Backbone Reconstruction in Temporal Networks from Epidemic Data
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Many complex systems are characterized by time-varying patterns of interactions. These inter-
actions comprise strong ties, driven by dyadic relationships, and weak ties, based on node-specific
attributes. The interplay between strong and weak ties plays an important role on dynamical
processes that could unfold on complex systems. However, seldom do we have access to precise in-
formation about the time-varying topology of interaction patterns. A particularly elusive question is
to distinguish strong from weak ties, on the basis of the sole node dynamics. Building upon rigorous
analytical results, we propose a statistically-principled algorithm to reconstruct the backbone of
strong ties from epidemic data, consisting of the health state of individuals over time. Our method
is numerically validated over a range of synthetic datasets, encapsulating salient features of real-
world systems. Motivated by compelling evidence, we propose the integration of our algorithm in a
targeted immunization strategy that prioritizes influential nodes in the inferred backbone. Though
Monte Carlo simulations on synthetic networks and a real-world case study, we demonstrate the

viability of our approach.

I. INTRODUCTION

In the last few decades, network science has expe-
rienced significant developments, providing researchers
with an array of powerful tools to represent and analyze
complex biological, social, and technological systems [1].
Besides improving our knowledge on the very structure
of complex systems, network science has contributed new
paradigms to study dynamical processes unfolding on a
complex system. These paradigms have shed light on
the intertwining between structure and dynamics in the
spread of epidemic diseases [2], diffusion of innovation [3],
and opinion formation [4].

Empirical studies suggest that patterns of interactions
between nodes in many complex networks evolve cease-
lessly in time [5, 6]. These interactions can be catego-
rized into two main classes [7]. One class corresponds
to interactions that are recurrently formed between node
pairs, following dyadic relationships that are called strong
ties [8]. Interactions in the workplace or family ties be-
long to this class, which forms the backbone of the net-
work [9, 10]. The second class encompasses interactions
that are based on features of the nodes, which are not at-
tributable to dyadic ties with other nodes. For instance,
interactions among people queuing in a line or sitting
on a plane belong to this class, whereby interactions are
triggered by individual attributes such as extroversion in
talking to strangers. These relationships are called weak
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ties [8]. Strong and weak ties concur in shaping the dy-
namic behavior of complex networks [11-13].

Activity driven networks (ADNs) have emerged as a
valuable framework for temporal networks [14], allow-
ing for modeling the co-evolution of the network struc-
ture and the unfolding nodal dynamics at comparable
time-scales. The temporal nature of the network is cap-
tured through a single parameter that measures the node
propensity to generate interactions. The distribution of
this parameter, called activity, can be inferred from real-
world data [14]. The potential of ADNs has been demon-
strated through the study of several network problems,
including epidemics [15-19], diffusion of innovation [20],
opinion formation [21], and percolation [22].

In their fundamental incarnation, ADNs are an ideal
tool to model weak ties, whereby the whole process of
network assembly is driven by a node-specific attribute,
the activity. Routed ADNs (RADNs) have been re-
cently proposed to include strong ties within the ADN
paradigm [23, 24]. In this model, temporal connections
are wired according to a stochastic rule that encapsu-
lates both the topological information of strong ties and
the unstructured connections of weak ties. RADNs share
similarities with other approaches to include strong ties
in ADNs, such as the superimposition of a static net-
work [25, 26], and the inclusion of memory mechanisms
in the link wiring process [27, 28].

The use of RADNs in epidemiological studies rely on
accurate knowledge of the activity distribution and the
topology of the backbone. While activities can be es-
timated following the literature on ADNs [14, 29], the
inference of the backbone of strong ties remains an open
challenge. Particularly elusive is the problem of distin-
guishing strong from weak ties using observations of the
node dynamics, which is typically the only knowledge



available in real epidemiological settings [30].

In the technical literature, the problem of link recon-
struction and prediction has been studied from a vari-
ety of angles, mostly relying on the direct observations
of contacts [31-33]. Dealing with observations of nodal
dynamics, several methods have been proposed to recon-
struct patterns of interactions [34], including the use of
similarity [35], information theory [36], belief propaga-
tion [37], likelihood maximization [38], compressed sens-
ing [39], optimization [40], and nonparametric Bayesian
methods [41]. However, these methods are of limited
use when strong and weak ties coexist, thereby presently
challenging the inference of backbone networks from ob-
servations of node dynamics.

Drawing inspiration from [42, 43|, here we design a
backbone detection algorithm that identifies strong ties
from node dynamics, in the form of empirical data about
the spread of a disease. Our algorithm is based on the
intuition that strong ties should leave a distinguishable
footprint on the temporal evolution of an epidemic out-
break. We analytically characterize such a footprint in
terms of the probability for a node to contract the dis-
ease, given knowledge about the health state of other
nodes. Building upon this analytical result, we formu-
late a statistically-principled algorithm to reconstruct the
backbone topology. An extensive performance analy-
sis is carried out by means of numerical simulations to
demonstrate the effectiveness of the algorithm and iden-
tify potential limitations. Finally, we demonstrate the
possibility of implementing the algorithm to inform im-
munization strategies that target influential nodes of the
backbone. The effectiveness of the proposed technique is
evaluated through Monte Carlo simulations both on syn-
thetic networks and real-world data of face-to-face inter-
actions in a high school [44].

II. MATHEMATICAL BACKGROUND

We provide mathematical details of the models herein
used to study temporal networks with a backbone struc-
ture of strong ties, along with dynamical process.

A. Routed ADNs

We consider a network of n nodes, each belonging to
the node set V' = {1,...,n}. Temporal undirected links
are represented through time-varying adjacency matrix
A € {0,1}*™ where t € Z is the discrete time index.
The adjacency matrix is assembled so that (A:);; = 1,
if and only if node 7 is connected with node j at time
t. We denote by N/ the set of other nodes to which i is
connected at time .

Both strong and weak ties contribute to the evolution
of A;. Strong ties are described by an undirected and
time-invariant adjacency matrix G € {0,1}"*"™. We in-
dicate with d; the degree of node 7 in the backbone net-
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FIG. 1. Hlustration of a backbone network along with three
consecutive realizations of an RADN. Red dashed links are the
strong ties in the backbone, and black solid links are temporal
links generated from nodes’ activity.

work. Degrees are gathered in the degree vector d € N™.
Empirical evidence from real-world observations suggests
that real-world backbones are often sparse [1] and nodes
have bounded degree [45]. Without loss of generality,
we assume that the backbone network does not contain
isolated node, that is, d; > 1, for all i € V' [46].

Following [24], each node i € V is characterized by
an activity parameter a; € [0,1]. At each time, node
1 activates with probability a; and generates an undi-
rected link with another node. The selection of which
node to connect to is probabilistically dictated by a row-
stochastic [47] matrix P € RZ;" such that

1 . _
P=(1-7) mJ + ydiag(d) ' G, (1)

where v € [0, 1] is a constant parameter and J is the nxn
matrix of all ones, except the diagonal entries, which are
set to 0. The generic entry F;; represents the probability
that ¢ connects with j. The first term on the right hand
side of (1) accounts for the weak ties, while the second
summand models strong ties in the backbone. The pa-
rameter v € [0, 1] weights the role of strong versus weak
ties in the formation of temporal links. When « = 0, the
model reduces to a standard ADN [14] such that strong
ties are uninfluential; when v = 1, the probability of a
connection mirrors the adjacency matrix of the backbone
network. A realization of an RADN is shown in Fig. 1.

To generate a temporal network from ¢ = 0, up to time
T, we implement the following steps:

1. the temporal adjacency matrix is initialized as
(Ay)ij =0, for all i, j € V;

2. each node i € V activates with probability a;, in-
dependent of the others;



3. for each node ¢ that is active, a node j is selected
with probability P;;, and we set (A;);; = (Ay)ji =
1; and

4. the time index t is incremented by 1; if ¢ > T, the
algorithm is terminated, otherwise it is resumed to
step 1.

B. Susceptible—infected—susceptible model

We focus on a susceptible-infected—susceptible (SIS)
epidemic model [48]. In an SIS model, each node of the
network is characterized by a binary health state. Specif-
ically, at time ¢, node ¢« € V is either susceptible to the
disease (X} = 0) or infected (X; = 1). At each time two
contrasting mechanisms govern the evolution of the epi-
demic process: propagation and recovery. Each suscep-
tible node can contract the disease through interactions
with infected nodes.

The propagation of the disease may occur with prob-
ability A € [0,1] along each link of the RADN indepen-
dently of the others, such that

P(Xtiﬂ =1] Xf =0)=1-(1- )\)Zjezv;j Xf. 2)

Following the recovery mechanism, instead, each node
that is infected at time ¢, recovers at time ¢ + 1 with
probability u € [0, 1], becoming again susceptible to the
epidemics.

III. BACKBONE DETECTION ALGORITHM

We present here the main technical contribution of this
work, which consists of an algorithm to detect the back-
bone of strong ties in a temporal network from epidemic
data. Our method is based on the exact computation of
the probability of a node to contract the disease given the
health states of other nodes. Building on the knowledge
about neighbors, we are able to pinpoint the effect of the
presence of strong ties through a statistical test.

A. Conditional probabilities for RADNs

Given two nodes, ¢ and j, from the initial time to T,
we define the following quantity:

T-1
1 , . .
Pii = 1 3 [Py = 11X = 0.4 = 1)
®)
PO = 11X =0)].

The quantity P;_,; summarizes the extent by which the
infection of node i over the time window 1,...,T is ex-
plained by disease propagation from node j [49]. Intu-
ition suggests that such a quantity is larger when ¢ and j
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FIG. 2. Empirical estimation of P;_,; in a realization of an
RADN with n = 200 nodes, v = 0.95, A = 0.9, u = 0.1,
and a; = 0.3 for all nodes. The orange distribution relates to
nodes that share a strong tie and the blue one to the opposite
case. The backbone network is a 4-regular random graph.
The network is simulated for 35,000 time-steps. The figure
suggests that conditioning on the state of node j affects the
infection probability for nodes that share a strong tie with j,
confirming our analytical results.

are connected by a strong tie, such that the infection of
nodes connected by the backbone network will increase
the chance of contracting the infection. For the consid-
ered RADN and a SIS process, mathematical analysis
of this quantity, detailed in the Appendix, confirms this
intuition.

Specifically, we demonstrate that, in the asymptotic
limit of large time-windows, if there is a strong tie be-
tween ¢ and j, that is, G;; = 1, then

> pyA(L — A%t @ L a Aa;a; >0,
63(1 + /J,) d; dj dzdj
(4a)

almost surely, for any network size. On the other hand,
if the nodes are disconnected in the backbone, that is,
if G;; = 0, we find that in the asymptotic limit of large
networks,

T—o0 I

nlLH;O Pj_m' =0. (4b)

As a consequence, if the size of the network is suf-
ficiently large, the probability that a node becomes in-
fected is not influenced by the health state of another,
unless they share a strong tie. Based on this analytical
result, we construct our identification algorithm, which
starts from empirical observations of the disease dynam-
ics to detect strong ties.

Figure 2 compares the empirical estimation of P;_,; for
pairs of nodes that share (orange) or not (blue) a strong
tie. These simulations validate our analytical results and
suggest that P;_,; is close to its asymptotic expressions
in (4), also for a reasonable small population size and a
limited observation window. In fact, while the empirical
distribution of the entries of P;_,; that correspond to



strong ties (in orange) is shifted and bounded away from
0, the empirical distribution of the entries that do not
correspond to strong ties is centered at 0. We notice
that the two empirical distributions are well separated.

B. Statistical test

Building on our analytical results, we put forward a
statistical method to determine the presence of a strong
tie between the two nodes for a large network. To per-
form such a statistical analysis, for any pair of nodes 4
and j, we measure the following four quantities:

e the number of time-steps in which node ¢ is suscep-
tible, denoted as s;;

e the number of transitions of node i from susceptible
to infected, denoted as i;;

e the number of time-steps in which node i is suscep-
tible and node j is infected, denoted as n;;; and

e the number of transitions of node i from suscepti-
ble to infected with node j being infected at the
previous time, denoted as g;;.

From the first two quantities, we compute the ratio r; =
i;/8;, which measures the sampling probability that a
susceptible node i at time ¢ becomes infected at ¢ + 1.
According to (4b), if ¢ and j do not share a strong
tie, then the probability that ¢ contracts the infection
should not be influenced by j, that is, g;; should be a
realization of a Bernoulli trial with expected value equal
to ryn;;. We set this as null hypothesis of our statistical
test, which is rejected if g;; is significantly larger than
r;ni;. We associate with the node pair a p-value, coming
from the binomial cumulative distribution, equal to

qij—1
Mg nij—h
mp=1- (,;) ri (1—r) : (5)

h=0

This procedure generates a set of n — 1 statistical tests
for each node, that is, n(n — 1) tests, overall. Hence, a
multiple comparison correction should be implemented
to assess whether each one of the null hypotheses can
be rejected. We adopt the Benjamini-Hochberg proce-
dure to control the false discovery rate, which offers a
less conservative criterion with respect to the standard
Bonferroni criterion [50]. This method is implemented
as follows.

First, we set the level of significance « € [0,1]. The
quantity o measures the largest admissible probability
that at least one of the null hypotheses is erroneously
rejected and it is typically a small quantity, to ensure the
test’s significance. Then, the n(n—1) p-values are sorted
in ascending order as () < 72 < ... < glln=Dn),
Let L be the largest integer for which it holds (%) <
La/(n — 1)n. Then, the null hypothesis is rejected for
all the pairs of nodes associated with a p-value smaller

than 7). If the null hypothesis is rejected for i and
J, then we estimate that there is a link in the backbone
network such that G;; = G;; = 1. We note that this
is the step that requires the most computational effort,
since the n(n—1) p-values should be computed and sorted
in ascending order. The algorithm can be implemented
according to the pseudocode below.

Algorithm 1: Backbone detection algorithm

Data: empirical observations 7;, n;, ¢;;, Vi,7 € V
Result: estimation of the adjacency matrix G
G+ 0;
forieV,jeV, j#ido
| compute ;5 using (5);
sort mi; in ascending order 7 < 72 < el
L +— max{k e N: 75) < La/(n — 1)n};
forieV,jeV, j#ido
if 7;; < 7(X) then
Gij — ].,‘
Gji — 1,’

Examining more in depth the analytical results in (4a),
we foresee some issues that might hinder the applicability
of our algorithm, yielding a small value of P;_,;, even
though a strong tie connecting i to j exists. In particular,
this can occur in two cases. First, if both degrees d;
and d; are large, such that the two nodes have a large
degree centrality in the backbone network. Second, if
both activities a; and a; are small. In the following,
we present detailed numerical simulations with different
parameter choices to demonstrate the accuracy of the
algorithm.

IV. NUMERICAL VALIDATION

We validate our backbone detection algorithm on
several synthetic datasets, to illustrate its applicabil-
ity in real-world scenarios and identify potential limi-
tations. These synthetic datasets consist of benchmark
networks with n = 200 nodes, generated according to
the RADN paradigm described in Section ITA. We set
v = 0.95, when weighting temporal versus backbone con-
tacts in (1). We consider different distributions for the
activities and degree distribution of the backbone that
follows a configuration model [1]. The epidemic process is
simulated using the SIS model illustrated in Section ITB
with A = 0.9 and p = 0.1. Unless otherwise specified, we
set the significance level of the statistical test to o = 0.05.

A. Homogeneous activity distribution and
homogeneous backbone

We first examine the possibility of identifying regular
networks of strong ties against weak ties generated us-
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FIG. 3. Fraction of strong ties identified by our algorithm.
The backbone is a 4-regular network with 200 nodes. The
other parameters are y = 0.95, A = 0.9, © = 0.1, and a; = 0.3,
for all the nodes.

ing a common activity value for the all nodes. In this
scenario, the backbone is chosen to be a 4-regular ran-
dom network and the activity is equal to a; = 0.3, for all
1eV.

In Fig. 3, we report the true positive rate (TPR),
which is the fraction of links that the algorithm is able
to correctly predict (green); and the false discovery rate
(FDR), which is the ratio between the number of times
it fails to properly identify a link and the number of links
in the backbone (red). Perfect reconstruction is attained
when the number of true positives is equal to the total
number of positives (TPR= 1) and the number of false
positives is close to zero (FDR= 0). The computations
are carried out for different values of T', such that larger
values of T imply access to a longer time window for
the estimation of the probabilities of transitions in the
algorithm.

For sufficiently large values of T', our algorithm is suc-
cessful in exactly reconstructing the topology of the back-
bone. Choosing small values of T hampers the identifica-
tion of links, but it rarely results into the identification of
false positives (four false positives are overall identified in
Fig. 3), such that we progressively improve the detection
of strong ties, attributing a very small quantity of wrong
links to the backbone. This is an important feature of
the algorithm, whereby all the links it discovers can be
relied upon with an extremely high confidence.

B. Heterogeneous activity distribution and
homogeneous backbone

To better proxy a real-world setting, we release the as-
sumption that all the nodes have the same activity. As a
stepping stone, we consider the case in which nodes are
randomly divided into two activity classes with 100 nodes
each: low-activity nodes (a; = 0.2) and high-activity
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FIG. 4. Fraction of strong ties correctly identified by our
algorithm for both heterogeneous and homogeneous activity
distributions, and a regular network.. The backbone is a 4-
regular network with n = 200 nodes. The other parameters
are v = 0.95, A = 0.9, and g = 0.1. Three possibilities for
the activity distribution are examined: all the nodes have the
same activity a; = 0.2 (hom-low, dashed), a; = 0.8 (hom-
high, dotted), and half the nodes have a; = 0.2 and half have
a; = 0.8 (het, colored). For the last case of heterogeneous ac-
tivities, TPR is reported with respect to links between nodes
with low activity (blue), links between nodes of different ac-
tivity (orange), and links between nodes with high activity
(green). Only one FDR is reported for all the possibility,
since they are indistinguishable (het, red).

nodes (a; = 0.8). Similar to the previous analysis, the
backbone is a 4-regular random network. To help teas-
ing out the role of heterogeneity, we also simulate the
scenarios in which all the nodes are either in the low- or
high-activity classes.

Again, we examine the effect of T on true and false pos-
itives, with respect to the number of positives. Results
in Fig. 4 confirm those from Fig. 3, whereby the fraction
of correctly identified links increases with T" and the frac-
tion of misclassified links is always negligible. Comparing
the three scenarios, we observe that large values of the
activity have a negative effect on the performance of the
algorithm. In fact, an increased observation window is
required to detect strong ties in the homogeneous case
with high activity, with respect to the scenario with low
activity.

Heterogeneity further reduces performance, hampering
the detection of strong ties between low-activity nodes.
Even though networks with a heterogeneous activity dis-
tribution require a longer window to correctly detect all
the strong ties, we observe that, for sufficiently large T,
our algorithm is able to correctly reconstruct the back-
bone, with a negligible fraction of erroneous identifica-
tions. Overall, these results are in agreement with theo-
retical analysis in the Appendix, whereby decreasing the
activities causes a reduction in the probability difference
in (4a).
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FIG. 5. Fraction of strong ties correctly identified by our al-
gorithm for both heterogeneous and homogeneous backbones,
and activity a; = 0.3, for all the nodes. The other parameters
are n = 200, v = 0.95, A = 0.9, and u = 0.1. Three pos-
sibilities for the backbone are examined: all the nodes have
the same degree d; = 2 (hom-low, dashed), d; = 0.8 (hom-
high, dotted), and half the nodes have d; = 2 and half have
d; = 8 (het, colored). For the last case of heterogeneous de-
grees, TPR is reported with respect to links between nodes
with low degree (blue), links between nodes of different degree
(orange), and links between nodes with high degree (green).
Only one FDR is reported for all the possibility, since they
are indistinguishable (het, red).

C. Homogeneous activity distribution and
heterogeneous backbone

Next, we examine a backbone where the degree of
the nodes is not held constant throughout the network.
Specifically, we consider a network in which nodes are
partitioned into two classes of 100 nodes each with low-
(d; = 2) or high-degree (d; = 8). To avoid confounding,
we maintain the activity at a common value of a; = 0.3,
similar to results in Fig. 3. Once again, to facilitate the
assessment of the effect of a heterogeneous degree dis-
tribution on the algorithm performance, we analyze two
control cases in which the all the nodes have the same
low- or high-degree.

Figure 5 illustrates the fraction of links predicted as a
function of T for three considered settings. Consistent
with our previous results, we observe that increasing the
length of the observation steadily benefits the algorithm
precision in inferring strong ties, as shown in Fig. 5. The
number of false positives is always negligible, even for
small values of T, confirming that the algorithm can be
reliably utilized for backbone inference.

From Fig. 6, we recognize a marked effect of the pa-
rameters on the performance of our algorithm. For lower
values of both parameters, 8, and B4, our algorithm fails

Comparing the two homogeneous cases of low- and
high-degree distributions, we register an expected de-
crease in performance when dealing with higher degrees.
In this case, the value of added knowledge regarding the
state of health of one node is diluted by the presence
of many other neighbors that could have triggered the
infection. Analytical results in the Appendix provide a
theoretical basis for this explanation, whereby increasing
the values of the degree causes a reduction in the proba-
bility difference in (4a).

As one might expect, the performance of the algorithm
toward the inference of the heterogeneous network is in
between the two cases of homogeneous networks. To gain
further insight into the relationship between topological
features and successful reconstruction, we can isolate the
specific links that are first detected by the algorithm for
small values of T'. In agreement with our analytical re-
sult in (4a), the links that require shorter observations
are incident to low-degree nodes. These links encompass
both strong ties between low-degree nodes and strong ties
between nodes with high and low degrees that might ex-
emplify dissortative structures of real networks [51, 52].
Longer time windows are required for detecting links that
connect pairs of high-degree nodes.

D. Highly-heterogeneous activity distribution and
backbone

To offer insight on the performance of our algorithm
over a wider class of RADNSs, we systematically examine
a two-dimensional grid of salient parameters. We assume
that both the activity and the degree distributions follow
a power-law with exponents 3, and (4, respectively. We
vary each parameter from —5 to —2, which are represen-
tative of real-world scenarios [53]. Parameters are varied
in 11 steps with cutoffs at 0.1 and 1 for the activity, and
at 1 and n — 1 for the degree. We observe that smaller
values of the exponent of a power-law yield distributions
with a larger dispersion, in which most of the nodes have
small activity (degree) and few have an extremely high
activity (degree). Two different realizations are exam-
ined, one with 7" = 10,000 and T" = 30, 000, respectively.
The weight ~ is reduced to 0.5 to guarantee the spread
of the epidemic diseases for all the choices of parameters
investigated and the network size is increased to n = 300
to ensure the presence of high-degree (activity) nodes in
the power-law distributions. The epidemic parameters
are set as A = 0.9 and p = 0.1, similar to the simulations
in Section IV.

(

to identify the backbone, under-predicting the number
of strong ties. This is in agreement with Figs. 4 and 5,
which indicate that longer observation windows are re-
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FIG. 6. TPR (a,b) and FDR (c,d) of our algorithm implemented on a network of n = 300 nodes for an observation window
of T'= 10,000 time-steps (a,c) or T' = 30,000 time-steps (a,c). Both activities and degrees in the backbone follow power-law
distributions with exponents B, and (4, respectively. Other parameters are set to A = 0.9, u = 0.1, and v = 0.5. Each point is

an average of ten independent simulations.

quired to infer the backbone when the RADN is domi-
nated by high-degree and high-activity nodes. The best
performance is attained for higher values of the two pa-
rameters. In this case, the algorithm correctly detects
all the strong ties, with a very small quantity of false
positives.

Comparing the results for 7' = 10,000 and 7' = 30, 000,
interestingly, 8, seems to have a stronger effect on per-
formance than 4, whereby at T' = 30, 000, the algorithm
is able to detect most of the strong ties for small values of
B4 but its performance is strained when examining small
values of 3,. This confirms our preliminary observation
from Fig. 4 that heterogeneity in the activity distribution
hampers the detection of strong ties.

V. APPLICATION TO TARGETED
IMMUNIZATION

In epidemiology, knowledge about the backbone net-
work might offer valuable information about how dis-

eases spread and which is the role played by individu-
als. In this vein, we conclude this paper by presenting
an application of our algorithm to design a targeted im-
munization protocol. Our control strategy observes the
disease spreading for a finite time-window to identify the
backbone network, and then utilizes such an inference to
prioritize immunization of nodes in the network accord-
ing to a centrality criterion. Specifically, we immunize
nodes according to decreasing values of their PageRank
centrality [54]. By means of Monte Carlo numerical sim-
ulations, we evaluate the performance of the approach
against a randomized immunization, where no informa-
tion regarding the backbone is utilized.

Similar to the analysis in Section IV D, we examine a
benchmark network with n = 300 nodes. The backbone
is generated using a configuration model with power-law

degree distribution of power 8; = —3 and cutoffs at 1
and n — 1. Activities are also drawn from a power-law
distribution with exponent 8, = —3 and lower cutoff

at 0.1. We consider an SIS epidemic with A = 0.9 and
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fraction of infected nodes. Dotted lines indicate the fraction of
infected nodes in the absence of any immunization technique.
In (a), we show the entire realizations for v = 0.95. The
solid line is the average, while the light band is one standard
deviation. In (b), we compare the average fraction of infected
nodes for different values of v. Bands identify 95% confidence
intervals. The lower panel illustrates the entire realizations
for v = 0.95. Other parameters are n = 300, 84 = . = —3,
A=0.9,and p =0.1.

= 0.1. We run the model over a window of 50,000
time-steps implementing our algorithm to identify the
backbone. At this time, we execute two control strate-
gies (targeted and randomized), with a number of inter-
ventions limited to 5% of the total number of nodes. We
perform Monte Carlo simulations by averaging over 100
independent runs of the two control strategies.

The results of these simulations are summarized in
Fig. 7. In Fig. 7(a), we compare the performance of the
two immunization strategies for v = 0.95, as in the nu-
merical analysis in Section IV. While randomized immu-
nization decreases the portion of infected nodes by 13%,
targeted intervention decreases it by 55%, on average.

The difference between these two strategies is statisti-
cally significant (p-value < 0.0001, according to a two-
sample z-test) comparing the average fraction of infected
individuals after the implementation of the immunization
strategy, for 100 independent runs. In Fig. 7(b), instead,
the comparison between the two techniques is conducted
for different values of the parameter v, spanning from 0.5
to 0.95 in steps of 0.05. Therein, we report the average
fraction of infected nodes in the 500 time-steps that fol-
low the application of the control strategy. Predictably,
the larger the parameter v, the stronger the improve-
ment of the targeted immunization with respect to the
randomized one. In fact, for small values of 7y, the back-
bone has a marginal role on the link formation process,
reducing the effect of targeted immunization exploiting
the centrality measures in the backbone. However, the
difference between the two strategies is statistically sig-
nificant in all the performed simulations.

Encouraged by these promising results, we apply our
targeted immunization technique to real-world face-to-
face interactions measured through proximity sensors in
a high school [44], available at [55]. The dataset com-
prises 188, 508 temporal links, generated over T' = 7,375
time-steps among n = 327 nodes. We run an SIS epi-
demic model for half of the available dataset, starting
from a fraction of one third of infected nodes, selected
uniformly at random. Then, 5% of the nodes is im-
munized following either the randomized or the targeted
strategy. By performing an extensive Monte Carlo sim-
ulation with 1,000 runs, we compare the two strategies
for different values of the epidemic parameters A and p.
Figure 8 demonstrates that our immunization technique
should always be preferred to randomized immunization,
whereby, for most parameter choices, it outperforms ran-
domized immunization.

VI. CONCLUSIONS

In this work, we have proposed an algorithm to un-
veil the backbone of strong ties in a temporal network
from epidemic data. Building on analytical insight re-
garding the role of strong ties on the epidemic, we have
put forward a statistically-principled approach to dis-
cover strong ties from empirical data. Extensive simu-
lations have been performed to assess the effectiveness
of the proposed technique, which has proved to be reli-
able in a variety of scenarios. Finally, we have examined
the integration of the proposed algorithm in the solution
of an important challenge in epidemiology, namely, tar-
geted immunization during an outbreak. The main con-
tributions of this work are: 7) the analytical computation
of the effect of strong ties on the infection probability
for a susceptible—infected—susceptible epidemic model on
routed activity driven networks; i) the design of a back-
bone detection algorithm and its numerical validation;
and 4ii) the implementation of a targeted immunization
technique.
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FIG. 8. Difference in the fraction of infected nodes after the
immunization phase, between the randomized and the tar-
geted strategy (color coded) in the high-school case study [55].
The dashed line represents the epidemic threshold [48], below
which none of the nodes is infected at the onset of the im-
munization strategy. Darker blue areas identify parameter
regions where targeted immunization has superior outcome.
Each point is an average of 1,000 independent simulations.

The promising preliminary of our numerical analysis
pave the way for several avenues of future research. We
aim to rigorously assess the performance of our algo-
rithm, as a function of the network size and the dura-
tion of the window of observation. In most real-world

J

P(X{, =1|X;=0)=1— J[ 1 =Xa;Piax) (L — XagPrizy).
keV~{i}

scenarios, it is not tenable to have access to the entire
node set, thereby calling for methods to discover miss-
ing nodes, beyond links. Finally, our study on targeted
immunization has demonstrated how information about
the backbone can be leveraged to design effective con-
trol techniques that could steer the behavior of dynam-
ical systems. Extending the framework to other disease
models and mathematically proving performance bounds
is the objective of future research.
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Appendix A: Computation of the conditional
probabilities

We compute the infection probability for node i at time
instant ¢, for either the case in which we include or ex-
clude knowledge about node j. Let x1,...,x, be the
state of the system at time ¢, then the RADN model
indicates that

Upon conditioning on X; = 1, we factor the term associated with j out of the multiplication to obtain

P(X7, =1|X]=0,X] =1)=1—(1—Xa;Pyj) (1 - Xa;P;i)  []

(1 - /\aipika:k) (1 - )\akPkixk) . (AQ)

keV~{ij}

First, we consider the case in which nodes i and j do not share a strong tie, that is G;; = Gj; = 0. In this case,
from (1) we derive P;; = Pj; = (1 —v)/(n — 1). We substitute P,; and P;; in (Al) and (A2), and we compute the

limit for n — oo of their difference as

limy, o0 P(Xf g = 1| X} =0,X] =1) = P(X[,; = 1| X} =0) =

— i | (1 A (4

< 1

keV~{ij}

n—1

AL —7)a;z;

) ()

AL —9)a; ﬂ "

n—1

(A3)

(1 — /\aipikxk) (1 — )\akpkixk) = 0.

We note that (A3) is the generic summand of P;_,; in (3), from which the claim in (4b) follows.

We now consider the case in which nodes ¢ and j share a strong tie, that is, G;; = Gj; = 1. Similar to the previous
analysis, from (1) we derive P;; = (1—+)/(n—1)+~/d; and Pj; = (1 —~)/(n—1)+/d;. Defining the neighborhood
of node i in the backbone N} := {j € V : G;; = 1}, we proceed specializing to the present case the difference
between (A1) and (A2) at time t. Considering that (1 — 1/x)*~! > 1/e, for any z > 1, and that d; < n — 1, for any



1 € V, we compute
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where the bounding function F'(x;) is such that F(1) =0, and F(0) > 0, for any v > 0.

We now focus on the variable X7. According to the SIS dynamics described in IIB, X7 changes from 1 to 0 with
probability equal to p, while the probability of switching from 0 to 1 depends on the health state of the other nodes,
but is obviously bounded from above by 1. Hence, the frequency of X7 = 0 converges almost surely to at least
p/(1+ p) for T — co. Hence, using (A4) and the definition of P;_,; in (3), the latter quantity can be bounded from

below as follows:

T-1 T-1
. 1 - - , - - 1
dim P = Jim 73 [P(X;H — X} = 0,X] = 1)~ P(X}, = 1| X] = 0>} > Jim, g 3 P -
= = 5
o1 1 pAy(1 = N4 fa; a Aa;a;
= lim — Z F)> —F(0) >~ — [ L4 L~ ) >o.
TSoo T ve{0... Tt} xi=o0 + 1 e3(1+ p) d;  dj d;d;
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