
 1 

Using machine learning techniques to aid environmental policy 1 

analysis: a teaching case in big data and electric vehicle 2 

infrastructure. 3 

Omar Isaac Asensio1*, Ximin Mi2 and Sameer Dharur3 4 

1School of Public Policy & Institute for Data Engineering & Science (IDEaS), Georgia Institute 5 
of Technology, Atlanta, GA USA 6 

2Georgia Tech Data Visualization Lab, Georgia Institute of Technology, Atlanta, GA USA 7 

3School of Computer Science, Georgia Institute of Technology, Atlanta, GA USA 8 

*correspondence to: asensio@gatech.edu 9 

 10 
Abstract 11 
For a growing class of prediction problems, big data and machine learning analyses can greatly 12 
enhance our understanding of the effectiveness of public investments and public policy. However, 13 
the outputs of many machine learning models are often abstract and inaccessible to policy 14 
communities or the general public. In this article, we describe a hands-on teaching case that is 15 
suitable for use in a graduate or advanced undergraduate public policy, public affairs or 16 
environmental studies classroom. Students will engage on the use of increasingly popular 17 
machine learning classification algorithms and cloud-based data visualization tools to support 18 
policy and planning on the theme of electric vehicle mobility and connected infrastructure. By 19 
using these tools, students will critically evaluate and convert large and complex datasets into 20 
human understandable visualization for communication and decision-making. The tools also 21 
enable user flexibility to engage with streaming data sources in a new creative design with little 22 
technical background.  23 
 24 

Learning Goals 25 
 26 

1. To use data-driven tools for natural language processing (NLP) in policy relevant 27 
contexts 28 

2. To consider ethical issues related to the performance of machine learning classifiers and 29 
cloud-based visualization to generate policy insights. 30 

3. To leverage these automated content analysis tools in research evaluation of 31 
sustainability behavior and environmental decision-making in transportation and electric 32 
mobility. 33 

 34 

Introduction 35 

Given recent advances in the use of big data in government, scholars have argued for 36 
both theoretical and practical reorientations in pedagogy to meet a perceived data skills gap in the 37 



 2 

training of public managers [1][2]. Data science, its uses and implications for society are rapidly 38 
permeating across several social science fields, with emerging examples in schools of public 39 
policy, economics, environmental studies and management [3][4][5][6]. For example, scholars in 40 
the Network of Schools of Public Policy, Affairs, and Administration (NASPAA) have previously 41 
highlighted curricular innovations in information technology-related competencies such as big 42 
data and cloud computing as a way to keep up with demands for workforce training [7], including 43 
importantly, graduate training for non-traditional students who need to understand how to use 44 
these data science tools as part of their regular employment [8]. In the context of environmental 45 
decision making, case-based instructional methods can facilitate active learning with data science 46 
tools [9]. These instructional strategies can be used to promote evidence-based policy positions 47 
and statistical analyses by actively engaging students [10] to think critically about sustainability 48 
challenges. However, these tools have historically required specialized technical knowledge, and 49 
there are as yet relatively few examples of the uses of big data in the classroom for applied policy 50 
analysis. 51 

 52 
We document a teaching case that provides hands-on instruction on a typical big data 53 

problem in which a machine learning (ML) model is used to make predictions about performance 54 
using text as data. The challenge for students is to take the outputs of supervised text 55 
classification algorithms and then use the machine predictions to evaluate the social, policy or 56 
sustainability-related features through visualization. Active learning with visualization tools are 57 
increasingly needed to help convey evidence to practitioners and to increase comprehension 58 
among public servants [11]. This case introduces students to visualizations that help provide 59 
context for machine learning approaches by blending advances from computing into policy 60 
studies. Often times, ML algorithms generate predictions to help users understand future 61 
performance in critical social decisions [12][13]. These computational results, however, usually 62 
lack any display of insights from spatial or temporal dimensions, and therefore, fail to present to 63 
the audience stories from these meaningful dimensions. With this consideration in mind, we 64 
describe a Georgia Tech collaboration between the School of Public Policy and the Data 65 
Visualization Lab at the Georgia Tech library. We focus on the creation and use of case-based 66 
and evidence-based pedagogy in environment and sustainability [9][14]. The collaboration 67 
resulted from a need to provide students with resources to develop more engaging and appealing 68 
visualizations to tell stories hidden behind streaming data sources. 69 
 70 

The collaborative instruction was piloted in both beginning graduate and advanced 71 
undergraduate public policy courses at Georgia Tech. The goal of the sessions was to introduce 72 
students to suitable data visualization skills, and to provide experience with cloud-based tools as a 73 
method of exploring, presenting and interpreting the results of machine learning analyses with 74 
dashboards and visual analytics. We use this hands-on approach to teach students about 75 
sustainability-related issues in the context of transportation infrastructure, where complex data 76 
sources and methods are used. This involves analysis of public charging services for electric 77 
vehicle mobility and text analysis using consumer data. Students explore automated content 78 
analysis tools and also learn to evaluate consumer sentiment and perceptions about service 79 
provision of sustainable charging infrastructure.  80 

 81 
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We first describe the background of the case in the context of electric mobility. Next, we 82 
describe the machine learning workflow, both generally and for our particular case. Following 83 
this, we describe the visualization tasks and conclude with the use of this approach to help 84 
students generate policy insights in the classroom. We also mention some practical aspects of the 85 
teaching experience. 86 

 87 
Case Examination 88 
 89 

As the transportation sector is now a dominant source of CO2 emissions in the United 90 
States, displacing gasoline and diesel fuels via vehicle electrification has grown in importance. 91 
Widespread adoption of electric vehicles (EV) is expected to yield substantial public health 92 
benefits from reduced air pollution and tailpipe emissions. As a result, travel behavior and 93 
strategies to increase sustainable infrastructure have captured attention. Prior research has shown 94 
that public policies supporting electric vehicle mobility have emphasized the quantity rather than 95 
the quality of connected infrastructure [15][16][17], and it is unclear how well the existing 96 
charging infrastructure is meeting the needs of EV users. To address consumer sentiment in the 97 
public discourse on electric vehicles, a data-driven approach is presented to teach students to 98 
evaluate whether service reliability – directly related to the quality of services – could remain a 99 
critical barrier to technology adoption in this domain. 100 
 101 

Given the large-scale use of EV infrastructure in public settings, private digital platforms 102 
such as charging station locator apps and other mobility apps are collecting real-time data on EV 103 
usage. This provides a wealth of streaming data for evaluators to process. However, consumer 104 
data such as EV user reviews from public charging stations is often unstructured and lays 105 
dormant as text. In practice, it would be costly for policy analysts or government agencies to 106 
classify this information by hand for performance assessment. As an example, at a rate of 100 107 
reviews per hour, a human expert would take about 32 work weeks to analyze unstructured 108 
reviews at a national scale [15].  109 

 110 
To alleviate this problem, students deploy a machine learning classifier to process EV 111 

charging station reviews automatically using social data in a digital platform and natural language 112 
processing. This approach lets students reduce processing times for impact evaluation from weeks 113 
of human annotation to just minutes of computation. Although this teaching case uses 114 
computational solutions in a specific sustainability context, the use of big data and NLP tools to 115 
evaluate a range of policy issues in environmental and natural resource policy is rapidly emerging 116 
[18][19][20][21]. The classroom practice also builds on modular aspects of data science 117 
education in social domains that includes strategies to build data acumen, incorporate real-world 118 
applications, foster interdepartmental student collaboration, consider ethics and human subjects 119 
protections, and develop curriculum suitable for distance or remote learning environments [22]. 120 
For additional relevant cases on applying machine learning and text mining strategies in contexts 121 
such as land use and mobility, see [23]. 122 
 123 

Implementing Natural Language Processing 124 
 125 
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We introduced students to the case by giving a basic overview of natural language 126 
processing without any assumed prior knowledge. The objective is to give students visibility into 127 
the steps involved in using text as data. We first described the basic elements of a text mining 128 
process for unstructured data that is broadly applicable to any machine classification task. For 129 
example, there are two known categories of machine learning algorithms – supervised and 130 
unsupervised learning. Unsupervised learning may be the most familiar to students in the social 131 
sciences. It entails forming relationships (e.g. clusters) of previously unknown patterns in data 132 
without having explicit labels. Supervised learning, on the other hand, entails learning a mapping 133 
of input data to its corresponding labels as learned from real world data. For example, short user 134 
generated texts can be labeled as class A or class B (e.g. positive or negative sentiment) for 135 
learning on an external dataset. Because many unsupervised models sometimes yield results that 136 
are uninterpretable, this case focuses on applications of text mining approaches using supervised 137 
learning.  138 
 139 

The general pipeline for supervised learning algorithms is split into two broad phases – 140 
training and testing as shown in Figure 1. Students begin the training phase by collecting a dataset 141 
consisting of consumer EV charging station reviews that need to be classified into positive or 142 
negative sentiment. The corresponding ground-truth labels for training the learning algorithm are 143 
provided and have been previously labeled by human annotators [15]. Students randomly split the 144 
provided dataset into three subsets – the training set, the validation set and the testing set. This 145 
data split is done in order to keep a fresh subset of the data to test the learning model that has 146 
been trained during the training phase. Students learn that the typical process for deciding the 147 
split ratio between training, validation and testing is empirically determined (for example 80% 148 
training, 10% validation and 10% testing), and the data itself is randomly shuffled to avoid any 149 
possible sampling biases during the training phase. Students distinguish this process flow for 150 
classification in Figure 1, which intentionally partitions and does not use all available data. This 151 
is to be differentiated from typical regression-based analyses in causal inference problems in 152 
which the objective is to use all available data to parameterize the model. In the classroom, it was 153 
necessary to reinforce this point on differences in data process flow between ML prediction and 154 
causal inference tasks. We also found it useful to include evaluation questions in supporting 155 
discussion questions and problem sets in order to help students solidify these comparative 156 
concepts related to data processing. Students reported that debriefs on data process flows between 157 
prediction and causal inference tasks helped to facilitate learning (e.g. Assignments facilitated 158 
learning 5.0 / 5.0, Spring 2019, N=19 students).  159 
 160 

In the classroom discussion, students also learn to identify the ethical issues and risks of 161 
having sampling imbalances in the training data, which can lead to algorithmic or observational 162 
biases, especially when analyzing subpopulations from historical data [24]. This is because many 163 
machine classification algorithms are known to propagate errors that favor the dominant labels or 164 
groups, and thus supervised learning methods often require a human in the loop. Students discuss 165 
how machine classification algorithms can often supplement but not replace human expert 166 
capabilities in many social domains (for example, in assisting judges in crime-and-sentencing 167 
decisions or resource allocations in health and safety or fire code inspections). For a recent 168 
exposition of the importance of fairness in algorithmic decision, see [25] for reference. It is 169 
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common for data scientists to train algorithms on data that is not representative of the population 170 
of interest, or is replete with historical or naturally prevalent biases. By allowing students to 171 
experiment hands-on with decisions about the training data used to build a classifier, the benefits 172 
and limitations of the tool are revealed empirically. For example, does the training data favor 173 
urban or non-urban locations, potentially leaving out review samples from certain subgroups or 174 
under-represented communities? How would this affect the appraisal of consumer sentiment for 175 
subpopulations? Students benefit from discussion and intuition about ethical and other practical 176 
implementation issues. For example, a student writes: “I enjoyed using the theory to implement 177 
practical solutions…I think these will be useful ways to collect and present data.”  178 
 179 

 180 
Fig 1. A general machine learning data process flow 181 

 182 
Prior to training a model, students learn some technical details about the steps needed to 183 

pre-process data. This included a hands-on demo of coding implementations such as harmonizing 184 
data formats, removing stop words, and other tasks, which are represented in the data and pre-185 
processing steps in Figure 1. For example, a general machine learning process flow typically 186 
involves selection and tuning of hyper-parameters, which are ancillary parameters needed to 187 
optimize performance. For this exercise, students build a classifier using guided protocols. They 188 
learn to classify consumer reviews using a single layer neural network based on a convolutional 189 
neural network (CNN) as the supervised learning classifier. CNNs have recently been shown to 190 
be effective in many natural language processing tasks that deal with short sentences of text and 191 
consistently outperform conventional non-neural net-based classification models such as SVM or 192 
logistic regression. For a quantitative comparison, see [15]. 193 

Students convert the input review text into pre-trained vector representations of words 194 
using the ‘word2vec’ word embeddings depicted in Figure 2. The purpose of these word 195 
embeddings is to make the text data amenable to mathematical operations as word vectors of the 196 
kind required in the training process. Word embeddings closer together in the vector space are 197 
more similar to each other, whereas those that are far apart in the vector space represent concepts 198 
that are more dissimilar. These word embeddings are found to accurately represent patterns of 199 
natural language as they have been pre-trained on over 100 billion words and phrases from 200 
Google news [26]. These word vectors are then programmatically padded with null tokens to 201 
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ensure they are all of the same length, making them a matrix of representations for sentences. For 202 
convenience, this manipulation such as data cleaning, data normalization and other pre-203 
processing steps have been completed and provided for student use using protocols described 204 
elsewhere [15]. As data science practitioners spend a significant time on data cleaning and 205 
processing, it is useful in a classroom discussion to communicate this so that students could 206 
anticipate such challenges in their future roles. More advanced students are able to modify 207 
parameters in the code and are encouraged to experiment with additional features. 208 

 209 

Fig 2. A typical neural network model architecture showing the vector representations of words 210 
and the CNN structure. 211 

Another key idea for discussion in the training stage is model validation. This refers to 212 
setting aside a small percentage of the training data to be used exclusively for hyperparameter 213 
tuning. This becomes important because we want to ensure that the hyperparameters we tune our 214 
model with do not overfit to the intricacies of the specific training data and can generalize well to 215 
new data. Overfitting a model in machine classification is a very common temptation and it 216 
usually happens when the model learns the detail and noise of the training data to the extent that it 217 
performs poorly on new data.  218 

Following the in-class demos, students were provided instructions to independently train 219 
the CNN classifier and then run the model on the test data to generate binary sentiment 220 
predictions which are used to analyze performance. By this stage, students fully execute a 221 
machine learning pipeline, which allows them to understand how various parameters impact the 222 
accuracy of the classifier predictions and decide on appropriate metrics to evaluate performance. 223 
In the interactive case, students are given sample replication code and are encouraged to 224 
experiment with various parameters. Students learn that the classifier can be iteratively improved 225 
upon based on its performance on the test data, until an optimal accuracy is reached. Constraints 226 
include factors such as such as the nature of the data, the structure of the model, and the 227 
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computational resources available. While interested students are encouraged to experiment with 228 
the hyperparameters, the case materials include default values for these hyperparameters with 229 
which optimal results are expected to be readily replicable. For additional details, students are 230 
able to reference the technical articles in [15][16][17]. 231 

In order to accommodate students from a variety of backgrounds, the sample code and 232 
implementation instructions provided in this case are carefully tailored to ensure that students can 233 
run the models off-the-shelf with little to no modification by users. In the classroom discussion, 234 
students learn that machine learning algorithms are truly no panacea to predictive problems, but 235 
can in combination with human input, extend capabilities to automatically process large volumes 236 
of text to help lower evaluation costs. Next, we describe the nature of the data and visualizations. 237 

Mobile app data 238 

We introduced students to a digital dataset of electric vehicle (EV) charging station 239 
reviews from a popular mobile app. This includes charger location information, unstructured user 240 
reviews (e.g. text data) including the ML generated sentiment classifications (e.g. positive and 241 
negative), and surrounding point of interest information overlaid on U.S. Census data. The dataset 242 
provides rich information that can be used to answer questions about consumer sentiment and the 243 
provisioning of EV charging services. A key objective is to secure the source data, while allowing 244 
students to access derived data from the unstructured EV charging reviews [15], with 245 
visualization capacity to introduce the underlying civic data science described previously. After 246 
the hands-on implementation of sentiment classification tasks, the next step is to make sense of 247 
the output derived data. 248 
 249 
Streaming data and classifying EV reviews 250 
 251 

Students are given access to a dataset comprising ~25,000 electric vehicle charging 252 
stations consumer reviews in California. The objective of the exercise is twofold: (i) to build a 253 
robust and accurate classifier that captures the sentiment of the user reviews in this domain, (ii) to 254 
use this trained, generalizable classifier on a different set of given user reviews to set the stage for 255 
specific policy-relevant discussions about EV charging service provision. The use of machine 256 
classified reviews to evaluate large-scale consumer sentiment offers a lower cost computational 257 
solution for research evaluation. For the training, students process a sample of ~9000 consumer 258 
reviews that have previously been labelled by human expert annotators as positive or negative 259 
experiences. Although the full implementation details of the training data curation are outside of 260 
the scope of this case, more advanced students can nonetheless experiment with different 261 
modeling parameters and compare the technical performance for both neural-net classifiers as 262 
well as non-neural net based classifiers, which have been built as addendums in the code. 263 

In order to familiarize all students with the tools needed to seamlessly replicate the code 264 
and promote experimentation, prior to the case, we offered a series of hands-on training sessions 265 
such as A Beginner’s Guide to Python in partnership with the Georgia Tech Library. These data 266 
boot camps get students up and running and help them to be able to initialize and load open 267 
source packages in Python. This was a particularly important cascading option for learners to 268 
separate the basic tool setup and code navigation from the case content. We note that the 269 
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accompanying case code is intended to be user friendly and utilizes open-source tools to support 270 
the analysis (e.g. Tensorflow, Keras among others) to perform sentiment prediction using 271 
different techniques. The code also includes instructions for evaluating the performance of 272 
learning algorithms using both conventional baseline techniques for classification such as logistic 273 
regression, support vector machines as well as neural-net-based classifier based on CNNs. 274 
Although performance can be evaluated with accuracy or balance measures for the classifier, it is 275 
also helpful to visualize the results to provide a more complete picture of the ability for the 276 
predictive algorithm to discover the words that most strongly contribute to positive or negative 277 
sentiment. Having completed the demos and training sessions for machine classification, the next 278 
steps involved generating visualizations to improve model interpretability as well as spatial 279 
analysis of the consumer data. 280 

Visualizing machine classifier performance 281 

Given the black box criticism of many machine learning models, a key feature of our 282 
teaching case is the ability to provide students with a tool to enhance the interpretability of 283 
model’s sentiment predictions. This is a pivotal area in machine learning research today, as many 284 
scholars argue that the future success of the field depends critically on algorithms being 285 
transparent enough to build user trust [27]. We instructed students to generate so-called ‘saliency 286 
heatmaps’ for a sample of user reviews. The saliency heatmaps highlight specific words or sets of 287 
words that most strongly contribute to the CNN sentiment predictions across the 300-dimensional 288 
word embeddings. For example, Figure 3 provides sample visualizations for four typical 289 
consumer reviews in the dataset. The purple shaded areas in the figure represent more salient 290 
terms for classification. In Figure 3, students can qualitatively see that in the first 2 examples, the 291 
algorithm has automatically learned from the context that the bi-gram “not working” or unigram 292 
“broken” most strongly contributed to the negative sentiment classification; whereas in the next 2 293 
examples, terms like “it’s working just fine” or “many thanks” or “wonderful charging station” 294 
strongly contributed to positive sentiment. These heatmaps help to somewhat demystify the inner 295 
architecture of the neural net algorithm, while offering the ability to check performance with 296 
relatively simple to understand visualizations. Next, we focus on additional visualizations for 297 
spatial analysis. 298 

      299 
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     300 
Fig 3. Saliency heatmaps. The top two heatmap examples correspond to negative sentiment 301 
predictions, while the bottom two heatmaps correspond to positive sentiment predictions. The 302 
words highlighted in purple in each of these heatmaps gives an indication of the most salient 303 
words that contribute to this model’s classification output [16]. 304 

 305 
Visualization Tasks 306 
 307 

For students in many social sciences fields, data visualization is often a critical 308 
competency that has not been well-integrated into the methods curriculum, particularly 309 
considering the wealth of newly available social and administrative datasets and related analysis 310 
techniques. For example, a few years ago the Georgia Tech Library initiated a campus survey 311 
asking what resources it should offer students as part of its effort to reimagine the future of 312 
library services. Data visualization services emerged as one of the top unmet needs across a 313 
variety of fields of study. Since its opening in Fall 2017, the Georgia Tech Library Data 314 
Visualization Lab has been supporting a variety of visualization tools for research and teaching. 315 
Previous cases in the literature have focused primarily on interactive visualization of large 316 
datasets primarily as a query processing problem [28]. However, given the efficient database 317 
support that now exists for scaling large database processing tasks with very little latency, we 318 
decided to focus this case on the visual data exploration. Here we describe the rationale for 319 
selecting user friendly cloud-based visualization tools to complement the machine learning 320 
analysis. 321 

 322 

Use of Tableau Server: challenges and opportunities 323 
 324 
The analysis of processed datasets such as from unstructured to structured data, due to the 325 

large sizes and complexity, often benefits from two key features. The first is online collaboration, 326 
which could be useful to engage students and managers in data literacy through web-based 327 
analytics. However, big data sources can also be proprietary and restricted from public access, a 328 
phenomenon that has been described as a big data divide [29], the separation that exists between 329 
those who curate and control data on a platform, and those who generate it. Consequently, a 330 
second important feature is the ability to balance data security issues with public accessibility. 331 
Given these two competing requirements, namely, online collaboration and data security, we 332 
selected a visualization tool for the ML output with both capabilities that could easily be 333 
implemented in a classroom setting and that is adaptable to distance or remote learning. 334 
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Data security 335 

Following an independent IT procurement process not related to this research, we 336 
selected Tableau server as the platform. After considering various security requirements for 337 
Georgia tech provisioned software, we decided to keep the anonymized data on a secure cloud 338 
service maintained by Georgia Tech. We offered students the ability to connect to the source data 339 
with online visualization functions, but with restricted access to download or share the source 340 
data locally. This setting prevents direct sharing or distribution of raw data, and therefore, lowers 341 
the security risk. Tableau server also offers the option of hosting source data for non-restricted 342 
data sources on a cloud service with flexible security settings. According to their website, 343 
Tableau software is certified with the U.S. Department of Commerce in complying with the EU-344 
U.S. Privacy Shield Framework (http://www.privacyshield.gov) in the event of any international 345 
personal data transfers. It is also in compliance with Sarbanes-Oxley requirements for financial 346 
data. It should be noted that, while students had no access to download the raw source data, once 347 
they completed and saved their visualizations on the server, students were able to download and 348 
share their own interactive visualizations. Although these restrictions on data accessibility are not 349 
normally required for public or open datasets, specifically for this case example, the source data 350 
is secured with instructor access only and 2-factor authentication.  351 

Online collaboration 352 

Another key objective was to introduce students to a cloud-based tool that offers the 353 
ability to create collaborative, interactive visualizations [30]. Modern visualization platforms 354 
have incorporated a number of interactive software features to a user’s interface including 355 
zooming, panning, filtering, brushing, aggregation, feature or layer selection (examples include 356 
Esri ArcGIS, VIS, IVEE, Spotfire, Rivet, Polaris, Tableau). On Tableau server, once the 357 
workbook for a project is created, collaborators granted access can log in and work on the same 358 
visualization in real time either remotely or be collocated. This is a useful feature for distance or 359 
online learning situations in which students collaborate in small group or team settings. This 360 
approach can also readily be used in blended learning environments such as flipped classrooms, 361 
face-to-face courses, asynchronous distance learning or synchronous live learning [31].  After 362 
completion, the visualizations can be shared publicly including various interactive features. 363 
Cloud-based collaboration tools are often useful for big data projects that need different temporal 364 
or spatial analysis, multimodal interaction, or record linkages from a variety of databases [32]. 365 
Given the rapid pace of software enhancements, these features are subject further enhancements 366 
in the future.  367 

Visualization Principles and Practice in Public Policy Studies 368 

Basic design principles 369 
 370 

During the visualization instruction, the data visualization librarian shared a set of best 371 
practices and design principles for the creation of interactive analytics dashboards to represent 372 
consumer sentiment. As part of this effort, a series of guided visualization tasks were demoed in 373 
the classroom as interactive tutorials. Students were encouraged to implement and design their 374 
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own visualizations using Tableau server. They were asked to build dashboards that incorporated 375 
five design best practices that we summarize below:  376 

1. Select appropriate graphical elements, such as color, size and shape to help users identify 377 
information using culturally relevant norms [33]; 378 

2. Simplify cognitive load for end users by limiting the number of design elements [34]; 379 
3. Consider hierarchical graphical elements to showcase various levels of information 380 

[35][36];  381 
4. Normalize scales and axes to represent large counts or data; 382 
5. Add brief supporting text and phrases to connect the information flow from multiple 383 

frames into meaningful stories or dashboards.  384 

Following these visualization best practices, a sample interactive dashboard was designed 385 
interactively to help users communicate spatial information from machine classified consumer 386 
sentiment data and evaluate infrastructure service provision. The sample analytics dashboard that 387 
we provided to students is shown in Figure 4 and an online interactive version is available at 388 
https://b.gatech.edu/2CJmFKf.  389 

 390 

Fig 4. Sample Analytics Dashboard in Tableau 391 
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 392 

Generating Policy Insights 393 

In this article, we highlight a policy teaching case in which derived data generated from 394 
text classification algorithms yields insights on a large amount of performance data, from 395 
unstructured text. Key to the interactive visualization tasks is the analysis of spatial features or 396 
dimensions. These guided visualization exercises have been designed to enable in-class 397 
discussions on a number of transportation policies related to vehicle electrification. This includes 398 
evaluation of consumer issues related to public EV charging services at various scales. For 399 
example, at a local scale, classroom discussions might focus on analysis of “EV capable” and 400 
“EV ready” policies that require property owners to reserve a certain number of spaces for EV 401 
charging as part of building codes and ordinances. At a regional scale, discussions might focus on 402 
calls for targeted policies to cultivate local EV clusters as an innovation priority for advancing the 403 
U.S. EV market [37], which benefits from spatial analysis. At a national scale, this case is also 404 
relevant for discussions about spillovers from Federal and State incentive policies such as rebates, 405 
income tax credits, subsidies, sales tax exemptions, and fee exemptions [38][39][40][41], all of 406 
which can benefit from spatial visualization tasks in both urban and non-urban environments.  407 

By using a hands-on approach to data visualization for consumer analysis, students 408 
demystify the predictions or outputs of typical machine learning models. This helps to overcome 409 
the issue of ‘opacity’ between mathematical procedures in machine learning and human styles of 410 
semantic interpretation [42]. In a series of guided sessions, students are able to process streaming 411 
text data with relatively little technical background. In generating policy insights, first, students 412 
learn that easy access to a high density of EV charging infrastructure does not necessarily lead to 413 
higher consumer sentiment among EV users [15][16][17]. Second, urban centers generally 414 
receive more negative reviews at EV charging stations as compared to non-urban areas per spatial 415 
unit. Third, user experiences at EV charging stations also vary greatly by point of interest. For 416 
example, EV users in urban areas are most positive about charging stations located near 417 
restaurants, shopping centers and hotels/lodging destinations, while users in smaller urban 418 
clusters give the most positive feedback to charging stations located in residential areas and 419 
restaurants, with lower consumer sentiment observed in car rental locations and car dealerships. 420 
This heterogeneity suggests station hosts or operators may have different underlying incentives or 421 
ability to provide a high quality charging experience. Importantly, a regional analysis of EV 422 
charging stations in Los Angeles county, one of the largest areas in the U.S. for EV adoption and 423 
use, reveals that lower income neighborhoods are not necessarily disadvantaged in access to EV 424 
charging stations. Further analyses and visualizations could be done in different areas or 425 
geographies to examine these trends nationally. 426 

We close with practical student feedback on the learning experience: “Social science 427 
students need more accessible classes that can bridge social science fields to cutting-edge 428 
techniques. This class really worked… it provided a wide range of knowledge in the field and 429 
helped me to have overall understanding about this [data science] field.” 430 
 431 

Case Study Questions 432 
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 433 
On Machine Classification and Properties of the Classifier 434 
 435 

1. Describe the purpose of using a machine learning classifier and describe what 436 
information is typically needed to build confidence in sentiment predictions when 437 
comparing machine versus human classifications. Under what circumstances would a 438 
machine classifier be more effective than a human classifier for research evaluation? Be 439 
sure to consider a range of performance metrics. 440 

 441 
2. Describe the classification accuracy of the baseline models (SVM, Logistic Regression) 442 

versus the specific CNN neural network based classifier. Do the CNN models 443 
consistently outperform the baseline models? Hint: Consider possible differences of 444 
means and distributions for 100 runs, and make an informed judgment based on the 445 
evidence. 446 

 447 
3. Compare and contrast any possible tradeoffs in accuracy improvement versus 448 

computational time for CNN versus the non-neural net-based reference models. In what 449 
situations would one be preferred to the other? 450 

 451 
4. What might be some ethical concerns raised regarding the uses of training data in this 452 

domain? How would you propose to mitigate them? Hint: Consider issues such as 453 
balance in the training data, nature of human raters, spatial sampling, incidental 454 
disclosure, reidentification, privacy and data security.  455 

 456 
On Visualizing Classifier Performance 457 
 458 

5. Generate saliency heat maps for the given pool of sample reviews and interpret the CNN 459 
model by giving context to the word embeddings. How well does a classifier identify the 460 
strongest words that contribute to the sentiment?  461 
 462 

6. How would you ensure that your visualization framework remains robust to streaming 463 
(increasing) or anomalous data? 464 

 465 
On Social and Policy Implications 466 
 467 

7. Evaluate whether public investments in EV charging infrastructure have resulted in 468 
access disparities by income or other under-represented communities.  469 

 470 
8. Determine whether urban on non-urban areas received the highest negative sentiment by 471 

consumer areas. What behavioral or policy theories predict your results? Do the results 472 
match your expectations?  473 

 474 
9. Recommend a set of policies or incentives to address potential gaps, access disparities or 475 

issues in reliable service provision based on the evidence gleaned from the data. 476 
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Figures and Figure Legends 626 
 627 
Figure 1. A general machine learning process flow. After data collection and pre-processing, 628 
the data is split for training, testing and model validation. 629 
 630 
Figure 2. A Single Layer Neural Network Architecture for Sentiment Analysis. The 631 
architecture of the Convolutional Neural Network (CNN) used for the experiment including the 632 
vector representations of words and the CNN structure as in ref. [15]. 633 
 634 
Figure 3. Saliency Heatmaps. In this figure, we compare four different saliency heatmaps with 635 
positive and negative sentiments, drawing student attention to specific words in the examples that 636 
strongly contributed to the classification output. The top two heatmap examples correspond to 637 
negative sentiment predictions, while the bottom two heatmaps correspond to positive sentiment 638 
predictions. The words highlighted in purple in each of these heatmaps gives an indication of the 639 
most salient words that contribute to this model’s classification output. 640 

Figure 4. Sample Analytics Dashboard in Tableau. The dashboard provides model 641 
visualizations for spatial analysis of consumer sentiment. They are available as interactive 642 
visualizations at: https://b.gatech.edu/2CJmFKf. 643 


