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By displacing gasoline and diesel fuels, electric cars and fleets reduce emissions from the transportation sector, thus offering
important public health benefits. However, public confidence in the reliability of charging infrastructure remains a fundamental
barrier to adoption. Using large-scale social data and machine-learning based on 12,720 electric vehicle (EV) charging stations,
we provide national evidence on how well the existing charging infrastructure is serving the needs of the rapidly expanding
population of EV drivers in 651 core-based statistical areas in the United States. We deploy supervised machine-learning algo-
rithms to automatically classify unstructured text reviews generated by EV users. Extracting behavioural insights at a popula-
tion scale has been challenging given that streaming data can be costly to hand classify. Using computational approaches, we
reduce processing times for research evaluation from weeks of human processing to just minutes of computation. Contrary to
theoretical predictions, we find that stations at private charging locations do not outperform public charging locations provided
by the government. Overall, nearly half of drivers who use mobility applications have faced negative experiences at EV charging
stations in the early growth years of public charging infrastructure, a problem that needs to be fixed as the market for electrified

and sustainable transportation expands.

structure is estimated to reach US$80 billion by 2025'. In
the United States, this investment growth marks an expected
transition in policy support at the federal level to more aggressive
actions at the state and local levels. The transportation sector is now
the dominant source of CO, emissions in the United States”. By dis-
placing gasoline and diesel fuels, vehicle electrification strategies
have captured the attention of policymakers and analysts due to the
expected public health benefits associated with reduced air pollution
and tailpipe emissions’. However, while current EV infrastructure
policies have focused on increasing the quantity of charging stations
to meet future growth’, not much attention has been paid to the qual-
ity of charging services, particularly at the consumer level. Service
reliability is a key risk in the public provision of EV charging services
and hence a critical barrier to large-scale technology adoption.
Some scholars contend that the private sector, under the right
incentives, can more effectively deliver public fast-charging services
as needed. Other scholars argue that large public investments in
fast-charging infrastructure could crowd out private investments
and lead to wasteful spending on charging locations that would have
been built anyway (what economists refer to as inframarginal par-
ticipation). Still other scholars argue that public charging serves a
public good, particularly if sufficient incentives do not exist for pri-
vate entrepreneurs and organizations to invest locally. This debate
on public versus private provision of environmental public goods
and services has a long tradition in economics®’ and public manage-
ment'”", with mixed empirical evidence on whether decentralized
local provision is more effective.
Subjective perceptions about the quality and reliability of pub-
lic charging infrastructure are critical to building range confidence

( i lobal investment in electric vehicle (EV) charging infra-

among existing EV owners">”“. Importantly, popular sentiment
about EV charging station experiences could be even more criti-
cal to potential buyers in the EV purchase decision, particularly for
consumers in underserved communities.

A major challenge to evaluating whether the current EV charg-
ing infrastructure is meeting the needs of the public is in access to
available monitoring data'. This is because EV mobility data are
largely user generated and are often owned by private entities'®"".
For example, in the United States, charging transaction records are
typically managed by tens of thousands of individual station hosts—
each with the ability to independently set prices and charging poli-
cies (subject to State rules)—with no central repository or reporting
requirements across network providers. As a result, given these high
monitoring costs, national evidence on the quality of service provi-
sion in EV infrastructure has been scant.

In this article, we analyse evidence of EV charging station expe-
riences in both public and private spaces and at major points of
interest. We use machine intelligence to automatically classify user
reviews in 651 core-based statistical areas (CBSAs) in the United
States (Fig. 1). In doing so, we demonstrate the potential to use
machine-learning to substantially reduce data aggregation costs by
automatically classifying unstructured user reviews into positive
and negative station experiences as an indicator of performance.
On the basis of market data from 2011 to 2015, we show how a
convolutional neural network (CNN) trained on large-scale social
data learns domain-specific terms and, in effect, approaches the
accuracy of human experts for sentiment classification. We then
use machine classification as an input for econometric analyses
that statistically adjust and mitigate potential observational biases
in large-scale consumer data. We use this approach to evaluate
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Fig. 1| US map of active charge station reviews. This map shows the counts of EV charging station reviews per state from 2011 to 2015. The map was

generated using ggplot/R (Source Data Fig. 1).

consumer sentiment and test hypotheses about service provision on
a national scale.

We discuss performance in the context of sustainable transporta-
tion policies related to EV infrastructure. We further discuss direc-
tions for the use of consumer data and machine-learning tools in
the analysis of government service delivery in near-real time and
with dynamically growing datasets.

Mobility data

Mobile applications (apps) are changing the scale and techniques
by which user behavioural data can be aggregated'®'*". Digital plat-
forms in mobile phones enable users to search, locate and pay for
transportation services in real time. Given the rise in smart-phone
use for transportation services, it is possible to analyse—subject
to the necessary privacy protections—mobility decisions for large
populations with digital infrastructure?®*’. In the context of EVs,
charging station locator apps help lower information and transac-
tion costs. Users can search for available EV charging stations, pay
for charging sessions and interact with other users by uploading sta-
tion photos and writing station reviews for the EV community.

In this article, we analyse unstructured consumer reviews at
12,720 US charging station locations as provided by a popular EV
charge station locator app. The data consist of 127,257 reviews from
an estimated 25,133 registered and unregistered EV drivers during
the period from 2011 to 2015. This includes a nationally represen-
tative sample of the US EV market with data aggregated from ten
major EV charging networks in the United States.

Given the dynamically growing data size, it would be too costly
for researchers or government analysts to hand classify these reviews
for performance assessment. For example, at a rate of 100 reviews
per hour, it would take a human expert about 32 work weeks to
analyse reviews by hand. As a solution to this problem, we deploy
machine-learning algorithms to automatically process unstructured
reviews with natural language processing. This approach allows us
to reduce processing times for research evaluation from weeks of
human processing to minutes of computation.

CNNs . Recently, different types of neural networks have seen suc-
cess in sentiment classification tasks for text data®*. For example,
CNN:ss first gained popularity in computer vision and have recently
been demonstrated to be effective in several natural-language pro-
cessing tasks* . However, these algorithms need to be adapted
and optimized for specific domains before they can be useful. For
this study, we implement a CNN and build on a model architec-
ture similar to that proposed by Kim*. We choose this approach as
CNN-based classifiers have been shown to achieve state-of-the-art

results for sentence-level classification of short user-generated
texts. This approach has an added benefit of automatically learning
domain-specific semantics with lower dimensional representations
versus existing approaches.

A key innovation of the CNN architecture is that it flexibly allows
for unsupervised learning from pretrained word vectors while also
allowing for supervised learning of domain-specific terms through
back propagation®. In our implementation of deep-learning algo-
rithms for EV mobility, we use pretrained word2vec word embed-
dings, which have been trained on approximately 100 billion words
and phrases from Google news”. To capture domain-specific
semantics, word embeddings can be updated as the model is
trained. A summary of the key features of the CNN architecture,
which includes the input word vector representations and the CNN
procedure, is provided in Fig. 2. Additional implementation details
and classifier procedures are provided in Methods.

Results

Machine classification. Using a CNN, we classify EV charging sta-
tion experiences over a 4yr period of rapid EV infrastructure growth
from 2011 to 2015. We ask: how well do the machine predictions
agree with human predictions? We know from our Cohen’s k=.84
achieved when building our training set that interrater agreement
between human experts is high, but it is not perfect. As such, binary
sentiment classification in this domain is difficult, even for human
experts. With this in mind, it is encouraging that the CNN classifier
achieved a sentiment prediction accuracy of 84.7% when compared
with human labels (Table 1). To further demonstrate the efficiency
of our classifier, we also report precision, recall and F1 measures of
0.86, 0.86 and 0.86, respectively. The use of deep-learning algorithms
has recently been applied to short user-generated texts’>*. Here we
demonstrate state-of-the-art performance to classify user reviews in
the context of sustainable transportation and electric mobility.

We compared the performance of our CNN classifier to two
non-neural net-based models, support vector machines (SVM)
and logistic regression (LR), using the classic bag-of-N-grams
approach. We also benchmark the performance of a CNN classi-
fier versus some alternative neural net-based architectures, includ-
ing variants of recurrent neural networks such as the well-known
long short-term memory (LSTM) classifier’*?. To standardize the
comparisons, we used the same word2vec word embeddings, with a
single-layer (single directional) architecture for the LSTM classifier
reported in Table 1. The LSTM classifier also achieved a respect-
able 83.1% in accuracy, with precision, recall and F1 measures of
0.85, 0.84 and 0.85, respectively. In additional experiments, we
tested a variety of recurrent neural networks, including single and
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Fig. 2 | Model architecture for the CNN. The first stage shown depicts the vector representation of words in the review text with embedding dimension
of 300. Each row in the embedding matrix is a vector representation of a word that captures information about word similarity. The second stage is the
convolutional neural network, including a single convolutional layer for feature extraction. The convolutional filters of various dimensions learn which
words to look for to predict sentiment. The extracted information from the convolutional layer is concatenated to make a feature vector that is processed

to make a binary prediction.

Table 1| Model performance

Model Accuracy (%) Precision Recall F1score
(s.d.)

CNN 84.7 (0.8) 0.86 0.86 0.86

LSTM 83.1(0.9) 0.85 0.84 0.85

SVM 78.2(0.8) 0.80 0.80 0.80

LR 791(0.8) 0.80 0.82 0.81

Comparison of a single-layer CNN and an LSTM classifier versus other non-deep-learning baseline
models: SVM and LR. For both of the baseline models, we use a bag-of-N-grams document
representation with identical features. Results are reported on average values of 100 runs.

bi-directional gated recurrent unit and other LSTM networks with
deeper architectures. These alternative neural nets yielded test accu-
racies in the 82-84% range, which also substantially outperform the
SVM and LR baseline models not based on neural nets (Table 1).
We find that for a similar level of performance, the LSTM mod-
els require about 50% more computing time (~41min) versus the
CNN-based models (~27min) as clocked using a 16 GB memory
allocation, which simulates an ordinary consumer laptop. Hence,
for balanced training data, we find that CNN might be a preferred
architecture for real-time analysis and implementation with stream-
ing data (see Supplementary Discussion).

Domain-specific learning. In our series of experiments, we find
that the CNN model identifies domain-specific patterns of natural
language. For example, a commonly used term that may be recog-
nized by subject matter experts, but not necessarily by the general
population, is the notion of ICE-ing. To be ‘iced’ or ICEd’ is an
informal term that refers to cases in which an internal combustion
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engine vehicle is parked in a space normally reserved for EV driv-
ers. ICE-ing is a common source of charge rage—the feeling drivers
get when they are unable to find a charger. Its use reflects negative
sentiment as it represents a violation of a community norm. For
example: ‘Came here on a Sunday around 11:30am and every spot
was ICEd’ or ‘T was iced by a blue Dodge Journey’. For non-experts,
these reviews might lead to ambiguous classifications due to insuf-
ficient domain knowledge otherwise common to EV drivers.

As neural network models are often criticized for their black-box
nature, in Fig. 3 we provide sample visualizations of the salience of
review text across the encoded word embeddings, using recently
published protocols provided in refs. ****. A higher saliency score
assigned to a 300-dimensional word embedding indicates sensitiv-
ity to the final sentiment classification™. Following our example of
highly contextualized terminology, Fig. 3 shows that ‘iced’ was the
most salient term across the word embeddings, meaning that the
algorithm has automatically learned the importance of this term.
That artificial intelligence can detect ICE-ing’ in this context and
reach the accuracy of human experts, albeit in a matter of minutes of
computation, is exemplary.

With this illustrative example, we show how artificial intelligence
can be deployed to detect natural language associated with complex
behavioural norms such as charging etiquette and other informal
rules among a community of users. Such capabilities could also
substantially reduce infrastructure evaluation costs and help equip
utility managers and station operators with rapid response capabili-
ties to improve service times. We suggest future research to explore
further uses of machine intelligence to identify behavioural mecha-
nisms related to charge rage, congestion and other station failures.
In the next section, we use our best prediction model to test com-
mon assumptions about charging behaviour in public and private
spaces and at key points of interest.
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Fig. 3 | Saliency heatmap for reviews with a domain-specific term ‘iced’. The visualization shows a higher saliency score for the term ‘iced’, demonstrating
that the CNN algorithm successfully learned the importance of the term, as recognized by human experts (Source Data Fig. 3).

Sentiment analysis. We find evidence of widespread EV charging
station use in all major US geographic areas (Figure 1). To compare
the incidence of negative sentiment for econometric analyses, we
created a negativity index of conditional probabilities across sta-
tions, where 0 means all reviews at a given station location are posi-
tive, and 1 means all reviews at a given station location are negative
(equation (1)). A higher predicted sentiment probability (closer to
1) would therefore not be desirable.

The mean predicted sentiment across all station reviews in both
urban and non-urban areas is 0.44. While this number might not
seem high at first, it is analogous to predicting a negative experi-
ence four out of ten times that a driver goes to a gas station to fill
up a car and writes about the experience. Further, if we aggregate
the sentiment score by user ID per year, this is nearly half of all
drivers facing negative experiences. By contrast, in a recent paper
on consumer reviews from smart mobility apps, gas station fuel-
ling service and real-time data are primarily classified as positive
experiences by consumers in a similar use®”. Indeed, sentiment
analysis from mobile navigation apps finds that only 16% (9 out of
55) of service-related keywords are negative (for example, location
sharing, processing speed and arrival time estimation)*. We argue
that a greater focus on the quality of the EV charging experience is
needed. For additional examples of sentiment analysis in other con-
texts such as public opinion polling, environmental impact state-
ments, measuring cultural norms and network effects, see refs. .

Discussion
We discuss the results for public versus private stations, urban ver-
sus rural, and by points of interest.

Public versus private stations. Theory predicts that under the right
incentives, private charging stations should outperform those run by
government entities’. However, in practice, it is unclear whether suf-
ficient incentives exist for private station hosts to maintain a high level
of service quality, especially in the reselling of electric power, where
capital cost recovery is often challenging and retail electricity prices
are low. Here we test the hypothesis that private charging stations
more effectively deliver charging services versus public stations pro-
vided by the government. We considered a broad definition of public
stations such as those that have been geolocated at points of inter-
est (POIs) that include government and municipal buildings, public
libraries, rest areas, transit centres, public parks and visitor centres. We
define private stations as those that have been geolocated at POIs that
include hotels, retail/food establishments, shopping centres, health-
care facilities, workplaces and other non-residential locations. As in
many contexts related to the private provisioning of public goods, we
might expect to see evidence that charging stations at privately man-
aged locations outperform those that are publicly owned or managed.

In Supplementary Table 1 (Extended Data Table 1), we pro-
vide descriptive statistics for the raw counts of machine-classified
reviews at both public and private charging destinations. Contrary
to expectation, we do not find a statistically significant difference
in the mean predicted sentiment between public and private charg-
ing station locations nationally (see Fig. 4). We validated this find-
ing by adjusting for factors driving selection to review and other
observable location characteristics. In addition, we considered a
more-narrow definition of public chargers with POI restricted to
government-only stations and verified statistical parity in consumer
sentiment between public and private stations (see Supplementary
Table 2; Extended Data Table 2). Additional details on public and
private location designations is provided in Methods.

We interpret this finding in two ways. First, our results indicate
that private charging station locations do not outperform those that
may be publicly owned or managed. Second, from a public choice
perspective, our results provide some evidence that the private pro-
visioning of EV charging services could be an alternative to large,
publicly managed infrastructure. For example, one anonymous
reviewer wrote about the substitutability of a public charger for a
private charger: ‘Be careful if you plan on charging here, there are
two cars that tend to bogart these chargers try the city hall char-
gers. Evidence of statistical parity in consumer perceptions between
public and private charging locations addresses one concern raised
by the National Research Council on barriers to EV infrastructure
growth. We caution, however, that our performance indicator
captures popular sentiment from the standpoint of national con-
sumer reviews, and not a power systems delivery perspective, which
requires further investigation and integration with consumer data.

As shown in Fig. 4, we find that paid charging stations receive
a higher proportion of negative reviews as compared with free sta-
tions. Not surprisingly, this result holds whether the station is in
a public or private location. This finding suggests users may have
higher expectations for service reliability when paying for charging
services. It is plausible that EV station location, whether public or
private, may not be the dominant factor affecting service reliability.
For example, publicly owned stations could have enjoyed similar
(or perhaps even higher) levels of operation and maintenance sub-
scription services. In the next section, we use location microdata to
investigate possible regional differences.

Urban versus rural areas. We compared the performance of stations
in urban and non-urban areas. According to one view, EV drivers
in areas with fewer charging stations are more likely to experience
issues of range anxiety, possibly leading users in these areas to pub-
lish more negative reviews. Therefore, from a resource-availability
hypothesis, areas with greater access to charging infrastructure
should garner the most positive reviews. Interestingly, we do not
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Fig. 4 | Predicted probability of negative sentiment in public and private spaces. a, Charging stations for pay have a higher predicted probability of
negative sentiment in both public and private stations (***P < 0.001). We find no statistically significant difference in consumer sentiment between public
and private stations (P> 0.150). The error bars indicate +95% confidence intervals (Source Data Fig. 4). b, We find differences in the distribution of the

sentiment scores (Kolmogorov-Smirnov test, ***P < 0.001).

find evidence for this hypothesis. The highest incidence of nega-
tive sentiment is not in rural areas or even smaller urban clusters,
but rather, the dense urban centres (see Fig. 5a). This is intriguing
because approximately 89% of all user reviews are in urban centres
(Supplementary Table 3; Extended Data Table 3). After controlling
for important station location and timing factors, we find that urban
charging stations exhibit a statistically significant 12-15% increase
in the predicted negativity score as compared with non-urban loca-
tions (Fig. 5a and Supplementary Table 2, Models IV-VI; Extended
Data Table 2, Models IV-VI).

Our finding that EV charging stations in urban centres signifi-
cantly underperform those in smaller urban clusters or rural areas
where population and station densities are lower could be indicative
of a broader range of service quality issues in the largest EV markets.
For example, many users report a lack of functional stations upon
arrival, as well as issues related to congestion or lack of availabil-
ity: ‘some person is just pulling plugs without any note; 1l review
footage on my security cam’ or ‘Both spots taken. One by a Volt
that’s finished charging... Seriously time for more EVSE stations’ In
Supplementary Tables 4 and 5 (Extended Data Tables 4 and 5), we
summarize the predicted (negative) sentiment probabilities for both
free and paid charging stations in the 18 largest US metro areas and
top 20 US states by number of reviews. Although user reviews exist
in all 50 states, the dominant source of activity is California, with
54,684 reviews, or 43% of all consumer reviews in the dataset. The
Los Angeles metro area, for example, is the largest CBSA for charg-
ing station reviews through 2015, with 22,878 reviews, or 18% of
all reviews in the dataset. The mean predicted negative sentiment
in Los Angeles ranges from 0.52 to 0.59, which means a given user
is more likely to report a negative consumer charging experience
than to report a positive one. This is considerably higher than the
estimated US national average sentiment score that we report of
0.44. These results indicate that service reliability is already a factor
impacting consumer sentiment in the largest EV markets. Although
quality is important in the consumer experience, we note that EV
users are often confronted with fewer substitutable fuelling options,
particularly in rural areas. Next, we evaluate the results by POIL

POIs. We summarize the results of our sentiment analysis by POI
in Fig. 5b. The highest-performing private stations are at points of
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interest such as hotels/lodging destinations, restaurants and food
establishments, and convenience stores. This is to be expected as
private-station hosts in these locations often provide subsidized or
complimentary EV charging services as a way to attract and cater to
specific clientele. This suggests incentive-based management prac-
tices. The highest-performing POIs also include parks and recreation
as well as RV parks and visitor centres. All of these POIs are asso-
ciated with travel destinations. On the basis of our examination of
reviews at these locations, we believe that destination range anxiety
could factor into positive reviews at these locations since drivers may
be willing to sacrifice challenging conditions for the needed charge.
Some of the lowest-performing POIs include car rental locations
and car dealerships. This is not inconsistent with recent evidence on
car dealership practices at the point of sale, which have been docu-
mented as promulgating barriers to EV adoption*'. Workplace and
mixed-use residential locations with retail establishments are also
relatively low-performing POIs. For example, many EV users at
workplace and mixed-use residential locations complain that EV sta-
tions can be difficult to access or that there is poor signage for public
accessibility. We provide detailed POI point estimates net of statisti-
cal controls in Supplementary Table 2 (Extended Data Table 2).

Policy implications
Large-scale data from digital platforms can offer benefits for
research evaluation efforts. We show that using computational
tools, it is possible to develop more sophisticated performance indi-
cators from unstructured data that offer the potential to update in
near real time. This is a major step forward from current practice
that relies on indirect travel surveys or simulations, which can be
costly and time intensive to administer*. We argue that consumer
data should be prioritized when designing policies related to EV
infrastructure access. This is particularly important in the design of
‘EV ready’ or ‘EV capable’ policies in building codes and ordinances
that require new buildings, for example, to install and maintain a
certain number of EV charging stations *’. Such policies have grown
in popularity in many cities such as Palo Alto, Denver and Atlanta,
largely without data or deliberation about service quality from exist-
ing EV users or consumer groups.

Mobile apps can aggregate consumer data automatically at
scale, but independent station hosts and operators currently have
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intervals. b, The rank order of consumer sentiment by POI (Source Data Fig. 5).

little incentive to share data across network providers. Centralized
reporting and secure data sharing across charging networks and
utility jurisdictions would allow for more-efficient resource plan-
ning decisions, particularly in resilience considerations between
power systems delivery and emerging transportation infrastruc-
ture. One key exception to platform data sharing is the listing of
EV charging stations maintained on the Alternative Fueling Station
Locator hosted by the US Department of Energy under the Clean
Cities Program. While an invaluable tool, this digital repository of
EV charging stations does not currently contain real-time availabil-
ity or network status information. We argue that policies to encour-
age greater information sharing as well as standardization in the
quality of charging service delivery are necessary.

In this article, we show how machine intelligence can approach
the accuracy of human experts for sentiment classification tasks,
while showing promise for automatically learning domain-specific
terms in emerging EV communities. Machine-learning techniques
can automate the process of discovering new mobility patterns and
detecting behavioural failures from consumer data, but they do not
replace the need for a human in the loop. Note that, because the clas-
sifier is trained by a human, the classifier is only as unbiased as the
human rater. Not all consumer reviews can be relevant or actionable.
Nevertheless, by expanding administrative records with real-time
streaming data, it is now possible to track station performance in
both accessible and remote areas in ways not previously possible.
Further, the use of machine intelligence as a pre-processing step for
policy analyses can be helpful to determine consumer requirements
in both coverage and demand assessments related to transporta-
tion infrastructure*. This focus on big data and real-time mobility
will become increasingly important as driver incentives and other
supply-driven policies designed to reduce externalities from EVs do
not typically address or affect driver behaviour*.

As EV infrastructure grows, we argue that it is not only the quan-
tity of available stations that matters to consumers, but also the
quality of the charging experience. A key focus for quality improve-
ment should be in the urban centres, where reports of ICE-ing and
lack of available or functional stations are prominent and appear to
drive negative consumer experiences. However, further research
is necessary to determine the most important mechanisms of user

dissatisfaction. Community interactions also reveal emerging norms
about charger etiquette and prosocial behaviour primarily designed to
help others in the community. We expect US$80 billion in new invest-
ment in EV supply equipment over the next few years'. On the basis
of evidence from consumer data, we argue that it is not enough to just
invest money into increasing the quantity of stations, it is also impor-
tant to invest money into reliable infrastructure that actually works.

Methods

Overview of CNN architecture. The first stage of the CNN deep-learning
architecture shown in Fig. 2 depicts the matrix representation of the review text.
Similar words are closer together in the vector space than are disimilar words®. In
our implementation, we used pretrained word2vec word embeddings, which have
been trained on approximately 100 billion words and phrases from Google news™.
To capture domain-specific semantics, word embeddings can be updated as the
model is trained.

The second stage is the CNN. Convolutional filters learn what words to look for
in the reviews. There can be several convolutional filters per filter size”. Filter heights
in CNN models represent the dimension of the N-gram within the text. We used filter
heights of 3, 4 or 5. For example, a filter size of 3 scans through the word embeddings
as a bag of 3-grams in the process of convolution. For example, in the review text ‘got
a charging error first few times got AV to reset it remotely and it worked finally) the
convolutional layer with filter size 3 results in the following 3-grams: ‘got a charging,
‘a charging error, ‘charging error first; ..., ‘and it worked; ‘it worked finally’ Then,
the 1-max pooling procedure as described in ref. » selects the most-important
3-gram for the prediction task. The 1-max pooling outputs from multiple filters are
then concatenated to form a feature vector. These features are passed onto a fully
connected softmax layer with dropout regularization, whose output is the probability
distribution over labels*. In the current example, the ‘a charging error’ 3-gram was
the most predictive feature for negative sentiment classification.

Selection of CNN hyper-parameters. We used various strategies to select our
CNN hyper-parameters. Building on previous literature, we selected 1-max
pooling, dropout regularization'® with a rate of .3 and a ReLU activation function
in our convolutional layer, as these hyper-parameters have been shown to improve
accuracy”. In particular, the dropout technique was implemented to prevent
overfitting**. In our implementation, we confirm that an L2 constraint had no
discernible performance improvement, and therefore we do not include it in our
model”. Other hyper-parameters include a batch size of 128; learning rate of .001;
filter heights of 3, 4, and 5; 100 filters for each filter height. Filter widths are 300,
which are set to the dimensionality of the word embeddings.

LSTM implementation and hyper-parameters. We implemented a one-layer

LSTM model to make it comparable to the CNN model, using protocols described
in ref. *. We then performed basic optimization. For example, we used the same
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word2vec word embeddings with 300 dimensions. We used the same train-test
split and preprocessing as in the CNN model. In both LSTM and CNN models, we
used the Adam optimizer, with a learning rate 0.001. Other key hyper-parameters
include cell number 64, dropout rate 0.6 and recurrent dropout rate 0.2.

Curating the training data. In any supervised classification task, it is necessary to
obtain ground-truth labels. To generate these labels, two research assistants served
as human expert raters. We conducted several focus groups to decide on a common
set of rules for classifying the training data. Each human rater independently coded
an identical set of 8,953 reviews, which were chosen as a representative sample from
the 127,257 reviews. We initially investigated the accuracy of a three-class model—
positive, negative and neutral classifications. However, neutral classifications
were found to be very difficult for human rater tasks in this domain. We therefore
achieved the best interrater reliability (x=0.84, SE=0.7)" by treating this as a
two-class problem, meaning reviews reflect a binary sentiment only (positive/
negative). Although imbalances in training data typically present potential problems
for machine classification, in Supplementary Table 6 (Extended Data Table 6), we
show that reviews in our training data are highly balanced in polarity.

As part of model validation procedures, the 8,953 hand-classified reviews
were randomly split to 80% of training data and 20% of testing data. We
also tried other random splits and cross-validation procedures and found
quantitatively similar results.

Examples of consumer reviews. To provide additional details of the human labelling
tasks for training, we provide some examples of both positive and negative labelled
reviews.

Positive:

o ‘Charged! When I called Blink CS before I traveled they said a tech had been
here to fix this station, and I am happy to report it is!”

«  ‘Huge solar panels power this amazing station!!’

«  ‘Surprisingly not ICEd at 5:45pm on a Tuesday. Stall 2B seemed slow, deliver-
ing only 28 KW at 45% SOC. moved to 3A’

Negative:

e ‘OUT OF SERVICE AGAIN! This station is a waste of time’

o ‘Never lucky enough to get a spot to charge, someone’s always there. Good
luck?

o ‘All spots full right now. Charging BMW i3 with SAE combo’

Statistical uncertainty. Starting with a random data split and initialization, we
report the statistical uncertainty of the test accuracy for the CNN classifier for
1,000 runs. The mean test accuracy is 84.6% (minimum 82.2%, maximum 86.9%)
with s.d. 0.79 (see Supplementary Fig. 1; Extended Data Fig. 1).

Econometric analysis. Following machine classification, we conduct econometric
analyses to mitigate possible observational biases and statistically adjust for station
location and timing factors. Our unit of analysis for each review is at the station
level.

Measuring outcomes of interest. For a given charging station location i and review
period year, we define the negativity score as the count of negative reviews as a
fraction of the total count of reviews:

Count of negative TEeVIEWS; year

NegativityScore; = - 1
5 ¥ hyear Total count of reviews; year Q)

By construction, the share of negative reviews at a charging station is
normalized to lie in the unit interval [0, 1]. Boundary observations of the
dependent variable at 0 indicate that all reviews at a charging station are positive,
and boundary observations at 1 indicate that all reviews at a charging station are
negative. A higher negativity score is undesirable. We also group the charging
stations by location group, g (that is, there can be more than one station ID at
a given location) and the year of the review to provide a rate of users leaving a
review relative to the amount of use of the class of station. Users can check in to
the platform and leave a review, which enters into the count of reviews, or check in
without leaving a review, which enters into the count of other check-ins. We define
the re view rate as:

Count of reviews;g year

ReviewRate; g year = (2)

Count of reviews; g year + Check—ins; g vear

Fractional response models. We used the outputs of the CNN classifier as a
pre-processing step for econometric analysis of consumer sentiment. Given the
limitations of linear estimation methods such as ordinary least squares (OLS) for
bounded dependent variables, we implemented a fractional response model (FRM)
for the probability share data based on the quasi-maximum likelihood (QMLE)
estimator””. We present some elements of FRM models as developed by Papke
and Woolridge™** and then apply them to machine-learning outputs in mobility
data. In the standard FRM setup, we are interested in the conditional expectation
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of the fractional response variable y;, on a group-specific vector of explanatory
variables x;, such as:
E(y;|xis) = G(xi0), i=1, ..., N (3)

where G(-) is a nonlinear function such as the cumulative distribution function
that satisfies 0 < G(-) <1, the fractional dependent variable is defined only on
0<y,,<1, and 0 is a parameter vector of interest. Observations at the extremes of
the outcome distributions are estimated directly using the Bernoulli log-likelihood
function, given by:

li4(8) = y;,log [G(xi,8)] + (1 —y; log[1 — G(x:8)] (4)

In our dataset, some charging station reviews may be classified as all negative
or all positive at a given location. Given the presence of boundary observations at
0 and 1, the pooled Bernoulli quasi-maximum likelihood estimator of ® does not
require dichotimizations of the dependent variable and is computed as:

N
0 = argmaxg Z 1;4(0) (5)
=1

We note that this approach overcomes three important limitations found in
comparable methods. First, we account for the bounded nature of the data and do
not assume a linear conditional mean or constant linear effects, which requires
stronger assumptions for estimation. Second, commonly used log-odds methods
are not well defined for boundary values 0 and 1 present in the data and often
require ad hoc adjustments such as arbitrarily chosen constants. Third, methods
based on two-limit Tobit models may be appropriate for censored data with
boundary observations at both limits, but their application to fractional data that
are not defined outside the boundary limits is hard to justify. For a more-detailed
review of fractional regression models, see Ramalho et al.”

Selection effects of providing a review. The decision to provide a review is a
voluntary one. It conditions the interpretation of information developed by
analysing a sample of reviews. Charging station activity outside the digital platform
is inherently unobservable. To address possible limitations due to selection
effects, we attempt to explain the likelihood of giving a review as a function of
characteristics of the charging location and timing. In equation (2), we normalize
the empirical review counts by total platform engagements, including user
check-ins without reviews. In this way, we are able to normalize our estimates of
the importance of explanatory variables on the empirical review rate by a measure
of total charging station usage beyond review activity. For example, during the
period of study, there are 276,749 total user check-ins on the platform, of which
127,257 contain English-language reviews.

Our main estimating equation relates the review rate and negativity score
as a function of one or more of the explanatory variables. This includes POI
information, geographical area such as urban, suburban or rural, the type and
count of networks available, the type and count of station connectors available, and
our designation as public stations on the basis of station geolocation. Due to data
limitations, we could not adjust for car type of the driver as that information is
voluntary, so we had a biased subsample. In addition, we also tested specifications
that included the proprietary station quality rating (numeric score 1-10) as a proxy
for possible unobserved heterogeneity. We estimate the following general equation:

Outcomes; g year = G{iyear + Public;; + POI;,
+Netw0rks,~,g_year + Connectors; ; + Rating; g}

(6)

Observable location characteristics include the type and number of networks
available (for example, Chargepoint, Blink, SemaConnect, Aerovironment,
EVgo, Tesla Supercharger, GE Wattstation and so on), the type and number of
connector plug technologies (for example, J-1772, CHAdeMO, SAE Combo,
Tesla supercharger, NEMA plug and so on) and other driver-identifiable location
attributes by POI. To mitigate possible unobserved heterogeneity, we also include
the station rating as a proxy variable for unobserved quality attributes.

In Supplementary Table 2 (Extended Data Table 2), we report the main
results. The main drivers of the review rate include geographical area (whether
urban or non-urban) and point of interest location information. We also find
a statistically significant effect of the type and number of station connectors
available and the type of charging network such as the service provider, but not
the number of networks available at a station location, which can range from
one to three networks at a location ID. This suggests choice in charging network
service provider is not yet a significant factor. Given our main interest in the
public provision of charging services, we confirmed our finding of no significant
effect of public locations (or more narrowly defined government-only locations)
on the review rate. This result is robust to our proxy for unobserved quality
attributes as measured by the station quality rating provided to us by the platform
provider (Supplementary Table 2, Models I, III; Extended Data Table 2, Models
11, III). Overall, for factors driving the selection to review, location matters, as
do the network type, connector technology and other quality-related factors.
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In Supplementary Table 2 (Extended Data Table 2), we do not show the point
estimates for individual networks or plug types, but these results are available upon
request from the corresponding author.

We conditioned on all observable characteristics from our aggregate selection
analysis to then compute the average partial effects for factors driving the
negativity score. The analysis reveals that urban chargers account for a statistically
significant 12-15% increase in the negativity score compared with non-urban
locations (Supplementary Table 2, Models IV-VI; Extended Data Table 2, Models
IV-VI). Similarly, we also confirmed our finding of no statistically significant
effect of private versus public stations, which is robust to both a broad and narrow
definition of public stations and unobserved quality factors.

In Supplementary Table 7, we provide supplementary regression results
comparing the performance of the FRM approach with a standard OLS estimator.
While we find the estimates to be qualitatively similar, we see that FRM generates
more-conservative estimates compared with OLS, which overestimates the
magnitude of the effects, as expected.

Urban versus rural definitions. For spatial analysis, we merged the geocoded
station location data with geographical designations using standard US Census
definitions™. These include urbanized areas (populations greater than 50,000),
smaller urban clusters (populations between 2,500 and 50,000) and rural areas
(populations less than 2,500). According to the 2010 Census, there are 486
urbanized areas and 3,087 urban clusters in the United States. All designations
contained reviews. For descriptive statistics of binary sentiment classifications by
geographic area, see Supplementary Table 3 (Extended Data Table 3).

Comments on defining public and private stations. To determine whether the
chargers on public properties were also publicly owned and managed, we contacted
arandom sample of 170 public EV charging locations, stratified by network (Blink,
ChargePoint and so on). We then attempted to contact each location through

a combination of email and phone calls to ask the following questions: Are the
charging stations at this property owned by the organization? Are the charging
stations at this property managed by the organization? We also contacted several
major EV charging networks directly (for example, SemaConnect, ChargePoint,
GreenLots and Blink) to determine whether they operate/maintain charging

units on behalf of their customers. For example, we found that while GreenLots
network manages all of their stations on behalf of station hosts, station owners
from the other three major networks we contacted can decide whether they want
to enter into a contract/warranty for servicing. Overall, we found four possibilities
regarding station ownership and maintenance on public properties:

o Stations are both owned and managed by public entities (such as those in
Colton, California).

«  Stations are owned by public entities but managed by private EV charging net-
works (such as the one at the Anaheim Intermodal Transit Center in Anaheim,
California).

«  Stations are owned by public entities but managed by a local contractor (such
as the station at Roswell City Hall in Roswell, Georgia).

«  Stations are neither owned nor managed by public entities (such as the station
at the Minnesota Department of Natural Resources in St. Paul, Minnesota).

After contacting 170 stations, we were able to obtain answers to our
management question at 32 locations. Of these 32 locations, 10 were managed
by the public entity, and 22 were managed by either an EV charging network or
a private company. We were also able to get answers to our ownership question
at 23 locations. Of these 23 locations, the stations at 14 locations were owned
by the public entity, and the stations at 9 locations were not. We believe that
the management structure can potentially be an important driver of proper
functioning of EV chargers and, hence, the consumer experience. However, the
managerial aspects of public versus private operation, while outside the scope of
the current paper, we highlight as important differences for future research.

Study limitations. While we demonstrate gains using machine-learning in
this domain, there remain key areas for technical improvement. First, it may
be necessary to increase the size of the training data to achieve even higher
convergence between human and machine classifications. This is especially
relevant in dynamically growing social datasets where topic categories may be
broad. For reference, we calculated an alternative agreement score between the
human predictions and machine predictions by treating the machine as a separate
rater. The resulting x =.68 suggests additional optimization could be necessary to
increase reliability scores. However, due to computational complexity, it may be
difficult to fully optimize all hyper-parameters to reach a global optimum. Second,
future work can explore deeper architectures and optimal filter sizes. For example,
a recent paper on very deep CNNs for text classification reports optimal results
with up to 29 convolutional layers™. In a sensitivity analysis of CNN, one approach
proposed by Zhang and Wallace is to conduct ‘a line search over the single filter
region size to find the ‘best’ single region size’*”. This could be a promising
approach to further improve accuracy in subpopulations of review types or in
training sets with different types of human raters. We leave this as future work.

In this paper, we implement recent deep-learning approaches to automatically
learn text representations for sentiment analysis, but we do not demonstrate their

performance for topic labelling, which could open new directions for discovery
of behavioural failures. We leave this task for future work. We also point out that
although text data are time stamped, it is in many cases not possible to directly
observe the contemporaneous power systems delivery to validate consumer
claims. To verify the operational status or other specific issues, consumer and
power data must be linked in information systems, which is a major challenge.
Another limitation of our analysis is that while we are able to quantitatively
evaluate sentiment from consumer reviews, additional information is needed
to identify the psychological basis for negative charging experiences. It would
be useful to develop topic classifications and accompanying training data with
ground-truth labels that describe the various sources of negative consumer
experience. This might allow for deeper identification of mechanisms and
algorithmic classifications for policy analysis.

Data availability

We provide the weights of the trained deep-learning models. These datasets
generated and/or analysed during the current study are available in the Figshare
repository https://doi.org/10.6084/m9.figshare.12044670°. The raw data that
support the findings of this study are available from the corresponding author upon
request. These data may not be posted publicly due to privacy restrictions. For
interested readers, an alternative open data API service with global EV charging
infrastructure data is available from OpenChargeMap (https://openchargemap.
org/), which is derived from a variety of public sources and contributions. Source
Data are provided with this paper.

Code availability

All custom code and algorithm replication materials have been deposited on
the Github repository using Zenodo version releases at https://doi.org/10.5281/
zenodo.1419830.
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Extended Data Fig. 1| Distribution of CNN classifier predictions for 1,000 model runs. The mean test accuracy for 1,000 runs is 84.6% with a S.D. of
0.79.
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Public  Private Total

Positive 11,761 54,094 65,855
Negative 10,852 50,550 61,402
Total 22,613 104,644 127,257

Extended Data Table 1| Descriptive statistics, public and private. Counts of machine classified reviews of binary sentiment by public and private
ownership. 2,256 reviews were submitted in locations where it was impossible to discern whether it was public or private.
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Review Rate Negativity Score
FRM FRM FRM FRM FRM FRM
[00) D ) av) % (VD
Geographical Area
Urban -0.021**  -0.035***  -0.035*** | 0.147***  0.125**  0.125**
(0.008) (0.007) (0.007) (0.013) (0.012) (0.012)
Non-Urban 0.025** 0.017* 0.017* 0.018 0.007 0.007
(0.012) (0.010) (0.010) (0.016) (0.015) (0.015)
Type of Location
Public -0.010 -0.006 0.004 0.011
(0.013) (0.015) (0.015) (0.015)
Government -0.011 0.011
(0.016) (0.016)
Station Characteristics
Number of Connectors -0.082***  -0.077* -0.077** | -0.013**  -0.008* -0.008*
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Number of Networks -0.011 -0.010 -0.010 0.026* 0.016 0.016
(0.014) (0.018) (0.017) (0.016) (0.018) (0.018)
Quality Rating -0.036**  -0.036*** -0.049*  -0.049***
(0.002) (0.002) (0.002) (0.002)
Points of Interest
Residential 0.063* 0.032 0.030 0.072 *** 0.032 0.032
(0.035) (0.041) (0.041) (0.025) (0.021) (0.021)
Shopping -0.107**  -0.099** -0.101*** | 0.041***  0.050**  0.050***
(0.011) (0.014) (0.014) (0.014) (0.014) (0.014)
Restaurants -0.017 -0.009 -0.011 -0.010 0.001 -0.001
(0.014) (0.015) (0.015) (0.017) (0.017) (0.017)
Healthcare 0.040™* 0.022 0.020 0.024 0.005 0.005
(0.017) (0.025) (0.025) (0.019) (0.022) (0.023)
Hotel and Lodging 0.058***  0.054**  0.052 *** | -0.069*** -0.073*** -0.073***
(0.012) (0.014) (0.015) (0.015) (0.015) (0.015)
Workplace 0.027* 0.025 0.022 0.001 -0.002 -0.002
(0.015) (0.015) (0.016) (0.015) (0.015) (0.016)
Supermarket -0.076***  -0.070**  -0.072*** | 0.078 ***  0.087***  0.087***
(0.012) (0.015) (0.015) (0.017) (0.016) (0.017)
Car Dealership 0.031*** 0.023* 0.020 0.042 > 0.035** 0.035**
(0.010) (0.013) (0.013) (0.014) (0.014) (0.014)
Education 0.055***  0.042**  0.036** 0.024 0.006 0.014
(0.015) (0.016) (0.018) (0.019) (0.017) (0.018)
Entertainment 0.007 0.010 0.008 0.022 0.03 0.025

(0.017) (0.018) (0.019) (0.020) (0.020) (0.020)
Convenience and Gas Station -0.001 -0.002 -0.004 0.006 0.005 0.005
(0.011) (0.014) (0.015) (0.016) (0.017) (0.017)

Transit Station -0.041**  -0.034**  -0.042 ** 0.017 0.023 0.034*
(0.016) (0.016) (0.017) (0.018) (0.016) (0.018)
RV Park 0.186**  0.155**  0.153*** | -0.080 *** -0.129*** -0.129***
(0.021) (0.019) (0.019) (0.031) (0.036) (0.036)
Outdoor 0.007 0.010 0.002 -0.034 * -0.030 * -0.018
(0.027) (0.025) (0.026) (0.020) (0.018) (0.019)
Airport 0.017 0.015 0.007 0.008 0.007 0.019
(0.018) (0.018) (0.019) (0.041) (0.038) (0.039)
Services 0.005 0.012 0.010 -0.035 -0.024 -0.024
(0.022) (0.022) (0.022) (0.025) (0.023) (0.023)
Place of Worship -0.051 -0.042 -0.044 0.004 0.016 0.016
(0.081) (0.074) (0.074) (0.025) (0.025) (0.025)
Shopping Center 0.012 0.031 0.029 -0.080 ***  -0.037* -0.037*
(0.085) (0.068) (0.068) (0.021) (0.022) (0.022)
Library 0.021 0.021 0.013 0.039 0.037 0.049*
(0.019) (0.022) (0.023) (0.027) (0.024) (0.026)
Street Parking -0.008 -0.014 -0.022 0.077 ** 0.062** 0.074**
(0.025) (0.023) (0.024) (0.032) (0.032) (0.033)
Visitor Center -0.044 -0.025 -0.028 -0.011 0.009 0.009
(0.028) (0.027) (0.027) (0.024) (0.024) (0.025)
Car Rental 0.235%*  0.192***  0.190"* | 0.278 ***  0.217** 0.217*
(0.042) (0.037) (0.038) (0.085) (0.088) (0.088)
Clustered SE Yes Yes Yes Yes Yes Yes
Number of Observations 127,257 127,257 127,257 127,257 127,257 127,257
R? 0.117 0.206 0.206 0.048 0.105 0.120
Note: *p<0.1; **p<0.05; **p<0.01

Extended Data Table 2 | Main results. FRM results for the review rate and negativity score.
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Rural Urban Cluster Urban Center Total

Positive 4,745 4,819 56,291 65,855
Negative 2,509 2,419 56,402 61,402
Total 7,254 7,310 112,693 127,257

Extended Data Table 3 | Descriptive statistics, urban and rural. Counts of machine classified reviews of binary sentiment by geographic area type as
defined by U.S. Census designations.
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Public Private
No.
State Free Paid p-value | Free Paid p-value of
Reviews

Los Angeles-Long Beach-Anaheim, CA 0.52 0.55 0.36 0.59 0.55 0.11 22,878
San Francisco-Oakland-Hayward, CA 045 0.47 0.73 0.59 0.54 0.11 8,951
Atlanta-Sandy Springs-Roswell, GA 0.48 0.59 0.23 049 053 0.32 5,442
Washington-Arlington-Alexandria, DC-VA-MD-WV | 0.50 046  0.66 047 046  0.76 3,452
Phoenix-Mesa-Scottsdale, AZ 0.14 0.50 0.21 0.47 0.55 0.06 2,863
New York-Newark-Jersey City, NY-NJ-PA 0.50 0.49 0.90 0.51 045 0.16 2,060
Chicago-Naperville-Elgin, IL-IN-WI 0.46 0.60 0.20 0.51 0.47 0.32 1,781
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 044 043 0.96 049 0.57 0.18 1,586
Boston-Cambridge-Newton, MA-NH 044 0.58 0.12 0.43 0.50 0.18 1,438
Dallas-Fort Worth-Arlington, TX 048 0.61 0.38 0.49 0.60 0.05 1,139
Nashville-Davidson-Murfreesboro-Franklin, TN 0.63 0.60 0.88 041 0.44 0.72 1,082
Denver-Aurora-Lakewood, CO 0.64 0.63 0.95 0.43 0.40 0.60 1,042

Detroit-Warren-Dearborn, MI 049 049 1.00 046 044 0.76 792

Minneapolis-St. Paul-Bloomington, MN-WI 0.33  0.63 0.01 043 035 0.27 658

Austin-Round Rock, TX 0.55 0.25 0.03 0.37 0.39 0.84 508

Hartford-West Hartford-East Hartford, CT 0.38 0.50 0.62 045 0.49 0.76 471

Kansas City, MO-KS 0.28 0.49 0.58 0.39 0.32 0.57 488

Chattanooga, TN-GA 0.29 0.42 0.67 0.50 0.68 0.26 292

Extended Data Table 4 | Probability of negative sentiment for 18 core-based statistical areas in the United States. Results of t-tests for free and paid
stations by public and private ownership in 18 CBSAs in the United States.

NATURE SUSTAINABILITY | www.nature.com/natsustain


http://www.nature.com/natsustain

NATURE SUSTAINABILITY ANALYSIS

Public Private

State Free Paid p-value | Free Paid p-value No: of

Reviews

California 0.46 0.49 0.16 0.50 0.52 0.13 54,684
Washington 0.50 0.46 0.45 0.40 0.46 0.06 7,830
Oregon 0.47 0.53 0.56 0.36 0.43 0.04 7,027
Georgia 0.49 0.49 0.98 042 0.52 0.00 6,623
Florida 0.38 043 0.36 048 0.47 0.75 4,420
Maryland 041 043 0.80 044 041 0.53 3,541
Arizona 0.45 0.51 0.77 0.40 0.52 0.00 3,365
New York 0.45 0.49 0.56 041 047 0.09 2,894
Texas 0.54 0.47 0.33 0.46 0.51 0.12 2,615
Virginia 0.48 0.42 0.59 041 0.48 0.08 2,588

Pennsylvania 0.44 0.57 0.28 043 0.49 0.24 2,536
North Carolina | 0.42 0.46 0.65 041 0.52 0.07 2,181

Colorado 0.40 0.53 0.25 0.39 0.37 0.73 2,161
Illinois 0.54 0.55 0.92 0.49 0.46 0.45 2,105
Massachusetts | 0.42 0.52 0.23 041 0.46 0.30 2,074
Tennessee 0.53 0.57 0.69 043 0.51 0.10 1,983
Michigan 0.34 0.39 0.61 0.39 0.29 0.08 1,488
Ohio 0.35 0.50 0.29 043 0.51 0.17 1,443
New Jersey 0.48 0.49 0.94 0.48 0.50 0.78 1,390
Hawaii 0.53 0.71 0.45 0.57 0.57 0.93 1,259

Extended Data Table 5 | Probability of negative sentiment for top 20 U.S. states. Results of t-tests for free and paid stations by public and private
ownership in the top 20 states by number of reviews.
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Hugzﬂi;ﬁl?ed Count  Percentage (%)
Positive 4,933 55.1
Negative 4,020 44.9
Total 8,953 100.0

Extended Data Table 6 | Balance of training data. Counts of positive and negative reviews by two human annotators (x=0.84).
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