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Global investment in electric vehicle (EV) charging infra-
structure is estimated to reach US$80 billion by 20251. In 
the United States, this investment growth marks an expected 

transition in policy support at the federal level to more aggressive 
actions at the state and local levels. The transportation sector is now 
the dominant source of CO2 emissions in the United States2. By dis-
placing gasoline and diesel fuels, vehicle electrification strategies 
have captured the attention of policymakers and analysts due to the 
expected public health benefits associated with reduced air pollution 
and tailpipe emissions3–6. However, while current EV infrastructure 
policies have focused on increasing the quantity of charging stations 
to meet future growth7, not much attention has been paid to the qual-
ity of charging services, particularly at the consumer level. Service 
reliability is a key risk in the public provision of EV charging services 
and hence a critical barrier to large-scale technology adoption.

Some scholars contend that the private sector, under the right 
incentives, can more effectively deliver public fast-charging services 
as needed. Other scholars argue that large public investments in 
fast-charging infrastructure could crowd out private investments 
and lead to wasteful spending on charging locations that would have 
been built anyway (what economists refer to as inframarginal par-
ticipation). Still other scholars argue that public charging serves a 
public good, particularly if sufficient incentives do not exist for pri-
vate entrepreneurs and organizations to invest locally. This debate 
on public versus private provision of environmental public goods 
and services has a long tradition in economics8,9 and public manage-
ment10,11, with mixed empirical evidence on whether decentralized 
local provision is more effective.

Subjective perceptions about the quality and reliability of pub-
lic charging infrastructure are critical to building range confidence 

among existing EV owners12–14. Importantly, popular sentiment 
about EV charging station experiences could be even more criti-
cal to potential buyers in the EV purchase decision, particularly for 
consumers in underserved communities.

A major challenge to evaluating whether the current EV charg-
ing infrastructure is meeting the needs of the public is in access to 
available monitoring data15. This is because EV mobility data are 
largely user generated and are often owned by private entities16,17. 
For example, in the United States, charging transaction records are 
typically managed by tens of thousands of individual station hosts—
each with the ability to independently set prices and charging poli-
cies (subject to State rules)—with no central repository or reporting 
requirements across network providers. As a result, given these high 
monitoring costs, national evidence on the quality of service provi-
sion in EV infrastructure has been scant.

In this article, we analyse evidence of EV charging station expe-
riences in both public and private spaces and at major points of 
interest. We use machine intelligence to automatically classify user 
reviews in 651 core-based statistical areas (CBSAs) in the United 
States (Fig. 1). In doing so, we demonstrate the potential to use 
machine-learning to substantially reduce data aggregation costs by 
automatically classifying unstructured user reviews into positive 
and negative station experiences as an indicator of performance. 
On the basis of market data from 2011 to 2015, we show how a 
convolutional neural network (CNN) trained on large-scale social 
data learns domain-specific terms and, in effect, approaches the 
accuracy of human experts for sentiment classification. We then 
use machine classification as an input for econometric analyses 
that statistically adjust and mitigate potential observational biases 
in large-scale consumer data. We use this approach to evaluate  
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consumer sentiment and test hypotheses about service provision on 
a national scale.

We discuss performance in the context of sustainable transporta-
tion policies related to EV infrastructure. We further discuss direc-
tions for the use of consumer data and machine-learning tools in 
the analysis of government service delivery in near-real time and 
with dynamically growing datasets.

Mobility data
Mobile applications (apps) are changing the scale and techniques 
by which user behavioural data can be aggregated16,18,19. Digital plat-
forms in mobile phones enable users to search, locate and pay for 
transportation services in real time. Given the rise in smart-phone 
use for transportation services, it is possible to analyse—subject 
to the necessary privacy protections—mobility decisions for large 
populations with digital infrastructure20,21. In the context of EVs, 
charging station locator apps help lower information and transac-
tion costs. Users can search for available EV charging stations, pay 
for charging sessions and interact with other users by uploading sta-
tion photos and writing station reviews for the EV community.

In this article, we analyse unstructured consumer reviews at 
12,720 US charging station locations as provided by a popular EV 
charge station locator app. The data consist of 127,257 reviews from 
an estimated 25,133 registered and unregistered EV drivers during 
the period from 2011 to 2015. This includes a nationally represen-
tative sample of the US EV market with data aggregated from ten 
major EV charging networks in the United States.

Given the dynamically growing data size, it would be too costly 
for researchers or government analysts to hand classify these reviews 
for performance assessment. For example, at a rate of 100 reviews 
per hour, it would take a human expert about 32 work weeks to 
analyse reviews by hand. As a solution to this problem, we deploy 
machine-learning algorithms to automatically process unstructured 
reviews with natural language processing. This approach allows us 
to reduce processing times for research evaluation from weeks of 
human processing to minutes of computation.

CNNs. Recently, different types of neural networks have seen suc-
cess in sentiment classification tasks for text data22–25. For example, 
CNNs first gained popularity in computer vision and have recently 
been demonstrated to be effective in several natural-language pro-
cessing tasks26–29. However, these algorithms need to be adapted 
and optimized for specific domains before they can be useful. For 
this study, we implement a CNN and build on a model architec-
ture similar to that proposed by Kim22. We choose this approach as 
CNN-based classifiers have been shown to achieve state-of-the-art 

results for sentence-level classification of short user-generated 
texts. This approach has an added benefit of automatically learning 
domain-specific semantics with lower dimensional representations 
versus existing approaches.

A key innovation of the CNN architecture is that it flexibly allows 
for unsupervised learning from pretrained word vectors while also 
allowing for supervised learning of domain-specific terms through 
back propagation22. In our implementation of deep-learning algo-
rithms for EV mobility, we use pretrained word2vec word embed-
dings, which have been trained on approximately 100 billion words 
and phrases from Google news30. To capture domain-specific 
semantics, word embeddings can be updated as the model is 
trained. A summary of the key features of the CNN architecture, 
which includes the input word vector representations and the CNN 
procedure, is provided in Fig. 2. Additional implementation details 
and classifier procedures are provided in Methods.

Results
Machine classification. Using a CNN, we classify EV charging sta-
tion experiences over a 4 yr period of rapid EV infrastructure growth 
from 2011 to 2015. We ask: how well do the machine predictions 
agree with human predictions? We know from our Cohen’s κ = .84 
achieved when building our training set that interrater agreement 
between human experts is high, but it is not perfect. As such, binary 
sentiment classification in this domain is difficult, even for human 
experts. With this in mind, it is encouraging that the CNN classifier 
achieved a sentiment prediction accuracy of 84.7% when compared 
with human labels (Table 1). To further demonstrate the efficiency 
of our classifier, we also report precision, recall and F1 measures of 
0.86, 0.86 and 0.86, respectively. The use of deep-learning algorithms 
has recently been applied to short user-generated texts22,25. Here we 
demonstrate state-of-the-art performance to classify user reviews in 
the context of sustainable transportation and electric mobility.

We compared the performance of our CNN classifier to two 
non-neural net-based models, support vector machines (SVM) 
and logistic regression (LR), using the classic bag-of-N-grams 
approach. We also benchmark the performance of a CNN classi-
fier versus some alternative neural net-based architectures, includ-
ing variants of recurrent neural networks such as the well-known 
long short-term memory (LSTM) classifier31,32. To standardize the 
comparisons, we used the same word2vec word embeddings, with a 
single-layer (single directional) architecture for the LSTM classifier 
reported in Table 1. The LSTM classifier also achieved a respect-
able 83.1% in accuracy, with precision, recall and F1 measures of 
0.85, 0.84 and 0.85, respectively. In additional experiments, we 
tested a variety of recurrent neural networks, including single and 
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Fig. 1 | US map of active charge station reviews. This map shows the counts of EV charging station reviews per state from 2011 to 2015. The map was 
generated using ggplot/R (Source Data Fig. 1).
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bi-directional gated recurrent unit and other LSTM networks with 
deeper architectures. These alternative neural nets yielded test accu-
racies in the 82–84% range, which also substantially outperform the 
SVM and LR baseline models not based on neural nets (Table 1). 
We find that for a similar level of performance, the LSTM mod-
els require about 50% more computing time (~41 min) versus the 
CNN-based models (~27 min) as clocked using a 16 GB memory 
allocation, which simulates an ordinary consumer laptop. Hence, 
for balanced training data, we find that CNN might be a preferred 
architecture for real-time analysis and implementation with stream-
ing data (see Supplementary Discussion).

Domain-specific learning. In our series of experiments, we find 
that the CNN model identifies domain-specific patterns of natural 
language. For example, a commonly used term that may be recog-
nized by subject matter experts, but not necessarily by the general 
population, is the notion of ‘ICE-ing’. To be ‘iced’ or ‘ICE’d’ is an 
informal term that refers to cases in which an internal combustion 

engine vehicle is parked in a space normally reserved for EV driv-
ers. ICE-ing is a common source of charge rage—the feeling drivers 
get when they are unable to find a charger. Its use reflects negative 
sentiment as it represents a violation of a community norm. For 
example: ‘Came here on a Sunday around 11:30am and every spot 
was ICEd’ or ‘I was iced by a blue Dodge Journey’. For non-experts, 
these reviews might lead to ambiguous classifications due to insuf-
ficient domain knowledge otherwise common to EV drivers.

As neural network models are often criticized for their black-box 
nature, in Fig. 3 we provide sample visualizations of the salience of 
review text across the encoded word embeddings, using recently 
published protocols provided in refs. 33,34. A higher saliency score 
assigned to a 300-dimensional word embedding indicates sensitiv-
ity to the final sentiment classification33. Following our example of 
highly contextualized terminology, Fig. 3 shows that ‘iced’ was the 
most salient term across the word embeddings, meaning that the 
algorithm has automatically learned the importance of this term. 
That artificial intelligence can detect ‘ICE-ing’ in this context and 
reach the accuracy of human experts, albeit in a matter of minutes of 
computation, is exemplary.

With this illustrative example, we show how artificial intelligence 
can be deployed to detect natural language associated with complex 
behavioural norms such as charging etiquette and other informal 
rules among a community of users. Such capabilities could also 
substantially reduce infrastructure evaluation costs and help equip 
utility managers and station operators with rapid response capabili-
ties to improve service times. We suggest future research to explore 
further uses of machine intelligence to identify behavioural mecha-
nisms related to charge rage, congestion and other station failures. 
In the next section, we use our best prediction model to test com-
mon assumptions about charging behaviour in public and private 
spaces and at key points of interest.
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Table 1 | Model performance

Model Accuracy (%) 
(s.d.)

Precision Recall F1 score

CNN 84.7 (0.8) 0.86 0.86 0.86

LSTM 83.1 (0.9) 0.85 0.84 0.85

SVM 78.2 (0.8) 0.80 0.80 0.80

LR 79.1 (0.8) 0.80 0.82 0.81

Comparison of a single-layer CNN and an LSTM classifier versus other non-deep-learning baseline 
models: SVM and LR. For both of the baseline models, we use a bag-of-N-grams document 
representation with identical features. Results are reported on average values of 100 runs.
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Sentiment analysis. We find evidence of widespread EV charging 
station use in all major US geographic areas (Figure 1). To compare 
the incidence of negative sentiment for econometric analyses, we 
created a negativity index of conditional probabilities across sta-
tions, where 0 means all reviews at a given station location are posi-
tive, and 1 means all reviews at a given station location are negative 
(equation (1)). A higher predicted sentiment probability (closer to 
1) would therefore not be desirable.

The mean predicted sentiment across all station reviews in both 
urban and non-urban areas is 0.44. While this number might not 
seem high at first, it is analogous to predicting a negative experi-
ence four out of ten times that a driver goes to a gas station to fill 
up a car and writes about the experience. Further, if we aggregate 
the sentiment score by user ID per year, this is nearly half of all 
drivers facing negative experiences. By contrast, in a recent paper 
on consumer reviews from smart mobility apps, gas station fuel-
ling service and real-time data are primarily classified as positive 
experiences by consumers in a similar use35. Indeed, sentiment 
analysis from mobile navigation apps finds that only 16% (9 out of 
55) of service-related keywords are negative (for example, location 
sharing, processing speed and arrival time estimation)35. We argue 
that a greater focus on the quality of the EV charging experience is 
needed. For additional examples of sentiment analysis in other con-
texts such as public opinion polling, environmental impact state-
ments, measuring cultural norms and network effects, see refs. 35–39.

Discussion
We discuss the results for public versus private stations, urban ver-
sus rural, and by points of interest.

Public versus private stations. Theory predicts that under the right 
incentives, private charging stations should outperform those run by 
government entities9. However, in practice, it is unclear whether suf-
ficient incentives exist for private station hosts to maintain a high level 
of service quality, especially in the reselling of electric power, where 
capital cost recovery is often challenging and retail electricity prices 
are low. Here we test the hypothesis that private charging stations 
more effectively deliver charging services versus public stations pro-
vided by the government. We considered a broad definition of public 
stations such as those that have been geolocated at points of inter-
est (POIs) that include government and municipal buildings, public 
libraries, rest areas, transit centres, public parks and visitor centres. We 
define private stations as those that have been geolocated at POIs that 
include hotels, retail/food establishments, shopping centres, health-
care facilities, workplaces and other non-residential locations. As in 
many contexts related to the private provisioning of public goods, we 
might expect to see evidence that charging stations at privately man-
aged locations outperform those that are publicly owned or managed.

In Supplementary Table 1 (Extended Data Table 1), we pro-
vide descriptive statistics for the raw counts of machine-classified 
reviews at both public and private charging destinations. Contrary 
to expectation, we do not find a statistically significant difference 
in the mean predicted sentiment between public and private charg-
ing station locations nationally (see Fig. 4). We validated this find-
ing by adjusting for factors driving selection to review and other 
observable location characteristics. In addition, we considered a 
more-narrow definition of public chargers with POI restricted to 
government-only stations and verified statistical parity in consumer 
sentiment between public and private stations (see Supplementary 
Table 2; Extended Data Table 2). Additional details on public and 
private location designations is provided in Methods.

We interpret this finding in two ways. First, our results indicate 
that private charging station locations do not outperform those that 
may be publicly owned or managed. Second, from a public choice 
perspective, our results provide some evidence that the private pro-
visioning of EV charging services could be an alternative to large, 
publicly managed infrastructure. For example, one anonymous 
reviewer wrote about the substitutability of a public charger for a 
private charger: ‘Be careful if you plan on charging here, there are 
two cars that tend to bogart these chargers try the city hall char-
gers’. Evidence of statistical parity in consumer perceptions between 
public and private charging locations addresses one concern raised 
by the National Research Council on barriers to EV infrastructure 
growth40. We caution, however, that our performance indicator 
captures popular sentiment from the standpoint of national con-
sumer reviews, and not a power systems delivery perspective, which 
requires further investigation and integration with consumer data.

As shown in Fig. 4, we find that paid charging stations receive 
a higher proportion of negative reviews as compared with free sta-
tions. Not surprisingly, this result holds whether the station is in 
a public or private location. This finding suggests users may have 
higher expectations for service reliability when paying for charging 
services. It is plausible that EV station location, whether public or 
private, may not be the dominant factor affecting service reliability. 
For example, publicly owned stations could have enjoyed similar 
(or perhaps even higher) levels of operation and maintenance sub-
scription services. In the next section, we use location microdata to 
investigate possible regional differences.

Urban versus rural areas. We compared the performance of stations 
in urban and non-urban areas. According to one view, EV drivers 
in areas with fewer charging stations are more likely to experience 
issues of range anxiety, possibly leading users in these areas to pub-
lish more negative reviews. Therefore, from a resource-availability 
hypothesis, areas with greater access to charging infrastructure 
should garner the most positive reviews. Interestingly, we do not 
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find evidence for this hypothesis. The highest incidence of nega-
tive sentiment is not in rural areas or even smaller urban clusters, 
but rather, the dense urban centres (see Fig. 5a). This is intriguing 
because approximately 89% of all user reviews are in urban centres 
(Supplementary Table 3; Extended Data Table 3). After controlling 
for important station location and timing factors, we find that urban 
charging stations exhibit a statistically significant 12–15% increase 
in the predicted negativity score as compared with non-urban loca-
tions (Fig. 5a and Supplementary Table 2, Models IV–VI; Extended 
Data Table 2, Models IV–VI).

Our finding that EV charging stations in urban centres signifi-
cantly underperform those in smaller urban clusters or rural areas 
where population and station densities are lower could be indicative 
of a broader range of service quality issues in the largest EV markets. 
For example, many users report a lack of functional stations upon 
arrival, as well as issues related to congestion or lack of availabil-
ity: ‘some person is just pulling plugs without any note; i’ll review 
footage on my security cam’ or ‘Both spots taken. One by a Volt 
that’s finished charging... Seriously time for more EVSE stations’. In 
Supplementary Tables 4 and 5 (Extended Data Tables 4 and 5), we 
summarize the predicted (negative) sentiment probabilities for both 
free and paid charging stations in the 18 largest US metro areas and 
top 20 US states by number of reviews. Although user reviews exist 
in all 50 states, the dominant source of activity is California, with 
54,684 reviews, or 43% of all consumer reviews in the dataset. The 
Los Angeles metro area, for example, is the largest CBSA for charg-
ing station reviews through 2015, with 22,878 reviews, or 18% of 
all reviews in the dataset. The mean predicted negative sentiment 
in Los Angeles ranges from 0.52 to 0.59, which means a given user 
is more likely to report a negative consumer charging experience 
than to report a positive one. This is considerably higher than the 
estimated US national average sentiment score that we report of 
0.44. These results indicate that service reliability is already a factor 
impacting consumer sentiment in the largest EV markets. Although 
quality is important in the consumer experience, we note that EV 
users are often confronted with fewer substitutable fuelling options, 
particularly in rural areas. Next, we evaluate the results by POI.

POIs. We summarize the results of our sentiment analysis by POI 
in Fig. 5b. The highest-performing private stations are at points of 

interest such as hotels/lodging destinations, restaurants and food 
establishments, and convenience stores. This is to be expected as 
private-station hosts in these locations often provide subsidized or 
complimentary EV charging services as a way to attract and cater to 
specific clientele. This suggests incentive-based management prac-
tices. The highest-performing POIs also include parks and recreation 
as well as RV parks and visitor centres. All of these POIs are asso-
ciated with travel destinations. On the basis of our examination of 
reviews at these locations, we believe that destination range anxiety 
could factor into positive reviews at these locations since drivers may 
be willing to sacrifice challenging conditions for the needed charge. 
Some of the lowest-performing POIs include car rental locations 
and car dealerships. This is not inconsistent with recent evidence on 
car dealership practices at the point of sale, which have been docu-
mented as promulgating barriers to EV adoption41. Workplace and 
mixed-use residential locations with retail establishments are also 
relatively low-performing POIs. For example, many EV users at 
workplace and mixed-use residential locations complain that EV sta-
tions can be difficult to access or that there is poor signage for public 
accessibility. We provide detailed POI point estimates net of statisti-
cal controls in Supplementary Table 2 (Extended Data Table 2).

Policy implications
Large-scale data from digital platforms can offer benefits for 
research evaluation efforts. We show that using computational 
tools, it is possible to develop more sophisticated performance indi-
cators from unstructured data that offer the potential to update in 
near real time. This is a major step forward from current practice 
that relies on indirect travel surveys or simulations, which can be 
costly and time intensive to administer42. We argue that consumer 
data should be prioritized when designing policies related to EV 
infrastructure access. This is particularly important in the design of 
‘EV ready’ or ‘EV capable’ policies in building codes and ordinances 
that require new buildings, for example, to install and maintain a 
certain number of EV charging stations 43. Such policies have grown 
in popularity in many cities such as Palo Alto, Denver and Atlanta, 
largely without data or deliberation about service quality from exist-
ing EV users or consumer groups.

Mobile apps can aggregate consumer data automatically at 
scale, but independent station hosts and operators currently have 
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little incentive to share data across network providers. Centralized 
reporting and secure data sharing across charging networks and 
utility jurisdictions would allow for more-efficient resource plan-
ning decisions, particularly in resilience considerations between 
power systems delivery and emerging transportation infrastruc-
ture. One key exception to platform data sharing is the listing of 
EV charging stations maintained on the Alternative Fueling Station 
Locator hosted by the US Department of Energy under the Clean 
Cities Program. While an invaluable tool, this digital repository of 
EV charging stations does not currently contain real-time availabil-
ity or network status information. We argue that policies to encour-
age greater information sharing as well as standardization in the 
quality of charging service delivery are necessary.

In this article, we show how machine intelligence can approach 
the accuracy of human experts for sentiment classification tasks, 
while showing promise for automatically learning domain-specific 
terms in emerging EV communities. Machine-learning techniques 
can automate the process of discovering new mobility patterns and 
detecting behavioural failures from consumer data, but they do not 
replace the need for a human in the loop. Note that, because the clas-
sifier is trained by a human, the classifier is only as unbiased as the 
human rater. Not all consumer reviews can be relevant or actionable. 
Nevertheless, by expanding administrative records with real-time 
streaming data, it is now possible to track station performance in 
both accessible and remote areas in ways not previously possible. 
Further, the use of machine intelligence as a pre-processing step for 
policy analyses can be helpful to determine consumer requirements 
in both coverage and demand assessments related to transporta-
tion infrastructure44. This focus on big data and real-time mobility 
will become increasingly important as driver incentives and other 
supply-driven policies designed to reduce externalities from EVs do 
not typically address or affect driver behaviour45,46.

As EV infrastructure grows, we argue that it is not only the quan-
tity of available stations that matters to consumers, but also the 
quality of the charging experience. A key focus for quality improve-
ment should be in the urban centres, where reports of ICE-ing and 
lack of available or functional stations are prominent and appear to  
drive negative consumer experiences. However, further research 
is necessary to determine the most important mechanisms of user  

dissatisfaction. Community interactions also reveal emerging norms 
about charger etiquette and prosocial behaviour primarily designed to 
help others in the community. We expect US$80 billion in new invest-
ment in EV supply equipment over the next few years1. On the basis 
of evidence from consumer data, we argue that it is not enough to just 
invest money into increasing the quantity of stations, it is also impor-
tant to invest money into reliable infrastructure that actually works.

Methods
Overview of CNN architecture. The first stage of the CNN deep-learning 
architecture shown in Fig. 2 depicts the matrix representation of the review text. 
Similar words are closer together in the vector space than are disimilar words23. In 
our implementation, we used pretrained word2vec word embeddings, which have 
been trained on approximately 100 billion words and phrases from Google news30. 
To capture domain-specific semantics, word embeddings can be updated as the 
model is trained.

The second stage is the CNN. Convolutional filters learn what words to look for 
in the reviews. There can be several convolutional filters per filter size47. Filter heights 
in CNN models represent the dimension of the N-gram within the text. We used filter 
heights of 3, 4 or 5. For example, a filter size of 3 scans through the word embeddings 
as a bag of 3-grams in the process of convolution. For example, in the review text ‘got 
a charging error first few times got AV to reset it remotely and it worked finally’, the 
convolutional layer with filter size 3 results in the following 3-grams: ‘got a charging’, 
‘a charging error’, ‘charging error first’, …, ‘and it worked’, ‘it worked finally’. Then, 
the 1-max pooling procedure as described in ref. 29 selects the most-important 
3-gram for the prediction task. The 1-max pooling outputs from multiple filters are 
then concatenated to form a feature vector. These features are passed onto a fully 
connected softmax layer with dropout regularization, whose output is the probability 
distribution over labels22. In the current example, the ‘a charging error’ 3-gram was 
the most predictive feature for negative sentiment classification.

Selection of CNN hyper-parameters. We used various strategies to select our 
CNN hyper-parameters. Building on previous literature, we selected 1-max 
pooling, dropout regularization48 with a rate of .3 and a ReLU activation function 
in our convolutional layer, as these hyper-parameters have been shown to improve 
accuracy47. In particular, the dropout technique was implemented to prevent 
overfitting48. In our implementation, we confirm that an L2 constraint had no 
discernible performance improvement, and therefore we do not include it in our 
model47. Other hyper-parameters include a batch size of 128; learning rate of .001; 
filter heights of 3, 4, and 5; 100 filters for each filter height. Filter widths are 300, 
which are set to the dimensionality of the word embeddings.

LSTM implementation and hyper-parameters. We implemented a one-layer 
LSTM model to make it comparable to the CNN model, using protocols described 
in ref. 49. We then performed basic optimization. For example, we used the same 
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word2vec word embeddings with 300 dimensions. We used the same train-test 
split and preprocessing as in the CNN model. In both LSTM and CNN models, we 
used the Adam optimizer, with a learning rate 0.001. Other key hyper-parameters 
include cell number 64, dropout rate 0.6 and recurrent dropout rate 0.2.

Curating the training data. In any supervised classification task, it is necessary to 
obtain ground-truth labels. To generate these labels, two research assistants served 
as human expert raters. We conducted several focus groups to decide on a common 
set of rules for classifying the training data. Each human rater independently coded 
an identical set of 8,953 reviews, which were chosen as a representative sample from 
the 127,257 reviews. We initially investigated the accuracy of a three-class model—
positive, negative and neutral classifications. However, neutral classifications 
were found to be very difficult for human rater tasks in this domain. We therefore 
achieved the best interrater reliability (κ = 0.84, SE = 0.7)50 by treating this as a 
two-class problem, meaning reviews reflect a binary sentiment only (positive/
negative). Although imbalances in training data typically present potential problems 
for machine classification, in Supplementary Table 6 (Extended Data Table 6), we 
show that reviews in our training data are highly balanced in polarity.

As part of model validation procedures, the 8,953 hand-classified reviews 
were randomly split to 80% of training data and 20% of testing data. We 
also tried other random splits and cross-validation procedures and found 
quantitatively similar results.

Examples of consumer reviews. To provide additional details of the human labelling 
tasks for training, we provide some examples of both positive and negative labelled 
reviews.

Positive:
•	 ‘Charged! When I called Blink CS before I traveled they said a tech had been 

here to fix this station, and I am happy to report it is!’
•	 ‘Huge solar panels power this amazing station!!’
•	 ‘Surprisingly not ICEd at 5:45pm on a Tuesday. Stall 2B seemed slow, deliver-

ing only 28 KW at 45% SOC. moved to 3A.’
Negative:

•	 ‘OUT OF SERVICE AGAIN! This station is a waste of time’
•	 ‘Never lucky enough to get a spot to charge, someone’s always there. Good 

luck!’
•	 ‘All spots full right now. Charging BMW i3 with SAE combo.’

Statistical uncertainty. Starting with a random data split and initialization, we 
report the statistical uncertainty of the test accuracy for the CNN classifier for 
1,000 runs. The mean test accuracy is 84.6% (minimum 82.2%, maximum 86.9%) 
with s.d. 0.79 (see Supplementary Fig. 1; Extended Data Fig. 1).

Econometric analysis. Following machine classification, we conduct econometric 
analyses to mitigate possible observational biases and statistically adjust for station 
location and timing factors. Our unit of analysis for each review is at the station 
level.

Measuring outcomes of interest. For a given charging station location i and review 
period year, we define the negativity score as the count of negative reviews as a 
fraction of the total count of reviews:

NegativityScorei;year ¼
Count of negative reviewsi;year
Total count of reviewsi;year

ð1Þ

By construction, the share of negative reviews at a charging station is 
normalized to lie in the unit interval [0, 1]. Boundary observations of the 
dependent variable at 0 indicate that all reviews at a charging station are positive, 
and boundary observations at 1 indicate that all reviews at a charging station are 
negative. A higher negativity score is undesirable. We also group the charging 
stations by location group, g (that is, there can be more than one station ID at 
a given location) and the year of the review to provide a rate of users leaving a 
review relative to the amount of use of the class of station. Users can check in to 
the platform and leave a review, which enters into the count of reviews, or check in 
without leaving a review, which enters into the count of other check-ins. We define 
the re view rate as:

ReviewRatei;g;year ¼
Count of reviewsi;g;year

Count of reviewsi;g;year þ Check�insi;g;year
ð2Þ

Fractional response models. We used the outputs of the CNN classifier as a 
pre-processing step for econometric analysis of consumer sentiment. Given the 
limitations of linear estimation methods such as ordinary least squares (OLS) for 
bounded dependent variables, we implemented a fractional response model (FRM) 
for the probability share data based on the quasi-maximum likelihood (QMLE) 
estimator51,52. We present some elements of FRM models as developed by Papke 
and Woolridge51,52 and then apply them to machine-learning outputs in mobility 
data. In the standard FRM setup, we are interested in the conditional expectation 

of the fractional response variable yi,t on a group-specific vector of explanatory 
variables xi,t such as:

Eðyi;t jxi;tÞ ¼ Gðxi;tθÞ; i ¼ 1; ¼ ; N ð3Þ

where G(⋅) is a nonlinear function such as the cumulative distribution function 
that satisfies 0 ≤ G(⋅) ≤ 1, the fractional dependent variable is defined only on 
0 ≤ yi,t ≤ 1, and θ is a parameter vector of interest. Observations at the extremes of 
the outcome distributions are estimated directly using the Bernoulli log-likelihood 
function, given by:

li;tðθÞ  yi;t log ½Gðxi;tθÞ þ ð1� yi;tÞlog ½1� Gðxi;tθÞ ð4Þ

In our dataset, some charging station reviews may be classified as all negative 
or all positive at a given location. Given the presence of boundary observations at 
0 and 1, the pooled Bernoulli quasi-maximum likelihood estimator of θ does not 
require dichotimizations of the dependent variable and is computed as:

θ̂ ¼ argmaxθ
XN

i¼1

li;tðθÞ ð5Þ

We note that this approach overcomes three important limitations found in 
comparable methods. First, we account for the bounded nature of the data and do 
not assume a linear conditional mean or constant linear effects, which requires 
stronger assumptions for estimation. Second, commonly used log-odds methods 
are not well defined for boundary values 0 and 1 present in the data and often 
require ad hoc adjustments such as arbitrarily chosen constants. Third, methods 
based on two-limit Tobit models may be appropriate for censored data with 
boundary observations at both limits, but their application to fractional data that 
are not defined outside the boundary limits is hard to justify. For a more-detailed 
review of fractional regression models, see Ramalho et al.53

Selection effects of providing a review. The decision to provide a review is a 
voluntary one. It conditions the interpretation of information developed by 
analysing a sample of reviews. Charging station activity outside the digital platform 
is inherently unobservable. To address possible limitations due to selection 
effects, we attempt to explain the likelihood of giving a review as a function of 
characteristics of the charging location and timing. In equation (2), we normalize 
the empirical review counts by total platform engagements, including user 
check-ins without reviews. In this way, we are able to normalize our estimates of 
the importance of explanatory variables on the empirical review rate by a measure 
of total charging station usage beyond review activity. For example, during the 
period of study, there are 276,749 total user check-ins on the platform, of which 
127,257 contain English-language reviews.

Our main estimating equation relates the review rate and negativity score 
as a function of one or more of the explanatory variables. This includes POI 
information, geographical area such as urban, suburban or rural, the type and 
count of networks available, the type and count of station connectors available, and 
our designation as public stations on the basis of station geolocation. Due to data 
limitations, we could not adjust for car type of the driver as that information is 
voluntary, so we had a biased subsample. In addition, we also tested specifications 
that included the proprietary station quality rating (numeric score 1–10) as a proxy 
for possible unobserved heterogeneity. We estimate the following general equation:

Outcomesi;g;year ¼ Gfαi;year þ Publici;g þ POIi;g
þNetworksi;g;year þ Connectorsi;g þ Ratingi;gg

ð6Þ

Observable location characteristics include the type and number of networks 
available (for example, Chargepoint, Blink, SemaConnect, Aerovironment, 
EVgo, Tesla Supercharger, GE Wattstation and so on), the type and number of 
connector plug technologies (for example, J-1772, CHAdeMO, SAE Combo, 
Tesla supercharger, NEMA plug and so on) and other driver-identifiable location 
attributes by POI. To mitigate possible unobserved heterogeneity, we also include 
the station rating as a proxy variable for unobserved quality attributes.

In Supplementary Table 2 (Extended Data Table 2), we report the main 
results. The main drivers of the review rate include geographical area (whether 
urban or non-urban) and point of interest location information. We also find 
a statistically significant effect of the type and number of station connectors 
available and the type of charging network such as the service provider, but not 
the number of networks available at a station location, which can range from 
one to three networks at a location ID. This suggests choice in charging network 
service provider is not yet a significant factor. Given our main interest in the 
public provision of charging services, we confirmed our finding of no significant 
effect of public locations (or more narrowly defined government-only locations) 
on the review rate. This result is robust to our proxy for unobserved quality 
attributes as measured by the station quality rating provided to us by the platform 
provider (Supplementary Table 2, Models II, III; Extended Data Table 2, Models 
II, III). Overall, for factors driving the selection to review, location matters, as 
do the network type, connector technology and other quality-related factors. 
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In Supplementary Table 2 (Extended Data Table 2), we do not show the point 
estimates for individual networks or plug types, but these results are available upon 
request from the corresponding author.

We conditioned on all observable characteristics from our aggregate selection 
analysis to then compute the average partial effects for factors driving the 
negativity score. The analysis reveals that urban chargers account for a statistically 
significant 12–15% increase in the negativity score compared with non-urban 
locations (Supplementary Table 2, Models IV–VI; Extended Data Table 2, Models 
IV–VI). Similarly, we also confirmed our finding of no statistically significant 
effect of private versus public stations, which is robust to both a broad and narrow 
definition of public stations and unobserved quality factors.

In Supplementary Table 7, we provide supplementary regression results 
comparing the performance of the FRM approach with a standard OLS estimator. 
While we find the estimates to be qualitatively similar, we see that FRM generates 
more-conservative estimates compared with OLS, which overestimates the 
magnitude of the effects, as expected.

Urban versus rural definitions. For spatial analysis, we merged the geocoded 
station location data with geographical designations using standard US Census 
definitions54. These include urbanized areas (populations greater than 50,000), 
smaller urban clusters (populations between 2,500 and 50,000) and rural areas 
(populations less than 2,500). According to the 2010 Census, there are 486 
urbanized areas and 3,087 urban clusters in the United States. All designations 
contained reviews. For descriptive statistics of binary sentiment classifications by 
geographic area, see Supplementary Table 3 (Extended Data Table 3).

Comments on defining public and private stations. To determine whether the 
chargers on public properties were also publicly owned and managed, we contacted 
a random sample of 170 public EV charging locations, stratified by network (Blink, 
ChargePoint and so on). We then attempted to contact each location through 
a combination of email and phone calls to ask the following questions: Are the 
charging stations at this property owned by the organization? Are the charging 
stations at this property managed by the organization? We also contacted several 
major EV charging networks directly (for example, SemaConnect, ChargePoint, 
GreenLots and Blink) to determine whether they operate/maintain charging 
units on behalf of their customers. For example, we found that while GreenLots 
network manages all of their stations on behalf of station hosts, station owners 
from the other three major networks we contacted can decide whether they want 
to enter into a contract/warranty for servicing. Overall, we found four possibilities 
regarding station ownership and maintenance on public properties:
•	 Stations are both owned and managed by public entities (such as those in 

Colton, California).
•	 Stations are owned by public entities but managed by private EV charging net-

works (such as the one at the Anaheim Intermodal Transit Center in Anaheim, 
California).

•	 Stations are owned by public entities but managed by a local contractor (such 
as the station at Roswell City Hall in Roswell, Georgia).

•	 Stations are neither owned nor managed by public entities (such as the station 
at the Minnesota Department of Natural Resources in St. Paul, Minnesota).

After contacting 170 stations, we were able to obtain answers to our 
management question at 32 locations. Of these 32 locations, 10 were managed 
by the public entity, and 22 were managed by either an EV charging network or 
a private company. We were also able to get answers to our ownership question 
at 23 locations. Of these 23 locations, the stations at 14 locations were owned 
by the public entity, and the stations at 9 locations were not. We believe that 
the management structure can potentially be an important driver of proper 
functioning of EV chargers and, hence, the consumer experience. However, the 
managerial aspects of public versus private operation, while outside the scope of 
the current paper, we highlight as important differences for future research.

Study limitations. While we demonstrate gains using machine-learning in 
this domain, there remain key areas for technical improvement. First, it may 
be necessary to increase the size of the training data to achieve even higher 
convergence between human and machine classifications. This is especially 
relevant in dynamically growing social datasets where topic categories may be 
broad. For reference, we calculated an alternative agreement score between the 
human predictions and machine predictions by treating the machine as a separate 
rater. The resulting κ = .68 suggests additional optimization could be necessary to 
increase reliability scores. However, due to computational complexity, it may be 
difficult to fully optimize all hyper-parameters to reach a global optimum. Second, 
future work can explore deeper architectures and optimal filter sizes. For example, 
a recent paper on very deep CNNs for text classification reports optimal results 
with up to 29 convolutional layers55. In a sensitivity analysis of CNN, one approach 
proposed by Zhang and Wallace is to conduct ‘a line search over the single filter 
region size to find the ‘best’ single region size’47. This could be a promising 
approach to further improve accuracy in subpopulations of review types or in 
training sets with different types of human raters. We leave this as future work.

In this paper, we implement recent deep-learning approaches to automatically 
learn text representations for sentiment analysis, but we do not demonstrate their 

performance for topic labelling, which could open new directions for discovery 
of behavioural failures. We leave this task for future work. We also point out that 
although text data are time stamped, it is in many cases not possible to directly 
observe the contemporaneous power systems delivery to validate consumer 
claims. To verify the operational status or other specific issues, consumer and 
power data must be linked in information systems, which is a major challenge. 
Another limitation of our analysis is that while we are able to quantitatively 
evaluate sentiment from consumer reviews, additional information is needed 
to identify the psychological basis for negative charging experiences. It would 
be useful to develop topic classifications and accompanying training data with 
ground-truth labels that describe the various sources of negative consumer 
experience. This might allow for deeper identification of mechanisms and 
algorithmic classifications for policy analysis.

Data availability
We provide the weights of the trained deep-learning models. These datasets 
generated and/or analysed during the current study are available in the Figshare 
repository https://doi.org/10.6084/m9.figshare.1204467056. The raw data that 
support the findings of this study are available from the corresponding author upon 
request. These data may not be posted publicly due to privacy restrictions. For 
interested readers, an alternative open data API service with global EV charging 
infrastructure data is available from OpenChargeMap (https://openchargemap.
org/), which is derived from a variety of public sources and contributions. Source 
Data are provided with this paper.

Code availability
All custom code and algorithm replication materials have been deposited on 
the Github repository using Zenodo version releases at https://doi.org/10.5281/
zenodo.1419830.
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Extended Data Fig. 1 | Distribution of CNN classifier predictions for 1,000 model runs. The mean test accuracy for 1,000 runs is 84.6% with a S.D. of 
0.79.
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Extended Data Table 1 | Descriptive statistics, public and private. Counts of machine classified reviews of binary sentiment by public and private 
ownership. 2,256 reviews were submitted in locations where it was impossible to discern whether it was public or private.
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Extended Data Table 2 | Main results. FRM results for the review rate and negativity score.
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Extended Data Table 3 | Descriptive statistics, urban and rural. Counts of machine classified reviews of binary sentiment by geographic area type as 
defined by U.S. Census designations.

Nature Sustainability | www.nature.com/natsustain

http://www.nature.com/natsustain


Analysis NaTUrE SUsTainaBiliTyAnalysis NaTUrE SUsTainaBiliTy

Extended Data Table 4 | Probability of negative sentiment for 18 core-based statistical areas in the United States. Results of t-tests for free and paid 
stations by public and private ownership in 18 CBSAs in the United States.
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Extended Data Table 5 | Probability of negative sentiment for top 20 U.S. states. Results of t-tests for free and paid stations by public and private 
ownership in the top 20 states by number of reviews.
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Extended Data Table 6 | Balance of training data. Counts of positive and negative reviews by two human annotators (κ=0.84).
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