question of the impacts on environmental equality. Fann et al.
(2013) found that mobile sources were the second highest
contributor to the total PM, 5 exposure-related premature
deaths in the USA. Although estimates of the impact of
PM, 5 on human health are available based on regional-scale
(> 1 km) modeling (Parvez et al. 2017; Abel et al. 2018; Lu
et al. 2018), estimates based on local-scale (< 1 km) modeling
are still sparse. Several studies have demonstrated the impact
of air quality model grid resolution on health impact assess-
ment, particularly mortality, but have focused on resolutions at
the regional and global scales (Kheirbek et al. 2013; Punger
and West 2013; Thompson et al. 2014; Li et al. 2016). As
pollutant concentrations from mobile sources rapidly (<
0.4 km) reach background levels, regional-scale modeling ap-
proaches cannot effectively capture these areas of elevated
near road concentrations. To adequately estimate the health
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burden from local sources, like mobile emissions, researchers
and policymakers must employ concentration estimates on
appropriate spatial scales.

The US EPA has developed BenMAP-CE
(Environmental Benefits Mapping and Analysis
Program—Community Edition), an environmental bene-
fits mapping and analysis program, to aid policymakers
in accounting for health impacts and their associated eco-
nomic burden in policy decisions (US EPA 2018).
BenMAP-CE allows users to estimate health and
economic impacts resulting from changes in air quality
using either modeled or monitored air quality data. For
instance, Fann et al. (2013) used BenMAP (an older
version of BenMAP-CE) with modeled air quality esti-
mates to quantify the number of premature deaths and
cases of chronic and acute illness resulting from PM, s
and ozone exposure between the years 2005 and 2016
for different emission sectors in the USA. Although this
study was able to quantify the contribution of individual
sectors to the health burden, these estimates were based
on regional (12 km) resolution estimates of air pollutant
concentrations. This level of resolution does not adequate-
ly account for exposure in the near road environments
encountered by individuals in many urban areas.
Carvour et al. (2018) completed a local health impact
assessment on ozone changes in a ten county non-
attainment area in the Dallas-Fort Worth region of Texas
for the years 2008, 2011, and 2013 using both incremental
rollback and rollback-to-a-standard ambient level scenario
of BenMAP-CE. This study suggested that BenMAP-CE
can provide timely, evidence-based estimates of health
impacts and economic consequences of potential policy
changes. Studies on the relative impacts or benefits of
changes in air quality for different demographic groups
are sparse.

In this work, we pair BenMAP-CE with two air quality
models, the Comprehensive Air Quality Model with
Extensions (CAMx) at 12 x 12 km resolution and a hybrid
fine-scale model accounting for near road and regional contri-
butions to air quality (HYCAMR) at 0.04 x 0.04 km resolu-
tion (Parvez and Wagstrom 2019), to evaluate the impact of
fine-scale versus regional-scale modeling on the estimated
health burden from PM, 5 exposure in three locations in
Connecticut: Hartford, New Haven, and Willimantic. We use
the built-in concentration-response functions available in
BenMAP-CE to calculate the difference in estimated prema-
ture deaths, cases of asthma exacerbation, hospital admissions
due to respiratory illness, hospital admissions due to cardio-
vascular illness, and emergency room visits given using
regional- versus fine-scale modeled concentrations to deter-
mine the impact of model resolution on estimated health im-
pact. We also compare the impact of model resolution on the
health impact estimates for different demographic groups.
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Methodology

Our objective in this study is to compare the estimated mor-
tality and morbidity rates associated with PM, s exposure
using supplied PM, 5 concentrations at coarse (12 % 12 km)
and fine (0.04 x 0.04 km) model resolution. We evaluate the
estimated health burden between three locations and different
demographic groups using BenMAP-CE. BenMAP-CE is
typically used to estimate the benefits resulting from the im-
plementation of a new control system or policy. We apply
BenMAP-CE in a slightly different way to compare the dif-
ference in predicted heath outcomes resulting from a change
in modeling scale, including the influence on health disparities
between demographic groups. For our health impact analysis,
we apply the “porch potato” assumption, meaning we assume
all members of the population are exposed to the outdoor
concentrations at their place of residence all day whether than
accounting for specific activity patterns. In “Coarse resolution
air quality modeling” and “Fine resolution air quality model-
ing” sections, we provide an overview of the coarse (CAMx)
and fine (HYCAMR) scale PM, 5 modeling approaches, re-
spectively. In “Health impact analysis” section, we provide a
detailed description of the health impacts assessment model
(BenMAP-CE).

Coarse resolution air quality modeling

To evaluate the impact of model resolution on health burden,
we estimate PM, s concentrations using two different model-
ing approaches: coarse and fine. For the coarse scale, we use
the Comprehensive Air Quality Model with Extensions
(CAMXx version 6.0) to estimate PM, 5 concentrations in the
Northeastern US at 12 km x 12 km resolution as described in
Parvez and Wagstrom (2019). CAMx is one of two models
typically used by US EPA for regulatory analysis. CAMX uses
first principles to simulate emissions, wet and dry deposition,
gas- and aqueous-phase chemistry, and secondary particulate
matter formation (Environ 2013). We use emissions based on
the 2011 National Emissions Inventory (NEI) developed by
the US EPA processed using the Sparse Matrix Operator
Kernel Emissions (SMOKE) (CMAS 2013) model. These
emissions inputs were included as part of the United States
EPA’s Ozone Regulatory Reanalysis, including model evalu-
ation (US EPA 2014). For gas phase chemistry, we use CAMx
mechanism 7. This mechanism is based on the Carbon Bond
version 6 (CB-6) (Yarwood et al. 2010) mechanism and in-
cludes 16 aerosol species and a total of 218 reactions for 77
gaseous species. We create hourly boundary conditions for the
New England domain from full year CAMx modeling for the
continental US using the same inputs. We use meteorological
inputs predicted by the Weather Research and Forecasting
model WRF (version 3.4) (Skamarock et al. 2008), also from
EPA’s Ozone Regulatory Reanalysis. Additional details,
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including model evaluation, are available in Parvez and
Wagstrom (2019) and Parvez et al. (2017).

Fine resolution air quality modeling

For the fine scale, we employ a newly developed hybrid
modeling framework, HYCAMR (Parvez and Wagstrom
2019). HYCAMR is capable of estimating combined PM, 5
concentrations from onroad and regional sources at fine reso-
lution (0.04 km x 0.04 km). HYCAMR combines a regional-
scale model, CAMx, and a local scale dispersion model, R-
LINE. The details and evaluation of this modeling framework
and the modeled concentrations used in this study are avail-
able in Parvez and Wagstrom (2019). For consistency, the
regional model component in HYCAMR is based on the same
CAMx modeling described above for the coarse resolution.
For this study, we use PM, 5 concentrations estimated using
HYCAMR for three locations in Connecticut: New Haven,
Hartford, and Willimantic. We then up-scale the concentration
estimates to census block group resolution for the year 2011.
We then use annual average concentrations in the health im-
pact analysis. Upscaling HY CAMR estimated concentrations
results in the loss of some of the fine resolution; however, this
is necessary due to the lack of population data on as fine a
scale as HYCAMR. We have evaluated this new modeling
framework against available satellite measurements and other
high resolution concentration estimates in Parvez and
Wagstrom (2019).

Health impact analysis

We use BenMAP-CE (version 1.3) to estimate the health im-
pacts associated with the difference in estimated PM, 5 expo-
sure between the course and fine resolution model estimates.
BenMAP-CE is commonly used by regulatory agencies to
quantify and monetize potential health impacts associated
with changes in air quality. BenMAP-CE relates changes in
concentration to changes in health outcomes using built-in or
imported concentration-response functions (CRF); multiple
groups have used BenMAP-CE to conduct human health risk
assessments (Abel et al. 2018; Kheirbek et al. 2016; Ravi et al.
2018). The general concentration-response function used by
BenMAP-CE is shown in Eq. 1.

AY = Yo(1-e "PM) x Pop (1)

In Eq. 1, AY is the change in health outcome, Y} is the
baseline incident rate for a specified health outcome, [ is the
estimated effect coefficient drawn from epidemiology studies
for each specified health outcome, APM is the difference be-
tween two estimates of concentration (typically a base case
and control scenario), and Pop is the population. The specific

effect coefficients and baseline incidence rates can be found in
BenMAP-CE.

We use a slightly modified approach for implementing
BenMAP-CE; we define our baseline as the HYCAMR pre-
dicted fine resolution (0.04 km x 0.04 km upscaled to census
block group) PM, 5 concentration estimates and our control as
the CAMx predicted coarse resolution (12 km x 12 km) PM, 5
concentration estimates. We calculate these estimates at each
of the census block groups within each location. Figure 1
shows an overview of our implementation for this BenMAP-
CE analysis.

We assume all demographic groups experience the same
health impacts when exposed to the same PM, 5 concentra-
tions. We use the existing CRF in BenMAP-CE which is
based on published studies incorporating different assump-
tions of potential thresholds and observed slopes between
changes in concentrations and changes in health outcomes
(von Stackelberg et al. 2013). For each selected CREF,
BenMAP-CE uses the mean estimate of the regression coeffi-
cient (/) and standard error to calculate a distribution of point
estimates in each census block group. In addition to
concentration-response functions, BenMAP-CE also contains
census-based population and demographic data, baseline mor-
tality and morbidity rates, and baseline incident and preva-
lence data for the contiguous USA. We use population data
at the census block group level for the year 2010 (US Census
Bureau 2010) for five different demographic groups: Hispanic
white, Hispanic black, non-Hispanic white, non-Hispanic
black, and non-Hispanic Asian. For baseline mortality inci-
dent rate, we use the US mortality incident rate for the year
2015 on a 36-km grid resolution which is built into BenMAP-
CE. For other incident and prevalence rates, we use year 2014
and 2008 estimates, respectively, which are also available in
BenMAP-CE.

Mortality

We include mortality rate impacts based on the CRF from two
studies, Lepeule et al. (2012) and Krewski et al. (2009), based
on two commonly used cohort studies: Harvard Six Cities and
the American Cancer Society (respectively). Lepeule et al.
(2012) (referred to as the Lepeule CRF) and Krewski et al.
(2009) (referred to as the Krewski CRF) report an approxi-
mate 1.3 and 0.6% increase in all-cause mortality risk rate for
each 1 ug/m® PM, 5 concentration increase, respectively. The
EPA Advisory Committee on Clean Air Act Compliance
Analysis recommends developing a distribution using esti-
mates from both the Krewski CRF (age 30-99) and Lepeule
CREF (age 25-99) at the 25th and 75th percentiles, respectively
(von Stackelberg et al. 2013). This is consistent with an expert
elicitation completed by the EPA Science Advisory Board
(US EPA Advisory Council on the CCA 2010). As already
mentioned, we use the mortality incident rates for the year
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Fig. 1 BenMAP-CE analysis HYCAMR Concentration CAMXx Concentration
flow diagram )

(Baseline) (Control)

Census Block Group
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2015 that are built into BenMAP-CE to estimate the difference
in premature mortality rate based on model resolution for each
census block group.

Other health impacts

In addition to differences in estimated mortality rate, we also
estimate the impact of model resolution on other health out-
comes including asthma exacerbation, hospital admission due
to cardiovascular illness, hospital admission due to respiratory
illness, and emergency room visits. For asthma exacerbation,
we include CRFs from two studies, Ostro et al. (2001) (Ostro
CRF) and Mar et al. (2004) (Mar CRF), which both suggest a
positive correlation between PM, 5 concentration and asthma
in children age 6 to 18 years. We use these two studies to
quantify pooled incidents (cough, wheezing, and shortness
of breath) within this age group. We consider another CRF
from Mar et al. (2010) to estimate the difference in total emer-
gency room visits for individuals age 0 to 99 years. For hos-
pital admission due to cardiovascular problems, we consider

Fig. 2 Annual average PM, 5
concentrations (pg/m’) in New
Haven, CT at census block
resolution for the year 2011
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four CRFs for individuals age 18 to 99 years: Bell et al.
(2008); Moolgavkar (2000). Similarly, for hospital admission
due to respiratory problem, we consider the CRF based on the
work in Babin et al. (2007), Moolgavkar (2000), and
Zanobetti et al. (2009) for individuals age 0 to 99 years.
When using multiple CRFs, we report an average between
the results.

Results and discussions

HYCAMR estimated concentrations and exposure

Figures 2 and S.1 show the HYCAMR estimated annual av-
erage PM, 5 concentrations in New Haven, Hartford, and
Willimantic at census block group resolution. The
HYCAMR estimates show a maximum value of 15.3, 12.7,
and 21.7 pLg/m3 for New Haven, Hartford, and Willimantic,
respectively. HYCAMR is able to capture sharp concentration
gradients near roads to better estimate differences in
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concentrations between census block groups. In these cities,
the differences in PM, 5 concentrations between census block
groups mostly result from differences in traffic volume.

The population density of each demographic group differs
in each census block group. We compare the average exposure
for different demographic groups for each location as a first
comparison of the air pollution burden faced by different de-
mographic groups. We use population data from the 2010 US
Census (US Census Bureau 2010) and Eq. 2 to estimate the
average exposure for each demographic group.

Ziv C,‘ X P, ij
o =SSR ?
In Eq. 2, C,,,; is the average exposure for demographic

group j, C; and P;; are the concentration and population of
demographic group j in census block group i, respectively, and
N is the total number of census block groups in the location.
Figure 3 shows the difference in estimated average exposure
between the fine and coarse resolution modeled PM, 5 con-
centrations. We find that the differences in estimated average
exposure for each demographic group in New Haven and
Hartford are similar; however, we see a substantial variation
in the differences in estimated average exposure for demo-
graphic groups in Willimantic. There are two possible expla-
nations for this difference: (1) Hartford and New Haven have
more census block groups than Willimantic making the non-
uniformity between the demographic groups more pro-
nounced in Willimantic; (2) the difference in estimated con-
centrations between the census block groups in Willimantic is
more substantial than in Hartford or New Haven. It is also
important to note that in each city, we are investigating the
city itself, not the full metropolitan area. We have similarly
quantified the difference in the average exposure between dif-
ferent income groups (Fig. S.2) and find no significant distinc-
tion in the difference in estimated exposures between income
groups.

BenMAP-CE estimated health impact

We present the BenMAP-CE estimated difference in the num-
ber of annual deaths (mortality) and cases of asthma exacer-
bation for each location in Table 1. According to the risk
estimated using the Krewski CRF, we find an increase in the
estimated number of deaths in New Haven, Hartford, and
Willimantic of 16, 13, and 2, respectively, for the population
age 30 to 99 resulting from a change in resolution of the PM, 5
concentration estimates. This corresponds to an increase in
estimated mortality rate of 2 deaths per 10,000 people.
Although the population density varies substantially between
the locations, the change in estimated mortality rate is not
substantially different. This results from the high concentra-
tions in some of the most populated census block groups in
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Fig. 3 Difference in estimated average PM, 5 exposure between CAMx
and HYCAMR for each demographic group in New Haven, Hartford, and
Willimantic for the year 2011. We consider five different demographic
groups: Hispanic white (Hisp_White), Hispanic black (Hisp_Black), non-
Hispanic white (NonHisp_White), non-Hispanic black (NonHisp
Black), and Asian (Nonhispanic_Asian)

Willimantic where people live in close proximity to roads.
Compared to the estimates using the Krewski CRF, those
using the Lepeule CRF are higher, partially because the
Lepeule CRF included ages 25 to 99 while the Krewski
CRF only includes those 30 to 99. In addition, these studies
were also based on different study populations. We find a
substantial increase in estimated cases of asthma exacerbation
in all three cities when using the higher resolution concentra-
tion predictions (Table 1). Like differences in estimates of
mortality, differences in estimated asthma exacerbation also
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Table 1
concentrations compared to coarse resolution estimates

Difference in the estimated number of death and cases of asthma exacerbation in each city using the fine resolution estimates of PM, 5

New Haven Hartford Willimantic
Health CRF Population at risk ~ Difference in ~ Population atrisk ~ Difference in ~ Population at risk  Difference in
indicator (age group) outcomes (age group) outcomes (age group) outcomes
All-cause Krewski 91,645 16 87,332 13 12,677 2
mortality etal. 2009 (30-99) (30-99) (30-99)
(Krewski
CRF)
Lepeule et al. 98,192 35 93,570 28 13,583 5
2012 (25-99) (25-99) (25-99)
(Lepeule
CRF)
Asthma Ostro et al. 17,020 1300 16,219 1000 2354 190
exacerbation 2001 (6-18) (6-18) (6-18)
(Ostro CRF)
Mar et al. 17,020 6900 16,219 5600 2355 980
2004 (6-18) (6-18) (6-18)
(Mar CRF)

vary between the two CRF which were developed based on
different study populations. For other health impact such as
emergency room visit, hospital visit cardiovascular, and hos-
pital visit respiratory, we also find some differences associated
with model resolution change (Table S.1).

Figures 4 and S.3-S.4 show the difference in the estimated
mortality rate per 10,000 people using each CRF. We see the
greatest impact in the most populated census block groups for
both CRFs in New Haven. We find noticeable differences in
estimated cases of asthma exacerbation between census block
groups depending on whether we apply the Ostro CRF or Mar
CRF (Fig. 5) and the overall differences in estimated cases of
exacerbation vary greatly between the two CRFs. Although
the difference in estimated mortality rate is not as significant

Lepeule CRF

L0
Rar
hnag  FZ7 7
(TR
A =

~=S,
"'

Change in all cause mortality

-
s
.-
<

as that for asthma exacerbation, we still see a difference in the
estimated total number of deaths in each city. According to our
estimates, mortality and asthma exacerbation show the biggest
sensitivity to the model resolution. Although the average ex-
posure is higher in Willimantic than the other two cities, the
difference in estimated absolute health impacts is lower in
Willimantic due to the lower population; however, the differ-
ence in estimated mortality rate in Willimantic is higher (Fig.
S.4) meaning the fine resolution concentration estimates have
more impact on health estimates in Willimantic.

In Fig. 6, we present the distribution of the differences in
the estimated health outcomes between demographic groups.
This is not an estimate of absolute health burden or even
percent health burden from PM, 5 exposure, but rather the

Krewski CRF

Fig. 4 Differences in estimated all-cause mortality from PM, 5 exposure due to differences in the resolution of the PM, 5 concentration estimates in New

Haven
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Fig. 5 Difference in the estimated number of cases of asthma exacerbation from PM, 5 exposure due to differences in the resolution of the PM, 5

concentration estimates in New Haven

difference in estimated health burden when we account for
higher resolution estimates of concentrations. The demo-
graphic breakdown of the population is also included in
Fig. 6 for reference. According to our estimates, we mainly
see similar distributions between demographic groups in dif-
ferences in health impacts as the distribution among demo-
graphic groups in the population with a few exceptions.
Overall the impact of model resolution on health risk estima-
tion affects all sectors of the population similarly in New
Haven. In Hartford, we find a disproportionate higher increase
in estimated hospitalizations for respiratory issues and emer-
gency room visits for Hispanic black and non-Hispanic black
members of the population, respectively, while we find a dis-
proportionate lower increase in the estimated number of cases
for non-Hispanic white members of the population see. In
Willimantic, we find a disproportionate higher increase in es-
timated emergency room visits for the Hispanic black mem-
bers of the population and a disproportionate slightly higher
increase in estimated overall health outcomes for the Hispanic
white members of the population.

Conclusions

As seen in past work (Parvez and Wagstrom 2019), the esti-
mated air pollution exposure to populations differs greatly
depending on the resolution of the air quality model. In this
work, we use BenMAP-CE to estimate how these differences
in estimated exposure may translate to differences in estimated
health burden among different demographic groups. Our
study constitutes one of the few attempts (Kheirbek et al.
2013; Punger and West 2013; Thompson et al. 2014; Li
et al. 2016) to quantify the differences in estimated health

impacts resulting from differences in the resolution of air qual-
ity estimates. As with these past studies looking at impacts at
the regional and global scales, our results show that the model
resolution can influence the health risk assessment at local
scales and higher resolution estimates may lead to higher pre-
dicted health outcomes, particularly for some demographic
groups. Our results show that using coarse resolution air qual-
ity concentrations may lead to an underprediction of the num-
ber of deaths and other health impacts in urban populations.
Although BenMAP-CE is widely used for conducting health
impact assessment, these results should be interpreted with
caution considering the uncertainties and limitations. One lim-
itation of this study is that we maintained the baseline inci-
dents at county scale already available in BenMAP-CE. As the
goal of this study was to compare the impact of differences in
air quality estimate resolution on predicted health outcomes,
this assumption should have little overall impact on the find-
ings. In addition, this analysis is limited by the use of epide-
miological studies developed based on air monitoring network
data rather than concentrations measurements on the resolu-
tions used here. This could impact the applicability of
these concentration-response functions to high resolution
concentration estimates. This work is partially motivated
by the potential for future, high resolution estimates of
air pollutant concentrations to enable the development
of more refined concentration-response functions.
Finally, the exposures estimated here are limited and
based on the location of an individual’s residence and
do not account for activity. These findings provide pol-
icy makers another perspective and potential motivation
to consider fine-scale estimates of air pollutant concen-
trations when estimating potential health impacts and
developing policies to safeguard human health.

@ Springer



278

Air Qual Atmos Health (2020) 13:271-279

New Haven
Asthma Exacerbation

Emergency Room Visit
HA_Cardio
HA_Respiratory
Mortality

Population

o

02 04 06 08
Hartford

[y

Asthma Exacerbation
Emergency Room Visit
HA_Cardio
HA_Respiratory
Mortality

Population

o

02 04 06 038

[y

Willimantic

Asthma Exacerbation
Emergency Room Visit
HA_Cardio
HA_Respiratory
Mortality

Population

o

02 04 06 0.8

[

m NonHisp_White
I Hisp_White

m NonHisp_Black
Il Hisp_Black

0 NonHisp_Asian
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estimated health impacts resulting from using fine-scale estimates of
PM, 5 concentration instead of regional estimates
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