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Abstract: Despite our intimate relationship with music in everyday life, we know little about how1

people create music. A particularly elusive area of study entails spontaneous collaborative musical2

creation, in the absence of rehearsals or scripts. Toward this aim, we designed an experiment in which3

pairs of players collaboratively created music in rhythmic improvisation. Rhythmic patterns and4

collaborative processes were investigated through symbolic recurrence quantification and information5

theory, applied to the time-series of the sound created by the players. Working with real data on6

collaborative rhythmic improvisation, we identified features of improvised music and elucidated7

underlying processes of collaboration. Players preferred certain patterns over others, and their8

musical experience drove the musical collaboration when the rhythmic improvisation started. These9

results unfold prevailing rhythmic features in collaborative music creation, while informing complex10

dynamics of the underlying processes.11

Keywords: collaboration; information theory; music; recurrence; symbolic dynamics12

1. Introduction13

Across cultures, along history, music has always been a universal part of human life [1]. Whether it14

is pursued as a form of art to express ourselves or as a therapeutic tool to address emotional, cognitive,15

physical, and social needs, we all are familiar with the nature and value of music [2]. However, little is16

known about the process of creating music, even in simple rhythmic improvisation comprised of a few17

notes.18

Igor Stravinsky stated that a musical form is “far closer to mathematics than to literature—not19

perhaps to mathematics itself, but certainly to something like mathematical thinking and mathematical20

relationships” [3]. For example, Ernîo Lendvai identified the presence of Fibonacci numbers and21

golden ratios in many of Béla Bartók’s pieces [4]. Musical structures can be visualized and quantified22

by studying self-similarity over time from recurrent patterns [5–7] or constructing networks based on23

pitch and duration of notes [8]. Predictably, the mathematical elements of music can be uncovered24

through machine learning, which could be used to detect a temporal structure of music [9] and even to25

compose music [10,11].26

From a mathematically-principled analysis of musical structures within a single piece, one27

may attempt to compare pieces by different musicians. For example, a popular approach to the28

comparison of musical structures is to measure the distance between recurrence plots constructed29

on musical features [12]. Although the approach could, in principle, be extended to the study of30

musical collaboration, the literature in this field is scarce. To the best of our knowledge, the application31

of recurrence quantification methods to musical collaboration is limited to [13], which evaluated32

the dependency of two acoustic signals in collaborative music creation through cross recurrence33
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quantification. The area of spontaneous synchronization of beats shares some similarities with musical34

creation [14,15], but music is generally more complex than synchronization on an emerging pattern.35

A unique setting to experimentally study musical collaboration is improvisation, where music36

spontaneously emerges from unstructured dynamical interactions between players who embrace a37

sequence of decisions toward their sense of music [16]. Without rehearsals or scripts, music can be38

created through cognitive efforts that involve short- and long-term memory [17] and communication39

based on calls and responses [18]. In this context, understanding processes and outcomes of musical40

improvisation may offer a deeper insight into human nature of musical cognition. However, little41

effort has been directed toward the application of mathematically-principled approaches to elucidate42

how people interact during improvisation and what music they create.43

In this study, we investigate processes and outcomes of collaborative musical improvisation. We44

focus on situations where people without professional training create music together through rhythm,45

which constitutes a fundamental element of music that humans are wired to appreciate [19,20]. In two46

improvisation sessions, participants with various musical expertise were randomly paired to freely47

create music using velocity-sensitive drum pads that generated percussive sound. Each participant48

was provided with only two notes of marimba. Without rehearsals or scripts, players were asked to49

create music. Participants were allowed to interact only through the music they heard and created,50

thereby eliminating visual cues that may otherwise contribute to musical collaboration [21,22]. In51

this sense, the outcomes of the collaboration were also the means that supported the processes of52

collaboration, through sharing and transfer of information.53

By examining the sound data collected in the experiment, we study rhythmic patterns of54

improvised music through recurrence quantification, which offers a mathematically-principled55

approach for studying musical structures [7,12]. From the percussive sound produced by the two56

players, we form a symbolic time-series where each symbol identifies a specific ordinal pattern in the57

amplitude of consecutive sound samples. Each time-series is examined through the lens of recurrence58

quantification analysis to create colored symbolic recurrence plots, where the color of a point identifies59

the recurring symbol [23,24]. The more points populate the recurrence plot, the more repetitive the60

rhythm is and the higher the symbolic recurrence rate is. Entropy on symbolic recurrences is used61

to quantify preference for specific musical patterns that emerge during collaboration. Hence, low62

entropy values indicate a preference of the players for specific rhythmic patterns, while larger entropy63

values pertain to a less marked preference for patterns over others. We hypothesize the emergence of64

recurring patterns with a potential preference for specific musical patterns, as found in human solo65

drumming [25].66

To elucidate the interaction between the players, we perform a multivariate recurrence analysis67

on the two time-series of the sound amplitudes produced by the players within each pair. From these68

time-series, we measure the amount of information that is shared and transferred between the two69

players through salient information-theoretic metrics on joint symbolic recurrence plots [24,26]. Mutual70

information is used to quantify the association between the rhythmic patterns of the two players,71

and transfer entropy is employed to measure the responsiveness of the players to their partners. We72

hypothesize that the process of collaboratively and spontaneously creating music is supported by73

strong information sharing and transfer between the players.74

To explain the variation in the degree of interaction between the players, we inspect the expertise75

of the participants in playing music, acquired through independent surveys. Following the mental76

model on teamwork that emphasizes the importance of individual experience and skills on the outcome77

of collaboration [27], we hypothesize that the extent of information sharing and transfer within a pair78

is explained by the musical expertise of the pair.79
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Figure 1. Mean observed recurrence metrics of the music created by a pair against the null distributions:

music was characterized by rhythmic patterns and players preferred some patterns over others. (A)

Symbolic recurrence rate in the first session, (B) entropy in the first session, (C) symbolic recurrence rate

in the second session, and (D) entropy in the second session. Vertical red lines represent the observed

means, and the grey areas indicate the null distributions of the means.

2. Results80

2.1. Symbolic Recurrence Quantification of Music81

For each of the two improvisation sessions, we characterized the music created by each pair in82

terms of symbolic recurrence rate (SRR) and entropy. We observed an SRR of 0.244 ± 0.034 (mean83

± standard deviation) in the first session and of 0.231 ± 0.033 in the second one. The mean of84

SRR was significantly greater than chance (two-sided permutation test, p < 0.001 for both sessions;85

Figure 1). Overall, pairs showed consistent values of SRR between the sessions (Pearson’s correlation,86

r = 0.659, t = 4.638, d. f . = 28, p < 0.001), but values were smaller in the second session (paired t-test,87

t = 2.544, d. f . = 29, p = 0.017). The recordings of the experiments with the lowest and the highest88

SRR are available at https://github.com/shinn1/music.89

The entropy of the music was 1.632 ± 0.324 bits in the first session and 1.766 ± 0.309 bits in90

the second one. The mean of the entropy was significantly smaller than chance (p < 0.001 for both91

sessions; Figure 1). Entropy was correlated between sessions (r = 0.693, t = 5.085, d. f . = 28, p < 0.001),92

although pairs showed greater values in the second session (t = 2.913, d. f . = 29, p = 0.007).93

2.2. Information Sharing and Transfer on Symbolic Recurrence94

How players shared information with each other and how they responded to their partners were95

measured through mutual information and transfer entropy on symbolic recurrences, respectively. For96

each trial, we computed one value of mutual information and two values of transfer entropy (from the97

partner to the focal player, corresponding to the responsiveness of the focal player). We observed a98

mutual information of 0.145 ± 0.160 bits in the first session and of 0.119 ± 0.129 bits in the second one.99

The mean of mutual information was significantly greater than chance (permutation test, p < 0.001 for100

both sessions; Figure 2). Mutual information was similar between sessions (t = 1.005, d. f . = 29, p =101

0.323), and pairs showed strong consistency across sessions (r = 0.539, t = 3.389, d. f . = 28, p = 0.002).102

The recordings of the experiments with the lowest and the highest mutual information are available at103

https://github.com/shinn1/music.104

Transfer entropy was 0.038 ± 0.036 bits in the first session and 0.036 ± 0.024 bits in the second105

one. Again, the mean was significantly greater than chance (p < 0.001 for both sessions; Figure 2),106

and values were correlated between sessions (r = 0.278, t = 2.201, d. f . = 58, p = 0.032). There was no107

change between sessions (t = 0.373, d. f . = 59, p = 0.710).108
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Figure 2. Mean observed recurrence metrics of interaction within the pair against the null distributions:

the process of musical collaboration is underpinned by information sharing and transfer between the

players. (A) Mutual information in the first session, (B) transfer entropy received from partners in the

first session, (C) mutual information in the second session, and (D) transfer entropy received from

partners in the second session. Vertical red lines represent the observed means, and the grey areas

indicate the null distributions of the means.

2.3. Effects of Pair and Individual Traits on Information Sharing and Transfer109

The survey revealed a wide range of musical expertise among the participants, measured through110

two independent variables. With respect to experience in playing music with others, 12 participants111

answered ‘never’ (score 0), 11 ‘rarely’ (1), 17 ‘sometimes’ (2), 13 ‘frequently’ (3), and 7 ‘always’ (4). The112

duration of practicing music ranged from 0 to 15 years (1st quartile: 0, 2nd: 3, and 3rd: 7 years).113

These traits explained variation in mutual information among pairs in the initial phase of the114

improvised musical collaboration (Figure 3). Specifically, in the first session, mutual information was115

associated with the interaction between the within-pair sum of experience in musical collaboration116

and within-pair difference (χ2
1 = 6.664, p = 0.010). It was also marginally explained by the interaction117

between the within-pair difference in duration of practicing music and within-pair difference (χ2
1 =118

3.507, p = 0.061) and by the within-pair difference (χ2
1 = 3.030, p = 0.082), but not by the within-pair119

sum (χ2
1 = 0.643, p = 0.423). In the second session, however, mutual information was not explained by120

the experience in musical collaboration (χ2
1 = 0.054, p = 0.817 for the sum; χ

2
1 = 0.256, p = 0.613 for the121

difference; χ
2
1 = 0.497, p = 0.481 for the interaction). The duration of practicing music did not explain122

the variation in mutual information, either (χ2
1 = 2.199, p = 0.138 for the sum; χ

2
1 = 0.042, p = 0.837123

for the difference; χ
2
1 = 0.975, p = 0.323 for the interaction).124

Similarly, musical expertise explained variation in how people responded to their partners in the125

first session, but not in the second (Figure 4). In the first session, transfer entropy was associated with126

the interaction between the focal player and the partner in their experience in musical collaboration127

(χ2
1 = 13.465, p < 0.001) and in the duration of practicing music (χ2

1 = 21.467, p < 0.001). By contrast,128

in the second session, transfer entropy was not explained by the experience in musical collaboration129

(χ2
1 = 1.906, p = 0.167 for focal players; χ

2
1 = 0.498, p = 0.480 for partners; χ

2
1 = 0.937, p = 0.333 for the130

interaction). The duration of practicing music did not contribute to the model fit (χ2
1 = 0.620, p = 0.431131

for partners; χ
2
1 = 0.877, p = 0.349 for the interaction), with a marginal significance for the focal132

players’ duration of practicing music (χ2
1 = 3.592, p = 0.058).133

3. Discussion134

This is the first study that elucidates processes and outcomes of collaborative musical135

improvisation through a mathematically-principled approach. Pairs created music characterized136

by repetitive rhythmic patterns with marked preference for specific patterns over others, and the137

formation of such musical characteristics was underpinned by information sharing and transfer138



Version January 14, 2020 submitted to Entropy 5 of 13

0

5

10

15

0 10 20 30

bits (log)

−4

−2

0

0 10 20 30

bits (log)

−4

−2

0

0

1

2

3

4

0 1 2 3 4 5 6 7 8

bits (log)

−4

−2

0

0

1

2

3

4

0 1 2 3 4 5 6 7 8

bits (log)

−4

−2

0

0

5

10

15

A B

DC

Sum of the duration of
practicing music (years)

D
if
fe

re
n
c
e
 i
n
 t
h
e
 d

u
ra

ti
o
n
 o

f
p
ra

c
ti
c
in

g
 m

u
s
ic

 (
y
e
a
rs

)

Sum of the experience in
playing music with others

D
if
fe

re
n
c
e
 i
n
 t
h
e
 e

x
p
e
ri

e
n
c
e
 i
n

p
la

y
in

g
 m

u
s
ic

 w
it
h
 o

th
e
rs

Sum of the duration of
practicing music (years)

D
if
fe

re
n
c
e
 i
n
 t
h
e
 d

u
ra

ti
o
n
 o

f
p
ra

c
ti
c
in

g
 m

u
s
ic

 (
y
e
a
rs

)

Sum of the experience in
playing music with others

D
if
fe

re
n
c
e
 i
n
 t
h
e
 e

x
p
e
ri

e
n
c
e
 i
n

p
la

y
in

g
 m

u
s
ic

 w
it
h
 o

th
e
rs

Figure 3. Effects of pairwise traits in musical expertise on mutual information: in the first session,

information sharing is favoured by differences in experience in playing with others and similarities

in duration of practicing music. (A) Experience in playing music with others in the first session, (B)

duration of practicing music in the first session, (C) experience in playing music with others in the

second session, and (D) duration of practicing music in the second session.
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Figure 4. Effects of individual traits in musical expertise on transfer entropy (from the partner to

the focal player): in the first session, information transfer is favoured by differences in experience in

playing with others and similarities in duration of practicing music. (A) Experience in playing music

with others in the first session, (B) duration of practicing music in the first session, (C) experience in

playing music with others in the second session, and (D) duration of practicing music in the second

session.
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between players. Musical collaboration was established in the initial phase through players’ musical139

expertise, but the influence of musical expertise disappeared over time. These results unfold prevailing140

rhythmic features in collaborative music creation, while informing complex dynamics of the underlying141

processes.142

An empirical study has demonstrated common structural regularities in rhythm when humans143

play a drum in solo [25]; our results reveal the emergence of such regularities in collaborative music144

creation. Improvised music collaboratively created by our participants was characterized by repetitive145

rhythmic patterns with marked preference for specific patterns over others, indicated by higher146

symbolic recurrence rates and lower entropy. Considering that the origin of music is rooted in social147

activities [28,29], humans may have an innate inclination to rhythmic patterns that are easy to learn148

and memorize [25]. Indeed, people are more likely to perceive rhythmic patterns as a division of149

sound duration by small integers [30]. Cross-cultural similarities in rhythmic patterns [31,32] further150

support the possibility. Unlike solo music, however, musical collaboration through improvisation151

requires social exchanges of musical motifs with dynamic responses and adjustments [16,18,33]. Our152

results indicate that humans are able to perform such complex tasks through acoustic cues toward153

collaboratively creating music.154

Delving into variations in information sharing and transfer across trials, we confirmed our155

hypothesis that the players’ expertise in playing music is responsible for the processes of musical156

collaboration. Musical expertise was measured in terms of both self-assessed level of experience in157

musical collaboration and the duration of practicing any musical instrument. In the first experimental158

session, participants were found to share more information when playing music with partners that had159

a different level of experience in musical collaboration. Hence, pairing experts with novices in musical160

collaboration favored information sharing compared to pairing players with moderate experience in161

musical collaboration. By contrast, similarities within the pair in the duration of practicing music were162

conducive to information sharing, although pairing experts in musical instruments led to stronger163

information sharing than pairing novices.164

Variation in information sharing was partly associated with how individuals musically responded165

to their partners, quantified through transfer entropy on symbolic recurrence. Transfer entropy offers166

a mathematical tool to quantify directional influence between systems [34], with proven success in167

the study of climate networks [35] and human behavior [36]. In the initial phase of the musical168

collaboration, players’ responses to their partners were explained by musical expertise of both players.169

Predictably, novices to musical collaboration will be influenced by partners who have experience in170

playing with others; these experienced partners, in turn, will be able to adjust their rhythm more171

when playing with novices. The extent of this feedback will depend on their relative training in music,172

whereby participants would respond more strongly when partnered with others who practiced music173

for a similar duration. In this way, participants adjusted acoustic responses to their partner without174

knowing their musical expertise.175

The music created by pairs evolved over time, where the rhythms became less repetitive with176

more diverse patterns. These musical traits may suggest that participants attempted to invent new177

rhythmic patterns once they established communication, resulting in the creation of music that was178

more unpredictable. Although the extent of information sharing and transfer in the second session179

was correlated with those in the first session, musical expertise of the players no longer explained the180

variations. One possibility is that musical expertise played a role only until participants understood181

their partner’s rhythmic inclinations and responses through learning [18]. We may also propose that as182

time progresses, players gained confidence in their own musical expression, living a unique moment183

of inspiration, independent of their musical expertise or that of their partner. Further study will be184

needed to fully understand the dynamics of improvised music over time and the underlying factors185

that contribute to the dynamics.186

In this study, we did not appraise the quality of the improvised music, as the notion of music is187

elusive [28]. Although most music entails common traits in rhythms, such as a use of isochronous188



Version January 14, 2020 submitted to Entropy 7 of 13

beats and a metrical hierarchy in meters [31], perception of music is largely shaped by enculturation189

[37–40]. Hence, people from different cultural backgrounds may exhibit disparate preferences [41–44].190

For example, American infants prefer drum patterns with familiar Western meters (pulse duration191

ratio of 2:1:1) over unfamiliar Balkan meters (pulse duration ratio of 3:2:2), whereas Turkish infants192

who are familiar with both meters do not express preference [45]. Considering that participants in193

our study were from a student pool of a university that is home to students from diverse cultures,194

similarity in cultural backgrounds could also explain the extent of information sharing and transfer, in195

addition to their musical expertise.196

In conclusion, we studied processes and outcomes of musical collaboration in rhythmic197

improvisation through symbolic recurrence quantification and information theory. In reality, musical198

collaboration could be achieved through other elements of music, such as melody, harmony, timbre,199

and texture [46]. Further, there exist implicit rules that facilitate musical collaboration in jam sessions200

[47–49], including body gestures [22]. Nevertheless, our results shed light on a human ability of musical201

collaboration through rhythm, which constitutes a fundamental element of music from evolutionary202

and ethnomusicological perspectives [50,51].203

4. Materials and Methods204

4.1. Experimental Setup205

The instruments provided to participants were MIDI controllers with pads (nanoPAD2, KORG,206

Melville, NY), digitally programmed with samples of a marimba sourced from the public domain207

library of University of Iowa Electronic Music Studios. The MIDI controllers fed velocity-sensitive208

information directly to the recording interface, via two sets of adjacent rubber pads. The recording209

interface was a standard digital audio production application (REAPER, Cockos Incorporated, New210

York, NY). This platform was chosen because of the customizable nature of the interface, audio routing211

capabilities, and compatibility with audio drivers and the MIDI instruments. The recordings were212

taken at 44,100 Hz, on a Windows laptop augmented with an external USB sound card in addition to213

inbuilt audio capabilities.214

Within the REAPER interface, incoming MIDI signals were rendered as the sampled marimba215

audio signal and sent to both the participants’ sets of headphones (ATH-AVC200, Audio-Technica,216

Tokyo, Japan). The MIDI controller was configured to play a set of two notes. MIDI recordings were217

performed in REAPER and saved as REAPER project files. Data was exported as WAV audio files for218

listening and further analysis.219

Two players controlled four notes in an F major seventh chord (F, A, C, and E), one of the220

traditional chords in Western music that is frequently utilized within an improvisational context [52].221

To promote collaboration, each player could only make a partial chord on their own, which would222

then be extended with the addition of their partners’ complementary notes. Specifically, one player223

was assigned the fifth and seventh (C and E) of the chord, while the other player was assigned the first224

and third (F and A). This selection was also helpful for players to discriminate their sound from their225

partners’. Although F and E are dissonant, our participants showed preference for these keys over the226

middle ones (A and C) (see Supplementary materials).227

4.2. Data Collection228

Participants were recruited from the New York University community in the Brooklyn campus,229

NY, USA. Each trial consisted of a tutorial, followed by two experimental sessions. The tutorial was230

based off a classic one-note call-and-response exercise, toward introducing a standardized basis of231

collaboration and improvisation. Two participants sat in the same room, facing away from each232

other. The headphones of the participants were connected to two distinct audio outputs, and audio233

information was isolated between the participants during the tutorial. Through the headphone, the234

participants heard a short series of measure-long rhythms, each followed by two measures of rest, and235
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progressively increasing in complexity. The experimenter instructed them to mirror what they heard236

exactly, using their respective base notes. Then, the participants were exposed to the same series of237

rhythms through their headphones and instructed to improvise a response, instead of merely repeating.238

The tutorial ended with a 30-s practice session, where they could use both the notes while listening to239

a pre-recorded drum backing track.240

During a short intermission after the tutorial, participants were asked to complete a survey241

regarding their musical expertise. Specifically, they filled out their experience in playing music with242

others on the Likert scale (0: never, 1: rarely, 2: sometimes, 3: frequently, and 4: always) and duration243

of practicing music in years.244

Upon completing the surveys, the participants began the experiment, which consisted of two245

improvisation sessions, each of 2 minutes in duration. Before commencing the session, the experimenter246

instructed the participants as follows: “Now you will be playing together and collaborating in your247

improvisation. Feel free to experiment, but remember to collaborate.” Different from the tutorial,248

participants’ headphones were connected to a single audio out port on the USB sound card using249

an audio splitter device so that they would hear the music they collaboratively created. The same250

drum backing track used in the tutorial was played for the first 15 seconds of each session, providing251

a starting tempo for the participants. After this initial 15 seconds, there was no accompaniment and252

the participants improvised for the duration of each two-minute session. Between sessions, the notes253

controlled by each participant were swapped to randomize the key assignment. In total, we collected254

data from 30 pairs. The experiment was approved by the Institutional Review Board of the University255

(IRB-FY2017-898).256

4.3. Symbolic Recurrence Quantification257

Given a scalar time-series {xt}T
t=1 of T samples, we construct the symbolic time-series of258

m! symbols based on ordinal patterns of length m, {Sx(x̄t)}T̄
t=1, where T̄ = T − m + 1, x̄t =259

(xt, xt+1, . . . , xT̄) is the phase space vector at time t, and Sx(·) is the symbolization mapping. For260

example, if m = 3, we have an alphabet Γx of six symbols, each identifying a specific pattern for261

three consecutive readings in the time-series, from a sequence of three numbers that continuously262

decrease to three that instead steadily increase. From the symbolic time-series, we assemble a symbolic263

recurrence plot [23] to encode the recurrence of each symbol of the alphabet in time, that is,264

SRx
ts(π

x) =

{

1 if Sx(x̄t) = Sx(x̄s) = π
x,

0 otherwise.
(1)

The symbolic recurrence rate of the generic symbol π
x is computed by counting the total fraction of265

recurring symbol, that is,266

SRR(πx) =
1

T̄(T̄ − 1)

T̄

∑
t,s=1
t 6=s

SRx
ts(π

x). (2)

This quantity estimates the probability of recurrence of π
x. By summing these partial rates, we267

calculate the symbolic recurrence rate SRR, which measures the overall extent of recurrence, without268

discriminating whether it pertains to few or many symbols that are repeating in time. For reference, an269

independent identically distributed time-series will have a symbolic recurrence rate of 1/m!.270

To afford further quantification of recurrence in the phase space, we examine the entropy of271

the symbolic recurrence plot [26]. By exclusively focusing on the portion of the recurrence plot that272

encodes recurrence, we estimate the probability of recurrence of the generic symbol π
x as the fraction273

of its recurrences over the total number of recurrences, that is,274

Px(πx) =
SRR(πx)

SRR
. (3)
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Hence, the entropy is275

H(xt) = − ∑
πx∈Γx

Px(πx) log Px(πx), (4)

where we use the logarithm to the base 2 so that we measure entropy in “bits.” Again, for an276

independent identically distributed time-series, the entropy should be log(m!).277

When looking at two or more time-series, we can study a multivariate form of the symbolic278

recurrence plot, in which we examine a phase space vector in the higher dimensional space given by279

the Cartesian product of the original phase spaces. In this vein, the symbolic recurrence plot of two280

time-series {(xt, yt)}T
t=1, with ordinal patterns of length m, will track (m!)2 symbol pairs. From this281

symbolic recurrence plot, we compute mutual information between the time-series as282

Ixy = H(xt) + H(yt)− H(xt, yt). (5)

Similarly, we can examine the symbolic recurrence plot of the multivariate time-series283

{(xt+1, xt, yt)}
T−1
t=1 to compute transfer entropy on symbolic recurrences as284

TEy→x = H(xt+1|xt)− H(xt+1|xt, yt). (6)

With respect to the focal time-series {xt}T
t=1, this value quantifies the directional influence of the other285

time-series {yt}T
t=1.286

Throughout the study, we down-sample the time-series at a rate of 150 ms, mirroring typical287

auditory reaction time [53]. This yields a total of T = 800 samples for each trial. To capture the288

complexity of the time-series while balancing the limited length of the time-series, we use m = 3 for the289

symbolization. In Supplementary materials, we illustrate the robustness of these choices by examining290

the cases of down-sampling at 100 ms with m = 3 and down-sampling at 150 ms with m = 2.291

4.4. Analysis292

To test whether musical improvisation brings about an emergence of recurring patterns with293

marked preference for certain patterns, we compared SRR and entropy of the music created by pairs294

against random values (Figure 5). To that end, for each session, we generated the sound data of 30295

pairs by randomly shuffling partners and merging their individual sound data in a new pair, thereby296

simulating the sound data in the case where players within a pair could not acoustically communicate297

with each other. We computed the mean value of SRR and entropy of the shuffled 30 pairs for 20,000298

times and compared the null distributions against the observed means (two-sided permutation test).299

Similarly, we tested whether players exhibit a greater extent of information sharing and transfer300

within pairs, by comparing mean mutual information of 30 pairs and transfer entropy of 60 players301

against random values. We computed the mean value of mutual information and transfer entropy for302

20,000 times and compared the null distributions against the observed means (one-sided permutation303

test). Further, we investigated the difference between sessions and consistency within pairs in the304

musical characteristics and extents of information sharing and transfer. Specifically, SRR, entropy,305

mutual information, and transfer entropy were compared between sessions using a paired t-test.306

Similarly, within-pair consistency in these values were investigated using Pearson’s correlation.307

Next, we investigated the musical expertise of each player as a possible factor for the variation in308

the extent of information sharing and transfer among pairs. For information sharing, we characterized309

pair traits with the sum of the experience in playing music with others (score 0–8) and the difference310

(score 0–4), as well as the sum and difference of duration practicing music (in years). Mutual311

information was fitted into a generalized linear model with a gamma error distribution and a log link.312

The interaction terms of the sum and difference were also included in the model. For information313

transfer, transfer entropy that focal players received from their partners was fitted into a generalized314

linear model, with the musical expertise of a focal player and its partner as explanatory variables. The315
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Figure 5. Flow of the study. (A) Two participants create music together by improvising, while

acoustically communicating with each other. (B) Amplitudes of the sound are extracted (2 minutes × 2

sessions, excluding the first 15 seconds with a backing track from each session). (C) Recurrence plots

of the music are created from sound amplitudes, by symbolizing following ordinal patterns. Colored

areas of a recurrent plot indicate the recurrence of a symbol at time t and s, with colours representing

which one of the symbol is recurring. A portion of the recurrence plot is shown for clarity.
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model was specified with a gamma error distribution and a log link. The interaction terms of focal316

players’ and their partners’ musical expertise were also included in the model.317

All data analyses were performed using base R ver. 3.6.0 [54], R package ‘seewave’ ver. 2.1.4 [55],318

‘car’ ver. 3.0-3 [56], and Python package ‘NumPy’ ver. 1.17.2 [57].319
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