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a b s t r a c t 

Aiming at recovering a signal tensor from its mixture with outliers and noises, robust tensor decompo- 

sition (RTD) arises frequently in many real-world applications. Recently, the low-tubal-rank model has 

shown more powerful performances than traditional tensor low-rank models in several tensor recovery 

tasks. Assuming the underlying tensor to be low-tubal-rank and the outliers sparse, this paper first pro- 

poses a penalized least squares estimator for RTD. Specifically, we adopt the tubal nuclear norm (TNN) 

and a sparsity inducing norm to regularize the underlying tensor and the outliers, respectively. Then, 

from a statistical standpoint, non-asymptotic upper bounds on the estimation error are established and 

proved to be near-optimal in a minimax sense. Further, two algorithms, namely, an ADMM-based algo- 

rithm and a Frank-Wolfe (FW) based algorithm are proposed to efficiently solve the proposed estimator 

from a computational standpoint. The sharpness of the proposed upper bound is verified on synthetic 

datasets. The superiority and efficiency of the proposed algorithms is demonstrated in experiments on 

real datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Tensor decomposition has become a paradigm for modern

ulti-way array processing [1] . Traditional tensor decomposition

odels like CANDECOMP/PARAFAC (CP) decomposition [2] and

ucker decomposition [3] work well when the multi-way data is

ildly corrupted by small noises. However, in many applications,

he multi-way data may often be corrupted by both small noises

nd gross outliers, due to various reasons like occlusion in videos,

ensor failures, abnormalities, or software malfunctions. For ex-

mple, in hyper-spectral image processing, the embedded noise is

robably a mixture of small dense noise and sparse gross outliers

4] . Thus, it is of significantly practical and theoretical importance

o develop efficient algorithms with performance guarantee to ro-

ustify traditional tensor decompositions. 

Aiming at recovering a tensor from measurements corrupted by

oises and outliers, robust tensor decomposition (RTD) [5] assumes
∗ Corresponding author at: School of Computer Science and Engineering, Nanjing 
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hat we observe a corrupted tensor 

 = L 
∗ + S ∗ + E, (1)

here L 
∗ is the true but unknown signal tensor, tensor S ∗ rep-

esents outliers, and E denotes a (deterministic or random) noise

ensor (see Fig. 1 for illustration). Here, we suppose the outlier

ensor S ∗ is sparse, since it is unable to reconstruct a signal tensor

hen most of the measurements are heavily corrupted. In many

ulti-way signal processing applications like image/video process-

ng, most studied outliers can be categorized into three possi-

le classes, i.e., element-wise, tube-wise and slice-wise outliers, as

hown in Fig. 2 . The element-wise outliers are the most common

n multi-media signal processing such as video restoration [6] and

ideo surveillance [7] . The tube-wise outliers may occur when pix-

ls of a color image are corrupted [6] , and the sample-specific out-

iers can be modeled as slice-wisely sparse [8] . 

In many real-world applications, most variations of the multi-

ay signal can be linearly dominated by a relatively small number

f latent factors due to intrinsic correlations and redundancy [9] .

uch data can be well approximated by a “low rank” tensor. Since

he CP rank and its corresponding nuclear norm are both NP hard

10,11] , the computational efficient Tucker rank is commonly used

o model real multi-way data. To recover a low-rank signal tensor

https://doi.org/10.1016/j.sigpro.2019.107319
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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Fig. 1. Observation model of robust tensor decomposition when the outliers are element-wisely sparse. 

Fig. 2. Three settings of S ∗ . Subplot (a): S ∗ is element-wisely sparse; Subplot (b): S ∗ is tube-wisely sparse; Subplot (c): S ∗ is slice-wisely sparse. 
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from noises and element-wise sparse outliers, the following RTD

model is considered [5] 

min 
L , S 

1 

2 
‖ Y − L − S ‖ 

2 
F + λ‖L‖ S 1 + μ‖S‖ l 1 , (2)

where ‖ ·‖ S 1 is the tensor Schatten-1 norm [12] to impose low

Tucker rank structure, ‖ ·‖ l 1 is the element-wise l 1 -norm, and λ
and μ are regularization parameters. An ADMM-based algorithm

is proposed to solve the model, and the non-asymptotic estimation

error of L 
∗ and S ∗ are established [5] . 

Recently, the low tubal rank models have achieved better per-

formances than low Tucker rank models in many low rank ten-

sor recovery tasks, like tensor completion [13–16] , tensor sensing

[17,18] , tensor robust principal component analysis (TRPCA) [6,19] ,

outlier robust tensor principal component analysis (OR-TPCA) [8] ,

etc. At the core of these models is the tubal nuclear norm (TNN)

‖ · ‖ � [20] , which is pointed out to be powerful in capturing the

ubiquitous “spatial-shifting” correlations in real-world multi-way

data [21] . 

Thanks to the superioity of TNN, many relevant models

are studied to recover a low rank signal tensor L 
∗ ∈ R 

d 1 ×d 2 ×d 3 

from observation Y ∈ R 
d 1 ×d 2 ×d 3 corrupted by sparse outliers S ∗ ∈

R 
d 1 ×d 2 ×d 3 in noiseless settings (i.e., E = 0 in Eq. (1) ). In [6,19] , a

TNN-based TRPCA model is proposed for robust tensor recovery

against element-wisely sparse outliers. It is proved that by solving

the following problem 

min 
L , S 

‖L‖ � + λ‖ S ∗‖ l 1 s.t. Y = L + S, (3)

where λ = 1 / 
√ 

min { d 1 , d 2 } d 3 , the true tensor L 
∗ and the element-

wisely sparse outlier tensor S ∗ can be exactly recovered with high

probability, given L 
∗ satisfies the tensor incoherence conditions.

When the outliers S ∗ are tube-wisely sparse, Zhang et al. [22] pro-

poses the following TRPCA model 

min 
L , S 

‖L‖ � + λ‖ S ∗‖ tube 1 s.t. Y = L + S, (4)

where ‖ ·‖ tube 1 is the tensor tube-1 norm (see the definition in

Table 1 ). In [8] , a slice-wisely sparse tensor S ∗ is used to repre-

sent the sample-specific outliers, and the outlier robust TPCA is

proposed as follows 

min 
L , S 

‖L‖ � + λ‖ S ∗‖ slice 1 s.t. Y = L + S, (5)
here ‖ ·‖ slice 1 is the tensor slice-1 norm (see Table 1 for defini-

ion). It is proved that when λ = 1 / 
√ 

log d 2 , the solution of Prob-

em (5) can exactly recover the true tensor L 
∗ and the slice-wisely

parse outliers S ∗ with high probability if L 
∗ and S ∗ satisfy the

ensor incoherence condition and unambiguity condition, respec-

ively. 

It is noted that Models (3)–(5) only consider the noiseless set-

ings, i.e., E = 0 in Problem (1) . However, in real applications out-

iers and noises are more likely to coexist. On the other hand,

he theoretical analysis of TRPCA [6,19] and OR-TPCA [8] assumes

he underlying tensor L 
∗ to satisfy the tensor incoherence condi-

ions defined through the tensor singular value decomposition (t-

VD). Since the true L 
∗ is unknown it is usually hard to check

hether incoherence conditions hold. Moreover, the ADMM-based

lgorithms designed to solve Models (3)–(5) in [8,19,22] are com-

utationally expensive, since they need to compute the proximity

perator of TNN (which requires the time-consuming full SVDs) in

ach iteration. 

To address the above mentioned issues, we propose a penalized

east square estimator to estimate the underlying tensor L 
∗ and the

utlier S ∗. The theoretic analysis of this estimator does not assume

he underlying tensor to satisfy the tensor incoherence conditions.

pecifically, the contributions of this paper are listed as follows: 

• A TNN-based least square estimator is proposed for RTD in

Eq. (13) . We only assume L 
∗ to satisfy the l ∞ -norm bounded-

ness condition, which is less strict than the tensor incoherence

conditions. 
• On the statistical side, both deterministic and non-asymptotic

upper bounds on the estimation error are established in

Theorems 1 and 2 , respectively. The non-asymptotic upper

bounds are then proved to be minimax near-optimal by

Theorem 3 . Experiments on synthetic dataset verify that the

proposed upper bounds can predict the scaling behavior of the

estimation error. 
• On the computational side, two algorithms, i.e., an ADMM-

based algorithm ( Algorithm 1 ) and an FW-based algorithm

( Algorithm 2 ), are proposed with convergence guarantees

( Theorems 4 and 5 ). The latter gets rid of the proximity

operator of TNN, and has significantly cheaper one-iteration
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Table 1 

List of notations. 

Notations Descriptions Notations Descriptions 

t A scaler L ∗ True low-rank tensor 

t A vector S ∗ True “sparse” tensor 

T A matrix ˆ L Estimator of L ∗
T A tensor ˆ S Estimator of S ∗˜ T fft 3 (T ) ‖T ‖ sp := ‖ T ‖ Tensor spectral norm 

T Block-diagonal matrix of ̃  T ‖T ‖ � := ‖ T ‖ ∗ Tubal nuclear norm 

T i jk ( i, j, k ) th entry of T ‖T ‖ l 1 := 

∑ 

i jk |T i jk | Tensor l 1 -norm 

T (i, j, k ) T i jk ‖T ‖ F := 

√ ∑ 

i jk T 2 i jk 
Tensor F-norm 

T (i, j, :) ( i, j ) th tube of T ‖T ‖ l ∞ := max i jk |T i jk | Tensor l ∞ -norm 

T (: , j, :) j th lateral slice of T ‖T ‖ tube 1 := 

∑ 

i j ‖ T (i, j, :) ‖ F Tensor tube 1 -norm 

T (: , : , k ) k th frontal slice of T ‖T ‖ slice 1 := 

∑ 

j ‖ T (: , j, :) ‖ F Tensor slice 1 -norm 

T (k ) T (: , : , k ) ‖T ‖ tube ∞ := max i j ‖ T (i, j, :) ‖ F Tensor tube ∞ -norm 

�s Support of S ∗ ‖T ‖ slice ∞ := max j ‖ T (: , j, :) ‖ F Tensor slice ∞ -norm 

�⊥ 
s Complement of �s 〈A , B〉 := 

∑ 

i jk A i jk B i jk Tensor inner product 
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computational cost. Experiments on real dataset validate the ef-

fectiveness and the efficiency of the proposed algorithms. 

The rest of this paper proceeds as follows. Section 2 intro-

uces the notations and preliminaries on tensor SVD. The pro-

osed estimator is formulated in Section 3 . We analyze the sta-

istical performance of the proposed estimator in Section 4 . Two

lgorithms are developed to solve the estimator in Section 5 . We

how experiments on both synthetic and real dataset in Section 6 .

ection 7 summarizes this work. Some technical proofs are given

n the supplemental material. 

. Notations and preliminaries 

.1. Notations 

For convenience, we list the main notations in Table 1 . Given a

ositive integer d , let [ d ] be the set {1, ���, d }. Given i ∈ [ d] , e i ∈ R 
d 

s the canonical vector basis with i th entry being 1 and others

. Given ( i, j, k ) ∈ [ d 1 ] × [ d 2 ] × [ d 3 ], outer product e i ◦ e j ◦ e k is the

anonical tensor basis in R 
d 1 ×d 2 ×d 3 with ( i, j, k ) th entry being 1 and

thers 0. For a 3-way tensor, a tube is a vector defined by fixing

ndices of the first two modes and varying the third one; A slice

s a matrix defined by fixing all but two indices. Notation fft 3 ( · )
enotes the fast discrete Fourier transformation (FFT) along the third

ode of a 3-way tensor, i.e., MATLAB command fft( · , [], 3); simi-

arly, ifft 3 ( · ) denotes the fast inverse discrete Fourier transformation

IFFT) along the third mode of a 3-way tensor, i.e., MATLAB com-

and ifft( · , [], 3). We use C, c and their derivatives like c ′ , c 0 ,
tc. to denote absolute constants, whose values may vary from line

o line . For any a, b ∈ R, let a ∨ b = max { a, b} and a ∧ b = min { a, b} .
et 
 a � denote the closest integer to a ∈ R that is not smaller than

 , and � a � denotes the closest integer to a ∈ R that is not larger

han a . For tensors of size d 1 × d 2 × d 3 , we assume that d 1 ≥d 2 
ithout loss of generality. For simplicity, let ˜ d = (d 1 + d 2 ) d 3 . The

pectral norm ‖ · ‖ and nuclear norm ‖ · ‖ ∗ of a matrix are defined

s the maximum and the sum of its singular values, respectively.

et 0 and 1 denote the tensor of compatible dimension whose en-

ries are all0 ′ s and1 ′ s, respectively. If the denominator is 0, we

efine 0 
0 = 0 in this paper, which will be used in Eqs. (38) and

39) and Eqs. (54) –(55) . 

.2. Tensor singular value decomposition 

Some preliminaries of tensor SVD are introduced in this subsec-

ion. 

efinition 1 (T-product [13] ) . Let T 1 ∈ R 
d 1 ×d 2 ×d 3 and T 2 ∈

 
d 2 ×d 4 ×d 3 . The t-product of T and T is a tensor T of size
1 2 
 1 × d 4 × d 3 : 

 := T 1 ∗ T 2 , (6) 

hose ( i, j ) th tube is given by 

 (i, j, :) = 

d 2 ∑ 

k =1 

T 1 (i, k, :) • T 2 (k, j, :) , 

here • denotes the circular convolution between two fibers [23] . 

efinition 2 (Tensor transpose [13] ) . Let T be a tensor of size

 1 × d 2 × d 3 , then T � is the d 2 ×d 1 × d 3 tensor obtained by trans-

osing each of the frontal slices and then reversing the order of

ransposed frontal slices 2 through d 3 . 

efinition 3 (Identity tensor [13] ) . The identity tensor I ∈
 
d 1 ×d 1 ×d 3 is a tensor whose first frontal slice is the d 1 × d 1 identity

atrix and all other frontal slices are zero. 

efinition 4 (F-diagonal tensor [13] ) . A tensor is called f-diagonal

f each frontal slice of the tensor is a diagonal matrix. 

efinition 5 (Orthogonal tensor [13] ) . A tensor Q ∈ R 
d 1 ×d 1 ×d 3 is

rthogonal if Q 
� ∗ Q = Q ∗ Q 

� = I . 

Based on the above concepts, the tensor singular value decom-

osition (t-SVD) can be defined as follows. It is illustrated in Fig. 3 .

efinition 6 (T-SVD, Tensor tubal-rank [13] ) . For any T ∈
 
d 1 ×d 2 ×d 3 , the tensor singular value decomposition (t-SVD) of T 
s given as follows 

 = U ∗ � ∗ V � , (7) 

here U ∈ R 
d 1 ×d 1 ×d 3 , � ∈ R 

d 1 ×d 2 ×d 3 , V ∈ R 
d 2 ×d 2 ×d 3 , U and V are

rthogonal tensors, � is a rectangular f -diagonal tensor. 

The tensor tubal rank of T is defined to be the number of non-

ero tubes of � in the t-SVD factorization, i.e., 

 t (T ) := 

∑ 

i 

1 ( �(i, i, :) � = 0 ) . (8)

The definitions of tubal nuclear norm and tensor spectral norm

ill be given. The former has been applied as a convex relaxation

f the tensor tubal rank in [8,19,22,25,26] . 

efinition 7 (Tubal nuclear norm [6,13] ) . For any T ∈ R 
d 1 ×d 2 ×d 3 ,

et T denote the block-diagonal matrix of the tensor ˜ T := fft 3 (T ) ,
.e., 

 := 

⎡ ⎢ ⎣ 

˜ T (: , : , 1) 

. . . ˜ T (: , : , d 3 ) 

⎤ ⎥ ⎦ ∈ C 
d 1 d 3 ×d 2 d 3 . 
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Fig. 3. Illustration of t-SVD [24] . 
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The tubal nuclear norm ‖T ‖ � of T is the rescaled matrix nu-

clear norm (i.e. the sum of singular values) of T , i.e., 

‖T ‖ � := 

‖ T ‖ ∗
d 3 

. (9)

Definition 8 (Tensor spectral norm [13] ) . The tensor spectral norm

‖T ‖ sp of a 3-D tensor T is defined as the matrix spectral norm

(i.e. the largest singular value) of T , i.e., 

‖T ‖ sp := ‖ T ‖ . (10)

It has been shown in [6] that TNN is the dual norm of tensor

spectral norm. 

3. The problem formulation 

In this section, the t-SVD-based robust tensor decomposition

will be formulated. We first introduce the observation model. 

3.1. The observation model 

Suppose a corrupted tensor Y ∈ R 
d 1 ×d 2 ×d 3 is observed according

to the following observation model 

Y = L 
∗ + S ∗ + E, (11)

where L 
∗ ∈ R 

d 1 ×d 2 ×d 3 is the true but unknown signal tensor, S ∗ ∈
R 
d 1 ×d 2 ×d 3 represents an outlier tensor with some sparsity struc-

ture, and E ∈ R 
d 1 ×d 2 ×d 3 denotes a (deterministic or random) noise

tensor. 

In this paper, we assume that the signal tensor L 
∗ has low tubal

rank, i.e., 

r t ( L 
∗) � min { d 1 , d 2 } . (12)

Besides, we also assume S ∗ with support �s satisfies one of the

three sparsity settings : 

Setting 1. S ∗ has element-wise sparsity, i.e., its support

�s ⊂ [ d 1 ] × [ d 2 ] × [ d 3 ] satisfies | �s | � d 1 d 2 d 3 . Then,

S ∗ can represent element-wisely sparse outliers (see

Fig. 2 -a). When the noise tensor E = 0 , Eq. (11) is the

observation model of TRPCA [19] . 

Setting 2. S ∗ has tube-wise sparsity, i.e., its support �s satisfies

�s ⊂�t × [ d 3 ] with �t ⊂ [ d 1 ] × [ d 2 ] and | �t | � d 1 d 2 .

Then, S ∗ can represent tube-wisely sparse outliers (see

Fig. 2 -b). When the noise tensor E = 0 , Eq. (11) is the

observation model of TRPCA with tube corruption [22] .

Setting 3. S ∗ has lateral-slice-wise sparsity, i.e., its support

�s ⊂ [ d 1 ] ×�ls × [ d 3 ] with �ls ⊂ [ d 2 ] and | �ls | � d 2 .

Then, S ∗ can represent lateral-slice-wise sparse sam-

ple outliers (see Fig. 2 -c). When the noise tensor E = 0 ,

Eq. (11) is the observation model of outlier robust ten-

sor PCA (OR-TPCA) [8] . 

The goal of RTD is to recover L 
∗ and S ∗ from the corrupted ob-

servation Y satisfying the observation model (11) . Considering the

observation model in Eq. (11) , we make the following assumption
n the true signal tensor L 
∗ to avoid ambiguity in the decomposi-

ion to some extent. 

ssumption 1. The l ∞ -norm of L 
∗ (i.e., the maximum of entry-

ise absolute value) is upper bounded by a known constant α,

.e., 

 L 
∗‖ l ∞ ≤ α. 

emark 1. We have the following remarks on Assumption 1 : 

(I). The l ∞ -norm boundedness is a natural assumption in many

real applications. For example, the magnitude of the true im-

age or video tensor is bounded by 255 in image or video

restoration. 

(II). The l ∞ -norm boundedness is milder than the tensor inco-

herent conditions (TICs) proposed in [8,19] for TRPCA and

OR-TPCA in noiseless settings. It is also used in noisy/robust

matrix completion [27,28] and noisy tensor completion

[24,25] . It serves as a relaxation of the non-spiky condition

adopted in robust matrix decomposition [29] . 

.2. The proposed estimator 

Given a corrupted observation Y, a penalized least squares es-

imator is defined to estimate L 
∗ and S ∗ as follows: 

( ̂  L , ˆ S ) = argmin 
L , S 

1 

2 
‖ L + S −Y ‖ 

2 
F + λ‖L‖ � + μR (S) , s.t. ‖L‖ l ∞ ≤ α

(13)

here λ and μ are positive regularization parameters, R ( · ) is a
egularizer to impose certain sparsity in the final solution ˆ S . For
 
∗ being element-wisely, tube-wisely or slice-wisely sparse, we

hoose R ( · ) as ‖ ·‖ l 1 , ‖ ·‖ tube 1 or ‖ ·‖ slice 1 , respectively. 

. Statistical performance: Minimax near-optimal error bounds 

In this section, statistical performance of the proposed estima-

or ( ̂  L , ˆ S ) in Eq. (13) will be analyzed. Specifically, we first derive

pper bounds on the estimation error both deterministically and

on-asymptotically, and then establish lower bounds on the error

n a minimax sense. 

.1. Upper bounds on the estimation error 

For the ease of notation, we use �L = ˆ L − L 
∗ and �S = ˆ S − S ∗

o denote the error tensors of L 
∗ and S ∗, respectively. To explore

he statistical performance of the estimator ( ̂  L , ˆ S ) , we will give

pper bounds on the sum of squared Frobenius norms ‖ �L ‖ 2 F +
 �S ‖ 2 F . 

.1.1. Deterministic bounds 

When tensor E in the observation model (11) represents any

eterministic or random noise, we derive upper bounds on the es-

imation error in a deterministic sense. 
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To bound the error, we need Lemma 1 at first. For the ease of

otation, let R ∗( · ) denote the dual norm of R ( · ), which is cho-

en as ‖ ·‖ l ∞ 
, ‖ ·‖ tube ∞ 

, or ‖ ·‖ slice ∞ 
for R ( · ) being ‖ ·‖ l 1 , ‖ ·‖ tube 1 ,

r ‖ ·‖ slice 1 respectively. 
emma 1. Choose λ ≥ 2 ‖E‖ sp in Problem (13) and μ ≥ 2(R ∗(E ) +
 αR ∗( 1 )) . Then, there exist decompositions �L = �′ 

L + �′′ 
L and

S = �′ 
S + �′′ 

S , such that 

(I). a rank inequality holds: r t ( �
′ 
L ) ≤ 2 r t ( L 

∗) , and 
(II). a norm inequality holds: 

λ‖ �′′ 
L ‖ � + μR (�′′ 

S ) ≤ 3 

(
λ‖ �′ 

L ‖ � + μR (�′ 
S ) 
)
. (14)

The proof can be found in the supplemental material. Based on

he lemma, we are able to establish the deterministic bounds on

he estimation error in the following theorem. 

heorem 1. Choose λ ≥ 2 ‖E‖ sp in Problem (13) . Then the following

tatements hold 1 : 

(I). If R (·) = ‖ ·‖ l 1 , by setting μ ≥ 2(‖E‖ l ∞ 
+ 2 α) , we have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F ≤ 18 λ2 r t ( L 

∗) + 9 μ2 ‖ S ∗‖ l 0 . (15)

(II). If R (·) = ‖ ·‖ tube 1 , by setting μ ≥ 2(‖E‖ tube ∞ 
+ 2 α

√ 

d 3 ) , we

have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F ≤ 18 λ2 r t ( L 

∗) + 9 μ2 ‖ S ∗‖ tube 0 . (16)

(III). If R (·) = ‖ ·‖ slice 1 , by setting μ ≥ 2(‖E‖ slice ∞ 
+ 2 α

√ 

d 1 d 3 ) , we

have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F ≤ 18 λ2 r t ( L 

∗) + 9 μ2 ‖ S ∗‖ slice 0 . (17)

The proof is given in the supplemental material. We can see

rom Theorem 1 that the upper bounds have linear scaling behav-

or with the tubal rank of L 
∗ and the sparsity of S ∗, when the

egularization parameters λ and μ exceed certain values. When

 3 = 1 , the upper bounds are consistent with the bounds in [29] . 

.1.2. Non-asymptotic bounds 

When the elements of E ∈ R 
d 1 ×d 2 ×d 3 follow independent and

dentically distributed ( i.i.d. ) Gaussian distribution N (0 , σ 2 ) , we

ill give non-asymptotic upper bounds on the estimation error.

o this end, we need the following lemmas whose proofs can be

ound in the supplemental material. 

emma 2. If the elements of G ∈ R 
d 1 ×d 2 ×d 3 follow i.i.d. Gaussian dis-

ribution N (0 , 1) , then it holds that 

 

[ 
‖G‖ sp ≥ 2( 

√ 

d 1 + 

√ 

d 2 ) 
√ 

d 3 

] 
≤ e −c( 

√ 

d 1 + 
√ 

d 2 ) 
2 

. (18)

emma 3. If the elements of G ∈ R 
d 1 ×d 2 ×d 3 follow i.i.d. Gaussian dis-

ribution N (0 , 1) , then we have the following relationships. 

(I). The l ∞ -norm of G satisfy the probability inequality 

P 

[ 
‖G‖ l ∞ ≥ 2 

√ 

log (d 1 d 2 d 3 ) 
] 

≤ 1 

d 1 d 2 d 3 
. (19) 

(II). The tube ∞ -norm of G satisfy the probability inequality 

P 

[ 
‖G‖ tube ∞ ≥

√ 

d 3 + 3 
√ 

log (d 1 d 2 ) 
] 

≤ 1 

d 1 d 2 
. (20)

(III). The slice ∞ -norm of G satisfy the probability inequality 

P 

[ 
‖G‖ slice ≥

√ 

d 1 d 3 + 3 
√ 

log d 2 

] 
≤ 1 

. (21)
∞ d 2 

1 The relevant tensor norms are defined in Table 1 . 

R  

t  

l  
Based on Theorem 1 and Lemmas 2 –3 , we are in a position

o upper bound the estimation error. Before showing the error

ounds under i.i.d. Gaussian noise, we define the low rank ratio

 r ∈ [0 , 1] of L 
∗ and the sparsity ratio � s ∈ [0 , 1] of S ∗ respectively

s follows: 

 r (L 
∗) := 

r t ( L 
∗) 

d 1 ∧ d 2 
, � s (S ∗) := 

⎧ ⎪ ⎨ ⎪ ⎩ 

‖ S ∗‖ l 0 
d 1 d 2 d 3 

, element-wise sparsity, 

‖ S ∗‖ tube 0 
d 1 d 2 

, tube-wise sparsity, 
‖ S ∗‖ slice 0 

d 2 
, slice-wise sparsity. 

(22) 

hus, the more complex the signal tensor L 
∗, the higher � r (L 

∗) ;
he heavier the outliers S ∗, the higher � s (S ∗) . 

heorem 2. Consider the case where the elements of E ∈ R 
d 1 ×d 2 ×d 3 

ollow i.i.d. Gaussian distribution N (0 , σ 2 ) . Choose λ = 4 σ ( 
√ 

d 1 +
 

d 2 ) 
√ 

d 3 in Problem (13) . Then the following statements hold: 

(I). If R (·) = ‖ ·‖ l 1 , by setting μ = 4 σ
√ 

log (d 1 d 2 d 3 ) + 8 α, we

have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F 

d 1 d 2 d 3 
≤ 1152 σ 2 � r (L 

∗) 

+ 288 
(
σ 2 log (d 1 d 2 d 3 ) + α2 

)
� s (S ∗) , (23) 

with probability at least 1 − exp (−c( 
√ 

d 1 + 

√ 

d 2 ) 
2 ) −

(d 1 d 2 d 3 ) 
−1 . 

(II). If R (·) = ‖ ·‖ tube 1 and d 3 � log ( d 1 d 2 ), by setting μ =
2(σ

√ 

d 3 + 3 σ
√ 

log (d 1 d 2 ) + 2 α
√ 

d 3 ) , we have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F 

d 1 d 2 d 3 
≤ 1152 σ 2 � r (L 

∗) + 576 (σ ∨ α) 2 � s (S ∗) , 

(24) 

with probability at least 1 − exp (−c( 
√ 

d 1 + 

√ 

d 2 ) 
2 ) −

(d 1 d 2 ) 
−1 . 

(III). If R (·) = ‖ ·‖ slice 1 and d 1 d 3 � log ( d 2 ), by setting μ =
2(σ

√ 

d 1 d 3 + 3 σ
√ 

log d 2 + 2 α
√ 

d 1 d 3 ) , we have 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F 

d 1 d 2 d 3 
≤ 1152 σ 2 � r (L 

∗) + 576 (σ ∨ α) 2 � s (S ∗) , 

(25) 

with probability at least 1 − exp (−c( 
√ 

d 1 + 

√ 

d 2 ) 
2 ) − d −1 

2 
. 

According to Theorem 2 , the bounds in Eqs. (23) - (25) can be

ummarized uniformly as follows 

‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F 

d 1 d 2 d 3 
≤ c 1 σ

2 � r (L 
∗) + c 2 (ς ∨ α) 2 � s (S ∗) , (26)

here ς = σ log (d 1 d 2 d 3 ) for element-wisely sparse S ∗, and ς =
for tube-wisely or slice-wisely sparse S ∗. It is notable that

q. (26) is consistent with our intuition: the more complex the sig-

al tensor (i.e., higher � r (L 
∗) ), the heavier the outliers (i.e., higher

 s (S ∗) ), and the heavier the noise (i.e., larger σ ), the larger the

stimation error will be. 

To the best of our knowledge, Theorem 2 for the first time es-

ablishes error bounds for robust tensor decomposition when the

nderlying tensor is low-tubal-rank. The proposed upper bounds

n Eqs. (23) - (25) will be shown to be near-optimal in the minimax

ense in the next subsection. The comparison with previous works

re shown in the following remarks. 

emark 2 (Difference from SNN-based robust tensor decomposi-

ion (SNN-RTD) [5] ) . SNN-RTD models the underlying tensor as

ow-Tucker-rank, and this paper assumes the underlying tensor to
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be low-tubal-rank. Besides, the proposed upper bounds are mini-

max near-optimal, whereas the bound in SNN-RTD is not. 

Remark 3 (Degeneration to robust matrix decomposition

[29] ) . When d 3 = 1 , the robust tensor decomposition degen-

erates to robust matrix decomposition, and the degenerated

bounds in Eqs. (23) and (25) are consistent with the bounds

shown in Corollaries 2 and 5 in [29] , respectively. 

Remark 4 (No exact recovery guarantee) . When the noise E van-

ishes, i.e., σ = 0 , the estimation error is upper bounded by Cα2 � s 

which is not 0. That is, the theory in this paper cannot guarantee

exact recovery of L 
∗ and S ∗. 

This differs from the theoretic analysis of TRPCA [19] and OR-

PCA [8] which assumes the underlying tensor L 
∗ satisfies some

tensor incoherence conditions (TICs) and can guarantee exact re-

covery of L 
∗ and S ∗. The difference lies in the fact that this paper

adopts “the l ∞ -norm-boundedness assumption” on the true tensor

L 
∗ — a much weaker assumption than TICs in [19] and [8] . TICs in-

herently ensure that the low-rank tensor L 
∗ is not sparse, whereas

“the l ∞ -norm-boundedness assumption” cannot. For the compari-

son of TICs and l ∞ -norm-boundedness, please refer to [24] . 

4.2. Minimax lower bounds 

In Section 4.1.2 , we establish upper bounds on the estimation

error for i.i.d. Gaussian noise. Then one may ask the complemen-

tary questions: how tight are these upper bounds? Are there fun-

damental (algorithm-independent) limits of estimation error in ro-

bust tensor decomposition? In this section, we will answer the

questions. 

Consider the case where the elements of E ∈ R 
d 1 ×d 2 ×d 3 follow

i.i.d. Gaussian distribution N (0 , σ 2 ) with known σ > 0. Given some

class A of tensors, we define the associated element-wise minimax

error as follows 

M (A ) := inf 
( ̂ L , ̂ S ) 

sup 
(L ∗, S ∗) ∈ A 

E 

[‖ ̂  L − L 
∗‖ 

2 
F + ‖ ̂  S − S ∗‖ 

2 
F 

d 1 d 2 d 3 

]
, (27)

where the infimum ranges over all pairs of estimators ( ̂  L , ˆ S ) ,
the supremum ranges over all pairs of “true” tensors (L 

∗, S ∗) in
the given tensor class A , and the expectation is taken over the

i.i.d. Gaussian noises. We come up with the following theorem. 

Theorem 3. Consider the case where the elements of E ∈ R 
d 1 ×d 2 ×d 3 

follow i.i.d. Gaussian distribution N (0 , σ 2 ) , where σ is known. Then

for 1 ≤ r ≤min { d 1 , d 2 }, the following statements hold with positive

constants c ′ 
i 
, c ′′ 

i 
and βi ∈ (0 , 1) , i = 1 , 2 , 3 : 

(I). For any positive integer s ≤ d 1 d 2 d 3 /2, let φe := (σ ∧
α) 2 

(
c ′ 1 r/ (d 1 ∧ d 2 ) + c ′′ 1 s/ (d 1 d 2 d 3 ) 

)
, and define the class

of tensors 

A e (r, s, α) := 

{ 
(L , S) 

∣∣r t (L ) ≤ r, ‖L‖ l ∞ ≤ α, ‖S‖ l 0 ≤ s 

} 
. 

Then it holds that 

M ( A e (r, s, α) ) ≥ β1 φe . (28)

(II). For any positive integer s ≤d 1 d 2 /2, let φt := (σ ∧
α) 2 

(
c ′ 
2 
r/ (d 1 ∧ d 2 ) + c ′′ 

2 
s/ (d 1 d 2 ) 

)
and define the class of

tensors 

A t (r, s, α) := 

{ 
(L , S) 

∣∣r t (L ) ≤ r, ‖L‖ l ∞ ≤ α, ‖S‖ tube 0 ≤ s 

} 
. 

Then it holds that 
M ( A t (r, s, α) ) ≥ β2 φt . (29) 
(III). For any positive integer s ≤d 2 /2, let φs := (σ ∧ α) 2 
(
c ′ 
3 
r/ (d 1 ∧

d 2 ) + c ′′ 3 s/d 2 
)
, and define the class of tensors 

A s (r, s, α) := 

{ 
(L , S) 

∣∣r t (L ) ≤ r, ‖L‖ l ∞ ≤ α, ‖S‖ slice 0 ≤ s 

} 
. 

Then it holds that 

M ( A s (r, s, α) ) ≥ β3 φs . (30)

In Theorem 3 , for some certain classes of (L 
∗, S ∗) , Eqs. (28) -

30) establish minimax lower bounds on the estimation errors for

lement-wisely, tube-wisely, and slice-wisely sparse outliers, re-

pectively. When σ and α are known constants, the minimax lower

ounds in Eqs. (28) - (30) can be unified as 

inf 
( ̂ L , ̂ S ) 

sup 
(L ∗, S ∗) 

E 

[‖ �L ‖ 
2 
F + ‖ �S ‖ 

2 
F 

d 1 d 2 d 3 

]
≥ c ′ (σ ∧ α) 2 � r (L 

∗) 

+ c ′′ (σ ∧ α) 2 � s (S ∗) , (31)

or some (L 
∗, S ∗) in certain tensor classes, where � r (L 

∗) and
 s (S ∗) denote the low-rank ratio and sparse ratio defined in

q. (22) . Comparing Eqs. (26) and (31) , the proposed upper bounds

n Theorem 2 are minimax optimal (up to a logarithm factor in

he setting of element-wise outliers or constant factors for tube-

ise and slice-wise outliers). That is, no estimator can provide bet-

er estimations (up to a logarithm factor or constant factor) in the

inimax sense than the proposed estimator. 

. Optimization algorithms 

.1. An ADMM optimizer 

We first propose an algorithm based on the alternating direc-

ion method of multipliers (ADMM) to solve the proposed estima-

or. By introducing auxiliary K, M , T , we get 

in L , S, 
K, T , M 

1 
2 
‖ L + S − Y ‖ 

2 
F + λ‖K‖ � + μR (T ) 

.t. K = L , T = S, M = L , ‖M‖ l ∞ ≤ α. 
(32)

The augmented Lagrangian of Problem (32) is as follows: 

L ρ (L , S, K, T , M , Y 1 , Y 2 , Y 3 ) 

= 

1 

2 
‖ L + S − Y ‖ 

2 
F + λ‖K‖ � + μR (T ) + δ(M ) 

+ 〈 Y 1 , K − L 〉 + 

ρ

2 
‖ K − L ‖ 

2 
F + 〈 Y 2 , T − S 〉 

+ 

ρ

2 
‖ T − S ‖ 

2 
F + 〈 Y 3 , M − L 〉 + 

ρ

2 
‖ M − L ‖ 

2 
F , (33)

here ρ > 0 is a penalty parameter, and Y i ∈ R 
d 1 ×d 2 ×d 3 , i ≤ 3 are

agrangian multipliers. 

Then, we update the variables alternatively by fixing others. The

etails are shown as follows. 

• Update (L , S) : we update (L , S) simultaneously as follows: 

(L 
t+1 , S t+1 ) = argmin 

L , S 
L ρ (L , S, K 

t , T t , M 
t , Y 

t 
1 , Y 

t 
2 , Y 

t 
3 ) 

= argmin 
L , S 

1 

2 
‖ L + S − Y ‖ 

2 
F + 〈 Y 

t 
1 , K 

t − L 〉 + 

ρ

2 
‖ K 

t − L ‖ 
2 
F 

+ 〈 Y 
t 
2 , T t − S 〉 + 

ρ

2 
‖ T t − S ‖ 

2 
F + 〈 Y 

t 
3 , M 

t − L 〉 + 

ρ

2 
‖ M 

t −L ‖ 
2 
F .

Taking derivatives with respective to L and S and set them to

zero, we obtain 

L + S − Y − Y 
t 
1 + ρ(L − K 

t ) − Y 
t 
3 + ρ(L − M 

t ) = 0 , 

L + S − Y − Y 
t 
2 + ρ(S − T t ) = 0 . 

Then, we have 
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L 
t+1 = 

(ρ + 1) A − B + ρY 

ρ(2 ρ + 3) 
, S t+1 = 

(2 ρ + 1) B − A + 2 ρY 

ρ(2 ρ + 3) 
, 

(34) 

where A = ρK 
t + Y 

t 
1 

+ ρM 
t + Y 

t 
3 
and B = ρT t + Y 

t 
2 
. 

• Update K: we update K as follows: 

K 
t+1 = argmin K L ρ (L 

t+1 , S t+1 , K, T t , M 
t , Y 

t 
1 , Y 

t 
2 , Y 

t 
3 ) 

= argmin K λ‖K‖ � + 〈 Y 
t 
1 , K − L 

t+1 〉 + 

ρ
2 
‖ K − L 

t+1 ‖ 
2 
F 

= Prox 
‖ ·‖ � 
λ/ρ

(L 
t+1 − Y 

t 
1 /ρ) 

(35) 

where Prox 
‖ ·‖ � 
τ (·) is the proximal operator of tubal nuclear

norm. In [30] , a closed-form expression of Prox 
‖ ·‖ � 
τ (·) is given

as follows: 

Lemma 4 [30] . For any 3-way tensor A ∈ R 
d 1 ×d 2 ×d 3 with reduced

t-SVD A = U ∗ � ∗ V � , where U ∈ R 
d 1 ×r×d 3 and V ∈ R 

d 2 ×r×d 3 are

orthogonal tensors and � ∈ R 
r ×r ×d 3 is the f-diagonal tensor of sin-

gular tubes, the proximal operator Prox 
‖ ·‖ � 
τ (·) at A can be com-

puted by 2 : 

Prox ‖ ·‖ � τ (A ) : = argmin 
X 

τ‖X ‖ � + 

1 

2 
‖ X − A ‖ 

2 
F 

= U ∗ ifft 3 ( max ( f ft 3 ( �) − τ, 0) ) ∗ V � . (36) 

• Update T : we update T as follows 

T t+1 = argmin 
T 

L ρ (L 
t+1 , S t+1 , K 

t+1 , T , M 
t , Y 

t 
1 , Y 

t 
2 , Y 

t 
3 ) 

= argmin 
T 

μR (T ) + 〈 Y 
t 
2 , T − S t+1 〉 + 

ρ

2 
‖ T − S t+1 ‖ 

2 
F 

= Prox R (·) μ/ρ (S t+1 − Y 
t 
2 /ρ) (37) 

where Prox R (·) τ (·) is the proximal operator of R ( · ) which can be

computed as follows. 

(I). When R (·) = ‖ ·‖ l 1 , the proximal operator is the well

known soft thresholding operator explicitly given as fol-

lows [6] 

Prox 
‖ ·‖ l 1 
τ (A ) : = argmin 

X 
τ‖X ‖ l 1 + 

1 

2 
‖ X − A ‖ 

2 
F 

= sign (A ) � 

(|A| − τ, 0 
)

+ , 

where ◦ledast denotes the element-wise tensor product. 

(II). When R (·) = ‖ ·‖ tube 1 , its proximal operator is the soft

thresholding operator on tubes with closed-form solution

[22] 

Prox 
‖ ·‖ tube 1 
τ (A ) := argmin 

X 
τ‖X ‖ tube 1 + 

1 

2 
‖ X − A ‖ 

2 
F = B, 

(38) 

where B(i, j, :) = A (i, j, :)(1 − τ/ ‖A (i, j, :) ‖ 2 ) + 3 , for all
( i, j ) ∈ [ d 1 ] × [ d 2 ]. 

(III). When R (·) = ‖ ·‖ slice 1 , the proximal operator is the soft

thresholding operator on slices whose closed-form solu-

tion is given as [8] 

Prox 
‖ ·‖ slice 1 
τ (A ) := argmin 

X 
τ‖X ‖ slice 1 + 

1 

2 
‖ X − A ‖ 

2 
F = B, 

(39) 

where B(: , j, :) = A (: , j, :)(1 − τ/ ‖A (: , j, :) ‖ F ) + , for all

j ∈ [ d ]. 
2 

2 By using the conjugate symmetry of DFT [23] , Eq. (36) can be performed with 

 
d 3 +1 
2 

� (rather than d 3 ) full SVDs of d 1 × d 2 matrices in the Fourier domain (see 

lgorithm 3 in [6] ). 
3 Note that we have defined 0 

0 
= 0 if the denominator is 0. This also applies to 

he computation of B in Eq. (39) . 

t  

v  

t

g

• Update M : we update M in the following manner: 

M 
t+1 = argmin 

M 

L ρ (L 
t+1 , S t+1 , K 

t+1 , T t+1 , M , Y 
t 
1 , Y 

t 
2 , Y 

t 
3 ) 

= argmin 
M 

δ(M ) + 〈 Y 
t 
3 , M − L 

t+1 〉 + 

ρ

2 
‖ M − L 

t+1 ‖ 
2 
F 

= Proj 
‖ ·‖ l ∞ 
α (L 

t+1 − Y 
t 
3 /ρ) , (40) 

where Proj 
‖ ·‖ l ∞ 

α (·) is a projection into the l ∞ -norm ball of ra-

dius α serving as a clipping operator with a closed-form solu-

tion given as follows [25] : 

Proj 
‖ ·‖ l ∞ 
α (A ) = sign (A ) � min {|A| , α} . 

• Update Y 1 , Y 2 , Y 3 : the dual variables are updated by 

Y 
t+1 
1 = Y 

t 
1 + ρ(K 

t+1 − L 
t+1 ) , 

Y 
t+1 
2 = Y 

t 
2 + ρ(T t+1 − S t+1 ) , 

Y 
t+1 
3 = Y 

t 
2 + ρ(M 

t+1 − L 
t+1 ) . (41) 

The algorithm is summarized in Algorithm 1 . 

lgorithm 1 Solve Problem (32) by ADMM. 

equire: Observation Y , parameters λ, μ, α and ρ . 

1: Initialize L 
0 = S 0 = K 

0 = T 0 = M 
0 = 0 , Y 

0 
1 

= Y 
0 
2 

= Y 
0 
3 

= 0 , ε ≤
1 e − 8 and t = 0 . 

2: while not converged do 

3: Update (L 
t+1 , S t+1 ) by Eq. (34); 

4: Update K 
t+1 by Eq. (35); 

5: Update T t+1 by Eq. (37); 

6: Update M 
t+1 by Eq. (40); 

7: Update Y 
t+1 
1 

, Y 
t+1 
2 

, Y 
t+1 
3 

by Eq. (41); 

8: Stop criterion: ‖ K 
t+1 − L 

t+1 ‖ l ∞ 
≤ ε, ‖ T t+1 − S t+1 ‖ l ∞ 

≤
ε , ‖ M 

t+1 − L 
t+1 ‖ l ∞ 

≤ ε , and max 
{‖ X 

t+1 − X 
t ‖ l ∞ 

}
≤ ε , ∀X ∈

{L , S, K, T , M} . 
9: t = t + 1 . 

10: end while 

Computational complexity. In a single iteration, the main cost

omes from updating L 
t which involves computing FFT, IFFT and

 3 SVDs of d 1 × d 2 matrices [19] . Hence Algorithm 1 has per-

teration complexity of order O 

(
d 1 d 2 d 3 (d 1 ∧ d 2 + log d 3 ) 

)
. Thus, if

he total iteration number is T , then the total computational com-

lexity is 

 

(
T d 1 d 2 d 3 (d 1 ∧ d 2 + log d 3 ) 

)
. (42)

onvergence analysis. According to [31] , the convergence rate of

eneral ADMM-based algorithms is O (1/ t ), where t is the iteration

umber. The convergence of Algorithm 1 is analyzed in the follow-

ng theorem. 

heorem 4 (Convergence of Algorithm 1 ) . For any ρ > 0,

f the unaugmented Lagrangian L 0 (L , S, K, T , M , Y 1 , Y 2 , Y 3 )

f Problem (32) has a saddle point, then the iteration

(L 
t , S t , K 

t , T t , M 
t , Y 

t 
1 
, Y 

t 
2 
, Y 

t 
3 
) in Algorithm 1 satisfies the resid-

al convergence, objective convergence and dual variable convergence

f Problem (32) 4 . 

.2. A Frank-Wolfe-based algorithm 

The one iteration cost of Algorithm 1 goes superlinearly with

he tensor size, which may be expensive for large tensors. Moti-

ated by [32] , we propose using a modified Frank-Wolfe algorithm

o reduce the one-iteration cost. 
4 See the supplemental material for the detailed explanation of “residual conver- 

ence, objective convergence and dual variable convergence”. 
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5 Note that we have defined 0 
0 

= 0 if the denominator is 0. This also applies to 

the computation of G s (: , j, :) in Eq. (55) . 
In Problem (13) , the l ∞ -norm constraint on L serves an incoher-

ence condition. In real applications, one often omits this constraint

and considers the following unconstrained problem: 

( ̂  L , ˆ S ) = argmin 
L , S 

1 

2 
‖ L + S − Y ‖ 

2 
F + λ‖L‖ � + μR (S) . (43)

By introducing two upper bounds on ‖ L 
∗‖ � and R (S ∗) : u ι ≥ ‖ L 

∗‖ � 
and u s ≥ R (S ∗) , and two intermediate variables t ι and t s , Problem

(43) is equivalent to the following problem: 

min L , S,t ι,t s F (L , S, t ι, t s ) := 
1 
2 
‖ Y − L − S ‖ 

2 
F + λt ι + μt s 

s.t. ‖L‖ � ≤ t ι ≤ u ι, R (S) ≤ t s ≤ u s . 
(44)

5.2.1. The Frank-Wolfe method 

The Frank-Wolfe (FW) method [33,34] , also known as the con-

ditional gradient method, applies to the minimization of a smooth

function h ( · ) over a compact, convex domain D ⊂ R 
n : 

min 
x 

h ( x ) s.t. x ∈ D. (45)

Here, ∇h is assumed to be L -Lipschitz: ‖∇h ( x ) − ∇h ( y ) ‖ 2 ≤ L ‖ x −
y ‖ 2 , ∀ x , y ∈ D. Let D = max x , y ∈D ‖ x − y ‖ 2 denote the diameter of

the feasible set D. 

In its simplest form, FW first linearizes the smooth object func-

tion h ( x ) at x t of iteration t , 

h ( v ) ≈ h ( x t ) + 〈 ∇h ( x t ) , v − x t 〉 . (46)

Then, one minimizes the linear surrogate to obtain 

v t ∈ argmin 
v ∈D 

〈 ∇h ( x t ) , v 〉 , (47)

after which we update x t+1 as some point in D such that 

h ( x t+1 ) ≤ h ( x t + γ ( v t − x t )) , (48)

where γ = 
2 

t+2 . 

5.2.2. Modified FW 

Inspired by [32] , we develop a modified FW algorithm

( Algorithm 2 .) for Problem (43) . The proposed FW-based algorithm

consists of three steps: an FW step, an exact line search step, and

a proximal gradient step for S . The exact line search step seeks a
better γ instead of directly using γ = 2 / (t + 2) in Eq. (48) for fur-

ther acceleration. The proximal gradient step for S is applied to

overcome the problem of slow convergence of S t caused by using
the “vanilla” FW. 

Algorithm 2 Solve Problem (44) by modified Frank-Wolfe method.

Require: Observation Y , parameters λ, μ, u ι, u s , and ε. 
1: Initialize L 

0 = S 0 = 0 , t 0 ι = t 0 s = 0 , ε ≤ 1 e − 8 and t = 0 . 

2: while not converged do 

3: Update (V t ι , v t ι ) by Eq. (49); 
4: Update (V t s , v t s ) by Eq. (50); 

5: Update (L 
t+ 1 

2 , S t+ 
1 
2 , t 

t+ 1 
2 

ι , t 
t+ 1 

2 
s ) by Eq. (56); 

6: Update S t+1 by Eq. (57); 

7: Let L 
t+1 = L 

t+ 1 
2 , t t+1 

ι = t 
t+ 1 

2 
ι , and t t+1 

s = R (S t+1 ) . 

8: Stop criterion: F (L 
t+1 , S t+1 , t t+1 

ι , t t+1 
s ) − F (L 

t , S t , t t ι , t t s ) ≤
εF (L 

t , S t , t t ι , t t s ) . 
9: t = t + 1 . 

10: end while 

An FW Step. Following the key step Eq. (47) of FW, we first

update v t = (V t ι , V t s , v t ι , v t s ) by: 

(V t ι , v t ι ) ∈ argmin 
‖ V ι‖ � ≤v ι≤u ι

g ι(V ι, v ι) := 〈 E t , V ι〉 + λv ι, (49)

(V t s , v t s ) ∈ argmin 
R (V s ) ≤v s ≤u s 

g s (V s , v s ) := 〈 E t , V s 〉 + μv s , (50)
here E t = L 
t + S t − Y plays the role of ∇h ( x t ) in Eq. (47) . To

olve Problems (49) and (50) , we come up with the following two

emmas. 

emma 5. Let k ∗ = argmin k ≤d 3 
‖ ̃  E (k ) ‖ . Let u ∈ R 

d 1 and v ∈ R 
d 2 be

ne pair of the left and right singular vectors of ˜ A 

(k ∗) 
:= 

˜ A (: , : , k ∗)
orresponding to the leading singular value. Let G ι = real ( if ft 3 (B)) ,

here B(: , : , k ∗) = u v H and B(: , : , k ) = 0 , ∀ k � = k ∗. Then, one solution
oint of (V t ι , v t ι ) of Problem (49) can be given as 

(V t ι , v t ι ) = 

{
(−u ιd 3 G ι, u ι) , ‖ G t ‖ sp > λ, 

( 0 , 0) , ‖ G t ‖ sp ≤ λ, 
(51)

nd the optimal value of Problem (49) is −u ι
(‖ E t ‖ sp − λ, 0 

)
+ . 

emma 6. The optimal value of Problem (50) is −u s 
(
R ∗(E t ) − μ

)
+ 

nd one particular solution point (V t s , v t s ) of Problem (50) can be

iven as 

(V t s , v t s ) = 

{
(−u s G s , u s ) , R ∗(E t ) > μ, 

( 0 , 0) , R ∗(E t ) ≤ μ, 
(52)

here the intermediate variable G s is computed as follows 

(I). If R (·) = ‖ ·‖ l 1 , then 
G s = sign (E t i ∗ j ∗k ∗ ) e i ∗ ◦ e j ∗ ◦ e k ∗ , (53)

where (i ∗, j ∗, k ∗) ∈ argmax (i, j,k ) |E t i jk | ; 
(II). If R (·) = ‖ ·‖ tube 1 , then 5 

G s (i, j, :) = 

{
E t (i ∗, j ∗, :) 

‖E t (i ∗, j ∗, :) ‖ 2 , if (i, j) = (i ∗, j ∗) 
0 , otherwise . 

(54)

where (i ∗, j ∗) ∈ argmax (i, j) ‖E t (i, j, :) ‖ 2 . 
(III). If R (·) = ‖ ·‖ slice 1 , then 

G s (: , j, :) = 

{
E t (: , j ∗, :) 

‖E t (: , j ∗, :) ‖ F , if j = j ∗

0 , otherwise . 
(55)

where j ∗ ∈ argmax j ‖E t (: , j, :) ‖ F . 
Exact line search. Using line search [32] , we then update

(L 
t+ 1 

2 , S t+ 
1 
2 , t 

t+ 1 
2 

ι , t 
t+ 1 

2 
s ) by 

min L , S,t ι,t s , 
γ1 ,γ2 ∈ [0 , 1] 

F (L , S, t ι, t s ) 

s.t. 

(
L 

t ι

)
= (1 − γ1 ) 

(
L 
t 

t t ι

)
+ γ1 

(
V t ι
v t ι

)
(
S 
t s 

)
= (1 − γ2 ) 

(
S t 
t t s 

)
+ γ2 

(
V t s 
v t s 

)
. 

(56)

y solving the quadratic problem (56) , we use the following γ 1 

nd γ 2 to further compute (L 
t+ 1 

2 , S t+ 
1 
2 , t 

t+ 1 
2 

ι , t 
t+ 1 

2 
s ) 

1 = 

{ 

0 , ˜ γ1 < 0 
˜ γ1 , ˜ γ1 ∈ [0 , 1] 
1 , ˜ γ1 > 1 

, γ2 = 

{ 

0 , ˜ γ2 < 0 
˜ γ2 , ˜ γ2 ∈ [0 , 1] 
1 , ˜ γ2 > 1 

, 

here if ‖A‖ 2 
F 
‖B ‖ 2 

F 
= 〈A , B 〉 2 , we choose ˜ γ1 = ˜ γ2 = t/ (t + 2) ; oth-

rwise, we choose 

˜ 1 = 

(〈B, C〉 + e 
)〈A , B〉 − (〈A , C〉 + d 

)‖B‖ 
2 
F 

‖A‖ 
2 
F 
‖B ‖ 

2 
F 

− 〈A , B 〉 2 , 

˜ 2 = 

(〈B, C〉 + e 
)‖A‖ 

2 
F −

(〈A , C〉 + d 
)〈A , B〉 

〈A , B 〉 2 − ‖A‖ 
2 
F 
‖B ‖ 

2 
F 

, 
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ith A = V t ι − L 
t , B = V t s − S t , C = L 

t + S t − Y, d = λ(v t ι − t t ι ) , and

 = μ(v t s − t t s ) . 

Proximal gradient step for S. To update S in a more efficient

ay, we incorporate an additional proximal gradient step for S . At
teration t , let (L 

t+ 1 
2 , S t+ 

1 
2 ) be the result produced by FW step.

o produce the next iterate, we keep the low-rank term L 
t+ 1 

2 , but

se an extra proximal gradient step for the function f (L 
t+ 1 

2 , S) at

oint S t+ 
1 
2 to update S, that is 

 
t+1 ∈ argmin 

S 
F (L 

t+ 1 2 , S, t 
t+ 1 2 
ι , R (S)) 

= argmin 
S 

〈 L 
t+ 1 2 + S t+ 1 2 − Y , S − S t+ 1 2 〉 

+ 

1 

2 
‖ S − S t+ 1 2 ‖ 

2 
F + μR (S) 

= Prox R (·) μ

(
Y − L 

t+ 1 2 
)
. (57) 

he algorithm is summarized in Algorithm 2 and the computa-

ional complexity and convergence behavior are analyzed as fol-

ows. 

Computational complexity. The main cost lies in solving the

ubproblem (49) in Lemma 5 . Only FFT/IFFT and d 3 pairs of leading

ingular vectors are computed. By using the conjugate symmetry of

FT [23] , subproblem (49) can also be solved with 
 d 3 +1 
2 � (rather

han d 3 ) rank-1 SVDs of d 1 × d 2 matrices in the Fourier domain.

hus, the per-iteration cost of Algorithm 2 is 

 

(
d 1 d 2 d 3 log d 3 

)
. (58) 

t is significantly lower than O 

(
d 1 d 2 d 3 ( min { d 1 , d 2 } + log d 3 ) 

)
which

s the per-iteration cost of Algorithm 1 . 

heorem 5 (Convergence of Algorithm 2) . Let (L 
� , S � , t � ι , t � s ) be the

ptimal solution of Problem (44) . Then the sequence (L 
t , S t , t t ι , t t s )

roduced by Algorithm 2 satisfies 

 (L 
t , S t , t t ι , t t s ) − F (L 

� , S � , t � ι , t � s ) ≤
20(d 3 u 

2 
ι + u 2 s ) 

t + 2 
. (59)

According to Theorem 5 , the convergence rate of Algorithm 2 is

pproximately O (1/ t ), which is of the same order as our ADMM-

ased Algorithm 1 . Considering the much lower per-iteration

ost of Algorithm 2 than Algorithm 1 , we may expect that

lgorithm 2 can run mush faster than Algorithm 1 . This expecta-

ion will be confirmed through experiments in Section 6.2 . 

. Experiments 

In this section, the correctness of the proposed error bounds

n Theorem 2 is first verified through simulation studies. The
ig. 4. The averaged element-wise estimation error versus tubal rank of L ∗ and tensor l 0
.i.d. Bin (−1 , +1) elements. (a): Error vs L ∗, when ‖ S ∗‖ l 0 = 1080 . (b): Error vs ‖ S ∗‖ l 0 , wh
ffectiveness and efficiency of the proposed algorithms (i.e.,

lgorithms 1 and 2 ) are then evaluated through extensive exper-

ments on real datasets. All codes are written in MATLAB and

ll experiments are performed in Windows 10 based on Intel(R)

ore(TM) i7-8565U 1.80-1.99 GHz CPU with 16G RAM. 

.1. Correctness of the proposed error bounds 

To validate the correctness of the upper bounds in Eqs. (23)- -

25) , we conduct simulations to check whether the proposed upper

ounds can predict the right scaling behavior of the estimation er-

ors. 

Given the tubal rank r ∗ ≤ d 1 ∧ d 2 , the true tensor L 
∗ ∈ R 

d 1 ×d 2 ×d 3 

s first formed by L 
∗ = P ∗ Q /d 3 , where the elements of tensors

 ∈ R 
d 1 ×r ∗×d 3 and Q ∈ R 

r ∗×d 2 ×d 3 are sampled from i.i.d. standard

aussian distribution. Then, we generate the outlier tensor S ∗ by

hoosing its support uniformly at random when S ∗ is element-

isely sparse. Similarly, we uniformly choose the tube or slice sup-

ort at random for tube-wisely or slice-wisely sparse S ∗. The non-
ero elements of S ∗ are sampled i.i.d. from a certain distribution.

urther, we generate the noise tensor E with entries drawing i.i.d.

rom N (0 , σ 2 ) with σ = c‖ L 
∗‖ F / 

√ 

d 1 d 2 d 3 to keep a constant sig-

al noise ratio. Finally, we obtain the observation Y = L 
∗ + S ∗ + E

ccording to the observation model (11) . 

For simplicity, we consider f -square tensors, i.e., d 1 = d 2 = d.

e test tensors of 12 different size by choosing d 2 ∈ {60, 80,

00} and d 3 = 20 . We choose r ∗ ∈ {8, 12, 16, ���, 40} to generate
 
∗. We generate the outlier tensor with sparsity ratio � s (S ∗) ∈
 0 . 025 , 0 . 05 , · · · , 0 . 25 } . We consider three different settings where

he non-zero elements of S ∗ are drawn i.i.d. from Bin (−1 , +1) , or

 (0 , 1) , or U[0 , 1] . For the noise tensor E, we set the signal noise

atio c = 0 . 1 . The parameter α in Problem (13) is simply set to its

racle value in each simulation. We test 10 times for each setting

y running Algorithm 1 and computing the averaged estimation er-

or. 

For tensors of a given size, it is predicted by Theorem 2 that

pper bounds on the element-wise estimation error 
‖ �L ‖ 2 F + ‖ �S ‖ 2 F 

d 1 d 2 d 3 
ould scale approximately like a 1 r t ( L 

∗) + b 1 ‖ S ∗‖ l 0 for element-

isely sparse S ∗, a 2 r t ( L 
∗) + b 2 ‖ S ∗‖ tube 0 for tube-wisely sparse

 
∗, or a 3 r t ( L 

∗) + b 3 ‖ S ∗‖ slice 0 for slice-wisely sparse S ∗, where

 i , b i , i = 1 , 2 , 3 , are positive constants. Then, if the bounds are

harp, the real estimation errors would have the same scaling be-

avior. We will check whether these phenomena occur. 

For tensors of size 60 ×60 ×20, Fig. 4 shows the results

f averaged element-wise estimation error versus tubal rank of

 
∗ and tensor l 0 -norm of S ∗, when S ∗ is element-wise with

.i.d. Bin (−1 , +1) elements. We can see that the error has approxi-

ately linear scaling behavior with respect to r t ( L 
∗) and ‖ S ∗‖ l 0 .
 -norm of S ∗ for tensors of size 60 ×60 ×20, when S ∗ is element-wisely sparse with 

en r t ( L ∗) = 8 . 
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Fig. 5. The averaged element-wise estimation error versus tubal rank of L ∗ and the number of non-zero tubes of S ∗ for tensors of size 60 ×60 ×20, when S ∗ is tube-wisely 

sparse with i.i.d. Bin (−1 , +1) elements. (a): Error vs L ∗, when ‖ S ∗‖ tube 0 = 360 . (b): Error vs ‖ S ∗‖ tube 0 , when r t ( L ∗) = 8 . 

Fig. 6. The averaged element-wise estimation error versus tubal rank of L ∗ and the number of non-zero slices of S ∗ for tensors of size 60 ×60 ×20, when S ∗ is slice-wisely 

sparse with i.i.d. Bin (−1 , +1) elements. (a): Error vs L ∗, when ‖ S ∗‖ slice 0 = 1 . (b): Error vs ‖ S ∗‖ slice 0 , when r t ( L ∗) = 8 . 

Fig. 7. The averaged element-wise estimation error versus tubal rank of L ∗ and tensor l 0 -norm of S ∗ for tensors of size 60 ×60 ×20, when S ∗ is element-wise with i.i.d. 

N (0 , 1) elements. (a): Error vs L ∗, when ‖ S ∗‖ l 0 = 1080 . (b): Error vs ‖ S ∗‖ l 0 , when r t ( L ∗) = 8 . 
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6 Different from [5] , we consider a weighted version of SNN in which the nuclear 

norm the unfolding matrix along each mode is weighted by a positive vector α∑ 
Thus, it can be said that the experimental results are consis-

tent with our expectation for d = 60 . Figs. 5 and 6 show respec-

tively the results when S ∗ is tube-wisely or slice-wisely sparse,

and similar linear scaling behaviors are observed. For tensors of

size 60 ×60 ×20, Figs. 7 and 8 show the results for element-

wisely sparse S ∗ with i.i.d. N (0 , 1) and U[0 , 1] elements, recep-

tively. We can find that the linear scaling behavior also holds for

different outlier distributions. When S ∗ is element-wise with i.i.d.

Bin (−1 , +1) elements, Fig. 9 shows the results for tensors of size

100 ×100 ×20, and the error also scales linearly with r t ( L 
∗) and

‖ S ∗‖ l 0 . Similar phenomena have be found in other settings and we

omit them due to space limitation. Thus it can be verified that the

proposed bounds can approximately predict the scaling behavior of

the estimation error. 
s
.2. Effectiveness and efficiency of the proposed algorithms 

To show the superiority of Algorithms 1 and 2 for the pro-

osed TNN-based RTD model (13) , we conduct robust tensor recov-

ry experiments on color images, point cloud data, and videos. We

lso compare with the tensor Schatten-1 norm based RTD model

SNN 
6 ) [5] , and the matrix nuclear norm (NN) based robust ma-

rix decomposition model [29] in both accuracy and running time.

ince the source code of SNN [5] and NN [29] is not available, we

ormulate the corresponding models by using the aforementioned
atisfying i αi = 1 [35] . 
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Fig. 8. The averaged element-wise estimation error versus tubal rank of L ∗ and tensor l 0 -norm of S ∗ for tensors of size 60 ×60 ×20, when S ∗ is element-wise with i.i.d. 

U[0 , 1] elements. (a): Error vs L ∗, when ‖ S ∗‖ l 0 = 1080 . (b): Error vs ‖ S ∗‖ l 0 , when r t ( L ∗) = 8 . 

Fig. 9. The averaged element-wise estimation error versus tubal rank of L ∗ and tensor l 0 -norm of S ∗ for tensors of size 100 ×100 ×20, when S ∗ is element-wise with i.i.d. 

Bin (−1 , +1) elements. (a): Error vs L ∗, when ‖ S ∗‖ l 0 = 50 0 0 . (b): Error vs ‖ S ∗‖ l 0 , when r t ( L ∗) = 8 . 

Fig. 10. Twenty test images. 
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orms to replace TNN in Problem (13) , and solve the relevant opti-

ization problems within the ADMM framework [36] through our

mplementations in MATLAB. To measure the quality of an esti-

ated tensor ˆ L , the Peak Signal Noise Ratio (PSNR) defined as 

SNR := 10 log 10 

(d 1 d 2 d 3 ‖ L 
∗‖ 

2 
l ∞ 

‖ ̂  L − L 
∗‖ 

2 
F 

)
s applied. Higher PSNR value means better estimation perfor-

ance. 

.2.1. Color image recovery 

In this experiment, we conduct robust tensor recovery on

wenty color images of size 512 ×512 ×3 (see Fig. 10 ). Three

ifferent settings of outliers, i.e., element-wise, tube-wise, or

olumn-wise outliers, are considered. Specifically, for an image

 
∗ ∈ R 

m ×k ×3 , we first generate the outlier tensor S ∗ by choos-

ng 10% of the support (or 10% of the tube-support, or 5% of the

olumn-support) uniformly at random, and then corrupt the cho-

en elements by additive independent Bin (−1 , +1) outliers. Then,
e add noise tensor E of independent zero-mean Gaussian entries

ith standard deviation σ = cσ0 , where noise level c = 0 . 1 or 0.2

nd normalized signal magnitude σ0 = ‖ L 
∗‖ F / 

√ 

3 mk . Thus, the cor-

upted observation Y = L 
∗ + S ∗ + E are generated according to the

bservation model (11) . 

NN directly works on matrices of size 512 ×512, whereas SNN,

NN and FW works on tensors of size 512 ×512 ×3. The pa-

ameter tuning is not an easy task, and the key parameters

re set as follows. For NN, we set the regularization parame-

ers (λ, μ) = (0 . 5 , 0 . 5 / 
√ 

max { m, k } ) for element-wise and tube-

ise outliers (suggested by [2] ), and (λ, μ) = (0 . 5 , 0 . 5 / 
√ 

log (mk ) )

or column-wise outliers (suggested by [37] ), respectively. For

NN, the weight parameters α are chosen to satisfy α1 : α2 :

3 = 1 : 1 : c 1 and 
∑ 

αi = 1 , where parameter c 1 is tuned in

0.01, 0.1, 0.3, 0.5} for better performances in most cases;

e set the regularization parameters (λ, μ) = (1 , 1 / 
√ 

3 m ) for

lement-wise outliers, (λ, μ) = (1 , 1 / log (3 mk )) for tube-wise out-

iers, and (λ, μ) = (1 , 1 / log (3)) for column-wise outliers, respec-

ively. For TNN and FW, we respectively set the regularization
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Fig. 11. Results of color image recovery with 10% of the elements corrupted by Bin (−1 , +1) outliers and all the elements polluted by Gaussian noise of level c = 0 . 1 . (a) is 

the corrupted image; (b)-(e) are images recovered by NN [29] , SNN [5] and the proposed TNN ( Algorithm 1 ) and FW ( Algorithm 2 ); (f) and (g) report the PSNR values and 

running time (seconds), respectively. Best viewed in 400% zoomed color pdf file. . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

c  

t  

r  

c  

r  

l  

a  

p  

n  

s  

m  

L

 

a  

a  

t  

F  

α  

t  

m  

 

{  

c  

v  

s  

r  

T  

7 Scenario B and Scenario B-additional dataset from http://www.mrt.kit.edu/z/ 

publ/download/velodynetracking/dataset.html . 
parameters (λ, μ) = (c 2 , c 2 / 
√ 

3 max { m, k } ) for element-wise out-

liers (suggested by [19] ), (λ, μ) = (c 2 , c 2 / 
√ 

max { m, k } ) for tube-
wise outliers (motivated by [22] ), and (λ, μ) = (c 2 , 1 . 3 c 2 / 

√ 

log k )

for column-wise outliers (motivated by [8] ); parameter c 2 is tuned

in { 2 , 4 , 0 . 008 ‖Y‖ F } (motivated by [32] ) for better performances in

most cases. For FW, we simply set parameters u ι and u s as their

oracle values, which can be reasonably considered as the (near)-

optimal setting. The initializations and stop criteria of the algo-

rithms are chosen to get a reasonably good performance/time bal-

ance. Given a color image and a corruption level, we test 10 times

and report the averaged PSNR and time. 

Both qualitative and quantitative results are shown in Figs. 11 ,

12 , and 13 for element-wise, tube-wise, and column-wise out-

liers, respectively. It can be seen that the TNN has the highest

PSNR values and FW runs the fastest. The experimental results are

easy to interpret, and in consistence with image recovery exper-

iments in [6] . Firstly, NN cannot exploit the inter-channel corre-

lations, so it performs worse than the tensor models. Secondly,

TNN outperforms SNN, which can be interpreted by the discussion

in [6] that TNN adopts the low-tubal-rank assumption (or more

precisely, low-average-rank assumption) which is weaker than the

low-Tucker-rank assumption adopted by SNN. Thirdly, TNN can be

faster than SNN in many circumstances because NN needs to com-

pute full SVDs on three matrices of size m × k , however TNN can

only computes two full SVDs in the Fourier domain due to the con-

jugate symmetry of DFT (see Algorithm 3 in [6] ). Finally, FW runs

faster than TNN since it only involves computing the leading sin-

gular vectors instead of the full SVD in the Fourier domain. 

6.2.2. Point cloud data set. 

Point cloud data collected by light detection and ranging (Li-

DAR) sensors are widely used in environmental sensing for un-

manned ground vehicles (UGV). In this experiment, we test on a
ataset 7 for moving object tracking. It contains a sequence of point

loud data acquired from a Velodyne HDL-64E LiDAR. We choose

he first 30 frames and form two tensors of size 64 ×870 ×30 rep-

esenting the distance data and the intensity data, respectively. We

onduct robust tensor recovery against element-wisely sparse cor-

uptions and Gaussian noise. Specifically, we first generate the out-

ier tensor S ∗ by choosing � s ∈ { 10% , 20% , 30% } of the entries of
 zero tensor 0 uniformly at random, and then fill in the chosen

ositions by independent Bin (−1 , +1) outliers. Then, we form the

oise tensor E of independent zero-mean Gaussian entries with

tandard deviation σ = cσ0 , where noise level c = 0 . 1 and nor-

alized signal magnitude σ0 = ‖ L 
∗‖ F / 

√ 

d 1 d 2 d 3 for tensor signal

 
∗ ∈ R 

d 1 ×d 2 ×d 3 . Thus, the corrupted observation Y = L 
∗ + S ∗ + E

are generated according to the observation model (11) . 

NN directly works on frontal slices, whereas SNN, TNN

nd FW works on tensors. The key parameters are set

s follows. For NN, we set the regularization parame-

ers (λ, μ) = (0 . 5 , 0 . 5 / 
√ 

max { d 1 , d 2 } ) (suggeste d by [2] ).

or SNN, the weight parameters α are tuned to satisfy

1 : α2 : α3 = 1 : 1 : 0 . 3 , and we tune the regularization parame-

ers (λ, μ) = (2 , 5 . 2 / 
√ 

max { d 1 , d 2 } d 3 ) for b etter performances in

ost cases. For TNN and FW, we set the regularization parameters

(λ, μ) = (c ′ , c ′ / 
√ 

max { d 1 , d 2 } d 3 ) , where parameter c ′ is tuned in
 2 , 0 . 05 ‖Y‖ F } (motivated by [32] ) for better performances in most

ases. For FW, we simply set parameters u ι and u s as their oracle

alues. The initializations and stop criteria of the algorithms are

et for a reasonably good performance/time balance. We repeat 10

uns in each setting and report the averaged PSNR and time in

able 2 . We can see that TNN has the highest PSNR values and FW

http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
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Fig. 12. Results of color image recovery with 10% of the tubes corrupted by Bin (−1 , +1) outliers and all the elements polluted by Gaussian noise of level c = 0 . 1 . (a) is 

the corrupted image; (b)-(e) are images recovered by NN [29] , SNN [5] and the proposed TNN ( Algorithm 1 ) and FW ( Algorithm 2 ); (f) and (g) report the PSNR values and 

running time (seconds) of the test images, respectively. Best viewed in 400% zoomed color pdf file. . 

Fig. 13. Results of color image recovery with 5% of the literal slices (i.e. columns) corrupted by Bin (−1 , +1) outliers and all the elements polluted by Gaussian noise of level 

c = 0 . 2 . (a) is the corrupted image; (b)-(e) are images recovered by NN [29] , SNN [5] and the proposed TNN ( Algorithm 1 ) and FW ( Algorithm 2 ); (f) and (g) report the PSNR 

values and running time (seconds), respectively. Best viewed in 400% zoomed color pdf file. . 
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Table 2 

PSNR values and running time (seconds) of different algorithms on point cloud data. The signal tensor is 

first corrupted by element-wise Bin (−1 , +1) outliers with corruption ratio � s ∈ { 10% , 20% , 30% } , and then 
all the elements are polluted by Gaussian noise with noise level c = 0 . 1 . 

Data set cor. ratio � s index NN [29] SNN [5] TNN ( Algorithm 1 ) FW ( Algorithm 2 ) 

HDL 

Distance 

10% PSNR 20.25 25.41 26.24 25.91 

time/s 50.25 132.14 56.86 16.25 

20% PSNR 19.77 22.23 26.07 25.35 

time/s 54.83 125.82 56.71 13.97 

30% PSNR 19.3 21.45 25.68 24.67 

time/s 50.46 127.53 54.27 12.78 

HDL 

Intensity 

10% PSNR 18.44 22.49 23.13 22.97 

time/s 56.11 135.22 64.23 22.14 

20% PSNR 18.09 20.15 22.88 22.45 

time/s 55.90 126.85 62.12 18.65 

30% PSNR 17.71 19.37 22.54 21.71 

time/s 57.29 128.38 58.47 19.52 

Table 3 

PSNR values and running time (seconds) of different algorithms on video data. First 10% entries of the video 

is corrupted by element-wise Bin (−1 , +1) outliers and then all the entries are polluted by Gaussian noise 

with noise level c = { 0 . 1 , 0 . 2 } . 
Data set noise. level c index NN [29] SNN [5] TNN ( Algorithm 1 ) FW ( Algorithm 2 ) 

Claire 0.1 PSNR 25.68 28.67 30.26 29.70 

time/s 52.70 71.28 63.19 20.04 

0.2 PSNR 24.26 27.33 30.06 28.90 

time/s 51.06 71.88 68.61 21.91 

Grandma 0.1 PSNR 23.21 29.82 31.18 29.24 

time/s 48.89 70.62 33.16 22.84 

0.2 PSNR 22.98 28.85 31.05 28.52 

time/s 51.39 69.09 37.24 20.68 

Miss- 

America 

0.1 PSNR 25.59 29.31 31.36 31.34 

time/s 53.70 68.07 33.18 19.74 

0.2 PSNR 25.33 28.64 31.28 30.86 

time/s 61.89 84.70 45.61 28.84 
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runs the fastest, which is in consistence with the experiments on

color images. 

6.2.3. Video recovery 

In this subsection, we conduct video restoration which aims to

recover an underlying video from its corrupted observation. The

experiments are carried out on three widely used YUV videos 8 :

Claire_qcif, Grandma_qcif, and Miss-America_qcif. We use the first

30 frames of Y components in each video and obtain three ten-

sors sized 144 ×176 ×30. We first choose 10% of video entries

randomly, and corrupt them by additive independent Bin (−1 , +1)

outliers. Then, we add i.i.d. zero-mean Gaussian noise with stan-

dard deviation σ = cσ0 , where the noise level c ∈ {0.1, 0.2}. The

key parameters are set in a similar manner as the experiments on

point cloud data. We report the averaged PSNR and time over 10

runs in Table 3 . It can be found that the TNN has the highest PSNR

values and FW runs the fastest, illustrating the effectiveness and

efficiency of the proposed algorithms. 

7. Conclusion 

Inspired by the superior performance of low tubal rank tensor

models, a TNN-based estimator is first proposed to recover a signal

tensor against both small noises and sparse outliers. Statistically,

we establish both deterministic and non-asymptotic upper bounds

on the estimation error. We further show the non-asymptotic up-

per bounds are minimax near-optimal. Computationally, we de-

velop an ADMM-based algorithm and an FW-based algorithm to
8 Available from https://sites.google.com/site/subudhibadri/fewhelpfuldownloads . 

 

f

olve the model with convergence guarantees. The FW-based algo-

ithm takes the advantages of the dual norm of TNN which get rids

f computing full SVDs in each iteration, and thus accelerates the

lgorithm. Experimentally, simulations on synthetic dataset verify

he correctness of the theorem. The effectiveness and the efficiency

f the proposed algorithms are evaluated on real datasets. An in-

eresting future direction is to consider tensor estimation in the

aturation setting. Another direction is to combine tensor learn-

ng with discrimination [38] and structured sparse representation

39] for face recognition. 
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