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Abstract—In this letter, we propose an epidemic model over
temporal networks that explicitly encapsulates two different
control actions. We develop our model within the theoretical
framework of activity driven networks (ADNs), which have
emerged as a valuable tool to capture the complexity of dynamical
processes on networks, coevolving at a comparable time scale
to the temporal network formation. Specifically, we complement
a susceptible–infected–susceptible epidemic model with features
that are typical of nonpharmaceutical interventions in public
health policies: i) actions to promote awareness, which induce
people to adopt self-protective behaviors, and ii) confinement
policies to reduce the social activity of infected individuals. In the
thermodynamic limit of large-scale populations, we use a mean-
field approach to analytically derive the epidemic threshold,
which offers viable insight to devise containment actions at the
early stages of the outbreak. Through the proposed model, it
is possible to devise an optimal epidemic control policy as the
combination of the two strategies, arising from the solution of an
optimization problem. Finally, the analytical computation of the
epidemic prevalence in endemic diseases on homogeneous ADNs
is used to optimally calibrate control actions toward mitigating
an endemic disease. Simulations are provided to support our
theoretical results.

Index Terms—Network analysis and control; Control of net-
works

I. INTRODUCTION

MATHEMATICAL models of epidemic outbreaks on

networks have become increasingly popular in the

last decades among scientists from many research fields [1]–

[4]. The analysis of such models have allowed to gain new

insight on the mechanisms that govern the spread of infectious

diseases. Within the systems and controls community, many

efforts have been put forward to leverage this insight and

incorporate control actions in epidemic models to find viable

strategies to contrast the spread of epidemic diseases [5],

[6]. In particular, the rigorous analysis of epidemic models

has elucidated the role of contact networks in shaping the

evolution of epidemic outbreaks, informing effective control

policies [7]–[9].

Most of the results on epidemic process in the litera-

ture, in particular those that explicitly contemplate control
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actions, consider time-invariant networks as an exemplary

social structure. However, many real networks have a time-

varying structure that coevolves at a comparable time-scale

to the epidemic process [10]. Understanding how temporal

networks influence the propagation of epidemic diseases and

how such knowledge can be used to design control policies is

of paramount importance help support public health adminis-

trations in contrasting epidemic outbreaks [10], [11].

Activity driven networks (ADNs) have emerged as a valu-

able mathematical framework to represent and study the co-

evolution of dynamical processes on and of networks [12],

[13]. The main strength of ADNs lies in their simplicity,

whereby the temporal nature of each individual is captured

by a single parameter, that is, his/her propensity to generate

interactions with others, called activity. Such a formulation

allows for modeling heterogeneous temporal networks, en-

abling the analytical tractability of epidemics [12], [14] and

the rigorous study of key features of real-world systems,

such as burstiness [15] and higher-order relationships [16].

Other techniques to deal with temporal networks include

Lyapunov stability [17], aggregated Markov processes [18],

and temporally-switching networks [19].

In this letter, we propose an ADN-based epidemic model,

which allows for the description at the microscopic level

of epidemic processes coevolving with a temporal network,

encapsulating two realistic control actions, which are typ-

ical of nonpharmaceutical interventions from public health

authorities. Specifically, we consider: awareness campaigns

and confinement. The former implies the implementation of

strategies to increase the awareness of the disease of uninfected

individuals and, thus, induce them to adopt self-protective

behaviors [20], [21]. The latter is realized by isolating in-

fected individuals (for instance, through quarantine), toward

the interruption of the chain of contagions [22].

Here, we model the epidemic process using a susceptible–

alert–infected–susceptible (SAIS) model, which is an exten-

sion of the well-known susceptible–infected–susceptible (SIS)

model, where alerted individuals take self-protective behaviors

to reduce their susceptibility to the infection spreading. In

the original implementation of the SAIS model, individuals

become alerted triggered by the presence of infected or alerted

neighbors [23], [24]. An optimal control problem has been

formulated for this model in [25]. A different implementation

considers an adaptive scenario, in which alerted individuals

change local contacts rather than adopting self-protective be-

haviors [26]. Preliminary results on the original SAIS models

on ADNs can be found in [27], while the problem of cost-

aware containment of epidemics is studied for the adaptive

scenario in [28].



In our implementation, we assume that self-protective be-

haviors are triggered by control actions dictated by the public

health authorities and are always successful in preventing

contagion (which is appropriate for many sexually-transmitted

diseases and parasite infections). However, these behaviors

have a nonneglible cost, so that individuals adopt or not such

a behavior as the result of a personal cost-benefit assessment.

In this vein, the use of pre-exposure prophylaxis for HIV

prevention is a paradigmatic example of such a scenario [29].

Similar to [30], we include a state-dependent behavior in the

ADN model, which models the effect of containment and

isolation techniques.

In addition to the mathematical formalization of the model,

the main theoretical contributions of this letter are: i) the

analytical derivation of the epidemic threshold for the SAIS

model on ADNs in the thermodynamic limit of large-scale

population through a mean-field argument; ii) the computation

of the prevalence of the disease (that is, the fraction of

infected individuals) in the endemic state for homogeneous

populations; iii) the use of our analytical findings to rigorously

evaluate the effectiveness of the two control actions, in the

early stages of the epidemics; and iv) the formalization of

an optimization problem to devise an optimal control policy

as a mix of the two actions, both in the early stages of

the epidemics and in the endemic regime of the disease.

Simulations are presented to validate analytical findings and

provide further insight into the epidemic process.

We gather here some notation used throughout the let-

ter. We denote by R, R≥0, and R>0 the set of real, real

nonnegative, and strictly positive real numbers, respectively.

Given a continuous-time function x(t), we define x(t−) :=
limsրt x(s) and x(t+) := limsցt x(s).

II. MODEL

We consider a population of individuals V = {1, . . . , n},

each one identified by a node in an undirected temporal

network [10]. Individuals generate time-varying interactions

that are modeled through a temporal network (V, E(t)), where

E(t) is the time-varying set of undirected links. Hence,

{v, w} ∈ E(t) implies that nodes v and w interact at time

t.

A. Activity driven networks

The temporal network is generated according to a

continuous-time ADN [13]. Each individual v ∈ V is charac-

terized by an activity rate av ∈ R>0, which represents his/her

propensity to interact with others. The network is dynamically

generated as follows: i) at time t = 0, the link set is initialized

as E(t) = ∅. Each node v ∈ V is associated with a Poisson

clock with rate equal to av , each one independent of the

others; ii) time progresses until the click of any of the n
Poisson clocks involved in the process clicks, iii) if the clock

associated with node v ∈ V clicks at time t, the individual

corresponding to node v is activated and he/she selects a fellow

individual w ∈ V uniformly at random to connect with; iv)

the undirected link {v, w} is instantaneously added to E(t)
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Figure 1: Schematic of the state transitions of the SAIS model.

The blue dotted arrow is due to the awareness control action.

and an instantaneous interaction (i.e., contagion or diffusion

of information) is enabled; and v) the link is immediately

removed from the set, the Poisson process associated with

node v is re-initialized, and the process resumes from ii).

B. Epidemic model

We consider an SAIS model [23], in which individuals can

have three different states, depending on their health status

and behavior. An individual can be either susceptible to the

disease (denoted by S), infected by the disease (I), or he/she is

aware of the risks connected to the infection and consequently

adopts a self-protective behavior, preventing him/herself from

contracting the disease (P). We assume that individuals can

be infected multiple times by the disease (this is often the

case of parasites, such as lice and pinworms, and several

bacterial sexually-transmitted infections). The SAIS model

can have different implementations, depending on the specific

mechanisms that govern the state transitions [23], [24], [27].

Here, we consider the following setup.

Each individual v ∈ V is given a ternary state Xv(t) ∈
{S, P, I}, which represents the individuals health state and

behavior at time t. The state evolves in continuous time t ∈
R≥0 along with the network formation process, according to

the following three mechanisms.

Contagion: a susceptible individual (Xv(t
−) = S) who

contacts an infected one (that is, (v, w) ∈ E(t) and

Xw(t) = I) becomes infected according to a probabilistic

mechanism. Specifically, he/she contracts the disease with

probability λ ∈ [0, 1], independent of the others.

Recovery: an infected individual (Xv(t
−) = I) sponta-

neously recovers and becomes susceptible according to

a Poisson clock with rate µ ∈ R>0, independent of the

others. We assume that recovered individuals assume a

self-protective behavior (Xv(t
+) = P ) .

Unprotecting: an individual with Xv(t
−) = P spontaneously

return to his/her regular behavior, becoming susceptible

to the epidemics (Xv(t
+) = S) according to a Poisson

clock with rate ν ∈ R>0, independent of the others.

This modeling choice is informed by the high social and

economic costs of self-protective behaviors.

The state transitions induced by these mechanisms are repre-

sented in Fig. 1.

Remark 1. The model parameters have the following inter-

pretation: λ is the infection probability after an unprotected

contact with an infectious individual; µ governs the duration

of illness, whose average duration is 1/µ; ν is monotonically

positively correlated with the cost of self-protective behaviors,

so that the larger ν, the faster individuals tend to stop adopting

them (the average adoption time is equal to 1/ν).



C. Control actions

Here, we present the two possible control actions that are

implemented in our modeling framework.

Awareness. Through information campaigns, people can be

prompted to take self-protective behaviors. We introduce

a parameter ua ∈ R≥0 that quantifies such an effort

by public heath administrations. Specifically, each sus-

ceptible individual Xv(t
−) = S) starts adopting a self-

protective behavior (Xv(t
+) = P ) according to a Poisson

clock with rate uaν, independent of the others.

Confinement. The activity of infected individuals can be

lowered through confinement strategies. We introduce

a parameter uc ∈ [0, 1] that quantifies the effect of

such policies. Specifically, we consider a state-dependent

version of ADNs, similar to [14], [30], in which the

Poisson clock that governs the activation of an infected

individual v ∈ V with Xv(t) = I has rate av(1− uc).

III. MAIN RESULTS

The SAIS epidemic process described in Section II induces

an n-dimensional Markov process X(t) in the state space

{S, P, I}V , where the generic vth node has instantaneous

transition rates summarized by the matrix

Qv =









· uaν
λav
n

∑

w:Xw=I

1 + (1− uc)
λ

n

∑

w:Xw=I

aw

ν · 0
0 µ ·









whose rows (columns) correspond to the three states S, P , and

I , respectively. Hence, the probability that v changes his/her

state from h ∈ {S, P, I} to k ∈ {S, P, I} is equal to

P[Xv(t+∆t) = k |Xv(t) = h] = (Qv)hk∆t+ o(∆t) ,

for any h 6= k. The diagonal entries of Q are equal to the

opposite of the sum of the other two entries, to ensure that

the rows of Q sum to 0.

Note that the dimension of the state-space of the Markov

process X(t) grows exponentially with n and the expression of

Qv depends on the state of the other nodes. This joint depen-

dence along with exponential growth of the state-space hinder

the analysis of X(t) for large-scale systems. Following [3], we

study a continuous-state deterministic mean-field relaxation

of the dynamics. Instead of the evolution of the individuals’

state, we study the probability for each individual to attain

each of the three states, that is, sv(t) := P[Xv(t) = S],
pv(t) := P[Xv(t) = P ], and iv(t) := P[Xv(t) = I]. These

three probabilities are governed by a system of 3n ordinary

differential equations (ODEs) [3], which can be obtained from

[ṡv ṗv i̇v] = [sv pv iv]Qv , ∀ v ∈ V , yielding

ṡv = −uaνsv + νpv

−λsv

[

av
1

n

∑

w∈V

iw + (1− uc)
1

n

∑

w∈V

awiw

]

,

ṗv = uaνsv − νpv + µiv ,

i̇v = −µiv + λsv

[

av
1

n

∑

w∈V

iw + (1− uc)
1

n

∑

w∈V

awi

]

.

(1)

The following result proves that Eq. (1) is well-defined, that

is, (sv(t), pv(t), iv(t)) is always a probability vector.

Lemma 1. The set {(sv, pv, iv) : sv, pv, iv ≥ 0, sv+pv+iv =
1, ∀ v ∈ V} is positive invariant under Eq. (1).

Proof. We immediately verify that, if one of the variables is

equal to 0, then its derivative is always nonnegative. Hence,

the nonnegative orthant is a positive invariant set. We further

observe that ṡv + ṗv + i̇v = 0, preserving the sum of the three

variable for each node v, which proves our claim.

As a consequence of Lemma 1, only 2n of the ODEs

from Eq. (1) are linearly independent.

Before presenting our main results, we introduce some

more notation. We define the average activity of the whole

population and its second moment as

α1 :=
1

n

∑

v∈V

av , α2 :=
1

n

∑

v∈V

a2v .

Similarly, we define the macroscopic variables

ys :=
1

n

∑

v∈V

sv , yp :=
1

n

∑

v∈V

pv , yi :=
1

n

∑

v∈V

iv , (2)

that is, the average probability for a randomly selected node

to attain any of the three states.

In the thermodynamic limit of large populations, n → ∞,

the temporal evolution of the stochastic SAIS process at the

population level can be approximated by the macroscopic

variables in Eq. (2) for any finite time-horizon within an

arbitrary precision1 [3], [32], [33]. This is due to the absence

of a fixed connectivity pattern in the ADN mechanisms, so

that individuals interact in an anonymous fashion [14]. Thus,

the epidemic prevalence I(t) can be approximated as

I(t) :=
1

n

∣

∣

∣
{v ∈ V : Xv = I}

∣

∣

∣
≈ yi ,

and, similarly, the fraction of susceptible S(t) ≈ ys and self-

protective individuals P (t) ≈ yp. Hence, for sufficiently large

populations and limited time-horizons, we can study the be-

havior of the epidemics at the population level through Eq. (1),

as showed in Fig. 2. In view of these considerations, we focus

on the analysis of the epidemic process for large populations

by studying Eq. (1).

A first, key question we aim to elucidate is whether a

small or local outbreak of the infectious disease will quickly

extinguish or whether it will spread, yielding to a pandemic.

From a mathematical point of view, answering such a question

in the thermodynamic limit corresponds to finding under

which conditions the disease-free equilibrium is a (local)

asymptotically stable equilibrium of Eq. (1). Such conditions

establish the so-called epidemic threshold of the model [1],

which is characterized in the following result.

1For finite populations and long time-horizons, the behavior of the stochas-
tic epidemic models and their deterministic relaxations may show large
deviations, since stochastic models always reach a disease-free state in a time
that may grow exponentially in the population size [31].
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Figure 2: Simulations of the stochastic SAIS model (solid

curves) and its deterministic approximation (dashed curves) at

the population level for increasing population sizes. Activities

ais are uniformly distributed in [0, 1], µ = 1/7, λ = 0.43,

ν = 0.5, ua = 0.4, and uc = 0.3.

Theorem 1. In the thermodynamic limit of n → ∞, the

epidemic threshold for the SAIS model in Eq. (1) is equal

to

σ :=
2(1 + ua)

(2− uc)α1 +
√

u2
cα

2
1 + 4(1− uc)α2

. (3)

If λ/µ < σ, the disease-free state yi = 0 is locally asymptot-

ically stable.

Proof. From Eq. (1), we observe that

(sv, pv, iv) =
( 1

1 + ua

,
ua

1 + ua

, 0
)

, ∀ v ∈ V , (4)

is the disease-free equilibrium, that is, the unique equilibrium

point of Eq. (1) with yi = 0, and it is globally asymptotically

stable on the disease-free manifold iv = 0, for all i ∈ V . To

study its local stability, we follow a technique similar to the

one proposed in [14]. We introduce two ancillary variables

z1 := ys −
1

1 + ua

, and z2 =
1

n

∑

v∈V

aviv ,

that is, the difference between the average probability that an

individual is susceptible and the corresponding quantity in the

disease-free equilibrium and the average activity of infected

individuals, respectively. We conclude that the disease-free

equilibrium is (locally) asymptotically stable if and only if

the origin is (locally) asymptotically stable for the system of

ODEs composed of z1, yi, and z2. From Eq. (1), we derive

the system of ODEs for these three variables and we linearize

it about the disease-free equilibrium, obtaining

ż1 = −ν(1 + ua)z1 −
(

λα1

1 + ua

+ ν

)

yi −
λ(1− uc)

1 + ua

z2 ,

ẏi =

(

λα1

1 + ua

− µ

)

yi +
λ(1− uc)

1 + ua

z2 ,

ż2 =
λα2

1 + ua

yi +

(

λ(1− uc)α1

1 + ua

− µ

)

z2 .

The Jacobian matrix of the system,














−ν(1 + ua) − λα1

1 + ua

− ν −λ(1− uc)

1 + ua

0 −µ+
λα1

1 + ua

λ(1− uc)

1 + ua

0
λα2

1 + ua

−µ+
λα1(1− uc)

1 + ua















,

has eigenvalues equal to −ν(1 + ua) < 0 and to

−µ+
α1(2− ua)

2(1 + ua)
λ± λ

1 + ua

√

u2
c

4
α2
1 + (1− uc)α2 .

The largest eigenvalue is negative if and only if λ/µ < σ,

from Eq. (3), which yields the claim. Note that the ancillary

variable z2 is necessary to explicitly study the ODE that

governs yi, while z1 shifts the equilibrium point of ys to the

origin, simplifying the analytical computations.

Remark 2. For ua = uc = 0, Eq. (3) reduces to the threshold

for the standard SIS model on ADNs [12], [13]; and for ua =
0 it reduces to the threshold of the SIS model in the presence

of behavioral changes due to infection [14], [30]. In general,

the epidemic threshold is monotonically increasing in ua and

uc, as shown in Fig. 3a. From the epidemic threshold, one can

derive the basic reproduction number as R0 = λ/µσ.

In the limit case of homogeneous ADN (that is, av = α1,

∀ v ∈ V), a complete analysis of the thermodynamic limit

n → ∞ of the epidemic process can be performed. Note

that there might be realistic scenarios (for instance, during

a lockdown) in which the population’s heterogeneity could be

strongly reduced and the population treated as homogeneous.

Theorem 2. Consider the SAIS model in Eq. (1) in the

thermodynamic limit of n → ∞ on a homogeneous ADN with

av = α1, for all v ∈ V . If

λ

µ
≤ σh :=

1 + ua

α1(2− uc)
, (5)

then the system in Eq. (1) converges to the disease-free

equilibrium in Eq. (4). If λ/µ > σh and i(0) > 0, the system

in Eq. (1) converges to

ȳs =
µ

λα1(2− uc)
, ȳi =

ν

µ+ ν
− µν(1 + ua)

λα1(2− uc)(µ+ ν)
,

(6)

and ȳp = 1− ȳs − ȳi.

Proof. Let us consider the macroscopic variables defined

in Eq. (2). From Eq. (1), we derive the system of ODEs that

govern their evolution which, in this case, reduces to

ẏs = −uaνys + νyp − λα1(2− uc)ysyi ,
ẏp = uaνys − νyp + µyi ,
ẏi = −µyi + λα1(2− uc)ysyi ,

(7)

where one equation is a linear combination of the other two,

since ys + yp + yi = 1. We analyze the planar system

comprising the first and the last equations in Eq. (7). We

observe that the epidemic threshold σ from Theorem 1 re-

duces to the expression in Eq. (5). Introducing the function

φ(ys, yi) = (ysyi)
−1, we observe that

∂(φẏs)

∂ys
+

∂(φẏi)

∂yi
= −ν(1− yi)

y2syi
< 0 ,

almost everywhere in the planar domain. Bendixson-Dulac

criterion is used to exclude the existence of limit cy-

cles [34]. Since the system is planar and the domain bounded

(Lemma 1), Eq. (7) necessarily converges to an equilibrium

point. From a direct computation, we find that, for λ/µ < σh,
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Figure 3: (a) Epidemic threshold and (b) endemic prevalence

for different values of ua and uc, from Theorems 1 and 2,

respectively. In (a) ais are uniformly distributed in [0, 1] and

ν = 0.5; in (b) α1 = 0.5, ν = 0.5, λ = 0.43, and µ = 1/7.

the disease-free equilibrium (1/(1+ua), ua/(1+ua), 0) is the

unique equilibrium point of Eq. (7) and, thus, it is globally

asymptotically stable. If λ/µ > σh, the disease-free is still

a rest point, but it becomes unstable (that is, asymptotically

stable only on the disease-free manifold yi = 0), while a

second equilibrium point is found in correspondence to the co-

ordinates in Eq. (6). Its asymptotic stability is a straightforward

consequence of the instability of the disease-free equilibrium,

together with the absence of other rest points and of closed

trajectories. Finally, convergence to the disease-free equilib-

rium for λ/µ = σh is established by observing that Eq. (6)

coincides with the disease-free equilibrium Eq. (4).

Remark 3. Unsurprisingly, from Eq. (6), we observe that the

endemic prevalence is monotonically decreasing with respect

to the two control actions ua and uc, as shown in Fig. 3b.

IV. ANALYSIS OF CONTROL ACTIONS

The theoretical results in Section III can be leveraged to

elucidate the effect of different control actions that can be

taken to contrast an epidemic outbreak. First, we consider an

epidemic outbreak in its early stages. In this scenario, we

aim to determine which control action should be prioritized

and, in general, what is the optimal strategy to maximize

the epidemic threshold, thus hindering the diffusion of the

infectious disease. Second, we consider a disease that has

already reached its endemic state. Assuming a homogeneous

population, our theoretical results are used to understand how

a control policy should be designed to mitigate the epidemic

prevalence, in the endemic state.

A. Early stages of an epidemic outbreak

From the analytical expression of the epidemic threshold

in Eq. (3), one could infer which control action may be more

effective to contrast the inception of an epidemic outbreak.

Toward this aim, we examine the sensitivity of Eq. (3) with

respect to the two control parameters, thereby obtaining

∂σ

∂ua

=
2

(2− uc)α1 +
√

u2
cα

2
1 + 4(1− uc)α2

,

∂σ

∂uc

=

2(1 + ua)

(

α1 +
2α2−ucα

2

2√
u2
c
α2

1
+4(1−uc)α2

)

(

(2− uc)α1 +
√

u2
cα

2
1 + 4(1− uc)α2

)2 .

(8)

By comparing the two quantities in Eq. (8), we observe

that ∂σ
∂ua

(0, 0) > ∂σ
∂uc

(0, 0). Hence, we conclude that, in

the very first stages of the epidemic outbreak, public health

administrations may found more effective to prioritize the

promotion of self-protective behavior, rather than actions to

confine all the infected individuals.

B. Optimal control policies

The explicit expression for the epidemic threshold can be

further used to devise an optimal control policy in which a

total budget must be used to fund a mix of the two control

actions. Such a decision problem can be formalized through

the following optimization problem:

Problem 1 (Minimize outbreak risk).

minimize f1(ua, uc) = −σ(ua, uc) ,
subject to g(ua, uc) ≤ B ,

ua ∈ R≥0 , uc ∈ [0, 1] ,

where the function σ(ua, uc) is defined in Eq. (3), g(ua, uc) is

the cost function for exerting control actions ua and uc, and

B ∈ R≥0 is the total budget.

We observe that the objective function is concave, which

hinders the use of standard optimization tools. However, since

the objective function is monotonically decreasing with respect

to both variables, its minimum is necessarily attained for

values of ua and uc that satisfy the equality constraints

g(ua, uc) = B. Thus, Problem 1 can be reduced to a one-

dimensional problem by writing the constraint with respect

to one of the variables and solving with respect to the other

(analytically or numerically).

C. Minimizing endemic prevalence

For homogeneous populations, Theorem 2 provides an ex-

plicit computation of the epidemic prevalence of endemic dis-

eases. Similar to Problem 1, we can formulate an optimization

problem to minimize the endemic prevalence, given a total

budget that should be divided between the two control actions,

as follows:

Problem 2 (Minimize prevalence).

minimize f(ua, uc) = ȳi(ua, uc) ,
subject to g(ua, uc) ≤ B ,

ua ∈ R≥0 , uc ∈ [0, 1] ,

where the function ȳi(ua, uc) is defined in Eq. (6), g(ua, uc)
is the cost function for exerting control actions ua and uc,

and B ∈ R≥0 is the total budget.



Similar to Problem 1, the objective function is concave,

but the solution is attained when the equality constraint is

verified, allowing to reduce Problem 2 to a one-dimensional

minimization. We propose the following example to clarify

this approach.

Example 1. Let us assume a linear control cost function ua+
ccuc ≤ B, for some cc ∈ R≥0. We set ua = B − ccuc and

analytically solve the one-dimensional minimization problem

obtained, determining the optimal solution

u∗
c =

{

max{1, B/cc} if cc < (1 +B)/2 ,
0 if cc ≥ (1 +B)/2 ,

and u∗
a = B − ccu

∗
c . This result suggests that, if the cost for

implementing containment policies is sufficiently small with

respect to the budget, containment policies should always be

implemented.

V. CONCLUSION

In this letter, we have proposed an epidemic model on

activity driven networks that encapsulates two different con-

trol actions, typically adopted by public health authorities:

enforcing individuals to take self-protective behaviors and

containment techniques to reduce the social interactions gen-

erated by infected individuals. Through a mean-field analysis

of the model in the thermodynamic limit of large populations,

we have derived the epidemic threshold of the model and,

for homogeneous populations, we computed the epidemic

prevalence in the endemic state. Our theoretical results shed

light on the role of the two control actions in shaping the

evolution of the epidemic process, allowing for formalizing

optimization problems that can assist in the design of control

policies to contrast the epidemic outbreak in its early stages

or to minimize the prevalence of an endemic disease.

Beside extending the analysis of the two optimization

problems formulated in this letter, we plan to include further

features of real-world epidemics, such as mobility and more

complex human behaviors, toward mathematical modeling of

realistic epidemic outbreaks.
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