

Plugin-based Intervention for Secure Software
Development

Hossain Shahriar1, Kai Qian1, Dan Lo1, Mohammad Rahman2, Fan Wu3, Sheikh Ahamed4
, Emmanuel Agu5

1Kennesaw State University, Marietta, GA, USA
2Florida International University, Miami, FL, USA

3Tuskegee University, Tuskegee, AL, USA
4Marquettee University, Milwaukee, WI, USA

5Worcester Polytechnic Institute, Worcester, MA, USA

1{hshahria, kqian, dlo2}@kennesaw.edu, 2marahman@fiu.edu

3fwu@tuskegee.edu, 4sheikh.ahamed@marquette.edu, 5emmanuel@wpi.edu

Abstract— This Innovative Practice Work in Progress
presents a plugin tool named DroidPatrol. It can be integrated
with the Android Studio to perform tainted data flow analysis
of mobile applications. Most vulnerabilities should be
addressed and fixed during the development phase. Computer
users, managers, and developers agree that we need software
and systems that are “more secure”. Such efforts require
support from both the educational institutions and learning
communities to improve software assurance, particularly in
writing secure code. Many open source static analysis tools
help developers to maintain and clean up the code. However,
they are not able to find potential security bugs. Our work is
aimed to checking of security issues within Android
applications during implementation. We provide an example
hands-on lab based on DroidPatrol prototype and share the
initial evaluation feedback from a classroom. The initial
results show that the plugin based hands-on lab generates
interests among learners and has the promise of acting as an
intervention tool for secure software development.

Keywords - Software Security; DroidPatrol, Static
Analysis, Android Studio, SQL Injection, Open Learning
Resources and Practices.

I. INTRODUCTION

 With the increased demands of mobile applications in
recent years, we have also witnessed numerous major cyber-
attacks, resulting in stolen personal credit card numbers,
leakage of classified information vital for national defense,
industrial espionage resulting in major financial losses, and
many more consequences [20]. Hackers have managed to
make secure computing a more difficult task. This has
resulted in the need for not only the concepts of
cybersecurity, but also the secure software development as
part of teaching computer science, information technology,
and related courses. The rapid growth of mobile computing
also results in a shortage of professionals for mobile
software development, especially for Secure Mobile
Software Development professionals and insufficient tool
support to developing secure mobile applications [12, 13,
14].

 Most vulnerability should be addressed and fixed in the
software development phase [18]. If all the mobile

applications are secure or have fewer security flaws and
vulnerabilities, the security threat risks will be greatly
reduced. Computer users, managers, and developers agree
that we need software and systems that are "more secure".
Such efforts require support from both the educational
institute and learning communities to improve software
assurance, particularly in writing secure code.

 Many open source static analysis tools help developers
to maintain and clean up the code through the analysis
performed without actually executing the code (e.g., Eclipse
IDE [15], IntelliJ IDE [16], FindBugs [17]). These tools
focus on finding potential bugs such as inconsistencies,
helping improve the code structure, conform source code to
guidelines, and provide quick fixes. In general, these tools
are used to ensure code quality from the very beginning and
to make software development more productive. The
security vulnerability checking is not their major task.
Source code analysis tools could be also designed to identify
security flaws within implemented code with a high
confidence.

 In this paper, we provide a hands-on lab using taint-
based data flow analysis with DroidPatrol plugin for
promoting secure software development practices.
DroidPatrol allows developers to specify a list of sources
and sinks and enable them to see the possible paths within
the source code and suggestion of corresponding fixes. Our
lab demonstrates fosters and support increased secure
software development. It would allow learners to perform
tainted data flow analysis for common security flaws before
deploying applications.

II. RELATED WORK

Yuan and others [4] reviewed current efforts and
resources in secure software development. Chi [8] built
resources for secure coding practices of professionals.
These learning modules provide the essential and
fundamental skills to programmers and application
developers in secure programming. These effort
strengthens IAS Defensive Programming knowledge areas
(KA) have been identified as topics/materials in the

ACM/IEEE Computer Science Curricula [5-6]. They
successfully disseminated the mobile computing education,
but did not emphasize the importance of secure mobile
software development tools support integrated with the
IDE.

 Android has a complex communication system for
sharing and sending data in both inter and intra-
applications. Malicious applications may take advantage of
built-in feature (e.g., Intent object broadcast by victim
applications can be intercepted by a malware running on
the same device) to avoid detection. Recently many tools
are developed to perform taint-based static analysis
checking, like Findbugs and DidFail [10]. They are not
capable of detecting all known Android security bugs based
on OWASP guidelines [7]. Detection of potential taint
flows can be used to protect sensitive data, identify leaky
apps, and identify malware.

A number of effort enhanced the secure software
development. For example, Application Security IDE
(ASIDE) plug-in for Eclipse can warn programmers of
potential vulnerabilities in their code and assists them in
addressing these vulnerabilities. ASIDE addresses input
validation vulnerabilities, output encoding, authentication
and authorization, and several race condition
vulnerabilities [1-3]. However, it cannot identify Android
specific security flaws. Further, ASIDE cannot be
integrated with Android Studio.

FindSecurityBugs (FSB) is a plugin for the FindBugs (a
plugin) that has been ported to IntelliJ IDE [19]. It only
specializes in finding security issues in traditional Java code
by searching for security instead of Android Specific
security bugs (e.g., secure inter-process communication).
Since it analyzes at the bytecode level to find defects and/or
suspicious code, source code level warning not available for
early fixing of security vulnerabilities. Further, it does not
allow developers to customize the source of security flaws
(e.g., suspected API calls that should be flagged when
reaching from one point to another).

III. SQL INJECTION DATA LEAK HANDS-ON LAB DESIGN

An example is shown with SQL Injection data leakage
in Android applications. Below we discuss the prelab and
hands-on lab parts.

A. Prelab

In the prelab section, learners are introduced with the
overview of static analysis, tainted data flow analysis
concept, and SQL Injection vulnerability. SQL injection is
a common security vulnerability in mobile applications
leading to data leakage [5]. It works by adding user
supplied data to a query string which leads to the alteration
of SQL queries leading hackers to access to unauthorized
data and bypassing logins. SQL Injection is usually used to
attack Web Views or a web service. However, it can also
be used to attack Activities in Android applications.

 Consider the code segment in Figure 1. Here, a SELECT
query is formed with user id (userid) and password
(password) variables in the method isValidUser(). The
input is obtained from username and password text boxes
(which we mark as source) in the onCreate() method. After
the query runs, the output is the name and grade, which are

displayed by setting as text to textboxes (data sink) in the
isValidUser() method.

 Since, the input is not filtered, an attacker can exploit
the application by providing malicious inputs for userid and
password variables.

public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main);
 username = findViewById(R.id.textView1); // source
 password = findViewById(R.id.textView1); // source
}
public boolean isValidUser(){
 …
 userid = findViewById(R.id.editText1); //retrieving id
 password= findViewById(R.id.editText2); //retrieving password
 …
 String query = "select name, grade from users where user_id= '"
+ userid + "' and password = '" + password +"'";
 SQLiteDatabase db;
 ... … …
 Cursor c = db.rawQuery (query, null);
 name.setText(c.getString(columindex1)); //sink
 grade.setText(c.getString(columnindex2)); //sink
 return c.getCount() != 0;
}

Figure 1: Example of vulnerable code

B. Hands-on lab

 We first define the sources and the sinks (see Figure 2).
Source means location where input data may be obtained
from external inputs such as a user or database query. For
example, in Figure 2, the source is defined as database
Cursor object. This object allows a program to retrieve
data. Data obtained from source can be transferred to a third
party via SMS messaging. In Android, to send an SMS
message, SmsManager object can be used which
subsequently requires SEND_SMS permission to be listed
in the manifest file. Figure 2 shows both SmsManager class
and SEND_SMS permission listed in the sink list. A
developer can include other possible sources and sinks
based on secure programming practices and OWASP
guidelines. This allows the flexibility to not only detecting
new security bugs, but also reducing false positive warning.

<android.app.Activity: android.view.View findViewById(int) ->
SOURCE

<android.database.Cursor: java.lang.String getString(int)> ->
SINK

Figure 2: Source and sink definition

 The tool provides us a list of dataflow where
information flow between sources and sinks are displayed
in the log output of the Android IDE (Figure 3).

Figure 3: A sample result from DroidPatrol analysis

C. Postlab

Learners are asked to identify secure coding to prevent
data leakages. Learners can identify several forms data
leakage caused by SQL injection [11], consisting of direct
insertion code to user input variables and then concatenated
with SQL statements to be executed or other less direct
code insertion technique.

IV. PRELIMINARY EVALUATION

We run our SQL injection module in Health
Information Security &Privacy course (IT4533 and
IT6533) during Spring 2019. The course had total 30
students. The students were asked to complete the hands-on
lab after introducing mobile health app development
module. A postlab survey questionnaire was conducted to
receive the initial feedback on the effectiveness of the
developed resources. Figure 4 shows the list of survey
questionnaires. Each question answer was recorded in a
scale of 1 (Strongly Disagree) to 5 (Strongly Agree).

Q1. I like being able to work with this hands-on DroidPatrol
labware.
Q2. The real-world mobile security threat and attacks in the
labs help me understand better on the importance of static
analysis.
Q3. The hands-on labs help me gain authentic learning and
working experience.
Q4. The online lab tutorials help me work on student add-on
labs/assignments.
Figure 4: Postlab questionnaires ([1: Strongly Disagree, 2:

Disagree, 3: Neutral, 4: Agree, 5: Strongly Agree])

We received feedback from 25 students. Below is a
summary of the survey results (Figure 5), showing the
mean and standard deviation. The results indicate the
hands-on lab assisted learners identifying data leakage
through taint analysis.

Figure 5: Postlab survey results

Below, we provide some comments received from the
classroom students. The hands-on labware using the
Droidpatrol generated interests among learners.

I really do enjoy performing real life exercises like this. It
provides real life scenarios.

Overall the assignment was interesting and it was fun to see
how you would actually do it rather than just reading a
textbook or a journal about it

The material provided has good information

V. CONCLUSION AND FUTURE WORK

Currently, there is no available learning resources relying
on Android Studio plugins for hands-on learning of
security concepts. In this paper, we developed a plugin
tool-based SQL injection detection and mitigation lab. The
labware has been applied to a classroom and the initial
feedback shows interests among learners. Our developed
plugin can perform tainted data flow analysis of application
and intended to first hand demonstrate the active detection
of various security bugs leading to privacy and data leaks
based on OWASP guidelines. Our project can be used for
both development in the industry and intervention-based
learning resources in the classroom to promote secure
coding practices. We plan to develop more hands-on
labware using DroidPatrol and make them available for
public use.

ACKNOWLEDGEMENT

The work is partially supported by the National Science
Foundation under award: NSF Award# 1723586, 1723578,
1723555, 1636995, and KSU OVPR Award 2018-19. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] M. Whitney, H. Lipford, B. Chu, and J. Zhu, “Embedding Secure

Coding Instruction into the IDE: A Field Study in an Advanced CS
Course,” Proc. of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE), Minneapolis, USA, 2015, pp. 60-65

[2] M. Whitney, H. Lipford, B. Chu and T. Thomas, “Embedding
Secure Coding Instruction into the IDE: Complementing Early and
Intermediate CS Courses with ESIDE,” In press, Journal of
Educational Computing Research, 2017.

[3] J. Xie, H. Lipford, B. Chu, “Evaluating interactive support for secure
programming,” Proceeding of SIGCHI Conference on Human
Factors in Computing Systems, Austin, TX, 2012, pp. 2707-2716.

[4] X. Yuan, K. Williams, D. Scott McCrickard, C. Hardnett, L.
Lineberry, K. Bryant, J. Xu, A., Esterline, A. Liu, S. Mohanarajah,
R. Rutledge, “Teaching mobile computing and mobile security,”
Proc. of IEEE FIE, 2016, pp. 1-6

[5] Computer Science Curricula 2013 - Association for Computing,
https://www.acm.org/binaries/content/assets/education/cs2013_we
b_final.pdf

[6] K. Goseva-Popstojanovaa, A. Perhinschib, On the capability of
static code analysis to detect security vulnerabilities,
community.wvu.edu/~kagoseva/Papers/IST-2015.pdf

[7] Projects/OWASP Mobile Security Project - Top Ten Mobile Risks,
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Secur
ity_Project_-_Top_Ten_Mobile_Risks

[8] H. Chi, “Teaching Secure Coding Practices to STEM Students,”
Proc. of the Information Security Curriculum Development
Conference, 2013.

[9] The FindBugs plugin for security audits of Java web applications,
http://find-sec-bugs.github.io, 2017.

[10] K. Dwivedi, H. Yin, P. Bagree, X. Tang, L. Flynn, W. Klieber, W.
Snavely, DidFail: Coverage and Precision Enhancement, 2017,
CMU/SEI-2017-TR-007.

[11] W. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting web
applications using positive tainting and syntax-aware evaluation,”
IEEE Transaction of Software Engineering, 34(1):65–81, 2008.

[12] H. Shahriar, K. Qian, M. Talukder, N. Patel and D. Lo, “Mobile
Software Security Risk Assessment with Program Analysis,” Proc.
of the 23rd IEEE Pacific Rim International Symposium on
Dependable Computing, Taipei, Taiwan, December 2018, 2 pp.

3.9
4.2 4.1 4.2

0.9 0.7 0.5 0.6

0

1

2

3

4

5

Q1 Q2 Q3 Q4

Mean Standard Deviation

[13] K. Qian, D. Lo, H. Shahriar, L. Li, F. Wu, P. Bhattacharya,
“Learning database security with hands-on mobile labs,” Proc. of
IEEE Frontiers in Education Conference (FIE), Oct 2017, pp. 1-6.

[14] K. Qian, H. Shahriar, F. Wu, L. Tao, P. Bhattacharya, “Labware for
Secure Mobile Software Development (SMSD) Education,” Proc. of
the ACM Conference on Innovation and Technology in Computer
Science Education, March 2017, pp. 375-375.

[15] Eclipse IDE, https://www.eclipse.org/ide/

[16] IntelliJ IDEA, https://www.jetbrains.com/idea/

[17] FindBugs in Java Programs, http://findbugs.sourceforge.net/

[18] L. Tao, K. Qian, D. Lo, R. Parizi, F. Wu, B. Chu, “Enhancing Secure
Software Development Education Through Relevant Active
Learning,” Proc. of IEEE Southeast Conference, 2018, St.
Petersburgh, FL, USA, 2pp.

[19] Find security bugs, https://find-sec-bugs.github.io/

[20] I. Barsade, L. Davis, K. Dura, R. Ornelas, A. Smith, Prevention in
the Cyber Domain, White paper, World House Student Fellows
2016-2017, https://global.upenn.edu/sites/default/files/perry-world-
house/CyberPolicyProjectReport.pdf

