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Aiming at recovering a signal tensor from its mixture with outliers and noises, robust tensor decompo-
sition (RTD) arises frequently in many real-world applications. Recently, the low-tubal-rank model has
shown more powerful performances than traditional tensor low-rank models in several tensor recovery
tasks. Assuming the underlying tensor to be low-tubal-rank and the outliers sparse, this paper first pro-
poses a penalized least squares estimator for RTD. Specifically, we adopt the tubal nuclear norm (TNN)
and a sparsity inducing norm to regularize the underlying tensor and the outliers, respectively. Then,
from a statistical standpoint, non-asymptotic upper bounds on the estimation error are established and
proved to be near-optimal in a minimax sense. Further, two algorithms, namely, an ADMM-based algo-
rithm and a Frank-Wolfe (FW) based algorithm are proposed to efficiently solve the proposed estimator
from a computational standpoint. The sharpness of the proposed upper bound is verified on synthetic
datasets. The superiority and efficiency of the proposed algorithms is demonstrated in experiments on

real datasets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Tensor decomposition has become a paradigm for modern
multi-way array processing [1]. Traditional tensor decomposition
models like CANDECOMP/PARAFAC (CP) decomposition [2] and
Tucker decomposition [3] work well when the multi-way data is
mildly corrupted by small noises. However, in many applications,
the multi-way data may often be corrupted by both small noises
and gross outliers, due to various reasons like occlusion in videos,
sensor failures, abnormalities, or software malfunctions. For ex-
ample, in hyper-spectral image processing, the embedded noise is
probably a mixture of small dense noise and sparse gross outliers
[4]. Thus, it is of significantly practical and theoretical importance
to develop efficient algorithms with performance guarantee to ro-
bustify traditional tensor decompositions.

Aiming at recovering a tensor from measurements corrupted by
noises and outliers, robust tensor decomposition (RTD) [5] assumes
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that we observe a corrupted tensor
V=L+S"+E, (1)

where £* is the true but unknown signal tensor, tensor S* rep-
resents outliers, and £ denotes a (deterministic or random) noise
tensor (see Fig. 1 for illustration). Here, we suppose the outlier
tensor S* is sparse, since it is unable to reconstruct a signal tensor
when most of the measurements are heavily corrupted. In many
multi-way signal processing applications like image/video process-
ing, most studied outliers can be categorized into three possi-
ble classes, i.e., element-wise, tube-wise and slice-wise outliers, as
shown in Fig. 2. The element-wise outliers are the most common
in multi-media signal processing such as video restoration [6] and
video surveillance [7]. The tube-wise outliers may occur when pix-
els of a color image are corrupted [6], and the sample-specific out-
liers can be modeled as slice-wisely sparse [8].

In many real-world applications, most variations of the multi-
way signal can be linearly dominated by a relatively small number
of latent factors due to intrinsic correlations and redundancy [9].
Such data can be well approximated by a “low rank” tensor. Since
the CP rank and its corresponding nuclear norm are both NP hard
[10,11], the computational efficient Tucker rank is commonly used
to model real multi-way data. To recover a low-rank signal tensor
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Fig. 2. Three settings of S*. Subplot (a): S* is element-wisely sparse; Subplot (b): S* is tube-wisely sparse; Subplot (c): S* is slice-wisely sparse.

from noises and element-wise sparse outliers, the following RTD
model is considered [5]

.1
min 219 = £ = SIE + Al£ls, + ST, 2)
where |[|-||s, is the tensor Schatten-1 norm [12] to impose low
Tucker rank structure, [|-[;, is the element-wise l;-norm, and A

and p are regularization parameters. An ADMM-based algorithm
is proposed to solve the model, and the non-asymptotic estimation
error of £* and S* are established [5].

Recently, the low tubal rank models have achieved better per-
formances than low Tucker rank models in many low rank ten-
sor recovery tasks, like tensor completion [13-16], tensor sensing
[17,18], tensor robust principal component analysis (TRPCA) [6,19],
outlier robust tensor principal component analysis (OR-TPCA) [8],
etc. At the core of these models is the tubal nuclear norm (TNN)
Il - ll« [20], which is pointed out to be powerful in capturing the
ubiquitous “spatial-shifting” correlations in real-world multi-way
data [21].

Thanks to the superioity of TNN, many relevant models
are studied to recover a low rank signal tensor £* e Rd1xd2xds
from observation Y e R41x%2xd3 corrupted by sparse outliers S* €
RA1xd2xd3 jn poiseless settings (i.e., £ =0 in Eq. (1)). In [6,19], a
TNN-based TRPCA model is proposed for robust tensor recovery
against element-wisely sparse outliers. It is proved that by solving
the following problem

min [[Z]. + A", st Y=L+, 3)

where A = 1/,/min{d;, d,}d3, the true tensor £* and the element-
wisely sparse outlier tensor S* can be exactly recovered with high
probability, given £* satisfies the tensor incoherence conditions.
When the outliers S* are tube-wisely sparse, Zhang et al. [22] pro-
poses the following TRPCA model

min [|£]l, + A8 lupe, st YV =L+S, @

where ||-[lwbe, is the tensor tube-1 norm (see the definition in
Table 1). In [8], a slice-wisely sparse tensor S* is used to repre-
sent the sample-specific outliers, and the outlier robust TPCA is
proposed as follows

min 2]l + A e, St Y=L+, -

where ||-[lsiice, is the tensor slice-1 norm (see Table 1 for defini-

tion). It is proved that when A = 1/,/logd,, the solution of Prob-
lem (5) can exactly recover the true tensor £* and the slice-wisely
sparse outliers $* with high probability if £* and S* satisfy the
tensor incoherence condition and unambiguity condition, respec-
tively.

It is noted that Models (3)-(5) only consider the noiseless set-
tings, i.e.,, £ = 0 in Problem (1). However, in real applications out-
liers and noises are more likely to coexist. On the other hand,
the theoretical analysis of TRPCA [6,19] and OR-TPCA [8] assumes
the underlying tensor £* to satisfy the tensor incoherence condi-
tions defined through the tensor singular value decomposition (t-
SVD). Since the true £* is unknown it is usually hard to check
whether incoherence conditions hold. Moreover, the ADMM-based
algorithms designed to solve Models (3)-(5) in [8,19,22] are com-
putationally expensive, since they need to compute the proximity
operator of TNN (which requires the time-consuming full SVDs) in
each iteration.

To address the above mentioned issues, we propose a penalized
least square estimator to estimate the underlying tensor £* and the
outlier S*. The theoretic analysis of this estimator does not assume
the underlying tensor to satisfy the tensor incoherence conditions.
Specifically, the contributions of this paper are listed as follows:

e A TNN-based least square estimator is proposed for RTD in
Eq. (13). We only assume £* to satisfy the I,-norm bounded-
ness condition, which is less strict than the tensor incoherence
conditions.

e On the statistical side, both deterministic and non-asymptotic
upper bounds on the estimation error are established in
Theorems 1 and 2, respectively. The non-asymptotic upper
bounds are then proved to be minimax near-optimal by
Theorem 3. Experiments on synthetic dataset verify that the
proposed upper bounds can predict the scaling behavior of the
estimation error.

e On the computational side, two algorithms, i.e., an ADMM-
based algorithm (Algorithm 1) and an FW-based algorithm
(Algorithm 2), are proposed with convergence guarantees
(Theorems 4 and 5). The latter gets rid of the proximity
operator of TNN, and has significantly cheaper one-iteration
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Table 1
List of notations.

Notations  Descriptions Notations Descriptions

t A scaler L* True low-rank tensor
t A vector S* True “sparse” tensor
T A matrix L Estimator of £*

T A tensor S Estimator of S*

T ffts (7) 17 Nlsp == T Tensor spectral norm
T Block-diagonal matrix of 7 || 7. := [T|l. Tubal nuclear norm
Tijk (i, j, k) entry of T 7, = Yijk | Tiji| Tensor [;-norm

T, j, k) Tiik ITe = /X 7:]2,( Tensor F-norm

T3, ]j,2) (i, j)on tube of T 171, == maxgj | Tijl Tensor l,,-norm

T, 4,0 Jjen lateral slice of T 17 leube, == 223 17 s Dl Tensor tube;-norm
T(Cok) ke frontal slice of T N7 Nlstice, := 25 1T C, s Dlle Tensor slice;-norm
™ TG, k) 17 lltube., :=max;; 1T, j. )|l Tensor tube,-norm
O Support of §* 17 Nlstice., :=max; [IT(:,j,:)llr  Tensor slice,-norm
(CH Complement of ©; (A, B) 1= Y i AijiBiji Tensor inner product

computational cost. Experiments on real dataset validate the ef-
fectiveness and the efficiency of the proposed algorithms.

The rest of this paper proceeds as follows. Section 2 intro-
duces the notations and preliminaries on tensor SVD. The pro-
posed estimator is formulated in Section 3. We analyze the sta-
tistical performance of the proposed estimator in Section 4. Two
algorithms are developed to solve the estimator in Section 5. We
show experiments on both synthetic and real dataset in Section 6.
Section 7 summarizes this work. Some technical proofs are given
in the supplemental material.

2. Notations and preliminaries
2.1. Notations

For convenience, we list the main notations in Table 1. Given a
positive integer d, let [d] be the set {1, ---, d}. Given i € [d], &; € R?
is the canonical vector basis with iy, entry being 1 and others
0. Given (i, j, k)e[d;] x [d2] x [d3], outer product e;oe;oey is the
canonical tensor basis in R91*92xd3 with (i, j, k),, entry being 1 and
others 0. For a 3-way tensor, a tube is a vector defined by fixing
indices of the first two modes and varying the third one; A slice
is a matrix defined by fixing all but two indices. Notation fft3( )
denotes the fast discrete Fourier transformation (FFT) along the third
mode of a 3-way tensor, i.e.,, MATLAB command fft(-, [], 3); simi-
larly, ifft3(-) denotes the fast inverse discrete Fourier transformation
(IFFT) along the third mode of a 3-way tensor, i.e., MATLAB com-
mand ifft(-, [], 3). We use C, ¢ and their derivatives like ¢/, cg,
etc. to denote absolute constants, whose values may vary from line
to line. For any a, b € R, let a v b = max{a, b} and a A b = min{a, b}.
Let [a] denote the closest integer to a € R that is not smaller than
a, and |a| denotes the closest integer to a € R that is not larger
than a. For tensors of size dq x d, x d3, we assume that d; >d,
without loss of generality. For simplicity, let d = (d; + d5)d3. The
spectral norm || - || and nuclear norm | - ||+ of a matrix are defined
as the maximum and the sum of its singular values, respectively.
Let 0 and 1 denote the tensor of compatible dimension whose en-
tries are allO’s andl1/s, respectively. If the denominator is 0, we
define %: 0 in this paper, which will be used in Egs. (38) and
(39) and Egs. (54)-(55).

2.2. Tensor singular value decomposition

Some preliminaries of tensor SVD are introduced in this subsec-
tion.

Definition 1 (T-product [13]). Let 7; e RAixd2xd3s and 75 ¢
R42xdsxd3  The t-product of 7; and 7; is a tensor 7 of size

dy x dy x ds:
T :=Ti*Ty, (6)
whose (i, j);; tube is given by
)
TG j) =) Tl k) e Ta(k, j.2),
k=1

where o denotes the circular convolution between two fibers [23].

Definition 2 (Tensor transpose [13]). Let 7 be a tensor of size
dqy x dy x ds, then 7T is the dy x d; x d3 tensor obtained by trans-
posing each of the frontal slices and then reversing the order of
transposed frontal slices 2 through ds.

Definition 3 (Identity tensor [13]). The identity tensor Z e
R41xd1xd3 i5 3 tensor whose first frontal slice is the d; x d; identity
matrix and all other frontal slices are zero.

Definition 4 (F-diagonal tensor [13]). A tensor is called f-diagonal
if each frontal slice of the tensor is a diagonal matrix.

Definition 5 (Orthogonal tensor [13]). A tensor Q e Rixdixds jg
orthogonal if 9T x Q=0 QT =7.

Based on the above concepts, the tensor singular value decom-
position (t-SVD) can be defined as follows. It is illustrated in Fig. 3.

Definition 6 (T-SVD, Tensor tubal-rank [13]). For any 7 e
RA1xd2xd3  the tensor singular value decomposition (t-SVD) of T
is given as follows

T=UxA*xVT, (7)

where U € RA1xdixds A ¢ Rhixdaxds ) ¢ Rdaxdaxds 77 and V are
orthogonal tensors, A is a rectangular f-diagonal tensor.

The tensor tubal rank of 7 is defined to be the number of non-
zero tubes of A in the t-SVD factorization, i.e.,

r(T) = Zl(A(i, i) #0). (8)

The definitions of tubal nuclear norm and tensor spectral norm
will be given. The former has been applied as a convex relaxation
of the tensor tubal rank in [8,19,22,25,26].

Definition 7 (Tubal nuclear norm [6,13]). For any 7 e Rxd2xds,
let T denote the block-diagonal matrix of the tensor 7T := fft3(7),
ie.,

TG, : 1)
€ Chdsxdrds

=
i

T(:,:, d3)
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Fig. 3. Illustration of t-SVD [24].

The tubal nuclear norm || 71|, of 7 is the rescaled matrix nu-
clear norm (i.e. the sum of singular values) of T, i.e.,

[Tl
T. (9)

Definition 8 (Tensor spectral norm [13]). The tensor spectral norm
[ Tllsp of a 3-D tensor T is defined as the matrix spectral norm
(i.e. the largest singular value) of T, i.e.,

[T llsp := IITII. (10)

It has been shown in [6] that TNN is the dual norm of tensor
spectral norm.

71l =

3. The problem formulation

In this section, the t-SVD-based robust tensor decomposition
will be formulated. We first introduce the observation model.

3.1. The observation model

Suppose a corrupted tensor Y € R41x42x43 js observed according
to the following observation model

V=L +S"+E, (11)

where £* € R1*d2xd3 js the true but unknown signal tensor, S* €
RY17d2xd3 represents an outlier tensor with some sparsity struc-
ture, and & e R91*92xd3 denotes a (deterministic or random) noise
tensor.

In this paper, we assume that the signal tensor £* has low tubal
rank, i.e.,

re(£*) « min{dy, dp}. (12)

Besides, we also assume S* with support ®; satisfies one of the
three sparsity settings:

Setting 1. S* has element-wise sparsity, ie., its support
O cldi] x[dy] x [d3] satisfies |®g|«dydyds. Then,
S* can represent element-wisely sparse outliers (see
Fig. 2-a). When the noise tensor £ =0, Eq. (11) is the
observation model of TRPCA [19].

Setting 2. S* has tube-wise sparsity, i.e., its support O satisfies
Os C O x [d3] with ©;c [d]] X [dz] and |®t| < d] dz.
Then, S* can represent tube-wisely sparse outliers (see
Fig. 2-b). When the noise tensor £ = 0, Eq. (11) is the
observation model of TRPCA with tube corruption [22].

Setting 3. S* has lateral-slice-wise sparsity, i.e. its support
O Cld] x O x [d3] with O C[dy] and [O] «dy.
Then, §* can represent lateral-slice-wise sparse sam-
ple outliers (see Fig. 2-c). When the noise tensor £ = 0,
Eq. (11) is the observation model of outlier robust ten-
sor PCA (OR-TPCA) [8].

The goal of RTD is to recover £* and S* from the corrupted ob-
servation Y satisfying the observation model (11). Considering the
observation model in Eq. (11), we make the following assumption

on the true signal tensor £* to avoid ambiguity in the decomposi-
tion to some extent.

Assumption 1. The [-norm of £* (i.e., the maximum of entry-
wise absolute value) is upper bounded by a known constant «,
ie.,

£, = .
Remark 1. We have the following remarks on Assumption 1:

(I). The Ix-norm boundedness is a natural assumption in many
real applications. For example, the magnitude of the true im-
age or video tensor is bounded by 255 in image or video
restoration.

(I1). The l-norm boundedness is milder than the tensor inco-
herent conditions (TICs) proposed in [8,19] for TRPCA and
OR-TPCA in noiseless settings. It is also used in noisy/robust
matrix completion [27,28] and noisy tensor completion
[24,25]. It serves as a relaxation of the non-spiky condition
adopted in robust matrix decomposition [29].

3.2. The proposed estimator

Given a corrupted observation ), a penalized least squares es-
timator is defined to estimate £* and S* as follows:

L 1
(£,8) = argmin 5 [[£+ 8 = VIIF + L] + uR(S), stlL] <a,
L,S

(13)

where A and p are positive regularization parameters, R(-) is a
regularizer to impose certain sparsity in the final solution S. For
S* being element-wisely, tube-wisely or slice-wisely sparse, we
choose R(-) as [, II-llcbe, OF I-llsice, - respectively.

4. Statistical performance: Minimax near-optimal error bounds

In this section, statistical performance of the proposed estima-
tor (£,8) in Eq. (13) will be analyzed. Specifically, we first derive
upper bounds on the estimation error both deterministically and
non-asymptotically, and then establish lower bounds on the error
in a minimax sense.

4.1. Upper bounds on the estimation error

For the ease of notation, we use Ay, = £ — £* and Ag =S — S*
to denote the error tensors of £* and S*, respectively. To explore
the statistical performance of the estimator (£,S), we will give
upper bounds on the sum of squared Frobenius norms ||AE||% +
Asl3.

4.1.1. Deterministic bounds

When tensor £ in the observation model (11) represents any
deterministic or random noise, we derive upper bounds on the es-
timation error in a deterministic sense.
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To bound the error, we need Lemma 1 at first. For the ease of
notation, let R*(-) denote the dual norm of R(-), which is cho-

sen as |l [Illuber OF [Illstice,, for R(-) being [l Il llwube, -
or ||-llsiice, Tespectively.

Lemma 1. Choose A > 2||€||sp in Problem (13) and p > 2(R*(€) +
20R*(1)). Then, there exist decompositions Ay = A, + A} and
As = N + A/, such that

(I). a rank inequality holds: r((A,) < 2r¢(£*), and
(I). a norm inequality holds:

ML + HR(AY) < 3(X AL + HR(A)). (14)

The proof can be found in the supplemental material. Based on
the lemma, we are able to establish the deterministic bounds on
the estimation error in the following theorem.

Theorem 1. Choose A > 2||&||sp in Problem (13). Then the following
statements hold’:

(M. If RC) = |Illy, by setting = 2([|€]l;,, + 2c), we have

IALIE+ 1AsIIE < 18A2r (L) + 9 (| S* I, (15)
(). If RC) = [l-lleupe,» by setting s = 2(1€ llpe., +20/d3), we

have

IALIE+ 1AsIE < 18A2re (L) + I 1S [l rube, - (16)
(D). If RC) = Nl-llstice, » by setting u = 2(||€ siice,, +204/d1d3), we

have

IALIE+ 1AsIE < 18R (L) + 9 1S [Istice, - (17)

The proof is given in the supplemental material. We can see
from Theorem 1 that the upper bounds have linear scaling behav-
ior with the tubal rank of £* and the sparsity of S*, when the
regularization parameters A and pu exceed certain values. When
d; = 1, the upper bounds are consistent with the bounds in [29].

4.1.2. Non-asymptotic bounds

When the elements of & e R%1*%2xd3 follow independent and
identically distributed (iid.) Gaussian distribution A(0,02%), we
will give non-asymptotic upper bounds on the estimation error.
To this end, we need the following lemmas whose proofs can be
found in the supplemental material.

Lemma 2. If the elements of G € RN *%2xd3 follow i.id. Gaussian dis-
tribution A’ (0, 1), then it holds that

P[ngnsp > 2(y/ds + \/csz/a?] < oo WA /B, (18)

Lemma 3. If the elements of G € RU1*%2xd3 follow i.i.d. Gaussian dis-
tribution A’ (0, 1), then we have the following relationships.

(I). The lo-norm of G satisfy the probability inequality

=

Gl =2 10g(d1d2d3)] < (19)

-
didyds”
(I). The tube,-norm of G satisfy the probability inequality

B 1
1G]l wpe., = v/d5 + 3\/10g(d1d2)] <Ta (20)

(IIN). The slice,-norm of G satisfy the probability inequality

- 1
1G llstice,. > +/d1d3 +3\/logdz] 4 (21)

~

<

T The relevant tensor norms are defined in Table 1.

Based on Theorem 1 and Lemmas 2-3, we are in a position
to upper bound the estimation error. Before showing the error
bounds under i.i.d. Gaussian noise, we define the low rank ratio
0. €10, 1] of £* and the sparsity ratio g, € [0, 1] of §* respectively
as follows:

S* . .
21 dz”;; , element-wise sparsity,
*Y) . rt(['*) A S* . .
0.(L) = dnd, @ (8%) = % tube-wise sparsity,
HS* ‘sliceo

, slice-wise sparsity.
(22)

Thus, the more complex the signal tensor £*, the higher @.(£*);
the heavier the outliers S*, the higher g, (S*).

Theorem 2. Consider the case where the elements of £ e R%ixd2xds
follow i.i.d. Gaussian distribution N(0,02). Choose A = 4o (y/d; +
\/dy)+/d3 in Problem (13). Then the following statements hold:

(M. If RC) =1I-l;,, by setting p =4o/log(didad3) +8c, we

have

AR+ 1 AslIF 2

T didds < 11520°0. (L")

+288(0% log(d1dad3) + o), (S*), (23)
with  probability at least 1-— exp(—c(\/aJr\/@)z) -
(dydyds) 1.

(. If RC) = lleue, and ds>log(didy), by setting p=

2(0\/E+ 304/log(ddy) + Za\/g), we have

NACIIE + 11 AsIE < 1152020, (L") + 576(0 v a)20. (%),
didyds ‘ °
(24)
with  probability at least 1—exp(—c(\/a+JcTz)2)—
(dydy)~".
(. If RC) = llllstice, and dqid3>log(dy), by setting u=

2(0+/dyds +30+/logd; + 2, /dyd3), we have

Acl2 + 1 As 2
NAclE+1AsE _ 1155524 (£4) 4 576(0 v @), (5,
drdyds . s

(25)

with probability at least 1 — exp(—c(\/a+ \/‘Tz)z) - d;l.

According to Theorem 2, the bounds in Egs. (23)-(25) can be
summarized uniformly as follows

AL+ 1 Asliz
dydyds

where ¢ = o log(did,yd3) for element-wisely sparse S*, and ¢ =
o for tube-wisely or slice-wisely sparse S*. It is notable that
Eq. (26) is consistent with our intuition: the more complex the sig-
nal tensor (i.e., higher ¢,(£*)), the heavier the outliers (i.e., higher
0.(5%)), and the heavier the noise (i.e., larger o), the larger the
estimation error will be.

To the best of our knowledge, Theorem 2 for the first time es-
tablishes error bounds for robust tensor decomposition when the
underlying tensor is low-tubal-rank. The proposed upper bounds
in Egs. (23)-(25) will be shown to be near-optimal in the minimax
sense in the next subsection. The comparison with previous works
are shown in the following remarks.

<010%0. (L) + 0 (s va)e, (s, (26)

Remark 2 (Difference from SNN-based robust tensor decomposi-
tion (SNN-RTD) [5]). SNN-RTD models the underlying tensor as
low-Tucker-rank, and this paper assumes the underlying tensor to
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be low-tubal-rank. Besides, the proposed upper bounds are mini-
max near-optimal, whereas the bound in SNN-RTD is not.

Remark 3 (Degeneration to robust matrix decomposition
[29]). When d3 =1, the robust tensor decomposition degen-
erates to robust matrix decomposition, and the degenerated
bounds in Egs. (23) and (25) are consistent with the bounds
shown in Corollaries 2 and 5 in [29], respectively.

Remark 4 (No exact recovery guarantee). When the noise £ van-
ishes, i.e, o =0, the estimation error is upper bounded by Ca?g,
which is not 0. That is, the theory in this paper cannot guarantee
exact recovery of £* and S*.

This differs from the theoretic analysis of TRPCA [19] and OR-
TPCA [8] which assumes the underlying tensor £* satisfies some
tensor incoherence conditions (TICs) and can guarantee exact re-
covery of £* and S*. The difference lies in the fact that this paper
adopts “the l,-norm-boundedness assumption” on the true tensor
£* — a much weaker assumption than TICs in [19] and [8]. TICs in-
herently ensure that the low-rank tensor £* is not sparse, whereas
“the l,.-norm-boundedness assumption” cannot. For the compari-
son of TICs and Il,.-norm-boundedness, please refer to [24].

4.2. Minimax lower bounds

In Section 4.1.2, we establish upper bounds on the estimation
error for iid. Gaussian noise. Then one may ask the complemen-
tary questions: how tight are these upper bounds? Are there fun-
damental (algorithm-independent) limits of estimation error in ro-
bust tensor decomposition? In this section, we will answer the
questions.

Consider the case where the elements of £ € R%1*d2xd3 follow
i.i.d. Gaussian distribution A'(0, 62) with known o > 0. Given some
class A of tensors, we define the associated element-wise minimax
error as follows

(27)

(£.8) (£+.S*)eh did,ds

. L—L2+ 118 - s*|13
M(A) = inf sup E[II g+ Il ’
where the infimum ranges over all pairs of estimators (Z,3),
the supremum ranges over all pairs of “true” tensors (£*, S$*) in
the given tensor class A, and the expectation is taken over the

i.i.d. Gaussian noises. We come up with the following theorem.

Theorem 3. Consider the case where the elements of £ ¢ R%*d2xds
follow i.i.d. Gaussian distribution N'(0, 52), where ¢ is known. Then
for 1<r<min{d;, d,}, the following statements hold with positive
constants ¢}, ¢/ and B; € (0,1), i=1,2,3:

(I). For any positive integer s<didyd3[2, let ¢e:= (0 A
@)?(cir/(dy Ady) +¢s/(dydyds)), and define the class
of tensors

he(rs,@) 1= { (£.8)|r(@) =721, =15, <5},

Then it holds that

M(Ae(r,s, ) = Bie. (28)
(). For any positive integer s<didy/2, let ¢¢:= (oA

a)?(chr/(dy Ady) +cYs/(dydy)) and define the class of

tensors

A s, o) i= {(E, S)|re) =1 1L, < @ [1Sllwbe, < S}.

Then it holds that
M(Ac(r, s, ) > Bahe. (29)

(Il). For any positive integer s <d,[2, let ¢s := (o A a)z(cgr/(ch A
dy) + c’3’s/d2), and define the class of tensors

bar.5.0) = [ (£.9)[R(@D) <7 1Ll = 0 1S e, =5

Then it holds that
M(As(1, S, ) > B3ps. (30)

In Theorem 3, for some certain classes of (£*, S*), Eqgs. (28)-
(30) establish minimax lower bounds on the estimation errors for
element-wisely, tube-wisely, and slice-wisely sparse outliers, re-
spectively. When ¢ and « are known constants, the minimax lower
bounds in Egs. (28)-(30) can be unified as

. Al + || As|I?
ot sup g JACI+1AI2
(£.9) (£*,5%) did,ds

+c" (0 A)0,(SY), (31)

for some (£*, S*) in certain tensor classes, where ¢.(£*) and
0,(S*) denote the low-rank ratio and sparse ratio defined in
Eq. (22). Comparing Egs. (26) and (31), the proposed upper bounds
in Theorem 2 are minimax optimal (up to a logarithm factor in
the setting of element-wise outliers or constant factors for tube-
wise and slice-wise outliers). That is, no estimator can provide bet-
ter estimations (up to a logarithm factor or constant factor) in the
minimax sense than the proposed estimator.

:| > (0 ra)e. (L)

5. Optimization algorithms
5.1. An ADMM optimizer

We first propose an algorithm based on the alternating direc-
tion method of multipliers (ADMM) to solve the proposed estima-
tor. By introducing auxiliary K, M, T, we get
min cs. I +S=VI2 + K. + wR(T)

TM (32)
s.t. K=¢L, T=8 M=L, M| <a.

The augmented Lagrangian of Problem (32) is as follows:
Lp(L.8. K. T. M, V1. Y. V3)
= 21E+5 = YIE+ MK + #R(T) +8(M)
T+ K= L)+ DIK = LI+ (95,7 = 8)

+EIT = SR+ 5 M= £) + S lIM - 2]

z (33)

where p >0 is a penalty parameter, and ); € Rd1xd2xd3 j <3 are
Lagrangian multipliers.

Then, we update the variables alternatively by fixing others. The
details are shown as follows.

o Update (£, S): we update (£, S) simultaneously as follows:
(£, 81y = argmin L, (£, S, KL, T, ME VE V5, %)
L.S

o1
=argmin = |[[£L+S - Y|+ (VK - L) + Bkt - o
Ls 2 2

FO4 T = 8)+ SITE = SIE + (04 M = £) + S IM LI

Taking derivatives with respective to £ and S and set them to
zero, we obtain

L+S—=Y-W+pL—-K)=I+pL—-M)=0,
LAS=Y=-V+p(S-T") =0

Then, we have
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(p+1)A-B+pY
p2p+3)

1 _ QRp+1)B—-A+2pY

£t+1 _
p(2p+3)

)

(34)
where A4 = pK! + Yt + pME + VL and B = pT7t + )L,
o Update K: we update K as follows:
Kt = argming L, (L0, S K, T ME, VL V8, DL)
= argming A Kl + (V] £ - £741) + ZlIC — LMF (35)
= Proxﬁ’/”p‘ (LT = Yt/p)
where Proxﬂ'”’() is the proximal operator of tubal nuclear

norm. In [30], a closed-form expression of Proxﬂ'”*(-) is given
as follows:

Lemma 4 [30]. For any 3-way tensor A € R%41x%2xd3 with reduced
t-SVD A=U+ A+ VT, where U e RI<=d3 gnd y e R2x"xd3 gre
orthogonal tensors and A € R™"*% is the f-diagonal tensor of sin-

gular tubes, the proximal operator Prox!'”'(-) at A can be com-
puted by’:

Prox!'l-(A) : = argmin 7| x|, + %II/’\? — All?
X
= U « iffts(max(fft3(A) — 7,0)) « V7. (36)

o Update 7: we update 7 as follows
T = arg;nian(L‘t“,Sm, KL T, ME V5 V8, 0L

argmin R(T) + (5, T — 1) + £ |7 - 57|12
T

= Prox;() (8™ = ¥4/p) (37)

where Prox’ﬁ(')(-) is the proximal operator of R(-) which can be
computed as follows.

(). When R(:) = ||-|l,, the proximal operator is the well
known soft thresholding operator explicitly given as fol-
lows [6]

II
Prox, Iy

. 1
(A) : = argmin T ||, + 5| ¥ — All¢

sign(A) ® (IAI -1, 0)+,

where oledast denotes the element-wise tensor product.

(II). When R() = [|-lltube,, its proximal operator is the soft
thresholding operator on tubes with closed-form solution
[22]

” . Hmbel

. 1
Proxy ! (A) := argmin | e, + 5 14 = Al = B

(38)

where B(,j,:) = AG, j, )1 —1/|AG, j, ) |l2)4>, for all
(i, j)eldi] x[dy].

(). When R(:) = ||-[[slice, the proximal operator is the soft
thresholding operator on slices whose closed-form solu-
tion is given as [8]

I lstce . 1
Prox; " (A) = argmin T ¥ e, + 511 ~ Allf = B.
(39)
yvhere BC,j,)=AC j, DA =t/ AC §, Dlp)+, for all
jelda].

2 By using the conjugate symmetry of DFT [23], Eq. (36) can be performed with
(‘“T“] (rather than ds) full SVDs of d; x d, matrices in the Fourier domain (see
Algorithm 3 in [6]).

3 Note that we have defined % =0 if the denominator is 0. This also applies to
the computation of B in Eq. (39).

o Update M: we update M in the following manner:
M[+1 — argmin Lp (£t+1 , SH—] , ’Ct+l , TH—I , M, y{’ yé’ yé)
M

argmin8(M) + (4, M~ £41) + S LM - 1
M

= Projl I~ (£ — 34 /p), (40)
where Pro'(l,lt'”’“ (-) is a projection into the l,-norm ball of ra-
dius o serving as a clipping operator with a closed-form solu-
tion given as follows [25]:

Proj/ = (4) = sign(A) ® min{| 4|, «}.
o Update )q, )%, V3: the dual variables are updated by
y]er] — yg +p(lct+1 _ Et+1)
y£+1 _ yé +p(7-t+1 _ SH—])
VI = D p(MIFT - £, (41)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Solve Problem (32) by ADMM.

Require: Observation ), parameters A, i, & and p.

1: Initialize L0 =80 =Kk =T0=M"=0, )9 =20 =29=0, ¢ <

le—8and t =0.

2: while not converged do
Update (£!+1, 8t+1) by Eq.(34);
Update K1 by Eq.(35);
Update 7! by Eq.(37);
Update M1 by Eq.(40);
Update Y1, pi+1 piT by Eq.(41);
Stop criterion: || K41 — £, <, ITHT - SH) <
&, M — £ < e, andmax {4 - xt||_} <&, VX e
(£, 8. K, T, M}.

9: t=t+1.
10: end while

R N DD RWw

Computational complexity. In a single iteration, the main cost
comes from updating £¢ which involves computing FFT, IFFT and
d3 SVDs of d; xd, matrices [19]. Hence Algorithm 1 has per-
iteration complexity of order 0(ddyds(dy A d; +logds)). Thus, if
the total iteration number is T, then the total computational com-
plexity is

O(Td1d2d3 (dy A dy +log d3)). (42)

Convergence analysis. According to [31], the convergence rate of
general ADMM-based algorithms is O(1/t), where t is the iteration
number. The convergence of Algorithm 1 is analyzed in the follow-
ing theorem.

Theorem 4 (Convergence of Algorithm 1). For any p > 0,
if the wunaugmented Lagrangian Lo(L,S,K,T,M,Y1,d2,Y3)
of Problem (32) has a saddle point, then the iteration
(L8 85K TH ME V508, 0% in Algorithm 1 satisfies the resid-
ual convergence, objective convergence and dual variable convergence
of Problem (32)%.

5.2. A Frank-Wolfe-based algorithm

The one iteration cost of Algorithm 1 goes superlinearly with
the tensor size, which may be expensive for large tensors. Moti-
vated by [32], we propose using a modified Frank-Wolfe algorithm
to reduce the one-iteration cost.

4 See the supplemental material for the detailed explanation of “residual conver-
gence, objective convergence and dual variable convergence”.
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In Problem (13), the I -norm constraint on £ serves an incoher-
ence condition. In real applications, one often omits this constraint
and considers the following unconstrained problem:

A A 1
(E,S)=argm1n§||£+8—y||§+)»||£||*+/LR(S). (43)
.8

By introducing two upper bounds on ||£*||, and R(S*): u, > ||£*]|,
and us > R(S*), and two intermediate variables t, and t;, Problem
(43) is equivalent to the following problem:

mingsee  FOC S 6 6) =51V = L= SIF+A+uts 4y
s.t. Il <t <u,R(S) <ts < us.
5.2.1. The Frank-Wolfe method

The Frank-Wolfe (FW) method [33,34], also known as the con-
ditional gradient method, applies to the minimization of a smooth
function h( - ) over a compact, convex domain D c R":

mxin h(x) st. XxeD. (45)
Here, Vh is assumed to be L-Lipschitz: ||Vh(x) — Vh(y)|l, <L||x—
yll2. VX, y € D. Let D = maxxyep ||X— Y|, denote the diameter of
the feasible set D.

In its simplest form, FW first linearizes the smooth object func-
tion h(x) at x! of iteration t,

h(v) ~ h(x*) + (Vh(x"),v — x*). (46)

Then, one minimizes the linear surrogate to obtain

V' e argmin(Vh(x}), v), (47)
veD

after which we update x'*1 as some point in D such that

h(x*1) <h(X' + y (v —x")), (48)
where y = 2.

5.2.2. Modified FW

Inspired by [32], we develop a modified FW algorithm
(Algorithm 2.) for Problem (43). The proposed FW-based algorithm
consists of three steps: an FW step, an exact line search step, and
a proximal gradient step for S. The exact line search step seeks a
better y instead of directly using y = 2/(t +2) in Eq. (48) for fur-
ther acceleration. The proximal gradient step for S is applied to
overcome the problem of slow convergence of S* caused by using
the “vanilla” FW.

Algorithm 2 Solve Problem (44) by modified Frank-Wolfe method.
Require: Observation ), parameters A, i, U, us, and &.

1: Initialize £0=8°=0,t9=t2=0,¢ <le—8 and t = 0.

2: while not converged do

3:  Update (V, %) by Eq.(49);

4:  Update (VL 1t) by Eq.(50);

Update (£0+3, 83 ¢

5:
6: Update S'*1 by Eq.(57);

1

Let £i+1 = c“%r{“ =77, and ti+1 = R(StH1).

8:  Stop criterion:F (£, St ¢t+1 ¢l 1y _ F(ct, 8t el th) <
eF (Lt Sttt eh).

9: t=t+1.

10: end while

1

+3 .t
2
Sts

*3) by Eq.(56);

N

An FW Step. Following the key step Eq. (47) of FW, we first
update vt = (Vf, VE, 1f, 1t) by:

OV vh) e argmin g, (V, 1) = (€4, V) + Av,, (49)
Vill.<ve<u,
(VL 1h) e argmin g(Vs, vs) = (€, Vs) + puvs, (50)

R(Vs)<vs=<us

where &' = £t + 8t — Y plays the role of Vh(x!) in Eq. (47). To
solve Problems (49) and (50), we come up with the following two
lemmas.

Lemma 5. Let k* = argming_q, [E®|. Let ue R and veR% be
one pair of the left and right singular vectors of AN = AG, k)
corresponding to the leading singular value. Let G, = real(ifft3(B)),
where B(:,:, k*) =uvl and B(:, :, k) = 0, Vk # k*. Then, one solution
point of (VE, %) of Problem (49) can be given as
(Vtt’ Uf) _ {(_uld3gla u,), ”gt”sp > A,

0.0), 16t lsp < A, (51

and the optimal value of Problem (49) is —u,(||€"[|sp — A.0) 4.

Lemma 6. The optimal value of Problem (50) is —us(R*(€%) — 1)+
and one particular solution point (VL,v%) of Problem (50) can be
given as

Vi 1h) = {<—(L3§5335>,

R*(&Y) > u,

where the intermediate variable Gs is computed as follows
(M. FRC) = Illy,. then
Gs = sign(€. .. )€ 0 €j. o €, (53)
where (i*, j*, k*) € argmax(,-_ij)IS{jkI;
(). If RC) = ||l cupe, - then®
£ )

i EICRERI if (i, j) = (*, j*)
i) = d TEEol ! 54
Gs(0. J:2) {0, ! otherwise. (54)

where (i*, j*) € argmax ;) 1E° (0, j. D) l2.
(1. If RC) = Il llstice, » then

LG

) sy
Gs(rjs) = {lsf(:,ja:)w ifj=j (55)

0, otherwise.
where j* € argmax;[|EX(:, j, ) |l
Exact line search. Using line search [32], we then update
(t+h st T () by
min ¢s., &,

F(L, S, t,t5)
71,v2€[0.1]

s.t. (f) =(1- 7/1)<f;> +7 Cfr) (56)
t t
<f) -a —n)(‘é) +yz(1f§>-

By solving the quadratic problem (56), we use the following y

t+1 o4l 3t
and y; to further compute (£'72,82,¢t 2t ?)

0, 71 <0 0, Y2 <0
V1=, 71€[0,1], ya=172, 72 €[0,1],
1, 7> 1 1, Vo> 1

where if || A|I2]|B]|2 = (A4, B)2, we choose 7 = J, =t/(t + 2); oth-
erwise, we choose

_ ((B.c) +e)(A.B) - ((A.c) +d)|1BJI?
"= TATZIBIZ - (A, B)2 ’
_ ((B.c) +e)ll A2 - ((A.C) +d)(A.B)

(A.B)2 — A IBIIZ ’

«

Note that we have defined % =0 if the denominator is 0. This also applies to
the computation of G;(:, j, :) in Eq. (55).
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with A=V — £t B=VE -8, c=L+8 -y, d=A@! —tf), and
e= vt —tf).

Proximal gradient step for S. To update S in a more efficient
way, we incorporate an additional proximal gradient step for S. At
iteration t, let (£I+2,87) be the result produced by FW step.
To produce the next iterate, we keep the low-rank term EH%, but
use an extra proximal gradient step for the function f (cf+%,3) at
point 53 to update S, that is

St*1 ¢ aremin F(£, S, 67 R(S))
S

= argmin(£? + ST — Y, S — St
s

1
+5 118 = ST + UR(S)
= Prox) (¥ — £*7). (57)

The algorithm is summarized in Algorithm 2 and the computa-
tional complexity and convergence behavior are analyzed as fol-
lows.

Computational complexity. The main cost lies in solving the
subproblem (49) in Lemma 5. Only FFT/IFFT and d3 pairs of leading
singular vectors are computed. By using the conjugate symmetry of
DFT [23], subproblem (49) can also be solved with (@Tﬂl (rather
than ds) rank-1 SVDs of d; x d, matrices in the Fourier domain.
Thus, the per-iteration cost of Algorithm 2 is

O<d1d2d3 log a3). (58)

It is significantly lower than 0(d;d,ds(min{d;, d,} + logds)) which
is the per-iteration cost of Algorithm 1.

Theorem 5 (Convergence of Algorithm 2). Let (£*, S*,t7,t?) be the
optimal solution of Problem (44). Then the sequence (L', Sttt tt)
produced by Algorithm 2 satisfies

20(dsu? + u?)
t+2 '

According to Theorem 5, the convergence rate of Algorithm 2 is
approximately O(1/t), which is of the same order as our ADMM-
based Algorithm 1. Considering the much lower per-iteration
cost of Algorithm 2 than Algorithm 1, we may expect that
Algorithm 2 can run mush faster than Algorithm 1. This expecta-
tion will be confirmed through experiments in Section 6.2.

F(L', SUthth) —F(Lr, 8"t 1)) < (59)

6. Experiments

In this section, the correctness of the proposed error bounds
in Theorem 2 is first verified through simulation studies. The

o
w
*

k)
) *
4| *
—=[30.2
+ |8 x
abg *
Q *
0.1 *
b *
*
0
0 10 20 30 40
Tt (E*)
(@

effectiveness and efficiency of the proposed algorithms (i.e.,
Algorithms 1 and 2) are then evaluated through extensive exper-
iments on real datasets. All codes are written in MATLAB and
all experiments are performed in Windows 10 based on Intel(R)
Core(TM) i7-8565U 1.80-1.99 GHz CPU with 16G RAM.

6.1. Correctness of the proposed error bounds

To validate the correctness of the upper bounds in Eqgs. (23)--
(25), we conduct simulations to check whether the proposed upper
bounds can predict the right scaling behavior of the estimation er-
rors.

Given the tubal rank r* <d;Ad,, the true tensor £* € R1xd2xd3
is first formed by £* = P x Q/d3, where the elements of tensors
P e R4 =*"xd3 apd Q € R™*%2*43 are sampled from iid. standard
Gaussian distribution. Then, we generate the outlier tensor S* by
choosing its support uniformly at random when S* is element-
wisely sparse. Similarly, we uniformly choose the tube or slice sup-
port at random for tube-wisely or slice-wisely sparse S*. The non-
zero elements of §* are sampled iid. from a certain distribution.
Further, we generate the noise tensor £ with entries drawing i.i.d.
from N (0, 02) with o = c||£*||g/+/d;d>d3 to keep a constant sig-
nal noise ratio. Finally, we obtain the observation Y = £* + §* + &
according to the observation model (11).

For simplicity, we consider f-square tensors, i.e., d; =d, =d.
We test tensors of 12 different size by choosing d, € {60, 80,
100} and d3 = 20. We choose r* {8, 12, 16, ---, 40} to generate
L£*. We generate the outlier tensor with sparsity ratio @,(S*)
{0.025,0.05, ---,0.25}. We consider three different settings where
the non-zero elements of S* are drawn i.id. from Bin(-1,+1), or
N(0,1), or U[0, 1]. For the noise tensor £, we set the signal noise
ratio ¢ = 0.1. The parameter « in Problem (13) is simply set to its
oracle value in each simulation. We test 10 times for each setting
by running Algorithm 1 and computing the averaged estimation er-
Tor.

For tensors of a given size, it is predicted by Theorem 2 that

. . . ArllZ+AslIZ
upper bounds on the element-wise estimation error %

would scale approximately like a;re(£*) +by[|S*[|;, for element-
wisely sparse S*, aprt(L*) + by [|S* [lrupe, for tube-wisely sparse
S*, or azre(L*) + b3 S*|lslice, for slice-wisely sparse S*, where
a;, b;,i=1,2,3, are positive constants. Then, if the bounds are
sharp, the real estimation errors would have the same scaling be-
havior. We will check whether these phenomena occur.

For tensors of size 60 x 60 x 20, Fig. 4 shows the results
of averaged element-wise estimation error versus tubal rank of
£* and tensor ly-norm of S*, when S* is element-wise with
iid. Bin(—1,+1) elements. We can see that the error has approxi-
mately linear scaling behavior with respect to re(£*) and ||S*|,.

ax 04 5

9 v

L1503 ¥

+|8 ¥

3| o2 =

= v

01t
0 0.5 1 15 2

HS*HZ() x10*
(b)

Fig. 4. The averaged element-wise estimation error versus tubal rank of £* and tensor lp-norm of S* for tensors of size 60 x 60 x 20, when S* is element-wisely sparse with
iid. Bin(—1,+1) elements. (a): Error vs £*, when [|S*||;, = 1080. (b): Error vs ||S*||;,, when r¢(£*) =8.
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ney 03
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2’ 0.1
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'I"t(c*)
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0 500 1000
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Fig. 5. The averaged element-wise estimation error versus tubal rank of £* and the number of non-zero tubes of S* for tensors of size 60 x 60 x 20, when S* is tube-wisely
sparse with iid. Bin(-1, +1) elements. (a): Error vs £*, when |[|8*||cube, = 360. (b): Error vs ||8*||cube,- When r(£*) = 8.
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Fig. 6. The averaged element-wise estimation error versus tubal rank of £* and the number of non-zero slices of S* for tensors of size 60 x 60 x 20, when S* is slice-wisely
sparse with i.id. Bin(—1, +1) elements. (a): Error vs £*, when ||S*||jice, = 1. (b): Error vs [|8*||jice,- When r(£*) = 8.
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Fig. 7. The averaged element-wise estimation error versus tubal rank of £* and tensor lp-norm of S* for tensors of size 60 x 60 x 20, when S* is element-wise with i.i.d.
N(0,1) elements. (a): Error vs £*, when [|S*]|;, = 1080. (b): Error vs [|S*|;,, when ri(£*) = 8.

Thus, it can be said that the experimental results are consis-
tent with our expectation for d = 60. Figs. 5 and 6 show respec-
tively the results when S* is tube-wisely or slice-wisely sparse,
and similar linear scaling behaviors are observed. For tensors of
size 60 x 60 x 20, Figs. 7 and 8 show the results for element-
wisely sparse S* with iid. A'(0,1) and ¢[0, 1] elements, recep-
tively. We can find that the linear scaling behavior also holds for
different outlier distributions. When S* is element-wise with i.i.d.
Bin(—1, +1) elements, Fig. 9 shows the results for tensors of size
100 x 100 x 20, and the error also scales linearly with r(£*) and
lS* |1, Similar phenomena have be found in other settings and we
omit them due to space limitation. Thus it can be verified that the
proposed bounds can approximately predict the scaling behavior of
the estimation error.

6.2. Effectiveness and efficiency of the proposed algorithms

To show the superiority of Algorithms 1 and 2 for the pro-
posed TNN-based RTD model (13), we conduct robust tensor recov-
ery experiments on color images, point cloud data, and videos. We
also compare with the tensor Schatten-1 norm based RTD model
(SNN®) [5], and the matrix nuclear norm (NN) based robust ma-
trix decomposition model [29] in both accuracy and running time.
Since the source code of SNN [5] and NN [29] is not available, we
formulate the corresponding models by using the aforementioned

6 Different from [5], we consider a weighted version of SNN in which the nuclear
norm the unfolding matrix along each mode is weighted by a positive vector «
satisfying > ;o = 1 [35].
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Fig. 8. The averaged element-wise estimation error versus tubal rank of £* and tensor lp-norm of S* for tensors of size 60 x 60 x 20, when S* is element-wise with i.i.d.
u[0, 1] elements. (a): Error vs £*, when ||S*||;, = 1080. (b): Error vs ||S*||;,, when r(£*) = 8.
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Fig. 9. The averaged element-wise estimation error versus tubal rank of £* and tensor [p-norm of S* for tensors of size 100 x 100 x 20, when S* is element-wise with i.i.d.
Bin(—1, +1) elements. (a): Error vs £*, when ||S*||;, = 5000. (b): Error vs ||S*||;,. when ri(£*) =8.
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Fig. 10. Twenty test images.

norms to replace TNN in Problem (13), and solve the relevant opti-
mization problems within the ADMM framework [36] through our
implementations in MATLAB. To measure the quality of an esti-
mated tensor £, the Peak Signal Noise Ratio (PSNR) defined as
didads ]| 7|1} )

I — x|}
is applied. Higher PSNR value means better estimation perfor-
mance.

PSNR := 101log;, (

6.2.1. Color image recovery

In this experiment, we conduct robust tensor recovery on
twenty color images of size 512 x 512 x3 (see Fig. 10). Three
different settings of outliers, i.e., element-wise, tube-wise, or
column-wise outliers, are considered. Specifically, for an image
£* e RM<kx3 e first generate the outlier tensor &* by choos-
ing 10% of the support (or 10% of the tube-support, or 5% of the
column-support) uniformly at random, and then corrupt the cho-
sen elements by additive independent Bin(—1, +1) outliers. Then,

we add noise tensor £ of independent zero-mean Gaussian entries
with standard deviation o = coy, where noise level ¢ = 0.1 or 0.2
and normalized signal magnitude o = || £*||g/~3mk. Thus, the cor-
rupted observation Y = £* + §* 4+ £ are generated according to the
observation model (11).

NN directly works on matrices of size 512 x 512, whereas SNN,
TNN and FW works on tensors of size 512 x 512 x 3. The pa-
rameter tuning is not an easy task, and the key parameters
are set as follows. For NN, we set the regularization parame-

ters (A, u) = (0.5,0.5//max{m, k}) for element-wise and tube-

wise outliers (suggested by [2]), and (A, u) = (0.5,0.5/,/log(mk))
for column-wise outliers (suggested by [37]), respectively. For
SNN, the weight parameters o« are chosen to satisfy oq:ay:
a3=1:1:¢; and Y «; =1, where parameter c; is tuned in
{0.01, 0.1, 0.3, 0.5} for better performances in most cases;
we set the regularization parameters (A, ) = (1,1/+/3m) for
element-wise outliers, (A, 1) = (1, 1/log(3mk)) for tube-wise out-
liers, and (A, u) = (1,1/1log(3)) for column-wise outliers, respec-
tively. For TNN and FW, we respectively set the regularization
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Fig. 11. Results of color image recovery with 10% of the elements corrupted by Bin(—1,+1) outliers and all the elements polluted by Gaussian noise of level ¢ =0.1. (a) is
the corrupted image; (b)-(e) are images recovered by NN [29], SNN [5] and the proposed TNN (Algorithm 1) and FW (Algorithm 2); (f) and (g) report the PSNR values and

running time (seconds), respectively. Best viewed in 400% zoomed color pdf file..

parameters (A, i) = (¢, c3/+/3 max{m, k}) for element-wise out-
liers (suggested by [19]), (A, u) = (cy, ¢3//max{m, k}) for tube-
wise outliers (motivated by [22]), and (A, i) = (¢3, 1.3¢5/+/logk)
for column-wise outliers (motivated by [8]); parameter c, is tuned
in {2,4,0.008]||Y||f} (motivated by [32]) for better performances in
most cases. For FW, we simply set parameters u, and us as their
oracle values, which can be reasonably considered as the (near)-
optimal setting. The initializations and stop criteria of the algo-
rithms are chosen to get a reasonably good performance/time bal-
ance. Given a color image and a corruption level, we test 10 times
and report the averaged PSNR and time.

Both qualitative and quantitative results are shown in Figs. 11,
12, and 13 for element-wise, tube-wise, and column-wise out-
liers, respectively. It can be seen that the TNN has the highest
PSNR values and FW runs the fastest. The experimental results are
easy to interpret, and in consistence with image recovery exper-
iments in [6]. Firstly, NN cannot exploit the inter-channel corre-
lations, so it performs worse than the tensor models. Secondly,
TNN outperforms SNN, which can be interpreted by the discussion
in [6] that TNN adopts the low-tubal-rank assumption (or more
precisely, low-average-rank assumption) which is weaker than the
low-Tucker-rank assumption adopted by SNN. Thirdly, TNN can be
faster than SNN in many circumstances because NN needs to com-
pute full SVDs on three matrices of size m x k, however TNN can
only computes two full SVDs in the Fourier domain due to the con-
jugate symmetry of DFT (see Algorithm 3 in [6]). Finally, FW runs
faster than TNN since it only involves computing the leading sin-
gular vectors instead of the full SVD in the Fourier domain.

6.2.2. Point cloud data set.

Point cloud data collected by light detection and ranging (Li-
DAR) sensors are widely used in environmental sensing for un-
manned ground vehicles (UGV). In this experiment, we test on a

dataset’ for moving object tracking. It contains a sequence of point
cloud data acquired from a Velodyne HDL-64E LiDAR. We choose
the first 30 frames and form two tensors of size 64 x 870 x 30 rep-
resenting the distance data and the intensity data, respectively. We
conduct robust tensor recovery against element-wisely sparse cor-
ruptions and Gaussian noise. Specifically, we first generate the out-
lier tensor S* by choosing o, € {10%, 20%, 30%} of the entries of
a zero tensor 0 uniformly at random, and then fill in the chosen
positions by independent Bin(-1, +1) outliers. Then, we form the
noise tensor £ of independent zero-mean Gaussian entries with
standard deviation o = coy, where noise level ¢ =0.1 and nor-
malized signal magnitude oy = || £*||r//d1dd3 for tensor signal
£* e Rhxdaxds Thus, the corrupted observation Y = £* +S* + &
are generated according to the observation model (11).

NN directly works on frontal slices, whereas SNN, TNN
and FW works on tensors. The key parameters are set
as follows. For NN, we set the regularization parame-
ters (A, )= (0.5,05//max{d;,d}) (suggested by [2]).
For SNN, the weight parameters o« are tuned to satisfy
o1 :0p:a3=1:1:0.3, and we tune the regularization parame-
ters (A, u) = (2,5.2//max{d,, d,}d3) for better performances in
most cases. For TNN and FW, we set the regularization parameters
(A, ) =(c,c//max{d;,d}d3), where parameter ¢’ is tuned in
{2,0.05]|Y||g} (motivated by [32]) for better performances in most
cases. For FW, we simply set parameters u, and us as their oracle
values. The initializations and stop criteria of the algorithms are
set for a reasonably good performance/time balance. We repeat 10
runs in each setting and report the averaged PSNR and time in
Table 2. We can see that TNN has the highest PSNR values and FW

7 Scenario B and Scenario B-additional dataset from http://www.mrt.kit.edu/z/
publ/download/velodynetracking/dataset.html.
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Fig. 12. Results of color image recovery with 10% of the tubes corrupted by Bin(—1,+1) outliers and all the elements polluted by Gaussian noise of level ¢ =0.1. (a) is

the corrupted image; (b)-(e) are images recovered by NN [29], SNN [5] and the proposed TNN (Algorithm 1) and FW (Algorithm 2); (f) and (g) report the PSNR values and
running time (seconds) of the test images, respectively. Best viewed in 400% zoomed color pdf file..

(a) Observation (b) NN (c) SNN (d) TNN (e) FW
BN mSNR &THRN - =f NN ®SNN  =TNN  ®FW
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Fig. 13. Results of color image recovery with 5% of the literal slices (i.e. columns) corrupted by Bin(—1,+1) outliers and all the elements polluted by Gaussian noise of level

¢ =0.2. (a) is the corrupted image; (b)-(e) are images recovered by NN [29], SNN [5] and the proposed TNN (Algorithm 1) and FW (Algorithm 2); (f) and (g) report the PSNR
values and running time (seconds), respectively. Best viewed in 400% zoomed color pdf file..
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Table 2

PSNR values and running time (seconds) of different algorithms on point cloud data. The signal tensor is
first corrupted by element-wise Bin(—1, +1) outliers with corruption ratio g, € {10%, 20%, 30%}, and then
all the elements are polluted by Gaussian noise with noise level ¢ = 0.1.

Data set  cor. ratio g, index NN [29]  SNN [5]  TNN (Algorithm 1)  FW (Algorithm 2)
HDL 10% PSNR 20.25 25.41 26.24 25.91
Distance time/s  50.25 132.14 56.86 16.25

20% PSNR 19.77 22.23 26.07 25.35

time/s  54.83 125.82 56.71 13.97

30% PSNR 193 21.45 25.68 24.67

time/s  50.46 127.53 54.27 12.78

HDL 10% PSNR 18.44 22.49 23.13 22.97
Intensity time/s  56.11 135.22 64.23 22.14
20% PSNR 18.09 20.15 22.88 22.45

time/s  55.90 126.85 62.12 18.65

30% PSNR 17.71 19.37 22.54 21.71

time/s  57.29 128.38 58.47 19.52

Table 3

PSNR values and running time (seconds) of different algorithms on video data. First 10% entries of the video
is corrupted by element-wise Bin(—1, +1) outliers and then all the entries are polluted by Gaussian noise
with noise level ¢ = {0.1,0.2}.

Data set  noise. level ¢ index NN [29]  SNN [5]  TNN (Algorithm 1)  FW (Algorithm 2)

Claire 0.1 PSNR 25.68 28.67 30.26 29.70
time/s  52.70 71.28 63.19 20.04

0.2 PSNR 24.26 27.33 30.06 28.90

time/s  51.06 71.88 68.61 21.91

Grandma 0.1 PSNR 23.21 29.82 31.18 29.24
time/s  48.89 70.62 33.16 22.84

0.2 PSNR 22.98 28.85 31.05 28.52

time/s  51.39 69.09 37.24 20.68

Miss- 0.1 PSNR 25.59 29.31 31.36 31.34
America time/s  53.70 68.07 33.18 19.74
0.2 PSNR 25.33 28.64 31.28 30.86

time/s  61.89 84.70 45.61 28.84

runs the fastest, which is in consistence with the experiments on
color images.

solve the model with convergence guarantees. The FW-based algo-
rithm takes the advantages of the dual norm of TNN which get rids
of computing full SVDs in each iteration, and thus accelerates the
algorithm. Experimentally, simulations on synthetic dataset verify
the correctness of the theorem. The effectiveness and the efficiency
of the proposed algorithms are evaluated on real datasets. An in-
teresting future direction is to consider tensor estimation in the
saturation setting. Another direction is to combine tensor learn-
ing with discrimination [38] and structured sparse representation
[39] for face recognition.

6.2.3. Video recovery

In this subsection, we conduct video restoration which aims to
recover an underlying video from its corrupted observation. The
experiments are carried out on three widely used YUV videos®:
Claire_qcif, Grandma_qcif, and Miss-America_qcif. We use the first
30 frames of Y components in each video and obtain three ten-
sors sized 144 x 176 x 30. We first choose 10% of video entries
randomly, and corrupt them by additive independent Bin(—1, +1)
outliers. Then, we add i.i.d. zero-mean Gaussian noise with stan-
dard deviation o = coy, where the noise level ce{0.1, 0.2}. The
key parameters are set in a similar manner as the experiments on
point cloud data. We report the averaged PSNR and time over 10
runs in Table 3. It can be found that the TNN has the highest PSNR
values and FW runs the fastest, illustrating the effectiveness and
efficiency of the proposed algorithms.
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