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Abstract—The problem of self-coordination of a network of
dynamical systems toward a common state is often referred
to as the consensus problem. In view of its wide range of
applications, the consensus problem has been extensively studied
in the last decades. However, most of the available results focus
on static networks, challenging our mathematical understand-
ing of coordination in temporal networks. In this paper, we
study discrete-time stochastic consensus over temporal networks,
modeled as activity driven networks. In this paradigm, each
node has a specific tendency to create links in the network,
measured through an activity potential. Differences in the activity
potential of nodes favor the evolution of highly heterogeneous
networks, in which some nodes are more involved in the process
of information sharing than others. Through stochastic stability
theory, we characterize the expected consensus state, which is
found to be dominated by low-activity nodes. By further leverag-
ing eigenvalue perturbation techniques, we derive a closed-form
expression for the convergence rate in a mean-square sense, which
points at a detrimental effect of heterogeneity for large networks.
Simulations are conducted to support and illustrate our analytical
findings.

Index Terms—Consensus, convergence rate, heterogeneity,
mean-square, stability of linear systems, time-varying networks

I. INTRODUCTION

Consensus protocols are a class of distributed algorithms
whose goal is to coordinate the units of a network of dy-
namical systems toward a common state. These protocols find
application in an impressively wide range of research domains,
including opinion formation, distributed estimation, and multi-
vehicle coordination [1]-[3].

Because of this wide range of applications, consensus
has received an extensive attention in the last fifteen years.
However, most of the research has focused on time-invariant
networks [4], and limited efforts have been devoted to time-
varying, stochastic networks. Criteria for almost sure conver-
gence of consensus protocols over Erdds-Rényi graphs have
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been originally presented in [5] and later extended to arbitrary
weighted graphs [6]-[10].

Building on these early studies, the literature has brought
forward a powerful toolbox of analytical tools that can help
elucidate stochastic consensus. For example, a detailed quan-
tification of the asymptotic consensus state is presented in [11],
approximate consensus is examined in [12], convergence
bounds are established in [13], and systems resilience is
studied in [14]. Several authors have investigated criteria for
the computation of convergence rates to consensus [15]-[21].
For specific network models, closed-form results have been
established, including numerosity-constrained networks [22],
linear vectorial models [23], and networks of conspecific
agents [24], [25]. Here, we seek to extend the rigorous analysis
of network of conspecific agents in [24] to heterogeneous
networks of interactions.

We focus on the paradigm of activity driven networks
(ADNs), which has emerged as a potent tool to faithfully
describe the evolution of several networks of interactions [26].
In ADNSs, each node is assigned a fixed parameter, called
activity potential, which encapsulates its propensity to commu-
nicate with its peers. Selecting a range of activity potentials
for the nodes in the network allows for elegantly modeling
heterogeneity. In the simplest incarnation of ADNSs, the activity
potential is the probability that a node is active in a time unit.
The key advantages of ADNs are that ) they allow for repro-
ducing highly heterogeneous networks, in contrast with ex-
isting models of time-varying, stochastic networks [26], [27];
and %) they yield an analytically tractable formulation, which
has afforded unprecedented analytical insight into complex
problems such as epidemic spreading [28], [29], voting [30],
and opinion dynamics [31]. Moreover, many features of real-
world networks, such as the presence of community struc-
tures [32], [33], heterogeneous nodes’ propensity to attract
connections [30], state-dependent behavioral changes [34], and
memory in the link formation process [35], can be included
in the ADN framework, yielding realistic models of social,
economical, and technological systems.

Preliminary results on consensus in ADNs, mostly based
on computational methods and time-scale separation between
the network evolution and the nodes’ dynamics, can be found
in [36], [37]. Here, we build on these endeavors toward a
rigorous mathematical treatment of consensus problems over
ADNs. Through stochastic stability theory and eigenvalue
perturbation methods, we establish closed-form results for the
rate of convergence of the mean-square error dynamics and for
the expected consensus state of the network. From the analysis
of these expressions, we bring forward surprising evidence
on the role of heterogeneity on consensus. Specifically, we
determine that low-activity nodes are the most influential in
shaping the final state of the network and that the speed of



convergence could be hindered by the heterogeneity of the
nodes’ activity.

The main technical contributions of this paper are as fol-
lows: i) we extend the analysis of [22] to analytically study
the error dynamics in a mean-square sense for consensus
problems over ADNs, where the activities of all the units
are generally heterogeneous; i7) we demonstrate the appli-
cation of perturbation techniques to compute a closed-form
expression for the convergence rate to consensus, which helps
understanding how even modest heterogeneities in the system
could impact the effectiveness of the consensus protocol; i)
we analyze the expected consensus state for arbitrary ADNs
and perform once more a perturbation analysis to highlight
the sensitivity of consensus to heterogeneities in the nodes’
activity; and iv) with an eye toward applications of ADNs in
real-world problems, we derive a toolbox of asymptotic results
for consensus over large networks.

The rest of the paper is organized as follows. In Section II,
we introduce the problem statement. In Section III, we recall
basic notions of stochastic stability theory for consensus
protocols. In Section IV, we analyze the consensus protocol
on ADNs and we present our main results. In Section V,
we perform an asymptotic analysis of the system for large-
scale networks. Section VI concludes the paper and outlines
potential avenues of future research.

II. PROBLEM STATEMENT
A. Notation

We gather here the notational convention used throughout
the paper. R, R™, and Z* are the sets of real, nonnegative real,
and nonnegative integer numbers, respectively. 1 is the vector
of all ones, e; is a vector with all zeroes but a one in the ith
position. Given a vector =, #7 denotes its transpose and ||z||
its Euclidean norm. Given a matrix M, we denote its spectral
radius as p(M). I is the identity matrix. Matrices and vectors’
dimensions are omitted when not necessary. The operators ®
and @ denote Kronecker product and sum, respectively. The
use of Kronecker algebra will often lead us to work with n? x
n? matrices. We write them in n? blocks of n x n matrices.
More specifically, given a n? x n? matrix M, we use four
labels to denote the blocks (superscript) and the position of
the entry in the block (subscript), as follows:

M i

n jih jih

v M2 M? i M, M3,
Mnl Mnn Mﬁb Mylz

Thus, Mfkh is the entry in the ith row and kth column of the
block in the jth row and hth column of M. Similarly, we
write n2-dimensional vectors as v = [v],vi,... 0L ... 7.

Expected values of random variables are denoted as E[-].

B. ADNs’ time-evolution

Let V = {1,...,n} be a set of n > 3 nodes connected
through a time-varying directed graph Gy = (V, &), where
&, is the time-varying edge set, and k € Z* is the discrete
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Fig. 1: Exemplary evolution of an ADN. At time k£ = 0, node
1 activates and generates m = 3 directed links. At time k = 1,
nodes 3 and 5 activate, generating 3 links each. At time k& = 2
none of the nodes activates.

time index. The graph Gy, is generated according to a (direct)
discrete time ADN [26] with unit time-step and nodes’ activity
potential given by the vector a € (0, 1]™. Specifically, at each
time step, every node ¢ € )V activates with probability equal
to a;, independent of the others and the past history of the
process. An active node generates m < n — 1 directed links,
connecting it with an m-tuple of nodes, selected uniformly
among the remaining n — 1 nodes. Links are oriented from
the active node toward the selected nodes and they last for a
unit time-step. Then, connections are deleted, the time index
updated, and the whole process resumes. Figure 1 depicts the
formation of an ADN.

We define the average activity potential and the standard
deviation of the activity potential as

The standard deviation ¢ measures the heterogeneity in the
nodes’ activity potentials. When o = 0, the ADN reduces
to the model of conspecific agents proposed in [24]. An
alternative way of describing such a heterogeneity consists of
separating the average activity, as follows:

a; =a+oh, 2

where h € R™ measures the deviation of each node from the

average. Note that, by definition, 17h = 0 and ||h|| = v/n.
For any discrete time k € Z™T, we define the adjacency

matrix of the time-varying network as A, € {0,1}"*", where

(Ar)ij = 1 <= (i,j) € &, and the Laplacian matrix
Ly, := diag (Ax1) — Ay, such that
o —(Ag)ij if i £
L)y = { Dongi(Ak)in if i = j. ®)

By construction, matrices Lj’s are a sequence of independent
and identically distributed (i.i.d.) random variables; we refer
to L as their common random variable.

C. Consensus over ADNs

The nodes’ dynamics are defined as follows. Each node
i € V has a continuous state z;(k) € R, which evolves
according to a discrete-time consensus protocol (see [3],
Section 3), starting from an initial condition zo € R™. At
each time step, every node updates its state by averaging with



the nodes with which it is temporarily connected. Specifically,
a generic node ¢ € V updates its state to

zi(k+1) = (1—em)zi(k) +e > _ Aja;(k), @
JEV

if (Lg)i; = m, while it remains ¢;(k + 1) = x;(k), if
(Lk)ii = 0. The parameter ¢ > 0 is used to capture the
nodes’ tendency to compromise. Specifically, ¢ is the weight
that each node assigns to the state of its neighbors during the
update process: the larger is ¢, the more a node will favor
the average state of the neighbors against its own during the
updating process. Hence, consensus dynamics is described by
the following time-varying linear system:

z(k+1)= (I — eLg)x(k) := Pya(k), %)

with initial condition x(0) = x¢, where the consensus matrices
Py’s are a sequence of i.i.d. random variables. In general,
Py’s are nonsymmetric and their entries are not required to
be nonnegative. We say that the consensus protocol converges
to a consensus state T if limg_, x(k) = 1, that is, all
nodes asymptotically attain the same state. Given that (5) is a
stochastic system, convergence must be defined in a stochastic
sense [38].

From the literature, almost sure convergence (that is, con-
vergence with probability 1) can be established for ¢ < 1/m,
which guarantees that Pj’s are nonnegative, and thus stochas-
tic (see, for example, [3], Section 3). Here, we focus on
mean-square convergence, which places no constraint on the
selection of ¢ and guarantees almost sure convergence in our
setting (see, for example, [13], [38], [39]). Through the lens of
mean-square convergence, one can aim at an analytical study
of the rate of convergence of the protocol, which is known
to be unfeasible in an almost sure sense, beyond a few low-
dimensional toy problems where one can compute the largest
sample-path Lyapunov exponent (more details can be found
in [40]-[42]).

III. PRELIMINARY RESULTS

Here, we review some basic notions of stochastic stability
and key properties of stochastic consensus protocols. First,
we introduce the agreement subspace A = {v € R" : v =
pl, i € R} and its orthogonal complement AL = {v € R" :
viu = 0,Yu € A}, called the disagreement subspace. To
study the convergence of the consensus protocol to a consensus
state, the dynamics z(k) is projected onto the disagreement
subspace, by means of a matrix Q € R"*("=1) gsuch that
Q"1 = 0 and QTQ = I (see, for example, [22]). The
dynamics of the disagreement vector £(k) = QT x(k) is

£k +1) = QTP,QE(k) = Pué(k), (6)

with initial condition £(0) = & = QTxo. The mean-
square stability analysis of the disagreement vector permits to
formalize a necessary and sufficient condition for mean-square
consentability for a consensus protocol, which is defined as
follows.

Definition 1 (Definition 2 from [43]). Consensus protocol (5)
is said to be mean-square consentable if for any i # j, |x;(k)—
z;(k)| — 0 in mean square sense, ¥ &, € R"~1.

The necessary and sufficient condition for mean-square con-
sentability based on the disagreement vector is the following.

Proposition 1 (Section III.B from [22]). Consensus proto-
col (5) is mean-square consentable if and only if the disagree-
ment dynamics (6) is mean-square asymptotically stable, that
is, if limy_ o0 E[||€(K)[?] =0, V& € R L.

For a linear system like (5), whose matrices Py’s are i.i.d., it
has been shown that mean-square convergence implies almost
sure convergence; details can be found in Proposition 4.3
from [39] and in Section 2 of [38], for the more general case
of state matrices from an ergodic Markov chain. Hence, in
our setting, mean-square consentability implies almost sure
convergence to consensus. In order to quantify the speed of
convergence of the protocol toward consensus, we use the
asymptotic convergence factor of the disagreement dynam-
ics [13], that is,

_E[lE®AN
ri= SupHEoH#Okhm ([|§0|2]> . (7)

— 00

The smaller the convergence factor, the faster the convergence
of the dynamics is. In [44], it is proved that < 1 is a neces-
sary and sufficient condition for mean-square consentability.
The following result establishes an easy-to-use expression for
the convergence factor.

Proposition 2 (Proposition 1 and Theorem 1 from [22]).
Protocol (5) is mean-square consentable if and only if its
convergence factor r < 1. The convergence factor is equal to
the spectral radius p(G) of the second-order consensus matrix

G=(R®R)(I—¢cE[L]®E[L] +’E[L® L]), (8)
where R = QQT =1 — %]l]lT.

For a mean-square consentable protocol, where convergence
to consensus is guaranteed almost surely, the expected con-
sensus state E[Z] can be computed using the following result,
which is indeed valid for the less restrictive case of almost
sure consensus.

Proposition 3. Let protocol (5) be mean-square consentable.
Then, the expected consensus state is E[z] = n1xo, where w
is the left eigenvector associated with the null eigenvalue of

E[L].

Proof. By using (5) recursively and computing the expected
value, we obtain

z(0) = E[P]",, 9)

where the last equality holds since Pj’s are i.i.d. random
variables with common random variable P = I — L. Hence,
E[z(k)] evolves as a time-invariant deterministic protocol with
consensus matrix E[P]. According to Theorem 2.2 from [3],
since E[x(k)] — z1, then E[P]* — 1uT. By expressing E[P]
in terms of its Jordan canonical form, we conclude that p is the



left eigenvector associated with the unit eigenvalue of E[P],
which, in turn, coincides with the left eigenvector associated
with the null eigenvalue of E[L]. O

IV. ANALYSIS OF THE CONSENSUS PROTOCOL

The analysis of the consensus protocol on ADNs is carried
out with two objectives. First, we compute the convergence
factor of the consensus protocol by using an eigenvalue
perturbation argument. This closed-form result enables us to
derive a sufficient condition for almost sure convergence, and
it unveils a potentially adversary effect of heterogeneity on the
convergence speed of the protocol. Then, we study the effect
of the nodes’ activity on the formation of the consensus state,
under the premise of mean-square consentability. Specifically,
we demonstrate that nodes with low activity influence the most
the expected consensus state.

A. Convergence Speed to Consensus

We examine consentability of (5) by computing the conver-
gence factor r, which is equal to the spectral radius of matrix
G in (8), according to Proposition 2. The exact computation
of p(G) for an arbitrary set of activities a;’s does not seem
feasible when the activity potentials are heterogeneous, due to
the nontrivial structure of the two matrices E[L] @ E[L] and
E[L ® L] in Proposition 2.

To address this issue, we study the effect of heterogeneity
through a perturbation argument. Specifically, the expression
for the activity potentials in (2) enables us to separate the effect
of the average activity potential (which is studied through the
paradigm of conspecific agents [22]) from the heterogeneity
in the activity potential (which acts as a perturbation factor).
Hence, we write matrix G = Gy + 0Gy + O(c?), where
Gy is the second-order consensus matrix for an ADN with
homogeneous activity potentials equal to a, whose spectrum
is given in [24]. Such a perturbation analysis allows for
computing the convergence rate of consensus on ADNs in
closed-form, up to an error of the order of o2, shedding light
on how a modest heterogeneity in the activity of the nodes
influences the consensus dynamics.

To prove our main result, the following intermediate steps
are carried out. In Lemma 1, we recall the computation of the
spectral radius of the unperturbed component of matrix G, that
is, p(Gy), from [24]. Then, the first-order perturbation G; is
evaluated in Lemma 2. In Lemma 3, we reckon that the first-
order perturbation of the spectral radius is null. This evidence
calls for the evaluation of the first-order perturbation of the
associated eigenvector, in Lemma 4, which allows for the
computation of the second-order perturbation of the spectral
radius. Theorem 1 consolidates these findings into our main
result.

Lemma 1 (Theorem 1 from [24]). Under the assumptions
m >1,a>0, and € > 0, the spectral radius py := p(Gy) is
associated with a simple eigenvalue, equal to

2amn o

1—|—€am

az—l—m—i—l ,

po=1—¢ % (10)

n —

and its corresponding eigenvector is

1

Uy = vec(R). 11
Matrix Gy has at most three other real eigenvalues,
A = 0,
2amn nma
2 2
A®2) 1—€n_1+5am{2( —y m _J,
A3 — 1_ eman
n—1/) "
(12)

whose corresponding eigenspaces are, respectively,

ra = {veR"2:vzw@]l,orvz]l@w,wGR”}
1
re = n* . v = b;Re; — — ‘Re;
v €R™ :v; = b;Re; anJReJ,
JEV
]lszO,be]R”}
ré = {UER”2:Zvizo,viT]l:O,efvi:O},

(13)
where the notation vI = [v' ... vI] is used. The dimensions

of TM, T and TG are 2n 4+ 1,n — 1,n* — 3n — 1,
respectively, and these spaces are mutually orthogonal and
to the span of uy.

Lemma 2. The first-order perturbation associated with the
activity’s heterogeneity is G1 = (R ® R)M, where

MV = —¢

n -mdiag (h)R + mh; I

2
i [a(R = ej(Rej)™) + ej(Re;)" ]
+52%d [diag (h)(R — e; (Rej)Tﬂ J

5 MM
+€
n—

E%hj] + 52%@6]' [el — meﬂ
2
—eQﬁa [diag (h) (R — ¢j(Re;)")]
2_mim—1)
(n—=1(n-2)
—ezﬁdhj(]% —e;j(Re;)h), for h # .
(14

Mjh —

+e hje; [llT —ef — e?]

Proof. With respect to its ith row, the random variable L is
defined as follows:

o with probability a;, L;; = m and m off-diagonal entries,
chosen uniformly at random, are equal to —1, while the
others are equal to 0; and

o with probability 1 — a;, all the entries are equal to 0.

Therefore, we find E[L] = -"3m diag(a)R. Through a cum-
bersome, counting argument, we can compute the two matrices
E[L]®E[L] and E[L ® L]. Their expressions, block-wise, are

(E[L]®E[L]) = lediag(a)R + maj,1,

i (15)

(E[L] ® E[L])7" ma;1,

n—1



(E[L® L)) = :T -a; [diag(a)(R — e;(Re;)")
+e; (i) I
(E[L® L))" = (nnm1)2a7 [diag(a)(R — e;(Re;)")]
e e, 17 e - ]
+ 1%3¢) ler, —me;]
(16)

The expression for M is obtained by combining the matrices
above according to (8), expressing the activity potentials
through (2), and collecting all the terms in o. O

Remark 1. While the unperturbed matrix G is symmetric, the
first-order perturbation matrix G is in general not symmetric.

Next, we recall the following result from second-order
perturbation theory of simple eigenvalues, which is often used
in quantum mechanics [45], applied to the spectral radius of

G.

Proposition 4 (From [45], Chapter 6.1). The spectral radius
p(G) can be written as p(G) = pg + op1 + 02pa + O(d3).
The first-order perturbation is given in terms of ug and G as

P1 = uOTGluO. (17)
The second-order correction requires knowledge of the first-
order perturbation to the eigenvector associated with the
spectral radius. Specifically,

n2

T
o 'Ui Gluov_
- § i
i

=g PO~

pQ:ugGlul, with  uq (18)

where Mg, ..., An2 are the n? — 1 eigenvalues of Gy in (12),
counted with their multiplicity, and vs,...,v,2 are their
corresponding eigenvectors in the eigenspaces in (13).

Vector u; represents the first-order perturbation to the
eigenvector associated with the spectral radius of G, that is,
u = up + ouy + O(0?), with ug defined in (11). While in
many practical applications it is sufficient to retain a first-
order perturbation to gain insight into the role of a critical
parameter [46], consensus over ADNs requires the study of
second-order corrections. In fact, the next claim shows that

p1=0.

Lemma 3. Under the assumptions m > 1, a > 0, and € > 0,
the first-order perturbation correction to the spectral radius
p(G) is p1 = 0.

Proof. Based on Proposition 4, we compute p; = ul Gyuy.
First, recalling (11), we define the vector y := Muy, that is,

~7 h
go= ) ML uOkh— 0 Rin =
h,key hkeV
- = 12 AN D
- n— 1 n h n ik ’
heVv heV,k#h

19)

which can be computed using the explicit expression of M in
Lemma 2. Details can be found in the Appendix. Then, we
evaluate y = (R ® R)y entry-wise, as

SO

h#i k#i

i (n— 1)
Yi = n2

szkv

h,k#i

(20)
and, similarly, for the off-diagonal elements. Explicit compu-
tations of vectors ¢ and y are cumbersome, but they follow
directly from the expression of M. Details are summarized in
the Appendix. We present the final result, that is,

n—2 1

emyh; ifi=j
i n n-—1
yl = 1" @y
———em(hi+hy) (i,
ny/(n—1)
with 9 9
n _ n
v i= mama B +em +e. (22)
In a more compact form, we write
Y= : 15m’yq, (23)
where the unit-norm vector ¢7 = [¢T,...,¢] is
n 1
¢ =41/ ——h;Re; — ——— hjRe; (24)
n—2 Vn(n —2) ;

From (13), we note that y € I'®). Since eigenspaces are
mutually orthogonal, y is orthogonal to ug. Hence, (17) implies
p1 = ul Grup = uly = 0. O

Thus, a first-order perturbation is not sufficient to elucidate
the role of the heterogeneity in the nodes’ activity on the
rate of convergence of the protocol. We use the spectral
characterization of Gy in Lemma 1 to prove the following
statement.

Lemma 4. Under the assumptions m > 1, a > 0, and € > 0,
the first-order perturbation correction to the eigenvector of G
associated with its spectral radius is

(n—=2)(n-1)

— /49
_ ma
ean <1 — )
n—1

where vector q is defined in (24) and parameter v in (22).

(25)

uy =

Proof. We split the summation of wq in (18) into three terms,
one for each eigenspace of Gy, such that

1 o 1 1
e [ﬂo @ po — A®)
where II; is the matrix associated with the orthogonal projec-
tion onto the eigenspace I';, and the vector y = Gyug is com-
puted in (23). Since ¢ € I'y, the projections Py = Psy = 0,
while P,y = y. Using Lemma 1, we obtain

w — 1 In—2  \/(n—2)(n—1)
1—p07)\(2) n_l’yq_gan<1_ ma >'VCI7

(n—1)

I + Hs] y, (20

27)



which concludes the proof. O

We consolidate our claims in the following theorem, which
is the main result of this paper.

Theorem 1. Given a consensus protocol over an ADN with
activity potentials given by (2), m > 1, a > 0, and € > 0, the
convergence factor is

ro= 1—52amn+52&m _nma_ +m+1
N n—1 (n—1)2
-2
_|_0_2 (n )TI’L_ ,yﬁ+0(0.3)’ (28)
ma
an <1 — >
n—1
where -y is defined in (22), and
2n 2n n—1
— G— — - 29
p (nfl)ZEma n—1 n_2"""n_2 29)

Proof. We compute the vector 2T := ul'G; as follows. First,
we observe that ul (R ® R) = ul’, since ug is an eigenvector
associated with the eigenvalue 1 of the matrix R ® R. Then,
2T = ul'M is computed by following the technique used
in the proof of Lemma 3, whose details can be found in
the Appendix. We report the final expression recalling the

definition of ¢ in (24), that is,

n—2
n—1

(30)

z = emfq,

where [ is defined in (29). Using Lemma 4 to evaluate u; and
applying Proposition 4, we conclude that

Vi =2 - 1)7\/Z : famb’qTq

p2 = - (1 -
can _ _ma
(n—l))
(n—2)m G
= )
an (1 — n—l)
which yields the claim. O

The numerical estimations in Fig. 2 supports our analytical
predictions and suggest that the accuracy of a parabolic
representation for the convergence rate extends beyond the
limit of small values of ¢, upon which the perturbation analysis
rests.

Remark 2. The estimation in Theorem 1 can inform a
qualitative analysis on the effect of the heterogeneity of the
nodes’ activity on the convergence factor of the consensus
protocol. For o = 0, the convergence rate is exactly given
by the first three summands on the right hand side of (28),
analogously to the consensus protocol over conspecific agents
considered in [24]. By introducing heterogeneity through the
ADN paradigm, the convergence factor will vary, so that small
values of o will cause a change in the convergence factor of the
order of o02. Whether this change will increase or decrease the
value of r depends on the parameters of the ADN (that is, n,
m, and a) and the parameter € of the consensus protocol. The
scenario of large networks, with n — oo, will be extensively
analyzed in Section V and explicit closed-form results are
derived therein.
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(b) n =50, m = 10, € = 0.05

Fig. 2: Variation of the convergence factor with respect to the
case of nodes with the same activity, Ar, for increasing values
of o, for two choices of the model parameters (in both cases
a = 0.1). Vector h is generated uniformly at randomly under
the constraints 174 = 0 and ||h|| = \/n. Consequently, the
activity potential of node ¢ is a; = a+oh;, for any ¢ € V. Red
circles are Monte Carlo estimations (over 100 realizations of
h) with the corresponding 95% confidence intervals, and the
blue curve is our analytical prediction, up to the second order
power in 0.

B. Expected Consensus State

Assuming that » < 1, z(k) converges almost surely to a
consensus state . This state can be characterized through
Proposition 3, leading to the following result.

Theorem 2. Given a mean-square consentable protocol (5)

over an ADN with activity potentials a;, © € V, then
limg 00 (k) = Z1 almost surely, with
a7t
E[z] = 7Tz, ==, (32)
Djev @

Proof. By applying Proposition 3, we compute the left eigen-
vector of E[L] associated with the null eigenvalue. From
the computations in Lemma 2, we recall that E[L] =
"_diag(a)R. Observing that 17 R = 0, we conclude

' E[L] =0 <= n'diag(a) x 17 <= m oca;*. (33)
The normalization of the eigenvector concludes the proof. [

Remark 3. Consensus protocol over an ADN leads to a
consensus state which is not the arithmetic average of the
initial states. The initial condition of each node is weighted



Fig. 3: Sample path of the process and compares the evolution
of the state variables with the predicted consensus state (red
dashed line). The arithmetic average of the initial conditions,
which is the expected steady-state value for homogeneous
systems, is shown as a blue dotted line. Numerical simulations
are performed with n = 50, ¢ = 0.05, and m = 10.
Following [26], activity potentials are distributed according
to a rescaled power-law with exponent v = —2.2 and a lower
cutoff of anin = 0.01 to avoid singularities close to zero.
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Fig. 4: Empirical distribution of the consensus values for set
of Monte Carlo simulations over 50,000 independent runs
from the same initial condition of the state variables. The 95%
confidence interval of the consensus state from Monte Carlo
simulations is [0.6448, 0.6454]. The predicted consensus value
from (32), E[z] = 0.6453, is plotted as a red line. Parameters
are n = 50, ¢ = 0.05, and m = 10. Following [26], activity
potentials are distributed according to a rescaled power-law
with exponent v = —2.2 and a lower cutoff of @i, = 0.01

to avoid singularities close to zero.

by the inverse of its activity potential, which can be associated
with its resistance to compromise. Nodes with low activity are
less inclined to create connections, such that they will be less
prone to compromise their state.

Figures 3 and 4 illustrates the outcome of numerical simula-
tions that support our findings in Theorem 2. Figure 3 exem-
plifies a sample path of the consensus protocol, illustrating
that the heterogeneity in the nodes’ activity causes a shift
of the consensus value away from the arithmetic average of
initial conditions, which would be expected for a homogeneous
systems. Figures 4 demonstrates results from Monte Carlo
simulations that indicate very good agreement between the
expected value of the empirical distribution and analytical
predictions.

Remark 4. Conducting a Taylor expansion on (32) with
respect to o, we discover that the consensus state is influenced
by o at the very first order, so that

1 1
Elz] = - i —o0— ) hizo;
[Z] n;xo ana; T
lj 1 2 © 3 4
+o @Z(hi — Do + O(c®),
i€V
where xq; denotes the ith entry of the initial condition

xo € R"™. For the problem analyzed in Fig. 3, the first-order
approximation in (34) would predict a consensus value of
0.6505, while retaining a parabolic expansion would yield
0.6435, with an error smaller than 0.3%.

V. APPLICATION TO LARGE NETWORKS

We conclude this paper by performing an asymptotic analy-
sis for large networks, in the limit n — oo. In this practically
relevant case, numerical computation of the spectral radius
of G in Proposition 2 would be unfeasible, strengthening the
merit of our closed-form solution in Theorem 1 based on
perturbation theory. In the homogeneous case of ¢ = 0, mean-
square consentablility is attained for e(m + 1) < 2 and, given
m and @, € = &* = 1/(m + 1) yields the fastest convergence
rate [24]. In the presence of heterogeneity in the activity of

the nodes, we obtain the following asymptotic expressions'.

Corollary 1. In the limit n — oo, the convergence factor of
the consensus protocol (5) has the asymptotic expression:
1 — 2eam + 2am(m + 1)
om(2—e(m+1))(2—em)
g =
a

T =

(35)

+ +O(03).

Proof. For large n, the prediction of Theorem 1 reduces to
r=1-2cam+e’am(m+1) + 02@76 +0(c%), (36)
a

and the expressions for v and /3 in (22) and (29), respectively,
yield v = em+¢€—2 and 8 = em — 2. The proof is completed
by substituting these asymptotic expressions in (36). O

Remark 5. Small heterogeneities have always a detrimental
effect on the convergence factor. For n — oo, the coefficient
of 02 in (35) is strictly positive for any choice of the pa-
rameters such that e(m + 1) < 2. Thus, heterogeinity in the
nodes’ activities decreases the convergence speed, potentially
hindering consensus. Given e(m + 1) < 2, so that r < 1
when o = 0, the largest level of heterogeneities that can
be tolerated by the protocol before losing convergence can
5= As one might anticipate,
the critical value of o scales with the average activity in
the group, such that for ADNs with large values of a, one
may tolerate more severe heterogeneities. Interestingly, the
larger is the value of €, the more the protocol is sensitive to
heterogeneities, since the nodes will tend to compromise more
with their neighbors, thereby enhancing the overall effect of
heterogeneities in the network. Finally, increasing m mitigates

be estimated as 0 = a

! Although n — oo, r is bounded since m is finite. In fact, a trivial bound
on the spectral radius of matrix G can be obtained from (8), based on the
fact that p(L) < ||L|| < 2m. Hence, r < (1 + 2em)?2, for any value of n.



the effect of heterogenities, where the number of links created
in each update is smaller.

Remark 6. From (35), we may seek to determine the fastest
convergence rate that can be attained by the protocol on a
given ADN and determine the value of ¢ that is conducive to
optimal consensus. Toward this aim, we determine

1 2 1 3
e — —+0 37
€= g+ 5+ 00, (37)
which yields the optimal asymptotic convergence factor
1 am(m +2) 3
= — 40 . 38
nrl  ° a(erl)jL (%) (38)

Predictably, the fastest attainable rate of convergence de-
creases with o>

Remark 7. In the limit n — oo, one may offer a probabilistic
interpretation of (32). Specifically, let us assume that the
initial conditions are drawn from a given scalar distribution
Xo and the activitiy potentials are also drawn from another,
independent, distribution A, similar to the Monte Carlo simu-
lations in Figs. 2, 3, and 4. Then, by the law of large numbers,
the independence of the two distributions (32) from Theorem 2
reads

Els] = iev® % _ BATIX
= W:E[XO].

This asymptotic result indicates that, when initial conditions
and activity potentials are independently distributed, the ex-
pected consensus state tends to the average of the initial
conditions.

VI. CONCLUSION

In this paper, we have analytically studied a discrete-time
consensus protocol over ADNs. The ADN paradigm consti-
tutes a powerful viewpoint to examine dynamical systems
in which the time-scales of network formation and the node
dynamics are comparable. Using stochastic stability theory and
eigenvalue perturbation analysis, we have established closed-
form expressions for the rate of convergence to consensus and
the expected consensus state, in terms of the distribution of
the activity potentials in the network.

Our analytical results suggest that: 7) even a modest amount
of heterogeneity in the nodes’ activity could affect the consen-
sus protocol by slowing down convergence to the consensus
state, and 47) nodes that are less active in generating connec-
tions dominate the consensus state of the network. Finally,
we have focused on large networks, for which, in the absence
of analytical results, the consensus dynamics is difficult to
examine, because of its computational complexity. In this sce-
nario, we derived the asymptotic expressions for the expected
consensus state and for the convergence rate to consensus,
demonstrating that heterogeneity is always detrimental to the
coordination of large scale systems.

The main limitation of this study is the lack of an analytical
bound for the accuracy of the estimations of the convergence

rate and the expected consensus state. Such a limitation is
inherent to perturbation theory that does not offer a direct
way to estimate the residuals in the expansions. Our numerical
simulations support that the perturbation analysis is valid
for a relatively wide range of parameter values, whereby
a parabolic dependence on the perturbation parameter is in
excellent agreement with numerical simulations based on the
complete ADN model.

In contrast with [36], our claims are not based on a time-
scale separation between the network evolution and the nodes’
dynamics. At each time step, we execute both the averaging
process and the network formation, which co-evolve within a
complex stochastic dynamics. The generality of the framework
should be amenable for extension to nonlinear dynamics, crit-
ical to shedding light on synchronization phenomena [47]. A
master stability function can be likely formulated by extending
the line of arguments of [48] to tackle the role of heterogeneity
on the linear stability of the synchronization manifold. Another
avenue of future research is the study of real-world network
features, such as a heterogeneous nodes attractiveness [30] and
burstiness [35], toward the analysis of time-resolved datasets
of socio-technical systems.
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APPENDIX

We present here the explicit computations of . To keep the
notation simple, all the summations are to be intended over

the

set of nodes V, and 3, ,, means }_, ;- When the

summation is performed on the only index inside, we omit the
summation index. We start by noticing that
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while, following a similar argument, off-diagonal elements are  and
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