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Social groups such as schools of fish or flocks
of birds display collective dynamics that can be
modulated by group leaders, which facilitate decision-
making toward a consensus state beneficial to the
entire group. For instance, leaders could alert the
group about attacking predators or the presence of
food sources. Motivated by biological insight on
social groups, we examine a stochastic leader-follower
consensus problem where information sharing among
agents is affected by perceptual constraints and
each individual has a different tendency to form
social connections. Leveraging tools from stochastic
stability and eigenvalue perturbation theories, we
study the consensus protocol in a mean-square
sense, offering necessary-and-sufficient conditions for
asymptotic stability and closed-form estimates of
the convergence rate. Surprisingly, our minimalistic
model of collective behavior is successful in predicting
an evolutionary-refined feature of social groups.
Specifically, our analysis anticipates the counter-
intuitive result that heterogeneity can be beneficial to
group decision-making by improving the convergence
rate of the consensus protocol. This observation
finds support in theoretical and empirical studies on
social insects such as spider or honey bee colonies,
where inter-individual variability enhances the group
performance.
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1. Introduction
Evidence of collective behavior is ubiquitous in animal and human groups [1]. Remarkable
examples are flocks of birds or schools of fish, where coordinated maneuvers can enhance
protection from predators and optimize energy expenditure [2,3], or the adoption of universal
social norms by human groups, where rapid collective cultural shifts determine the emergence
on new behaviors that humans are expected to conform to [4,5]. It has been widely observed that
a biological advantage is often achieved when group components tend to spontaneously act in
unison toward attaining an agreement on a common motion pattern, opinion, or rhythm, relying
on local information sharing [1].

Different studies on collective behavior have shown that group decision-making can be
strongly influenced by a few members, called leaders. These individuals initiate new actions that
are readily followed by other group members, called followers [6]. Empirical evidence suggests
that leadership plays an important role in both animal [7,8] and human coordination [9,10].
Leadership can emerge due to temperament, dominance, or knowledge [11] and might be
advantageous to the group. For instance, leaders can provide protection against predatory
attacks [12] or knowledge of food sources [13]. Additionally, in situations where the interest
and benefit of the majority of group members diverge, leadership can be used to resolve the
conflict [14].

The simplest approach to capture decision-making in groups is through consensus
protocols [15]. In this class of algorithms, group members (or agents) are modeled as dynamical
systems that update their state using information exchanged with others in the group, called
neighbors, through a communication network [16]. Leadership is typically associated with the
tendency of agents to retain their state, rather than compromising with other group members [17].
Followers, on the other hand, update their state through a combination of their own individual
dynamics and information exchange from the entire group, including both leaders and followers.

The literature on leader-follower consensus problems is vast, although the majority of existing
studies assumes that the communication network among the agents is time-invariant [18–22], or
evolves according to a deterministic process [23,24]. Although these modeling schemes have shed
light on several features of collective dynamics, they are limited by two restrictive assumptions
that might overlook the complexity of human and animal behavior.

First, communication networks are often assumed to emerge according to deterministic rules,
whereas stochasticity is known to dominate information exchange in humans and animals [25].
Stochasticity is inherent to the tendency of individuals to share information within the group,
such that at a given time an agent in the model should randomly execute the consensus protocol
by compromising with randomly selected neighbors. The process of neighbor selection should be
constrained by the capacity of individuals to process information, which is encapsulated in the
notion of perceptual numerosity in biology [26,27] and reverberates in the degree distribution of the
communication network of consensus models [12,28,29].

Second, individuals of a group are typically hypothesized to be identical, while they may
vastly differ from each other in their behavioral and non-behavioral traits, shaping the process
of information sharing in collective dynamics [30]. Within a consensus protocol, heterogeneity
within the group should manifest into individual-level variations in the propensity to share
information and execute the consensus protocol. For example, the different aerobic capacity of
fish determines their positional preference in a school [31], which will challenge individuals in
the front of the school to process information from the school and favor changes in the swimming
directions of those in rear positions.

Modeling these features calls for advancements in stochastic leader-follower consensus
protocols. Recent efforts have been made in this direction. For instance, in [32], the authors
examine a consensus protocol where, at each time-step, agents randomly establish a fixed
number of connections with a random subset from the group. This notion of a numerosity-
constrained network is further examined in [33] and [34] to explore more complex collective
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dynamics. A treatment of heterogeneity is presented in [35], where the emergence of leadership
is studied by weighing differently the communication between agents — restricted to pairwise
interactions. While these models partially address some of the limitations of standard practice in
the consensus literature, they do not address heterogeneity in the node dynamics within a general
communication network.

In this paper, we advance the state of the art of leader-follower consensus problems toward
a stochastic framework for information exchange that accounts for numerosity-constraints and
individual heterogeneity. We frame our work within the paradigm of activity-driven networks
(ADNs) [36,37]. Under the ADN paradigm, the network topology changes according to a
stochastic mechanism, whereby each agent sporadically establishes interactions with a fixed
number of randomly selected agents in the group. Heterogeneity is modeled through the
assignment of an individual parameter, called activity, to agents. The activity encapsulates
the propensity of each individual to establish links with others. The ADN framework has
been successfully employed in different applications, including epidemics [38–40], opinion
formation [41,42], diffusion of innovation [43], and percolation problems [44].

ADNs have three main advantages that make them attractive for applications: (i) they are
suitable to model the co-evolution of the agents and link dynamics at comparable time scales,
avoiding the need of resorting to time-separation assumptions that would lead to approximated
(quenched or annealed) representations of the network; (ii) they allow for an elegant and compact
representation of agent’s heterogeneity through the activity; and (iii) they beget mathematical
models that can be analytically tractable and amenable to fast simulations, even for large-scale
networks.

Here, we leverage stochastic stability theory [45] and eigenvalue perturbation methods [46]
to study leader-follower consensus over ADNs in a mean-square sense. We decompose the
analysis in three steps. First, we clarify the relationship between mean-square consensus and
the spectral properties of an ancillary matrix, encapsulating second moments of the network
evolution. Second, we examine the consensus protocol in the case where all the agents have the
same activity. From a technical point of view, the analysis extends the claims of [32], where all
the agents are deterministically bound to execute the consensus protocol at each time-step. In the
more general case where agents randomly execute the consensus protocol, we establish a closed-
form expression for the convergence rate and necessary-and-sufficient conditions for consensus.
Finally, we tackle the problem of heterogeneity by applying a perturbation argument that affords
a first-order computation of the convergence rate in terms of the heterogeneity in the agents’
activities.

Beyond assisting in the quantification of the role of several model parameters on the
consensus dynamics, our minimalistic model of collective behavior is successful in anticipating an
adaptative feature of living in groups. Specifically, our theoretical analysis predicts the counter-
intuitive result that heterogeneity can be beneficial to group decision-making by improving the
convergence rate of the consensus protocol. Heterogeneity among individuals has been shown to
be a key factor to improve performance in different biological systems. Several studies indicate
that spider colonies with different phenotypes outperform homogeneous colonies in terms of nest
defense, foraging, or parental care [47–49]. Moreover, behavioral variability conferred by genetic
diversity has been shown to enhance the productivity and fitness in honey bee colonies [50].

The rest of the paper is organized as follows. In Section 2, the model formulation and
the mathematical preliminaries are presented. Our main mathematical results are detailed in
Section 3. In Section 4, we discuss our findings by analyzing the role of model parameters on
the consensus dynamics. Section 5 concludes the paper and identifies avenues of future research.

2. Mathematical preliminaries



4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

1

3

4

5

6
7

2

(a) k= 0

1

2
3

5
7

4

6

(b) k= 1

1

2
3

4

5

6
7

(c) k= 2

1

3

4

5

6

2

7

(d) k= 3

Figure 1: Evolution of an ADN with n= 7 nodes and m= 3 over four discrete time-steps. At each
time-step, nodes that are active and generate links are colored in red. We observe that the network
is generally disconnected and that, at some time-steps, no interaction may be generated (in this
realization, for k= 2).

(a) Model
We consider a network of n≥ 4 agents labeled by positive integers N = {1, . . . , n}. Agents belong
to two different classes: f ≥ 3 of them are followers, the other `= n− f , with `≥ 1, are leaders.
Without loss of generality, we order agents depending on their class, and we denote by F :=

{1, . . . , f} and L := {f + 1, . . . , n} the sets of followers and leaders, respectively. Each agent is
represented by a node of a time-varying network Gk = (N , Ek), where N is the node set, Ek is the
time-varying edge set, and k ∈Z+ is the nonnegative discrete time index.

The network Gk evolves according to a discrete-time directed ADN [36]. Specifically, each node
i∈N is assigned an activity , ai ∈ (0, 1], that is the probability that node i is active at each discrete
time-step. Activities are gathered into the activity vector a ∈ (0, 1]n. An active node generates
m≥ 1 directed links towards m other nodes, selected uniformly at random among the other n− 1

nodes. At each iteration, the time index k is updated, connections created in the previous time-
step are removed, and a new set of connections is established, independent of previous steps. An
example of four consecutive time-steps of an ADN is illustrated in Fig. 1.

At time-step k, the pattern of nodes’ interactions is described by the adjacency matrix Ak ∈
{0, 1}n×n and the graph Laplacian Lk ∈ {−1, 0,m}n×n [51]. The adjacency matrix is defined as

(Ak)ij =

{
1 if (i, j)∈ Ek
0 otherwise,

(2.1)

and the Laplacian is Lk := diag (Ak1)−Ak, where diag (·) is the vector-to-diagonal matrix
operator and 1 is the vector of all ones1, that is,

(Lk)ij =

{
−(Ak)ij if i 6= j,∑

k∈Nr{i}(Ak)ik if i= j,
=


m if i= j, i active at time k,

−1 if (i, j)∈ Ek,
0 otherwise.

(2.2)

By construction, matrices Lk’s constitute a sequence of independent and identically distributed
(IID) random variables with common random variable L.

Each node is associated with a continuous state variable. Nodes’ states are stacked in a vector
xk ∈Rn, which represents the overall state of the system at time k. We denote by yk ∈Rf and
zk ∈R` the subvectors gathering the states of followers and of leaders at time k, respectively, so
that xk = [yT

k zTk ]
T ∈Rn, where superscript T indicates matrix transposition. At each time-step,

each follower may activate and consequently update its state by performing a weighted average,
using a weight ε > 0, with respect to the states of all its neighboring nodes. Parameter ε, called

1Vector and matrix dimensions are usually omitted when they are clear from the context. Only when needed, they will be
indicated through subscripts. Subscript k always indicates the discrete time index.
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averaging parameter, quantifies the willingness of a follower to compromise with its neighbors: the
larger ε is, the higher is the influence of the neighbors.

Followers that do not activate at a given time-step maintain their previous state values.
Leaders, on the other hand, are assigned a common initial state, z0 = s1`, s∈R, which is not
changed through iterations. Hence, the network evolves according to

xk+1 = (I − ELk)xk, (2.3)

with initial conditions x0 = [yT
0 s1T` ], where y0 encodes the arbitrary initial conditions of the

followers, I is the identity matrix and E =diag ([ε1Tf 01T` ]
T ). We refer to the dynamics in (2.3)

as the ADN-leader-follower (ADN-LF) consensus protocol.

(b) Problem formulation and mathematical background
The ADN-LF consensus protocol (2.3) can be detailed in terms of leader and follower subsystems.
The first f rows of matrix Lk, which are associated with the evolution of the followers’ state, can
be expressed block-wise as [L̂kK̂k]∈Rf×n, where L̂k ∈Rf×f and K̂k ∈Rf×`. By construction,
also the sequences of matrices L̂k’s and K̂k’s consist of IID random variables, with common
random variables L̂ and K̂, respectively. Therefore, the f -dimensional follower subsystem
evolves according to

yk+1 = (I − εL̂k)yk − εsK̂k1. (2.4)

To study the convergence of the ADN-LF consensus protocol in (2.3), we define the disagreement
vector, ξk ∈Rf , as the difference between the states of the followers and that of the leaders, that
is, ξk = yk − s1.

From (2.4), we derive the equation that governs the disagreement dynamics as

ξk+1 = (I − εL̂k)ξk, (2.5)

with initial condition ξ0 = y0 − s1. The formulation in terms of disagreement dynamics provides
a framework to study the consentability of the ADN-LF consensus protocol, by leveraging the
following definitions and results [32,52–56].

Definition 2.1 (Definition 1 from [52]). The ADN-LF consensus protocol in (2.3) is said to be mean-
square consentable if the disagreement dynamics in (2.5) is asymptotically mean-square stable, that is,
limk→∞ E[||ξk||2] = 0, with E[·] indicating expected value, for all initial conditions ξ0 ∈Rf .

We observe that, for a jump linear system governed by IID random state matrices like (2.5),
mean-square implies almost-sure stability [53,54]. In order to quantify the rate of convergence to
consensus, we introduce the asymptotic convergence factor [56]. This quantity measures the rate
of decay of the expectation of the norm of the error dynamics toward zero.

Definition 2.2 (Definition 3 from [56]). The asymptotic convergence factor, in the mean-square sense,
of (2.5) is defined as

r := sup
||ξ0||6=0

lim
k→∞

(
E[||ξk||2]
||ξ0||2

)1/k

. (2.6)

Using the iterative process in (2.5), the expected value of the squared norm of the disagreement
vector can be written as

E[||ξk||2] = vec(I)T vec(E[ξkξ
T
k ]) = vec(I)THkvec(ξ0ξ

T
0 ), (2.7)

where vec(·) is the matrix vectorization operator, H ∈Rf2×f2

is the second moment matrix of the
consensus protocol [32,52], defined as

H :=E[(I − εL̂)⊗ (I − εL̂)], (2.8)
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and ⊗ is the Kronecker product. The asymptotic convergence factor r in (2.6) can be expressed in
terms of the spectral properties of the second moment matrix (2.8) through the following result,
whose proof can be found in [52].

Proposition 2.1 (Theorem 1 from [52]). The asymptotic convergence factor of the ADN-LF consensus
protocol (2.3) is equal to the spectral radius of the second moment matrix H , that is, r= ρ(H).
Furthermore, consensus protocol in (2.3) is mean-square consentable if and only if the asymptotic
convergence factor r= ρ(H)< 1.

This result relates mean-square consentability of a consensus protocol with the second moment
matrix H , whose spectral radius regulates the consentability and the speed of convergence of the
consensus protocol. Hence, in what follows, most of our effort focuses on the spectral analysis of
H .

3. Main findings
Here, we present the computation of the second moment matrix H for the ADN-LF consensus
protocol, which allows for the investigation of the consentability and the rate of convergence of
the protocol, in light of Proposition 2.1.

Proposition 3.1. Consider the ADN-LF consensus protocol (2.3). Then, for f ≥ 3, `≥ 1, ε > 0, m≥
1, and ai ∈ (0, 1], ∀ i∈N , the diagonal Hii ∈Rf×f and off-diagonal Hij ∈Rf×f blocks of the second
moment matrix are given by

Hii =

(
q − q2(n− 1)ai

)(
a1T − aiei1

T − diag (a) + aieie
T
i

)
+

(
1− 2q(n− 1)ai + q2(n− 1)2ai

)
ei1

T +

(
q − q2

)
ai

(
ei1

T − eie
T
i

)
−
(
q(n− 1)− q2(n− 1)2ai

)(
diag (a)− aieie

T
i

)
+

(
1− q(n− 1)ai

)(
I − eie

T
i

)
,

Hij = q2ai

(
a1T − aiei1

T − diag (a) + aieie
T
i

)
+

(
q − q2(n− 1)

)
aieie

T
i

+εqaieie
T
j + q

ε(m− 1)

n− 2
aiei(1− ei − ej)

T + qai

(
I − eie

T
i

)
−q(n− 1)ai

(
diag (a)− aieie

T
i

)
,

(3.1)

respectively, where q= εm/(n− 1), a is the vector gathering all the activities, ei is the ith vector of the
standard basis of Rn.

Proof. The second moment matrix in (2.8) can be expanded as follows:

H = If2 − ε(E[L̂]⊕ E[L̂]) + ε2E[L̂⊗ L̂], (3.2)

where ⊕ is the Kronecker sum. We compute E[L̂] by observing that the diagonal entries of matrix
L̂ are either equal to m or 0. In particular, the probability P (Lii =m) = ai, for all i∈F . The off-
diagonal terms are either equal to −1 or 0. Thus, P (Lij =−1) =

mai
N − 1

, for all i and j 6= i. Hence,
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it holds

E[L̂] = n

n− 1
m diag (a)

(
I − 1

n
11T

)
. (3.3)

We compute E[L̂⊗ L̂], by leveraging the block structure of L̂ and the definition of the
Kronecker product. Specifically, we write general entries in the form E[L̂⊗ L̂]jhip , for i, j, h, p∈F .

The ADN-LF consensus protocol begets a regularity in the structure of E[L̂⊗ L̂], which is encoded
by only seven distinct cases. The structure of the generally nonsymmetric matrix E[L̂⊗ L̂] can be
represented through the following cases: (c1) i= j = p= h; (c2) i 6= j, i= k, j = h; (c3) i= j = h

and j 6= p, or i= j = p and j 6= h; (c4) i 6= j, i 6= p, and j = h, or i= p, i 6= j, j 6= h; (c5) i= j, i 6=
p, h= p; (c6) i= j, i 6= h, i 6= p, h 6= p; and (c7) i 6= j, i 6= p, j 6= h, as follows:

E[L̂⊗ L̂] =



c1 c3 · · · c3 c3 c5 · · · c6 · · · c3 c6 · · · c5
c4 c2 · · · c4 c7 c4 · · · c7 · · · c7 c4 · · · c7
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

c4 c4 · · · c2 c7 c7 · · · c4 · · · c7 c7 · · · c4
c4 c7 · · · c7 c2 c4 · · · c4 · · · c4 c7 · · · c7
c5 c3 · · · c6 c3 c1 · · · c3 · · · c6 c3 · · · c5
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

c7 c7 · · · c4 c4 c4 · · · c2 · · · c7 c7 · · · c4
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

c4 c7 · · · c7 c4 c7 · · · c7 · · · c2 c4 · · · c4
c7 c4 · · · c7 c7 c4 · · · c7 · · · c4 c2 · · · c4
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

c5 c6 · · · c3 c6 c5 · · · c3 · · · c3 c3 · · · c1



. (3.4)

The observations on the structure of matrix L̂ made above, the stochastic independence
between its rows, and a counting argument on the Kronecker product lead to the
following seven entries: c1 =E[L̂⊗ L̂]iiii =m2ai; c2 =E[L̂⊗ L̂]jjii =m2aiaj ; c3 =E[L̂⊗ L̂]jjjp =

E[L̂⊗ L̂]jhjj =−maj/(n− 1); c4 =E[L̂⊗ L̂]jjip =E[L̂⊗ L̂]jhii =−m2aiaj/(n− 1); c5 =E[L̂⊗ L̂]ipip =

mai/(n− 1); c6 =E[L̂⊗ L̂]ihip =m(m− 1)ai/(n− 1)(n− 2); and c7 =E[L̂⊗ L̂]jhip =m2aiaj/(n−
1)2.

Remark 3.1. We note that the expression in Proposition 3.1 does not reduce to the second moment matrix
of the leader-follower consensus protocol over a NCN [32] unless a = 1. If all the activities are equal but
they are different from 1, the ADN-LF consensus protocol does not correspond to the consensus protocol
over a NCN, due to the nonlinear influence of the activities on H . Consequently, the effect of the stochastic
activation mechanism is not a mere temporal scaling of the process, which is further exacerbated for the
general case of heterogeneous activities.

The complexity of the general structure of H , demonstrated in Proposition 3.1, challenges
the development of general closed-form results. For the specific case of homogeneous activities,
yielding a simplified form of H , we can compute eigenvalues and eigenvectors in closed-form,
as shown in Section 3(a). Expanding to heterogeneous activities, we can pursue a perturbation
argument with respect to the homogeneous case, as detailed in Section 3(b).
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(a) Homogeneous case
We consider an ADN with a homogeneous vector of activities, that is, ai = a∈ (0, 1], for all i∈N .
Then, the second moment matrix H in Proposition 3.1 simplifies to matrix H0 as

(H0)
ii = qa

(
1− q(n− 1)a

)
11T + q2a(n− 1)(a− 1)ei1T

+

(
1− qa(2n− 1) + q2a2n(n− 1)

)
I + q2n(n− 1)a(1− a)eie

T
i ,

(H0)
ij = q2a211T + qa

(
ε
m− 1

n− 2
− qa

)
ei1

T + qa(1− qna)I

+qa

(
qna− q(n− 1)− ε

m− 1

n− 2

)
eie

T
i + εqa

(
1− m− 1

n− 2

)
eie

T
j ,

(3.5)

where q= εm/(n− 1). The eigenvalues and eigenvectors of H0 can be analytically computed as
detailed in the following proposition; the proof is reported in the Appendix.

Proposition 3.2. Consider the ADN-LF consensus protocol (2.3). Then, for f ≥ 3, `≥ 1, ε > 0, m≥ 1,
and ai = a∈ (0, 1], ∀ i∈N , the second moment matrix H0 has eigenvectors of the form v = [vT

1 . . . vT
f ]

T ,
with vi ∈Rf , i∈F , belonging to eigenspaces Γ1, . . . , Γ6, defined by

Γ1 =

{
v ∈Rf2

:
∑
i∈F

vi = 0, vT
i 1= 0, eTi vi = 0, i∈F

}
,

Γ2 =

{
v ∈Rf2

: vi =−µi1+
∑
j∈F

µjej ,
∑
j∈F

µj = 0, i∈F
}
,

Γ3,4 =

{
v ∈Rf2

: vi = µiei −
1

γ3,4 + 2

(
µi1+

∑
j∈F

µjej

)
,

∑
j∈F

µj = 0, i∈F
}
,

Γ5,6 =

{
v ∈Rf2

: vi = ei + γ5,61, i∈F
}
,

(3.6)

with corresponding eigenvalues

λ1 = (1− nqa)2,

λ2 = 1− qa(n+ `) + q2a2n`,

λ3,4 = (1− nqa)2 + (nq2a2 − qa)(γ3,4 + 2− f),

λ5,6 = (1− `qa)2 +
2qa− (n+ `)q2a2

γ5,6
,

(3.7)

where constants γ3, . . . , γ6 are reported in the Appendix. In addition, all the eigenvalues of H0 are real and
the matrix is diagonalizable.

Remark 3.2. Following up on Remark 3.1, in the specific case of the homogeneous ADN-LF with a= 1,
Proposition 3.2 reduces to Proposition 2 in [32].

We use the complete spectral characterization of matrix H0 to determine its spectral radius
and, ultimately, a closed-form expression for the asymptotic convergence factor r defined in (2.6),
by using Proposition 2.1. Our results are summarized in the following theorem.

Theorem 3.1. Consider the ADN-LF consensus protocol (2.3). Then, for f ≥ 3, `≥ 1, ε > 0, m≥ 1, and
ai = a∈ (0, 1], ∀ i∈N , its asymptotic convergence factor is r= λ6, as defined in (3.7).

Proof. We determine the asymptotic convergence factor by examining the spectral decomposition
of H0, that is, UHV =Λ, where

Λ=diag

(
[λ11Tf2−3f+1 λ21Tf−1 λ31Tf−1 λ41Tf−1 λ5 λ6]

T
)
. (3.8)
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Figure 2: Norm of the disagreement vector computed over 200 independent Monte Carlo
simulations (red line) and corresponding 99% confidence intervals, compared with our analytical
prediction from Theorem 3.1 (blue dashed line), for different parameters settings. In each of the
two figures, all the simulations share the same initial conditions, where the initial state for each
follower is generated uniformly at random in [0, 1]. Common parameters are ε= 0.2 and a = a1

with a= 0.3.

Matrix V contains the f2 linearly independent (right) eigenvectors of H0, and U contains the left
eigenvectors, defined in the Appendix.

Note that UV = If2 , and that the first four left and right eigenspaces of H0 are orthogonal to
vec(I). Thus, we can express (2.5) as

E[||ξk||2] =
(1 + γ5)(||ξ0||2 + ω5(ξ

T
0 1)2)

1 + γ5 + ω5 + γ5ω5
λk5 +

(1 + γ6)(||ξ0||2 + ω6(ξ
T
0 1)2)

1 + γ6 + ω6 + γ6ω6
λk6 . (3.9)

Finally, through standard algebra we compare the two eigenvalues λ5 and λ6, and we prove that
|λ6|> |λ5|, for any admissible choice of the model parameters, which yields the claim.

In Fig. 2, we compare our analytical predictions of the disagreement dynamics from
Theorem 3.1 with their Monte Carlo numerical estimation (computed over 200 independent runs
with the same initial condition), in two different parameters settings. In both cases, we observe a
satisfactory agreement between the two quantities. In Fig. 2a, the asymptotic convergence factor
is analytically computed as r= 0.8794, while its numerical estimation, computed through best
line fit after a transient of k= 40 steps, gives the estimation 0.8776. Similarly, in Fig. 2b, we
analytically predict r= 0.8814, against a numerical estimation 0.8814. In both cases, the difference
between analytical prediction and numerical estimation is smaller than 0.3%, thereby confirming
the validity of our closed-form results.

(b) Heterogeneous case
Next, we consider the case when the activities in the ADN-LF consensus protocol
eqrefeq:consensus are nonidentical. The complex structure of the second moment matrix H

challenges the analytical study of consentability for this general case. To overcome this issue,
we tackle the analysis through a first-order perturbation argument. Toward this aim, we define ā

as the average activity and σ as the standard deviation of the activities, such that

ā :=
1

n

∑
i∈N

ai, σ :=

√
1

n

∑
i∈N

(ai − ā)2. (3.10)

We observe that the entries of the vector of activities a can be written as

ai = ā+ σhi, (3.11)
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where hi ∈R measures the deviation of each nodal activity from the average, vector h is such
that 1T h = 0, and ||h||=

√
n. Furthermore, we denote the overall deviations of the followers as

α :=
∑

i∈F hi.
Utilizing (3.11), we can expand the second moment matrix H in (3.1) as

H =H0 + σH1 +O(σ2), (3.12)

where H0 is the second moment matrix (3.5) for a homogeneous ADN with all activities equal to
ā and H1 is reported in (A 6) in the Appendix. Perturbation analysis allows for an explicit closed-
form expression of the asymptotic convergence factor of the ADN-LF consensus protocol through
the following result.

Proposition 3.3 (From [46]). Consider the second moment matrix H in (3.12). Let ρ0 be the simple
eigenvalue associated with the spectral radius of H0 and u0 be its corresponding unit-norm eigenvector.
Then, the spectral radius of H is equal to ρ(H) = ρ0 + σρ1 +O(σ2), where ρ1 = uT0 H1u0 is the first-
order eigenvalue perturbation.

The result of the application of Proposition 3.3 to the second moment matrix H for the ADN-LF
consensus protocol (2.3), in the presence of heterogeneity, is reported in the following proposition;
details of the proof are provided in the Appendix.

Proposition 3.4. Consider matrix H in (3.12) with f ≥ 3, `≥ 1, ε > 0, m≥ 1, and ā∈ (0, 1]. The first-
order perturbation of the spectral radius of H0 is

ρ1 = α

[
γ26

(
− 2q2`2ā(f − 1)− q`f + q2(n− 1)(`− f + 1) + εq(f − 1)

+
εq(m− 1)(f − 1)(f − 2)

n− 2

)
+ γ6

(
2q(`f − n− `) + 2q2(n− 1)`

+
εq(m− 1)(f − 1)(f − 2)

n− 2
− 2q2ā(n+ `)(`f − 1) + 2(f − 1)εq

)
− 2qf

−2q2`ā(n+ `)(`− 1)− 2qf + q2(n− 1)2 + (f − 1)εq

]
/(γ26f

2 + 2γ6f + f),

(3.13)

where the constant γ6 is given in the Appendix upon setting a= ā.

Through the perturbation argument in Proposition 3.3, the asymptotic convergence factor of a
general ADN-LF consensus protocol can be expressed in terms of the asymptotic convergence
factor when all the activities are equal to each other (ai = ā, ∀ i∈N ), computed according
to Theorem 3.1, and the first-order perturbation presented in Proposition 3.4. This claim is
formalized through the following theorem.

Theorem 3.2. Consider the ADN-LF consensus protocol (2.3). Then, for f ≥ 3, `≥ 1, ε > 0, m≥ 1, and
a = ā1+ σh, its asymptotic convergence factor is equal to r= λ6 + σρ1 +O(σ2), where λ6 is given
in (3.7) upon setting a= ā and ρ1 is presented in (3.13).

We observe that the first-order perturbation in (3.13) is proportional to the parameter α, that
is, the sum of the followers’ activity deviations. Therefore, a sensible choice of the components of
vector h may be used to regulate the rate of convergence of the ADN-LF consensus protocol. In
this sense, heterogeneity can be interpreted as a control parameter for the speed at which agents
find an agreement. In Fig. 3, we provide evidence of the previous claim, showing an instance in
which vector h is chosen to improve the convergence rate.

The figure also verifies the accuracy of the first-order approximation in the proposed
perturbation analysis. We observe a remarkable agreement between predictions through
perturbation theory and the numerical computation of asymptotic convergence factor from
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Figure 3: Comparison between the first-order perturbation of the asymptotic convergence factor
(blue solid line) and the numerical computation of the spectral radius of the exact second
moment matrix (red stars), for different levels of heterogeneity and parameters settings. Common
parameters are ε= 0.2, ā= 0.3, and the vector h is generated at random, given α.

spectral radius of the complete matrix. Such an agreement extends up to perturbations of the same
order of magnitude of the average activity. Finally, we notice that higher-order terms — neglected
by the first-order analysis — seem to increase the asymptotic convergence factor, thereby slowing
down convergence.

An elegant form of the asymptotic convergence factor in Theorem 3.2 can be derived in the
thermodynamic limit of large groups, that is, for n→∞. We assume that the fraction of followers
remains constant as the group grows, that is, we assume f = κn and `= (1− κ)n, for some κ∈
(0, 1). Under this assumption, the asymptotic convergence factor tends to the expression detailed
in the following corollary.

Corollary 3.1. For n→∞, the asymptotic convergence factor r of the ADN-LF consensus protocol (2.3)
with ε > 0, κ∈ (0, 1), a = ā1+ σh, and m≥ 1, approaches

r∞ =


(1− εmā(1− κ))2 if ε≤ 2κ

κ+m−mā(1− κ)2
,

1− 2εmā+ ε2mā(m+ κ)− 2σαε2m2ā
(1− κ)2(2− κ)

κ
if ε >

2κ

κ+m−mā(1− κ)2
.

(3.14)

Proof. We compute limit expressions for γ6. If ε≤ 2κ/(κ+m−mā(1− κ)2), then

lim
n→∞

γ6
n

=
εmā(1− κ)2 + 2κ− εκ− εm

εκ+ ε(m− 1)2 + εm(1− 2κ)− εmā(1− κ)2
. (3.15)

Otherwise, we find

lim
n→∞

γ6n=
2− εmā(2− κ)

εκ− 2κ+ εm− εmā(1− κ)2
. (3.16)

The use of either (3.15) or (3.16), and the explicit computation of the limit of λ6 for n→∞ yield
the claim.

In the thermodynamic limit of large groups, Corollary 3.1 shows that the effect of heterogeneity
increases with ε. The coefficient of α in (3.15) is positive, such that it is always possible to
accelerate convergence by introducing heterogeneity in the activities. Predictably, we observe
that the favorable effect of heterogeneity increases as the number of leaders in the group and the
average activity increase. In Fig. 4, we illustrate the dependence of the asymptotic convergence
factor r on the group size for different values of ε. Therein, we also report the limit value
r∞ computed in Corollary 3.1 for large groups, considering three different parameter settings.
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Figure 4: Asymptotic convergence factor for large networks. The black line is r∞, computed in
Corollary 3.1, and the red line is the asymptotic convergence factor computed in Theorem 3.2,
for increasing network sizes n. Common parameters are κ= 0.5, m= 4, ā= 0.3, σ= 0.3, and the
vector h is generated at random such that α= 1.

Overall, we find that the thermodynamic limit accurately represents the asymptotic convergence
factor for groups of more than 100 agents.

4. Parametric study
Here, we present a parametric study to investigate the role of model parameters on the ADN-LF
consensus protocol. The intricacy of the closed-form expressions for the asymptotic convergence
factor — Theorem 3.1 — and its first-order perturbation in the presence of heterogeneity —
Theorem 3.2 — might challenge the identification of key parametric dependencies. The latter can
be unveiled by exploring the closed-form expressions over a convenient parameter space.

(a) Homogeneous case
We consider the ADN-LF consensus protocol (2.3) with a homogeneous vector of activities.
Proposition 2.1 guarantees mean-square consentability provided that the asymptotic convergence
factor is less than one. Since the asymptotic expression of r for large groups, demonstrated in
Corollary 3.1, is mostly influenced by the averaging parameter ε and the number of connections
m, we begin our analysis with these two parameters.

Fig. 5 summarizes this parameter exploration. We color-code the regions of the parameter
space where the system is mean-square consentable, according to the log r. Above the dashed line,
associated with r= 1, mean-square consensus is not feasible. The number of connections that are
formed by each node plays a key role on consentability. Within the consentable region, we can
identify optimal combinations of ε and m that maximize the speed of convergence. The shape of
the optimality locus highlights a trade-off between the tendency to compromise and the number
of interactions established at each time-step: if one increases, the other should decrease, and vice
versa. A similar trade-off has been recently documented and investigated in an experimental
setup using a swarm of land robots [57].

In Fig. 6, we extend the analysis to the fraction of followers κ= f/n and the activity a by
examining pair-wise variations of κ, a, and ε. Predictably, Fig. 6a shows that the asymptotic
convergence factor improves by increasing the number of leaders, consistent with the empirical
observations on the advantageous role of leaders for the group in [12–14]. Given the fraction
of leaders, we identify an optimal value for the averaging parameter ε, such that higher or lower
values of ε reduce the convergence rate, potentially causing consentability to be lost. Fig. 6b shows
that the convergence rate improves with the activity of the nodes, since higher values of a are
more conducive to information exchange in the group. Also in this case, for any given value of a,
we determine an optimal value of ε that maximizes the convergence rate. Finally, in Fig. 6c, we
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Figure 5: Color-coded plot of the logarithm of the asymptotic convergence factor log r of the ADN-
LF consensus as a function of parameters ε and m, for two different choices of the remaining
parameters. The blue dashed line identifies the consentability threshold consensus is attained
below the threshold). Dark red denotes smaller values of the asymptotic convergence factors, that
is, faster convergence toward consensus. In both cases, a = a1 and n= 100.
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Figure 6: Color-coded plot of the logarithm of the asymptotic convergence factor log r of the ADN-
LF consensus protocol, as a function of ε, κ, and a, for two different choices of the remaining
parameters. The blue dashed line identifies the consentability threshold (consensus is attained
below the threshold for (a) and (b), while it is reached above the threshold for (c)). Common
parameters are n= 100 and m= 4.

demonstrate that the rate of convergence rate improves monotonically with both the activity and
the fraction of leaders.

(b) Heterogeneous case
We consider now the general case in which the activities of the agents are different. In Fig. 7, we
examine the effect of heterogeneity in the activities by computing the ratio σρ1/λ6, quantifying
the relative difference between the spectral radii of H and H0 up to the first-order in σ, according
to Theorem 3.2. We examine variations in ε and ā. For low levels of the average activity ā, the
performance of the ADN-LF consensus protocol is not sensibly affected by heterogeneity, whereby
the relative difference between the spectral radii is close to zero. As the average activity grows,
that is, for increasing values of ā, we observe a robust improvement in the convergence rate. We
acknowledge that our analysis is limited to a first-order perturbation, whereby the location of the
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ā

ε

−0.4

−0.3

−0.2

−0.1

0

(a) f = 65, σ= 0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

ā
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Figure 7: Color-coded plot of the effect of heterogeneity in the nodes’ activities on the asymptotic
the convergence factor of an ADN-LF, as a function of ε and ā. The blue dashed line identifies
the consentability threshold for nodes with the same activity, that is, σ= 0 (consensus is possible
above the threshold). Common parameters are n= 100, m= 4, and α= 1.
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Figure 8: Color-coded plot of the effect of heterogeneity in the nodes’ activities on the asymptotic
the convergence factor of an ADN-LF, as a function of σ, ε, and ā. The blue dashed line identifies
the consentability threshold for nodes with the same activity, that is, σ= 0 (consensus is possible
above the threshold). Common parameters are n= 100 and α= 1.

stability boundary for σ > 0 can only be identified for moderately heterogeneously systems. For
sufficiently large values of the averaging parameter ε, we observe a nonmonotonic dependence
on bar a. This supports the existence of an optimal value of average activity ā, yielding the largest
improvement in the speed of convergence.

Recalling the role of the trade-off between ε and m on the convergence rate for the case of
homogeneous activities demonstrated in Fig 5, we explore the mediating effect of heterogeneous
activities. In Fig. 8, we plot σρ1/λ6 as a function of ε and m for two exemplary values of σ.
Therein, we identify a wide region of the parameter space for which heterogeneity in activities
dramatically improves the convergence of the consensus protocol. Improvement is registered in
terms of faster convergence rates as well as a wider parameter space in which consensus should
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be feasible, echoing experimental evidence that supports a potential benefit of heterogeneity in
behavioral and non-behavioral traits in social groups [47–50].

5. Conclusions
In this work, we have studied the problem of stochastic leader-follower consensus in a multi-
agent system encapsulating some of the critical aspects of social groups. We have framed our
model within the paradigm of activity-driven networks, which allows for incorporating the
stochastic nature of interactions between group members, perceptual limitations of individuals,
and heterogeneity in individual tendency to share information in the group. Our main
contributions are: (i) the formalization of a leader-follower consensus protocol over an activity-
driven network; (ii) the analytical computation of the second moment matrix of such a
protocol, whose spectral radius regulates the rate of convergence to consensus; (iii) the rigorous
computation of a closed-form expression for the convergence rate of the protocol when all
individuals have the same activity; and (iv) the application of eigenvalue perturbation techniques
toward a closed-form result that helps elucidate the effect of the heterogeneity in individuals’
activity on the convergence rate.

Our analytical results provide insight on the consensus protocol, by elucidating the role
of key model parameters on consentability and convergence rate. We have identified an
optimality trade-off between the number of connections formed by group members and their
tendency to compromise, similar to recent experimental observations on behavior of robotic
swarms [57]. Most importantly, our minimalistic model of collective behavior anticipates a
potentially evolutionary-refined feature of living in groups, whereby we found that heterogeneity
in individual activities could favor consensus. Several biological observations have indicated
that heterogeneity in behavioral and non-behavioral traits can be beneficial to coordination
and performance in social groups [47–50]. Our study adds to this field of investigation by
demonstrating that the convergence rate of a class of stochastic leader-follower consensus
protocols can be improved by engineering the extent of heterogeneity in the system.

The main limitation of our study resides in the perturbation argument used to deal with the
heterogeneous scenario. Despite numerical simulations suggest that the first-order approximation
is accurate for perturbations up to the same order of magnitude of the average value of the
activity, a higher-order perturbation analysis would be necessary to extend our results to highly
heterogeneous systems. The implementation of such an analysis will be part of our future
research. Besides, other avenues of future research include the extension of this approach to
nonlinear dynamics, which can be implemented by formulating a master stability equation [58],
and the analysis of experimental case-studies to examine the viability of control strategies for
collective behavior of social groups based on the targeted introduction of heterogeneity.
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Coefficients in the formulations of eigenvalues and eigenspaces
The coefficients that appear in Proposition 3.2 are calculated as

γ3,4 =
−Bγ ±

√
B2
γ − 4AγCγ

2Aγ
, γ5,6 =

−B̂γ ±
√

B̂2
γ − 4ÂγĈγ

2Âγ

, (A 1)

with

Aγ = 1− nqa,

Bγ = (4− f)(1− nqa) + q(1− a)(n− 1)2 + qa− ε,

Cγ = 2(f − 2)

[
nqa− 1 + 2q(1− a)n+

q − ε

n− 2

]
,

Âγ = ε(f − 1) + ε
(m− 1)(f − 1)(f − 2)

n− 2
+ q(n− 1)(`− f + 1)− qa`2,

B̂γ = ε(f − 1)− 2f + q(n− 1)2 + qa(n+ `− `2),

Ĉγ = qa(n+ `)− 2.

(A 2)

The coefficients ω3, . . . , ω6 that appear in Theorem 3.1 are computed by evaluating the right-
hand-sides of (A 1), with the coefficients that have γ as a subscript being replaced by the following
ones:

Aω = qan− q(n− 1)− ε
m− 1

n− 2
,

Bω = −qan(n− 2) + q(n2 − 3n+ 1)1− ε,

Cω = 2(1− qan),

Âω = q2a(n− 1)− q2a2n2 + (f − 1)qεa− qaε
(f − 2)(m− 2)

n− 2
,

B̂ω = 1− qa(2f − (f − 1)ε) + 3q2a(n− 1)− (n2 + f2 + 2`− f)q2a2 − 2qaε
(f − 2)(m− 2)

n− 2
,

Ĉω = −2qa− qaε
(f − 2)(m− 2)

n− 2
− 2q2a2(n− 1) + 2q2a(n− 1).

(A 3)

Proofs of the technical propositions
Proof of Proposition 3.2. We recall that v is an eigenvector of H associated with the eigenvalue λ if
and only if the following relation is verified:

(Hv)i =
∑
j∈F

Hijvj =Hiivi +
∑

j∈Fr{i}
Hijvj = λ(Hv)i, ∀ i∈F . (A 4)

Using (A 4), we verify that the quantities expressed in (3.7) and (3.6) are the six pairs of
eigenvalues and eigenspaces of H , respectively. To simplify the notation, all the summations in
the following should be intended over the set F .

Let us consider a generic vector v ∈ Γ1. We observe that vT
i 1= 0, eTi vi = 0, and

∑
vi = 0.

This gives (Hv)i = λ1vi, that is, λ1 is an eigenvalue of H with eigenspace Γ1. Its (geometric)
multiplicity is computed by counting the number or linearly independent vectors in Γ1, which is
equal to f2 − 3f + 1.

For v ∈ Γ2, the following relationships hold: vT
i 1=−fµi, eTi vi = 0,

∑
vi = f

∑
µjej , and

eTi vj = µi − µj , for j 6= i. Hence, (Hv)i reduces into a linear combination of −µi1 and
∑

µjej ,
both with weights equal to λ2, which yields the second eigenvalues. Its multiplicity is equal to
f − 1.

We consider a generic vector in the form v = [vT
1 . . . vT

f ]
T , with

vi = µiei −
1

γ + 2

µi1+
∑
j∈F

µjej

 ,
∑
j∈F

µj = 0, i∈F (A 5)
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for some γ ∈R r {2}, and we demonstrate that v is an eigenvector of H0 if and only if γ = γ3 or
γ = γ4, with eigenvalues λ3 and λ4, respectively. We observe that vT

i 1= µi(γ − f + 2)/(γ + 2),
eTi vi = µiγ/(γ + 2),

∑
vi = (γ − f + 2)/(γ + 2)

∑
µjej , and eTi vi =−(µi + µj)/(γ + 2), for j 6=

i. Using these properties, we write (Hv)i as a linear combination of µiei, µi1, and
∑

µjej , whose
coefficients are first-order polynomials in γ and are denoted as K1 for the first term and K2 for the
other two terms, respectively. Then, we determine the values of γ for which v is an eigenvector,
by using (A 4). We derive the condition K2/K1 =−1/(γ + 2), which yields the second-order
equation Aγγ

2 +Bγγ + C = 0, whose solutions are γ3,4. Finally, by substituting these two values
in (A 4), we obtain (Hv)i = λ3,4vi, which yields the third and the fourth pairs of eigenvalues and
eigenspaces. Both eigenspaces have dimension f − 1.

Lastly, similar to the previous case, we consider a generic vector in the form v = [vT
1 . . . vT

f ]
T ,

with vi = ei + γ1, for i∈F and for some γ ∈R, and we prove that v is an eigenvector if and
only if γ = γ5 or γ = γ6, with eigenvalues λ5 and λ6, respectively. We observe that vT

i 1= 1 + γf ,∑
vi = (1 + γf)1, and eTi vi = 1 + γ, eTi vj = γ for i 6= j. Similar to the previous case, the explicit

computation of the product (Hv)i yields a linear combination of ei and 1, whose coefficients,
denoted as K′

1 and K′
2, respectively, are first-order polynomials in γ. From (A 4), we derive

the condition K′
2/K

′
1 = γ, which yields the second-order equation Ãγγ

2 + B̃γγ + C̃ = 0, whose
solutions are γ5,6. Finally, we substitute these two values in (A 4), obtaining λ5 and λ6, which are
both simple eigenvalues.

We conclude the proof by observing that all the eigenspaces are mutually orthogonal, which
can be proved by directly computing the scalar products of pairs of eigenvalues and using again
the properties above. Also, the sum of the geometric multiplicities of the eigenvalues is equal to
the dimension of H , which implies that all λ1, . . . , λ6 are all the (right) eigenvalues of H and that
the matrix is diagonalizable [59].

Computation of the left eigenspaces of H0 in Theorem 3.1. Left eigenspaces Ω1, . . . , Ω6 are computed
similar to the right ones, following the proof of Proposition 3.2 and using the fact that they
share the same eigenvalues. In particular, we obtain that λ1 and λ2 have the same left and right
eigenspaces, that is, Ω1 = Γ1 and Ω2 = Γ2, respectively. As the other eigenspaces are considered,
we prove that Ω3,4 and Ω5,6 share a formally similar structure to Γ3,4 and Γ5,6, respectively,
where the γ3, . . . , γ6 parameters are substituted by ω3, . . . , ω6, computed above.

Proof of Proposition 3.4. The second moment matrix is expressed in a perturbation form as H =

H0 + σH1 +O(σ2), where

(H1)
ii =

(
εm

n− 1
− ε2m2ā

n− 1

)(
h1T − hiei1

T − diag (h) + hieie
T
i

)
−ε2m2ā

n− 1
hi

(
11T − ei1

T − I + eie
T
i

)
+

(
ε2m2ā− εm

)(
diag (h) + hiI − 2hieie

T
i

)
+

(
ε2m2 − 2εm

)
hieie

T
i +

(
εm

n− 1
− ε2m2

n− 1

)
hi

(
ei1

T − eie
T
i

)
,

(H1)
ij =

ε2m2ā

(n− 1)2
hi

(
11T − I − ei1

T + eie
T
i

)
+

ε2m2ā

(n− 1)2

(
h1T − hiei1

T − diag (h) + hieie
T
i

)
+

(
εm

n− 1
− ε2m2

n− 1

)
hieie

T
i

−ε2m2ā

n− 1

(
diag (h)− hieie

T
i

)
+

(
εm

n− 1
− ε2m2ā

n− 1

)
hi

(
I − eie

T
i

)
+

ε2m(m− 1)

(n− 1)(n− 2)
hiei

(
1− ej − ei

)T

+
ε2m

N − 1
hieie

T
j .

(A 6)



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

From Proposition 3.3, the spectral radius of H can be written as ρ(H) = λ6 + σρ1 +O(σ2),

where

ρ1 =
vTH1v
||v||2

=
1

||v||2
∑
i∈F

∑
j∈F

vT
i (H1)

ijvj , (A 7)

with v = [vT
1 , . . . , vT

f ]
T , vi = ei + γ61, and ||v||=

√
γ26f

2 + 2γ6f + f . The vector v/||v|| is thus
the unitary-norm eigenvector associated with the spectral radius of H . The espression in
Proposition 3.4 is obtained through cumbersome, but standard, algebra. Specifically, we expand
the summations and the products in (A 7) using (A 6). Then, we simplify them by utilizing
the properties of vector v mentioned in the proof of Proposition 3.2, and further using vT

i h =

hi + γ6α.
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