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Abstract Many real systems can be described through
time-varying networks of interactions that encapsulate

information sharing between individual units over time.
These interactions can be classified as being either re-
ducible or irreducible: reducible interactions pertain to
node-specific properties, while irreducible interactions
reflect dyadic relationships between nodes that form
the network backbone. The process of filtering reducible

links to detect the backbone network could allow for iden-
tifying family members and friends in social networks
or social structures from contact patterns of individuals.
A pervasive hypothesis in existing methods of backbone
discovery is that the specific properties of the nodes
are constant in time, such that reducible links have the
same statistical features at any time during the obser-

vation. In this work, we release this assumption toward
a new method for detecting network backbones against
time-variations in node properties. Through analytical
insight and numerical evidence on synthetic and real
datasets, we demonstrate the viability of the proposed
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approach to aid in the discovery of network backbones
from time series. By critically comparing our approach

with existing methods in the technical literature, we
show that neglecting time variations in node-specific
properties may beget false positives in the inference of
the network backbone.
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1 Introduction

Dealing with real, temporal datasets brings forward sev-
eral challenges. One of the most ambitious goals is to
elucidate the role of temporal interactions in complex
systems [1–5]. The presence of temporal interactions

questions the very basis of a network approach to com-
plex systems. As articulated in [6], temporal links could
be related to intrinsic node properties that do not require
the truly dyadic nature of a network. Such temporal
links are reducible, whereby they are fully explained by
node-specific features. Devising robust methodologies
to filter out reducible links for the inference of the ir-
reducible backbone of temporal interactions is an open
research topic.

A fruitful approach entails the formulation of null
models to explain the reducible part of the temporal
interactions and guide the process of filtering, as il-
lustrated in Fig. 1. Filtering is carried out within a
statistically-principled approach, where one seeks to de-

tect links that are incompatible with the null hypothesis
of links being produced by the null model [7–14]. More
concretely, the approach assigns a “strength” to link can-
didates and filters out weak links, which are statistically
unlikely to pertain to the backbone network.
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Fig. 1: Top: Time evolution of a complex system, showing node-specific, reducible interactions (solid red links), and
the irreducible backbone (dashed blue links). Bottom: empirical observations of temporal interactions between
any node pair are used by a filtering algorithm to reconstruct the backbone. The resulting backbone network
is composed of a set of aggregated, static links. Retaining a link in the backbone is informed by a statistical
comparison that tests the hypothesis of the link being explained by the null model.

Despite significant progress, most of the research has

focused on temporal networks, in which nodes have time-
invariant properties, such that empirical time series are
associated with a stationary stochastic process. However,

time-varying connections might be affected by several
factors, such as individual propensity to generate links
over time and physical constraints on the network evo-
lution. In addition, connections may vary non-uniformly
in time, exhibiting highly dynamic patterns that could
challenge the possibility of network reconstruction. The
chief objective of our work is to explore the feasibility
of inferring the backbone network, in the presence of
richer time-varying connections.

1.1 Background and related studies

A key step toward the inference of the backbone net-
work is the formulation of reliable and comprehensive
null models. A recent promising modeling paradigm is
offered by activity-driven networks (ADNs) [15]. Within
the ADN paradigm, individual propensity of generating
links over time is encapsulated by a single, heteroge-
neously distributed parameter, called activity. In its

original formulation, the activities of all the nodes are
assumed to be constant in time and the process of net-
work assembly is carried out in a discrete-time setting.
A similar approach can be undertaken in continuous
time [16].

Because of its analytical tractability, activity-driven
models have been extended to comprehend features
of real networks, such as memory effects in the link
wiring [17], self-exciting mechanisms in individual activ-

ities [18], presence of communities [19], and spreading
over multiple layers [20,21]. For example, recent studies
have examined adaption of individual activities based
on the node’s health status [22, 23]. Building on this
promising line of research, a predictive model of the 2014
Ebola spreading in Liberia has been established [24]. Fi-
nally, circadian and weekly patterns have been included
in the ADN paradigm in [25].

Upon formulating a valid null model, the next step
to backbone inference entails a statistical test to iden-
tify irreducible links. The simplest approach is to set a
threshold that filters out links with lower strength [26].
However, such an approach could fail to capture the in-
herent heterogeneity of many complex systems where the
formation of reducible links drastically vary in time and
throughout the network. The disparity filter [9], which
has been recently extended to consider self-exciting
mechanisms [14], could address inference of heteroge-

neous networks. A more established approach is the
statistically validated network (SVN) [10], first intro-
duced to study bipartite networks, and then applied to
temporal networks [11,27–29].

The SVN works on an aggregated version of the
temporal network, that is, a static weighted network
formed by retaining all the links occurring at any time



Detecting network backbones against time-variations in node properties 3

instant. Each link has a weight equal to the total number
of temporal connections formed over time between two
nodes. The SVN approach has helped to elucidate many
aspects of real systems, such as connections between
the backbone network and the network’s community
structure [30], the influence of time correlations [28, 29],
and the time evolution of the backbone network [27].

A further improvement on the SVN approach is con-
stituted by the temporal fitness model (TFM) [7]. The
TFM utilizes an ADN as a null model, in which indi-

vidual activities are considered to be constant in time.
Their values are identified through maximum likelihood
estimation. The approach can be extended to study
daily patterns and circadian rhythms, within the so-

called TFMrhythm [7], which utilizes a common function
to modulate the overall network evolution. The SVN,
TFM, and TFMrhythm are summarized in the Appendix.

Overall, these approaches assume that individual
properties of the nodes are constant in time. As a result,
they cannot be utilized to infer backbone networks in
the presence of changes in individual behavior.

1.2 Our contribution

Here, we seek to propose a new methodology to improve
the detection of a backbone network in the presence
of complex temporal variations of activity patterns. To
this end, we introduce an extended version of ADNs,

where individual activities are piece-wise constant in
time and heterogeneously distributed throughout the
network. The null model assumes that all connections
are formed uniformly at random, that is, the probability
of creating a link at a specific time instant between two
nodes is the product of the individual activities of the
nodes at that time. In this vein, a very active node is
more likely to form connections with another high active
node than with a low active node.

Accounting for time-varying activities in the null
model calls for two main steps to find irreducible links.
First, it is necessary to estimate activity values as piece-
wise constant functions of time. Then, links are included
in the backbone network if their overall weight is signif-
icantly higher than what would be expected from the
null model.

While the latter step can be tackled through a sta-
tistical test similar to [7, 10], dealing with estimation of
activity values requires a novel scheme. Specifically, we
divide the total observation window of network evolu-

tion in independent intervals, containing a uniform total
number of connections. Activities are then estimated
according to the weighted configuration model [31,32],
which has been shown to offer reliable estimates for large
networks.

Partitioning the observation window into indepen-
dent intervals is a crucial step that can be carried out
in three ways, depending on the available information
of the network evolution. If these intervals are known
a priori, they can be used as inputs for the estimation
of activity values. If only the number of these intervals
is known, then a supervised method is necessary, which
takes the number of intervals as an input, and returns
an interval partition. Finally, if no information is avail-
able, an unsupervised method is necessary to identify

the partition from the available time series.

The simplest supervised method entails choosing the
length of the intervals at random, such that their sum
equals the length of the total observation window. This
näıve approach should set a lower bound for the perfor-
mance of our approach to the backbone inference. Other
effective supervised methods include the parsimonious
temporal aggregation [33], piece-wise constant approxi-
mation [34], and V-optimal histograms [35]. A freeware
software that implements these methods is available
in [36].

A convenient unsupervised method is the Bayesian
blocks (BB) representation [37]. The BB method em-

ploys maximum likelihood and marginal posterior func-
tions to separate statistically significant features from
random observational errors. In this way, it relaxes com-
mon assumptions regarding the smoothness or shape

of the overall temporal evolution, without constraining
the process of partitioning the observation window. We
refer to our methodology toward backbone inference as

evolving activity-driven model (EADM), encompassing
the null model formulation, the identification of the
time-varying activities, and the statistical test.

We acknowledge that partition into intervals is not
always necessary. For instance, if a system is station-
ary, then the number of connections generated at each
time step is constant. In this case, the total observation
window is contained in only one interval. To investigate

such a scenario, we examine a simplified version of the
EADM, where only one interval is present so that the
EADM reduces to a classical ADN (EADMI=1).

Beyond comparing our approach with its simplest
incarnation that utilizes a single time interval, we fur-
ther consider three different methods: SVN, TFM, and
TFMrhythm. We consider both an artificial, synthetic
network (benchmark) and seven real-world datasets.
For each network (artificial or real), we set the maxi-
mum computational time of 24 hours, thereby dismissing
longer processes.

The synthetic network is useful for validating our
model in a controlled setting. In fact, it considers activity
values as piece-wise constant functions in time with a
ground-truth on the backbone network. We consider
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three different scenarios. First, we assume knowledge
about the interval partition, thereby fully exploiting
the capabilities of our method. Then, we consider the
case in which limited information is available about the
interval partition. We use the näıve supervised method
and estimate the length of the intervals at random,
when only the number of intervals is available. When no
information about the interval partition is accessible, we
utilize the unsupervised BB method. Afterwards, when
tackling backbone detection of real systems, we focus on

the BB method, as we have no prior knowledge about
the interval partition.

1.3 Main results

A critical result of our study is the analytical character-
ization of the conditions in which one must account for
time-varying individual properties to accurately infer
backbone networks. Our analysis suggests that consider-
ing time-varying properties is necessary when the system
is not stationary or when the activation pattern of a
node is correlated with the activation pattern of another
node.

Further, from the analysis of synthetic networks, we
conclude that our methodology outperforms the SVN,
TFM, and TFMrhythm, whereby it leads to more reliable
inference of backbone networks in synthetic data, where

a ground-truth backbone is known. Interestingly, in both
synthetic and real networks, we find that our method
reconstructs a backbone with a subset of links found by
other methods, thereby diminishing the number false
positive links (links wrongly identified as part of the
backbone network). Overall, the three methods available
in the literature result in equivalent inferences, similar
to the special case in which we execute our approach
without partitioning the observation window.

Assuming that individual activities are constant in
time could lead to incorrect classification of irreducible
links and parts of the backbone network. Considering
individual activities as piece-wise constant functions of
time offers improved estimates and more reliable results.

1.4 Paper organization

The paper is organized as follows. In Section 2, we
introduce the null model and articulate our procedure to
detect significant interactions in time-varying networks.

In Section 3, we describe our main findings by comparing
the performance of our approach with other methods on
synthetic networks, in which the backbone network is
known, and on real datasets where different claims can
be formulated depending on the method that is pursued.

Finally, in Section 4, we draw our main conclusions and
outline potential directions for further inquiry.

2 Significant links

In this Section, we articulate the EADM, our approach
to the detection of the irreducible backbone from the
time series of each individual link. First, we present
our null model, which defines the process of generat-
ing temporal interactions from node-specific properties.
Then, we elucidate the inference procedure of the nodes’
activities within the null model from available time se-
ries, assuming to be able to access the switching events.

Finally, we present the statistical test from which we
filter reducible links and retain irreducible ones, thus
finding the backbone network.

2.1 Null model

We consider a time-varying network of N nodes evolving
in a observation window of T � 1 time steps, labeled by
time index t = 1, ..., T , with a unitary resolution. The

same modeling framework is valid for a continuous time
evolution.

At each time step t, nodes are connected through
a binary, possibly disconnected, undirected network
whose adjacency matrix, A(t), stochastically varies in
time. Each temporal connection is the realization of a
Bernoulli variable, whereby the probability that two
distinct nodes i and j are connected at time t is equal

to

pij(t) = ai(t)aj(t), (1)

where ai(t) and aj(t) are the activities of nodes i and j
at time t, respectively.

Activities vary according to a switching rule, whereby
they are kept constant over I disjoint time intervals
indexed by ∆ = 1, . . . , I. The generic ∆th time interval
starts at time tin(∆) and has a duration τ(∆), such
that

∑I
∆=1 τ(∆) = T . The interval partition might be a

priori known or it should be determined from the time
series as explained below.

When only the number of intervals I is known, a
supervised method should be used to determine the
interval partition. A crude possibility is to assume a

random partition in I intervals, which strains the use of
the null model and sets a lower bound for the EADM
performance. On the contrary, if I is unknown, then, an
unsupervised method should be used. Specifically, we
use the BB representation [37]. In this case, we analyze
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the total number of temporal links created at time t

Ω(t) =
N∑

i,j=1;i<j

Aij(t), (2)

where Aij(t) is the ijth entry of the network adjacency
matrix at time t. This method returns a set of inde-
pendent intervals containing a uniform total number of
connections.

To characterize the network evolution at the interme-
diate scale of the switching rule, that is, over successive

intervals, we define a weight matrix for each interval,
summing the number of occurrences of links between
any two nodes. Specifically, in the ∆th interval we define
the random variable

wij(∆) =

tin(∆)+τ(∆)−1∑
t=tin(∆)

Aij(t). (3)

To count the overall number of temporal connections
between nodes i and j forming a link ij along the obser-
vation window, it is sufficient to sum the corresponding
weights, resulting into the following aggregated random

variable:

wij =
I∑

∆=1

wij(∆) =
T∑
t=1

Aij(t). (4)

By construction, the weight wij(∆) is a binomial
variable and wij the sum of non-identical binomial ran-
dom variables, described through a Poisson binomial

distribution. Since no closed-form expression is available
for the Poisson binomial distribution, this is usually
approximated by the Poisson distribution [38–40], with
expected value

E [wij ] =
T∑
t=1

pij(t). (5)

From the weight matrix, we define the strength of
the ith node in the ∆th interval as

si (∆) =
N∑
j=1

wij(∆). (6)

This quantity encapsulates the total number of temporal

links generated by the ith node within an interval. The
total number of temporal links generated in the whole
network in the ∆th interval is therefore

W (∆) =
1

2

N∑
i=1

si(∆). (7)

Both si (∆) and W (∆) can be approximated by Poisson
random variables, being linear combinations of indepen-
dent non-identical binomial random variables.

2.2 Estimation of the activities from time series

In order to compute the probability that two distinct
nodes i and j are connected at time t, as given in Eq. (1),
we must estimate the time-varying activities ai(t) and
aj(t), assumed to be piece-wise constant over known
successive intervals. A possible line of approach entails
the use of the weighted configuration model [31, 32],
which implies that the activity of node i in the ∆th time
interval tin(∆), . . . , tin(∆) + τ(∆)− 1 can be estimated
from the time series of the temporal connections Ats

ij(t),

where we utilize a superscript “ts” to identify that the
realizations from the corresponding random variables
are experimental or numerical time series.

Hence, we obtain

ai (t) =
stsi (∆) /τ(∆)√

(2W ts(∆)− 1) /τ(∆)
=

=
stsi (∆)√

(2W ts(∆)− 1) τ(∆)
,

(8)

where stsi (∆) and W ts(∆) are estimated from the time
series, and τ(∆) is derived from the interval partition.
The accuracy of the estimate relies on the assumption

that W ts(∆) � 1 and the network is large, that is, a
large number of events is occurring in each interval and
a large number of nodes is participating in the system’s

evolution. In the Appendix, we examine the accuracy
of Eq. (8) as a function of the network size.

By replacing Eq. (8) in Eq. (1), we obtain the prob-

ability1 of observing a link ij in the ∆th time interval
tin(∆), . . . , tin(∆) + τ(∆)− 1

pij(t) =
stsi (∆) stsj (∆)

(2W ts(∆)− 1) τ(∆)
. (9)

1 According to the weighted configuration model [31, 32],
Eq. (9) represents the expected number of links formed be-
tween node i and j in the τ(∆) snapshots in the ∆th interval.
Since most temporal networks are sparse, we can assume that
pij(t) ∈ [0, 1) and refer to it as a probability.
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2.3 Statistical analysis

To determine whether a link is a node-specific temporal
connection or part of the irreducible backbone, we com-
pute a p-value αij for each link observed at least once
in the evolving network and compare it with a proper
significance threshold. If the p-value is below the signif-
icance threshold, then the corresponding link appears
more often than what the null model would predict and
should therefore be associated with the backbone.

Thus, we examine the probability distribution of the
generic weight of the ijth link over the entire observa-
tion window. As previously stated, the distribution is
conveniently described by a Poisson distribution as

P (x; E [wij ]) =
1

x!
E [wij ]

x
e−E[wij ], (10)

where x is the realization of the random variable. The
distribution in Eq. (10) can be explicitly computed from
empirical data, using Eq. (5) and the estimation of pij(t)
in Eq. (9), as

P (x; E [wij ]) =
1

x!

[
I∑

∆=1

stsi (∆) stsj (∆)

2W ts(∆)− 1

]x
exp

[
−

I∑
∆=1

stsi (∆) stsj (∆)

2W ts(∆)− 1

]
. (11)

The p-value αij of the link ij in the overall network
evolution is then computed according to the cumulative
function of the Poisson distribution

αij ≡ 1−
wts

ij−1∑
x=0

P (x; E [wij ]) . (12)

Upon computing a p-value for every pair of nodes in
the network, one should perform a statistical test on all

the links observed at least once in the evolving network.
Given that multiple hypotheses are tested, a multiple
hypothesis test correction is required [41]. We use the

Bonferroni correction which modifies the significance
threshold to β∗ = β/NE , where NE is the number of
links observed at least once in the evolving network [42].

This correction ensures that no false positives will be
included with probability 1− β. A possible, less restric-
tive alternative may be a procedure that controls the
false discovery rate [43]. Specifically such a procedure
ensures that the fraction of false positive is less than β.

As proposed in [7], a similar method might be applied
to higher order structures, such as triads (three nodes
connected simultaneously). Further, we note that our
framework can be extended to directed networks. All
these details can be found in the Appendix.

3 Results

In this Section, we assess the performance of the EADM
in detecting the backbone of temporal networks and
we compare such a performance with four models that

assume time-invariant activities. We specify our study
to the SVN, TFM, TFMrhythm, and EADMI=1 (a sim-
plified version of our model that uses time-invariant

activities). We limit the computational time for each
method to 24 hours, on an Intel(R) Xeon(R) CPU E5-
2697 v3 @ 2.60GHz, which we consider a reasonable
computational burden for the backbone inference.

First, we analytically determine conditions for which
the EADM yields equivalent results to the EADMI=1,
which allows for speculating when time-varying activities
could play a salient role in the backbone detection. This
corresponds to cases where the system is not stationary

or the activation patterns of the nodes are correlated.

Then, we numerically assess the performance of the
EADM, EADMI=1, TFM, and SVN in detecting the

backbone of temporal networks generated via an arti-
ficial network. Given that the TFMrhythm requires the
solution of N + T − 1 equations, its implementation
on synthetic data exceeds the computational time limit
of 24 hours per simulation. Therefore, its performance
is not assessed on synthetic datasets. The key findings
of our comparisons are: (i) the EADM offers improved

performance with respect to the other methods, thereby
reducing the number of false positives in the backbone
network; (ii) the EADMI=1, TFM, and SVN have com-

parable performance for all situations under scrutiny;
and (iii) the EADM performs better when using the
BB method for time interval partitioning, rather than a
näıve interval partition.

Finally, we compare the irreducible backbone ex-
tracted from all models under study on several real
datasets: Primary school, High school, and Museum
contact patterns are from the SocioPatterns project [44];
Message, Email and Stack overflow datasets are from the

SNAP database [45]; and Enron email dataset [46]. For
the Primary school, High school, and Museum datasets,
we remove the time intervals when no links are recorded.
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Some simulations of the TFM (which solves N equa-
tions) and TFMrhythm exceed our computational time
limit. In all the seven datasets, the EADM finds less
links than other methods, which perform very similar
to each other. This observation is in agreement with
numerical computations on the synthetic networks, sug-
gesting that assuming individual activities as constant
in time leads to an overestimation in the number of links
of the backbone network.

3.1 Analytical derivation

We start by estimating the probability of having the
occurence of link ij in the EADMI=1, that is when
individual activities are constant in time. In this case,
Eq. (9) reads as

pij =
stsi s

ts
j(

2W
ts − 1

)
T
, (13)

where we define the total strength in the overall ob-
servation window stsi =

∑I
∆=1 s

ts
i (∆), and the total

number of temporal links in the overall observation win-

dow W
ts

=
∑I
∆=1W

ts(∆). Thus, the expected number
of links in the EADMI=1 is

EI=1 [wij ] = Tpij =
stsi s

ts
j

2W
ts − 1

, (14)

which is equivalent to predictions of the weighted con-
figuration model [31].

In general, EI=1 [wij ] is different from E [wij ] in
Eq. (5), thereby begetting different statistical inferences
of the backbone. Under the following conditions, the
two inferences are similar:

(i) if the system is stationary, W ts(∆) ≈W ts
/T , and

(ii) if, for any link ij, the activation pattern of node i is

independent of the one of node j.

To prove this claim, we compute E [wij ] and demon-

strate that it converges to EI=1 [wij ] forW
ts
> W ts(∆)�

1 and large networks. By replacing Eq. (9) into Eq. (5)

for W
ts
> W ts(∆)� 1, we obtain

E [wij ] '
I∑

∆=1

stsi (∆) stsj (∆)

2W ts(∆)
. (15)

First, we assume the system as stationary, as in condition
(i), so that

E [wij ] '
T 2

2W
ts

1

T

I∑
∆=1

stsi (∆) stsj (∆) . (16)

Then, we apply condition (ii), which for large networks
implies the mean-field approximation 〈stsi (∆)〉〈stsj (∆)〉 '
〈stsi (∆) stsj (∆)〉, obtaining

E [wij ] '
T 2

2W
ts

[
1

T

I∑
∆=1

stsi (∆)

][
1

T

I∑
∆′=1

stsj (∆′)

]
,

(17)

and, from the time series of stsi and stsj in Eqs. (6), we
establish

E [wij ] '
stsi s

ts
j

2W
ts . (18)

Finally, we observe that Eq. (18) corresponds to EI=1 [wij ]

in Eq. (14) under the assumption that W
ts � 1, which

concludes our proof.
If the system is not stationary or the activation pat-

terns of nodes are correlated, one might expect that
the EADM will yield different predictions than the
EADMI=1, supporting the need for properly partitioning
the observation window toward the successful detection
of the backbone network.

3.2 Performance comparison on synthetic data

The considered synthetic data begets a temporal net-
work where reducible links, generated by the EADM,
coexist with the irreducible backbone. Reducible links
evolve over a observation window T , partitioned into
I successive intervals. Nodes have interval-dependent
(piece-wise constant) activities a(t) drawn from a power
law distribution F (a) ∼ a−2.1, with a ∈ [amin, 1]. The
value amin represents the minimum possible value for
the individual activity in the system and it is chosen to
be greater than zero to avoid divergence in the distribu-
tion [15,24,47].

Between two consecutive intervals, t1 ∈ [tin(∆ −
1), tin(∆− 1) + τ(∆− 1)− 1] and t2 ∈ [tin(∆), tin(∆) +

τ(∆)− 1], the activity values vary according to

ai(t2) = ai(t1)p+ y(1− p), (19)

where p is an autocorrelation parameter and y a random
number extracted from F (a). For p = 1, individual
activities are time-invariant, while for p < 1, they exhibit
temporal correlations.

A small fraction δ of all the links observed at least
once in the network is arbitrarily assigned to the back-
bone network. An additional parameter λ is used to
measure the preponderance of the backbone during the
observation window, such that if λ = 1, these links are



8 Matthieu Nadini, Christian Bongiorno, Alessandro Rizzo∗, Maurizio Porfiri∗

always present, and if λ < 1, they could not be present
at all times. Details about the algorithm to construct
synthetic data are presented in the Appendix.

We numerically assess the improvement provided by
the EADM in the backbone detection with respect to the
TFM, SVN, and EADMI=1. Performing our numerical
experiments using the TFMrhythm exceeds our allotted

computational time, such that its performance could not
be tested against this artificial network. Performance is
otherwise scored using two well-known metrics, precision
and recall [48]. The former is computed as the ratio

between the number of links detected, which belong to
the irreducible backbone (true positives), divided by the
total number of detected links (sum of true and false
positives). The latter metric is the ratio between the
true positives divided by the total number of links in
the irreducible backbone (sum of true positives and false
negatives).

First, we assume that the partition into intervals is
known and we estimate the activity values according to
Eq. (8), thereby applying the EADM. Then, we release
this assumption toward choosing the length of the in-
tervals at random or we employ the unsupervised BB
method to estimate such a partition.

3.2.1 The EADM improves backbone detection

In our comparison, we assess the role of two important
parameters: (i) the autocorrelation parameter p, which
regulates the variation of individual activities over time,
from p = 0 (completely uncorrelated individual activ-

ities) to p = 1 (time-invariant activities), and (ii) the
ratio between the average interval length and the to-
tal length of the observation window 〈τ(∆)〉/T , which
quantifies the fraction of switches in activity patterns.
For 〈τ(∆)〉/T = 1, individual activities are constant
in time, while as 〈τ(∆)〉/T approaches zero, individual
activities rapidly change over time. We select two values
of λ, which lead to different scenarios: a larger value of
λ that begets an easily detectable backbone where all
irreducible links can be discovered, examined in Fig. 2;
and a smaller value of λ that results into a partially
hidden backbone where some irreducible links cannot
be discovered, considered in Fig. 3.

Figures 2 (a) and (c) support the claim that the
EADM is a valuable approach to infer the backbone
networks for any choice of the autocorrelation param-
eter, since precision and recall are always close to one.

Figures 3 (a) and (c) confirms that no false positive
are detected by the EADM even if the backbone is not
preponderant; however, some irreducible links cannot
be discovered and the recall is lower than one. On the
contrary, the TFM, SVN, and EADMI=1 are successful

(a)

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

P
re

ci
si

o
n

SVN

TFM

EADMI=1

EADM

(b)

10−2 10−1 100

〈τ(∆)〉/T

SVN

TFM

EADMI=1

EADM

(c)

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

R
ec

a
ll

SVN

TFM

EADMI=1

EADM

(d)

10−2 10−1 100

〈τ(∆)〉/T

SVN

TFM

EADMI=1

EADM

Fig. 2: Performance comparison against the synthetic
network, assuming a priori knowledge of the interval

partition for the EADM implementation. We assess
precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval
length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.025, and amin = [

√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

only when the value of the autocorrelation parameter
approaches 1, such that individual activities are practi-
cally time-invariant. In this case, we register values of
the precision close to 1.

Figures 2 (b) and (d), and Figs. 3 (b) and (d), sug-
gest that the EADM outperforms the other methods for
intermediate values of the number of switching intervals

in terms of precision. Performance is, on the other hand,
comparable for the extreme cases of 〈τ(∆)/T 〉 approach-
ing one or zero. While the comparable predictions that
we register for the former case 〈τ(∆)/T 〉 ' 1 can be
anticipated due to the limited variability of the activity
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Fig. 3: Performance comparison against the synthetic
network, assuming a priori knowledge of the interval

partition for the EADM implementation. We assess
precision and recall as a function of the autocorrelation
parameter p and ratio between the average interval
length and the total observation window 〈τ(∆)〉/T . The
horizontal axis in panels (b) and (d) is obtained by
fixing T = 5, 000 and varying I to span different values

of 〈τ(∆)〉 = T/I. In (a) and (c), we hold 〈τ(∆)〉 and I,
fixed to 500 and 10, while in (b) and (d) we set p = 0.4.
Other parameter values are: N = 100, δ = 0.01, λ =
0.010, and amin = [

√
〈τ(∆)〉]−1. Markers indicate the

average of 102 independent simulations, 95% confidence
interval is displayed in gray.

patterns, the similar performance registered for the lat-
ter case 〈τ(∆)/T 〉 ' 0 deserves some comments. Under
fast switching conditions, none of the algorithms leads to
large values of the recall, such that only a small fraction
of the backbone can be reconstructed, although with
high accuracy. Under fast switching conditions, the SVN,
TFM, and EADMI=1 would practically capture an an-

nealed version of the network that is not representative
of the backbone. On the other hand, an algorithm like
ours that tracks time-variations requires a large number
of realizations for performing the statistical test, which
become unfeasible for time series of limited length with

several switches. The similar performance registered
for the TFM, SVN, and EADMI=1 is discussed in the
Appendix.

Taken together, the higher precision of the EADM
and its comparable recall to other methods, suggest that
the EADM is successful in reducing the number of false
positives. These advantages will be explored and further
detailed when we examine real networks.

3.2.2 The backbone inference does not require
knowledge about activity patterns

Thus far, we have assumed complete knowledge about
the interval partition, which is used as an input pa-

rameter in the EADM. However, this situation is rarely
met in reality, where only limited information about
the interval partition may be available. To improve the

degree of realism of the analysis, we consider two dif-
ferent scenarios. In the first one, we assume knowledge
about the number of intervals and choose their length

at random. This näıve approach sets a lower bound
for the EADM performance. We identify this setting
as EADM+R, where “R” is for random. In the second
scenario, we assume no a priori knowledge about the

interval partition, and we resort to the unsupervised BB
method. We identify this situation as EADM+BB.

In Table 1, we study precision and recall of the
five methods for two choices of the parameter values,

considered in Figs. 2 and 3. The two cases pertain to
two different choices of λ, where we were fully successful
in reconstructing the backbone or registered a recall
less than one with full knowledge about the interval
partitions.

Results in Table 1 indicate that all the five meth-
ods lead to a comparable recall, which is equivalent to
results in Figs. 2 and 3. However, we document a remark-
able improvement in precision for the EADM+R and
EADM+BB, when compared to the other three meth-
ods that do not account for time-variations of activity
patterns. Given that the EADM+BB does not require
any knowledge about the intervals, it should be the ap-
proach of choice in backbone inference. In the Appendix,
we report further insight on the comparison between the

EADM+R and EADM+BB, which indicate that the
EADM+R might lead to inadequate inferences if the
number of intervals is not exactly known. This is the
case of real networks, which motivates the systematic
use of the EADM+BB in the discovery process.
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SVN TFM EADMI=1 EADM+R EADM+BB

Precision

λ = 0.025 0.483 (0.461, 0.504) 0.510 (0.488, 0.532) 0.490 (0.468,0.511) 0.995 (0.992, 0.998) 0.991 (0.985, 0.996)
λ = 0.010 0.365 (0.345, 0.385) 0.379 (0.355, 0.403) 0.361 (0.339, 0.384) 0.992 (0.988, 0.996) 0.987 (0.980, 0.995)

Recall

λ = 0.025 0.991 (0.988, 0.994) 0.984 (0.980, 0.988) 0.986 (0.983, 0.990) 0.999 (0.999, 1.000) 0.999 (0.998, 1.000)
λ = 0.010 0.617 (0.603, 0.631) 0.584 (0.569, 0.599) 0.594 (0.580, 0.609) 0.593 (0.577, 0.609) 0.602 (0.587, 0.616)

Table 1: Performance comparison in the synthetic network, assuming limited information of the interval partition
for the EADM implementation. For the EADM+R, the number of intervals I is known. For the EADM+BB, no a
priori information of the interval partition is assumed. We study two values of λ, which exemplify two levels of
preponderance of the backbone. Parameter values are: N = 100, T = 5, 000, I = 10, 〈τ(∆)〉 = 500, δ = 0.01, and
amin = [

√
〈τ(∆)〉]−1. Tabulated values are the average of 102 independent simulations, the 95% confidence interval

is displayed in brackets.

3.3 Application to real networks

Based on our previous assessment on synthetic data, we
turn to real networks where we compare predictions of
EADM+BB with other existing methods.

The comparison is carried out using three different
metrics: (i) the number of significant links; (ii) the Jac-
card index [49]; and (iii) the overlap coefficient [50].
We denote the set of irreducible links detected by our

method as LEADM+BB, and the others as Lx, where x =
EADMI=1, TFM, TFMrhythm, or SVN. The Jaccard
coefficient is defined as

J(LEADM+BB, Lx) =
|LEADM+BB ∩ Lx|
|LEADM+BB ∪ Lx|

, (20)

where | · | indicates the set cardinality. The overlap
coefficient is defined as

O(LEADM+BB, Lx) =
|LEADM+BB ∪ Lx|

min (|LEADM+BB|, |Lx|)
. (21)

The Jaccard coefficient yields the fraction of common
links between the EADM+BB and each of the other
methods, while the overlap coefficient quantifies the ex-
tent of the overlap between the two detected backbones.

Each real dataset is examined at four different time
resolutions obtained by counting, without repetitions,
all the links that occur at the nominal frequency of
acquisition of the experimental observation. Table 2
summarizes the seven data-sets considered in this work.
For ease of illustration, in this main document, we focus
on the Primary school and the Museum datasets; the
Appendix contains the analysis of all datasets. Similar to

the study of synthetic data, simulations are terminated
after 24 hours of computational time.

In Fig. 4, we summarize our comparison. In panels
(a) and (d), we show the time series of the total number
of temporal links, Ωts(t), and the interval partition

identified by the BB method. For both datasets, Ωts(t)
is not stationary, reflecting the complexity of the time
evolution where each student or teacher in the Primary
school dataset, or museum visitor in the Museum dataset
will come irregularly into contact with others. In panels
(b) and (e), we compare the number of significant links
detected by the five methods considered in this work. In
agreement with evidence from Figs. 2 and 3 and Table 1

on synthetic data, the EADM+BB identifies a smaller
number of links than other methods, whose predictions
are equivalent.

We also observe that improving on the resolution
of the data, by lowering the time step, increases the
number of significant links detected by all the meth-
ods. This is related to the decrease of the number of
temporal links W

ts
due to the deletion of the repeated

temporal links. Such a deletion affects mostly the nodes
with highest activity, which generate many links over

time. In this way, the heterogeneity of the system is
reduced, reflecting in a lower number of detected signifi-
cant links. Although all the methods are affected by the
time resolution of the dataset, the EADM+BB is the
one that shows the strongest tendency, as it requires
the identification of switches in the activity patterns,
which could be masked by node-specific links in poorly
resolved datasets.

In Fig. 5, we compare the detected backbone net-
works using the Jaccard index and the overlap coefficient.

The Jaccard index suggests a strong similarity in the
case of the Primary school dataset and a weak similarity
in the case of the Museum dataset. On the other hand,
the overlap coefficient suggests that in both cases our
method identifies a subset of links within those detected
by other methods.

Individual activities have different temporal features
in the two datasets. In the Primary school dataset, most
students and teachers are recorded for the entire obser-
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Data # nodes # temporal links # aggregated links Time span Resolution (r1, r2, r3, r4)

Primary school 242 125,773 8,317 2 days (20 sec., 1 min., 5 min., 15 min.)
High school 126 28,561 1,708 4 days (20 sec., 1 min., 5 min., 15 min.)

Enron 182 125,235 2,097 1,313 days (15 min., 1 hour, 1 day, 1 week)
Email 986 329,910 16,025 526 days (15 min., 1 hour, 1 day, 1 week)

Message 1,899 59,835 13,838 194 days (15 min., 1 hour, 1 day, 1 week)
Stack overflow 24,759 506,550 187,986 2,351 days (15 min., 1 hour, 1 day, 1 week)

Museum 10,852 411,490 44,120 81 days (1 min., 5 min., 15 min., 30 min.)

Table 2: Data summary of the seven real datasets under consideration. The “# temporal links” column indicates
the total number of temporal links in the dataset. The “Resolution” column lists four different time resolutions for
conducting the inference. For brevity, in the manuscript we use symbols from r1, . . . , r4 to refer to the different

resolutions, ordered from the smallest to the largest. For the Primary school, High school, and Museum datasets,
we remove the time intervals when no links are recorded.

vation window, and can recurrently interact with each
other. As a result, the impact of explicitly considering
time-varying activities is limited, and a time-averaged

representation of the phenomenon constitutes an accept-
able approximation. On the other hand, in the Museum
dataset, visitors spend only a few hours in the museum,

which comprises a small fraction of the observation win-
dow of 81 days. In this case, approximating individual
activities with constant quantities along the whole ob-
servation window is an oversimplification of the problem

that could lead to several false positives in the backbone
detection.

In Fig. 6, we assess the accuracy of the methods in
estimating the overall network connectivity, measured

in terms of the total number of links in the observation
window. We compare the expected number of temporal

links, E
[
W
]
, with observations in the time series, W

ts
.

We specifically compute the relative error, |E
[
W
]
−

W
ts|/W ts

, where we use E
[
W
]

=
∑N
i,j=1;i<j

∑T
t=1 pij(t)

for the EADM+BB; EI=1

[
W
]

=
∑N
i,j=1;i<j Tpij for the

EADMI=1; Eq. (25) in the Appendix for the TFM; and
Eq. (29) in the Appendix for the TFMrhythm. The SVN

is excluded from this analysis as it takes W
ts

as an
input parameter. For all the considered datasets and all
backbone detection methods, relative error is at most
5%, thereby indicating that all the methods are accurate
in capturing the evolution of the network connectivity.
In agreement with our expectation, the relative error for
the TFM and the TFMrhythm (when available) is lower
than those for the EADMI=1 and the EADM+BB. In
fact, as previously discussed, the TFM and TFMrhythm

refine the estimation of individual activities through a
maximum likelihood approach.

While all the methods work with approximately the
same number of links throughout the temporal evolution,
as shown in Fig. 6, they yield different predictions for the
underlying backbone network as shown in Figs. 4 and 5.

The most remarkable difference depends on whether one
is accounting or not for time-varying activities. Based
on the study of the synthetic datasets in Figs. 2 and 3,

we propose that the discovery process of the backbone
network should be formulated by assuming, in general,
that activity patterns are time-varying.

4 Discussion

In this paper, we have introduced the evolving activity-
driven model, a novel approach to detect the backbone

network against time variations of node-specific proper-
ties, encapsulated by the activity. The activity of a node
represents its propensity to generate links over time,

which, in real systems, is seldom constant [51]. Should
one look at temporal networks formed by humans, the
individual activity might be low during sleeping hours

and breaks, while it should be high during working hours.
Whether differences in individual behavior modify the
backbone network is the topic of our study.

To this end, we analytically identify conditions in
which temporal patterns of the activity will have a sec-
ondary role on the detection of the backbone. These
conditions correspond to the system being stationary
and the activation patterns of the nodes not correlated.
Based on these claims, we speculate that straining either
of these conditions will lead to a salient role of temporal
variations of the activity patterns on the backbone de-
tection. Afterwards, we compare the backbone networks
detected by our methodology with inferences supported
by four other approaches all of which assume that in-
dividual activities are constant in time. Specifically, we

focus on a modification of the evolving activity-driven
model with constant activities; the statistically validated
network [10]; and two versions of the temporal fitness
model [7]. In the first version of the temporal fitness
model, activities are kept constant in time and their
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Fig. 4: Influence of temporal patterns on backbone detection. In panels (a) and (d), we show the total number of
temporal links created over time, Ωts(t), for one chosen resolution (indicated in square brackets) of the Primary

school and Museum datasets, respectively. For visualization purposes, we select the first 60 time steps. Partition
into intervals is performed by applying the Bayesian blocks (BB) method to the time series. Horizontal red segments
represent the average number of temporal links in a specific interval. In panels (b) and (e), we compare the

number of significant links found by the methods under scrutiny for the same two datasets. Inferences not reported
correspond to simulations that exceed our time limit of 24 hours. In panels (c) and (f), we display the number of

temporal links, W
ts

, as a function of the resolution for the same two datasets. The exact values of the resolution
are found in Table 2.

estimates are refined through a maximum likelihood
approach; whilst, in the second one, a time-varying pa-
rameter is utilized to encapsulate circadian and weekly
patterns.

For both synthetic and real datasets, our model
identifies a subset of the links determined by the other
methods. By utilizing a ground-truth backbone network
from the synthetic data, we conclude that our approach
reduced the number of links that are incorrectly classi-
fied as part of the backbone network (false positives) and

improves the precision of the detection process. These
results suggest that accounting for temporal variations
in the activity plays an important role in backbone de-
tection, potentially leading to the discovery of a different
backbone network. The most remarkable differences are

noted when nodes display activity patterns that inten-
sively vary in time, without a recurrent behavior. For
instance, in the Museum dataset, visitors spend only
a few hours in the museum, which is a small fraction
of the total observation window of 81 days. In contrast
with other methods that all yield equivalent predictions,
our approach discovers a small backbone network, rep-
resentative of people visiting museums in small groups
that constitute a backbone network. We expect a similar
behavior when analyzing airports, restaurants, hotels,

websites, and chat rooms, which people access alone or
in small groups and only for a limited time.

The size of the backbone network discovered by
our approach is influenced by the time resolution of
the dataset. Working with poorly resolved data will



Detecting network backbones against time-variations in node properties 13

Primary school

(a)

r1 r2 r3 r4
0.0

0.2

0.4

0.6

0.8

1.0

Resolution

J
a
cc

a
rd

SVN

TFM

TFMrhythm

EADMI=1

Museum

(b)

r1 r2 r3 r4

Resolution

SVN

EADMI=1

Primary school

(c)

r1 r2 r3 r4
0.0

0.2

0.4

0.6

0.8

1.0

Resolution

O
v
er

la
p

SVN

TFM

TFMrhythm

EADMI=1

Museum

(d)

r1 r2 r3 r4

Resolution

SVN

EADMI=1

Fig. 5: Differences and similarities in the backbone net-
works detected by the EADM+BB and the other meth-
ods (indicated in the legends). In panels (a) and (c),
we show the Jaccard index for the Primary school and
Museum datasets, respectively. In panels (b) and (d), we
display the overlap coefficient for the same two datasets.
Inferences not reported correspond to simulations that
exceed our time limit of 24 hours.

challenge the feasibility of network inference, which is
evident when dealing with visitors in a museum, and
calls for the careful selection of a time resolution, which

could be a confounding factor in detecting the backbone
network of a system. This claim is in line with [52],
which focused on random walks over temporal networks.

The main advantages of the proposed evolving activity-
driven methodology are three: (i) its limited computa-
tional time, whereby it allows for fast network discovery
even when dealing with long time series and large net-

works (simulations presented in this paper are only a few
minutes long); (ii) its ability to cogently model tempo-
ral activity patterns, which cannot be addressed by the
current state-of-the-art; and (iii) its consistency with
the literature, whereby it yields equivalent predictions
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Fig. 6: Relative error between the total number of tempo-

ral links found in the time series, W
ts

, and the number
of total temporal links estimated from the backbone
detection algorithms under consideration. The SVN is

discarded from this analysis since it uses W
ts

as an in-
put for filtering reducible links. Inferences not reported
correspond to simulations that exceed our time limit of
24 hours.

to existing methods when dealing with time-invariant
activity patterns.

Our approach can find applications across several do-
mains of science and engineering, beyond the exemplary
social networks examined herein. For example, it could
be implemented in the study of functional networks
in the brain, which primarily relies on simple thresh-

olding [26], or in the analysis of the World wide web,
power grids, chemical reaction networks, where topol-
ogy identification methods [53–55] can benefit from a
statistically-principled approach to discard reducible
links.

However, our approach is not free of limitations.
First, we detect switches in the individual activities over
successive disjoint intervals by considering the overall
system evolution, rather than the individual time series.
In principle, we cannot exclude the possibility that indi-
vidual activities could vary in time in such a way that
the overall system evolution remains stationary. In this
case, our approach would not be able to detect time

variations in individual activities. Second, our approach
is not applicable to small networks, composed of only a
few tens of nodes, because we conduct the estimates of
the individual activities using a weighted configuration

model that requires large networks [31].

Future research will involve the formulation of algo-
rithms for the optimal selection of the resolution which
are needed for enhancing the performance of our method-
ology and the one proposed in [7]. More long-term,



14 Matthieu Nadini, Christian Bongiorno, Alessandro Rizzo∗, Maurizio Porfiri∗

fruitful lines of research should aim at unraveling the
intricate interplay between individual features and the
formation of temporal interaction patterns.

Code availability

Python 2.7 codes are freely available here [56].
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5 Appendix

5.1 Backbone detection methods

Here, we succinctly summarize the temporal fitness
model (TFM) [7], the temporal fitness model with rhythm
(TFMrhythm) [7], and the statistically validated network
(SVN) [10].

5.1.1 Temporal fitness model

The TFM considers a temporal network formed by N
nodes evolving over T discrete time steps. All multiple
links occurring within the same time step are removed,
so that the total number of temporal links between node
i and j is bounded by T . First, individual activities are
computed according to

ai =
stsi√

2W
ts
T
. (22)

Then, their values are refined through a maximum like-
lihood approach, which requires the solution of N equa-
tions

N∑
j=1;j 6=i

wts
ij − Ta∗i a∗j
1− a∗i a∗j

= 0, i = 1, . . . , N, (23)

where a∗ = (a∗1, . . . , a
∗
N ) contains the optimal values for

the individual activities. Finally, the p-value αij for the
link generated between node i and j is computed from
the cumulative function of the Binomial distribution as

αij ≡ 1−
wts

ij−1∑
x=0

B
(
x;T, a∗i a

∗
j

)
. (24)

All p-values, one for each link in the network, are com-
pared with a threshold value β, properly corrected by
using a multiple hypotheses correction [42, 43], and any
value lower than β adds a link to the backbone network.

For our purposes, we also compute the expected
total number of temporal links in the overall temporal
evolution

E
[
W
]

= T
N∑

i,j=1;i<j

a∗i a
∗
j . (25)

5.1.2 Temporal fitness model with rhythm

The TFMrhythm adds to the TFM T time-varying coeffi-

cients, one for each time step, ξ = (ξ(1), . . . , ξ(T )). First,
every element in the time-varying vector is manually set
to 0.999, with the exception of ξ(1) which is set equal
to one. Individual activities are estimated according to
Eq. (22). To determine the optimal values (a∗, ξ∗) in

the maximum likelihood sense, we solve the system of
N + T − 1 equations

T∑
t=1

N∑
j=1;j 6=i

Ats
ij(t)− a∗i a∗jξ∗(t)
1− a∗i a∗jξ∗(t)

= 0, i = 1, . . . , N,

N∑
i,j=1;j 6=i

Ats
ij(t)− a∗i a∗jξ∗(t)
1− a∗i a∗jξ∗(t)

= 0, t = 2, . . . , T,

(26)

where Ats
ij(t) is the adjacency matrix at time t estimated

from the time series. The expected number of links is
computed as

E [wij ] =
T∑
t=1

a∗i a
∗
jξ
∗(t). (27)

Finally, the p-value αij for the link generated between
node i and j is computed from the cumulative function
of the Poisson distribution as

αij ≡ 1−
wts

ij−1∑
x=0

P (x; E [wij ]) . (28)

All the p-values, one for each link in the network, are
compared to a threshold value β, properly corrected by
using a multiple hypotheses correction [42,43]. Any value
lower than β leads to a link in the backbone network.

For our purposes, we also compute the expected
total number of temporal links in the overall temporal

evolution

E
[
W
]

=
N∑

i,j=1;i<j

T∑
t=1

a∗i a
∗
jξ
∗(t). (29)

5.1.3 Statistically validated network

The SVN considers a temporal network of N nodes
evolving over an observation time window that can be
either discrete or continuous in time. Temporal links
are aggregated to form a weighted static network. The
p-value αij for the link generated between node i and j
is computed from the cumulative function of the Hyper-
geometric distribution as

αij ≡ 1−
wts

ij−1∑
x=0

H

(
wij

∣∣∣∣2W ts
, stsi , s

ts
j

)
. (30)

The p-values are compared with a threshold value β,
properly corrected by using a multiple hypotheses cor-
rection [42, 43], and a link is added to the backbone
network of the p-value is less than β.
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Fig. 7: Accuracy of the EADMI=1 and the TFM in
estimating the total number of temporal links in the
overall time series. A perfect identification should yield

a ratio between E
[
W
]

and W
ts

of one (black solid line).
In these simulations, we use our artificial network where
no backbone is present (δ = λ = 0) and activities
are constant in time (T = 5, 000, I = 1, 〈τ(∆)〉 =
T/I = 5000, amin = [

√
〈τ(∆)〉]−1, and p = 0). Markers

indicates the average of 102 independent simulations,
95% confidence interval is displayed in gray.

5.2 On the similarity among the EADMI=1, SVN, and
TFM

Here, we discuss why these three methods yield similar
results for both synthetic and real datasets. First, we

show that the EADMI=1 is a valid approximation of the
TFM for large networks (hundreds of nodes or more).
Then, we analytically examine the convergence of the
SVN to the EADMI=1.

5.2.1 On the similarity between the TFM and
EADMI=1

We consider a long observation window T , for which
the Binomial distribution in Eq. (24) converges to a
Poisson distribution used in our method in Eq. (12).
While in the EADMI=1 activities are estimated from
the dataset using Eq. (8), in the TFM they are identified
in a maximum likelihood sense [7]

In Fig. 7, we assess the ability of the EADMI=1 and
the TFM to estimate the total number of temporal links.
We compute the expected values of the number of links
for the EADMI=1 as E

[
W
]

=
∑N
i,j=1;i<j Tpij , while we

use Eq. (25) for the TFM. These values are compared
with the total number of temporal links observed in

the time series W
ts

. As expected, the TFM works well
for any network size, due to the use of the maximum
likelihood. Nevertheless, the maximum likelihood ap-
proach becomes computational demanding for networks

of around 1,000 nodes and beyond, thereby becoming
useless for very large networks. On the other hand, the
EADMI=1 shows poor performance for small networks,
while reaching the TFM for networks of 100 nodes. This
improvement in performance of the EADMI=1 is ex-
plained in [31], where it is shown that Eq. (14) is in
excellent agreement with numerical simulations for large
networks.

5.2.2 On the similarity between the SVN and
EADMI=1

When W
ts � 1, the Hypergeometric distribution in

Eq. (30) converges to a Poisson distribution and its p-
value becomes equivalent to the p-value for the EADMI=1

αij = 1−
wts

ij−1∑
x=0

P

(
x;
stsi s

ts
j

2W
ts

)
. (31)

In all the synthetic and real data studied herein W
ts

is

very large, so that Eq. (30) converges to Eq. (31).

5.3 Generation of synthetic temporal networks

To examine the precision and recall of irreducible links,
we generate synthetic networks. The procedure of net-
work generation is given as follows.

1. We consider a temporal network evolving in an ob-
servation window of length T , divided into I differ-
ent intervals. We randomly select without replace-
ment I − 1 time steps in {1, ..., T}, which we sort as
tin(2) . . . tin(I), and we set tin(1) = 1. Each interval
∆ has different length τ(∆), so that, in general, the
average length of the interval is 〈τ(∆)〉 = T/I.

2. The N nodes in the network have a time-varying,
piece-wise constant, individual activity. We extract
activity values from a power law distribution, F (a) ∼
a−2.1, with a ∈ [amin, 1]. The time-varying activity
ai(t) is selected according to the following procedure:
– When ∆ = 1, N activity values, one for each

node in the network, are randomly extracted from
F (a), and held constant within [tin(1), tin(1) +
τ(1)− 1].

– When 2 ≤ ∆ ≤ I activities might be correlated
between two successive intervals, t1 ∈ [tin(∆ −
1), tin(∆−1)+τ(∆−1)−1] and t2 ∈ [tin(∆), tin(∆)+
τ(∆)− 1] according to Eq. (19) in the main text.

3. We generate a temporal network in the observation
window [1, T ]. Each pair of nodes ij within an inter-
val ∆ is connected with probability ai(∆)aj(∆). As
a result, we obtain a sequence of T undirected and
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unweighted networks, with adjacency matrices Â(1),
. . . , Â(T ). These networks are generated only as a
function of the individual activities.

4. Based on the node pairs that are connected at least
once over T time steps of the observation window,
we define the synthetic backbone. Specifically, we
randomly assign a fraction δ of these node pairs to
the backbone.

5. We construct T new networks A(1), A(2), . . . , A(T )
from Â(1), Â(2), . . . , Â(T ) by accounting for the
synthetic backbone above. First, we set Aij(t) =
Âij(t) for t = 1, . . . T for all the pairs that do not
belong to the backbone. Then for the generic link ij
in the backbone, we initialize Aij(1) = Âij(1) and

we iterate the following steps for t = 2, . . . , T :
– if Âij(t) = 1, we maintain Aij(t) = 1;
– if Âij(t) = 0, we set Aij(t) = 1 with probability
λ and Aij(t) = 0 with probability 1− λ.

The parameter λ measures the preponderance of
links associated with the backbone during the obser-
vation window.

5.4 Insights on the interval estimation

The EADM+R requires that the number of intervals

is known a priori. Nevertheless, when dealing with real
networks, our knowledge, Ie, might differ from the
true value, I. This mismatch might diminish the ac-

curacy of the backbone inference, as examined below
for synthetic data. We focus on two set of parameters,
which represents two possible scenarios. In the first case,
amin = [

√
〈τ(∆)〉]−1 and λ = 0.025, which correspond

to a “dense” ADNs with an easily detectable backbone.
In the second case, amin = [〈τ(∆)〉]−1 and λ = 0.002,
which represent a “sparse” ADNs with a partially hidden

backbone.
In Fig. 8 (a) and (c), we show that if the number

of estimated intervals, Ie, is greater or equal to the
true value, I, precision and recall are close to one. On
the contrary, in Fig. 8 (b) and (d), we observe a more
dramatic scenario, in which increasing Ie hinders the
performance of the method, leading to filtering out most
of the links, that belong to the backbone network.
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Fig. 8: Sensitivity analysis of the EADM+R to the
number of estimated intervals, Ie, from Ie = 1 to Ie =

T − 1. In panels (a) and (c), we set amin = [
√
〈τ(∆)〉]−1

and λ = 0.025, to attain a dense ADNs and an easy-to-
discover backbone. On the contrary, in panels (b) and
(d), we set amin = [〈τ(∆)〉]−1 and λ = 0.002, to attain
sparse ADNs and a partially hidden backbone. Other
parameter values are: N = 100, T = 5, 000, I = 20,

〈τ(∆)〉 = T/I = 250, δ = 0.01, and p = 0.4. Markers
indicate the average of 102 independent simulations,
95% confidence interval is displayed in gray.
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5.5 Analysis of all available real datasets

5.5.1 Significant links

We compare the backbone networks from seven real-world datasets inferred by the five methods under consideration
in terms of the number of significant links. The EADM+BB always finds less links than any other methods.
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Fig. 9: Number of significant links as a function of the resolution for all real datasets under consideration. Inferences
not reported correspond to simulations that exceed our time limit of 24 hours.
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5.5.2 Jaccard index

In Fig. 10, we assess differences in the backbone networks detected by the EADM+BB and four methods on seven
real-world datasets, in terms of the Jaccard index. We observe that the EADM+BB finds backbones different from
the EADMI=1, SVN, TFM, and TFMrhythm, which are equivalent.
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Fig. 10: Jaccard index between EADM+BB and all the other methods as a function of the resolution for all datasets
under consideration. Inferences not reported correspond to simulations that exceed our time limit of 24 hours.
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5.5.3 Overlap coefficient

Similar to Fig. 10, we examine the overlap coefficient of backbone networks determined by our method and the
other four in Fig. 4, confirming that the EADM+BB tends to detect a subset of the links predicted by other
methods – which are thus prone to false positives.
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Fig. 11: Overlap coefficient between EADM+BB and all the other models as a function of the resolution for all
datasets under consideration. Inferences not reported correspond to simulations that exceed our time limit of 24
hours.
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5.5.4 Temporal links

In Fig. 12, we display the total number of temporal links estimated in the time series, W
ts

, for all the considered
methods on all the seven real-world datasets. We confirm that the number of links decreases as we increase the
time resolution of the dataset.
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Fig. 12: Total number of temporal links estimated in the time series W ts as a function of the resolution for all datasets
under consideration.
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5.5.5 Relative error

We analyze the accuracy of the methods in describing the overall system evolution. We compare the expected

number of the total temporal links generated in, E
[
W
]
, with W

ts
. All methods are accurate for the datasets studied

herein, with a relative error up to 5%.
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Fig. 13: Relative error between the total number of temporal links, W
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