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Abstract

For a growing class of prediction problems, big data and machine learning analyses can greatly
enhance our understanding of the effectiveness of public investments and public policy. However,
the outputs of many machine learning models are often abstract and inaccessible to policy
communities or the general public. In this article, we describe a hands-on teaching case that is
suitable for use in a graduate or advanced undergraduate public policy, public affairs or
environmental studies classroom. Students will engage on the use of increasingly popular
machine learning classification algorithms and cloud-based data visualization tools to support
policy and planning on the theme of electric vehicle mobility and connected infrastructure. By
using these tools, students will critically evaluate and convert large and complex datasets into
human understandable visualization for communication and decision-making. The tools also
enable user flexibility to engage with streaming data sources in a new creative design with little
technical background.

Learning Goals

1. To use data-driven tools for natural language processing (NLP) in policy relevant
contexts

2. To consider ethical issues related to the performance of machine learning classifiers and
cloud-based visualization to generate policy insights.

3. To leverage these automated content analysis tools in research evaluation of
sustainability behavior and environmental decision-making in transportation and electric
mobility.

Introduction

Given recent advances in the use of big data in government, scholars have argued for
both theoretical and practical reorientations in pedagogy to meet a perceived data skills gap in the
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training of public managers [1][2]. Data science, its uses and implications for society are rapidly
permeating across several social science fields, with emerging examples in schools of public
policy, economics, environmental studies and management [3][4][5][6]. For example, scholars in
the Network of Schools of Public Policy, Affairs, and Administration (NASPAA) have previously
highlighted curricular innovations in information technology-related competencies such as big
data and cloud computing as a way to keep up with demands for workforce training [7], including
importantly, graduate training for non-traditional students who need to understand how to use
these data science tools as part of their regular employment [8]. In the context of environmental
decision making, case-based instructional methods can facilitate active learning with data science
tools [9]. These instructional strategies can be used to promote evidence-based policy positions
and statistical analyses by actively engaging students [10] to think critically about sustainability
challenges. However, these tools have historically required specialized technical knowledge, and
there are as yet relatively few examples of the uses of big data in the classroom for applied policy
analysis.

We document a teaching case that provides hands-on instruction on a typical big data
problem in which a machine learning (ML) model is used to make predictions about performance
using text as data. The challenge for students is to take the outputs of supervised text
classification algorithms and then use the machine predictions to evaluate the social, policy or
sustainability-related features through visualization. Active learning with visualization tools are
increasingly needed to help convey evidence to practitioners and to increase comprehension
among public servants [11]. This case introduces students to visualizations that help provide
context for machine learning approaches by blending advances from computing into policy
studies. Often times, ML algorithms generate predictions to help users understand future
performance in critical social decisions [12][13]. These computational results, however, usually
lack any display of insights from spatial or temporal dimensions, and therefore, fail to present to
the audience stories from these meaningful dimensions. With this consideration in mind, we
describe a Georgia Tech collaboration between the School of Public Policy and the Data
Visualization Lab at the Georgia Tech library. We focus on the creation and use of case-based
and evidence-based pedagogy in environment and sustainability [9][14]. The collaboration
resulted from a need to provide students with resources to develop more engaging and appealing
visualizations to tell stories hidden behind streaming data sources.

The collaborative instruction was piloted in both beginning graduate and advanced
undergraduate public policy courses at Georgia Tech. The goal of the sessions was to introduce
students to suitable data visualization skills, and to provide experience with cloud-based tools as a
method of exploring, presenting and interpreting the results of machine learning analyses with
dashboards and visual analytics. We use this hands-on approach to teach students about
sustainability-related issues in the context of transportation infrastructure, where complex data
sources and methods are used. This involves analysis of public charging services for electric
vehicle mobility and text analysis using consumer data. Students explore automated content
analysis tools and also learn to evaluate consumer sentiment and perceptions about service
provision of sustainable charging infrastructure.
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We first describe the background of the case in the context of electric mobility. Next, we
describe the machine learning workflow, both generally and for our particular case. Following
this, we describe the visualization tasks and conclude with the use of this approach to help
students generate policy insights in the classroom. We also mention some practical aspects of the
teaching experience.

Case Examination

As the transportation sector is now a dominant source of CO, emissions in the United
States, displacing gasoline and diesel fuels via vehicle electrification has grown in importance.
Widespread adoption of electric vehicles (EV) is expected to yield substantial public health
benefits from reduced air pollution and tailpipe emissions. As a result, travel behavior and
strategies to increase sustainable infrastructure have captured attention. Prior research has shown
that public policies supporting electric vehicle mobility have emphasized the quantity rather than
the quality of connected infrastructure [15][16][17], and it is unclear how well the existing
charging infrastructure is meeting the needs of EV users. To address consumer sentiment in the
public discourse on electric vehicles, a data-driven approach is presented to teach students to
evaluate whether service reliability — directly related to the quality of services — could remain a
critical barrier to technology adoption in this domain.

Given the large-scale use of EV infrastructure in public settings, private digital platforms
such as charging station locator apps and other mobility apps are collecting real-time data on EV
usage. This provides a wealth of streaming data for evaluators to process. However, consumer
data such as EV user reviews from public charging stations is often unstructured and lays
dormant as text. In practice, it would be costly for policy analysts or government agencies to
classify this information by hand for performance assessment. As an example, at a rate of 100
reviews per hour, a human expert would take about 32 work weeks to analyze unstructured
reviews at a national scale [15].

To alleviate this problem, students deploy a machine learning classifier to process EV
charging station reviews automatically using social data in a digital platform and natural language
processing. This approach lets students reduce processing times for impact evaluation from weeks
of human annotation to just minutes of computation. Although this teaching case uses
computational solutions in a specific sustainability context, the use of big data and NLP tools to
evaluate a range of policy issues in environmental and natural resource policy is rapidly emerging
[18][19][20][21]. The classroom practice also builds on modular aspects of data science
education in social domains that includes strategies to build data acumen, incorporate real-world
applications, foster interdepartmental student collaboration, consider ethics and human subjects
protections, and develop curriculum suitable for distance or remote learning environments [22].
For additional relevant cases on applying machine learning and text mining strategies in contexts
such as land use and mobility, see [23].

Implementing Natural Language Processing
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We introduced students to the case by giving a basic overview of natural language
processing without any assumed prior knowledge. The objective is to give students visibility into
the steps involved in using text as data. We first described the basic elements of a text mining
process for unstructured data that is broadly applicable to any machine classification task. For
example, there are two known categories of machine learning algorithms — supervised and
unsupervised learning. Unsupervised learning may be the most familiar to students in the social
sciences. It entails forming relationships (e.g. clusters) of previously unknown patterns in data
without having explicit labels. Supervised learning, on the other hand, entails learning a mapping
of input data to its corresponding labels as learned from real world data. For example, short user
generated texts can be labeled as class A or class B (e.g. positive or negative sentiment) for
learning on an external dataset. Because many unsupervised models sometimes yield results that
are uninterpretable, this case focuses on applications of text mining approaches using supervised
learning.

The general pipeline for supervised learning algorithms is split into two broad phases —
training and testing as shown in Figure 1. Students begin the training phase by collecting a dataset
consisting of consumer EV charging station reviews that need to be classified into positive or
negative sentiment. The corresponding ground-truth labels for training the learning algorithm are
provided and have been previously labeled by human annotators [15]. Students randomly split the
provided dataset into three subsets — the training set, the validation set and the testing set. This
data split is done in order to keep a fresh subset of the data to test the learning model that has
been trained during the training phase. Students learn that the typical process for deciding the
split ratio between training, validation and testing is empirically determined (for example 80%
training, 10% validation and 10% testing), and the data itself is randomly shuffled to avoid any
possible sampling biases during the training phase. Students distinguish this process flow for
classification in Figure 1, which intentionally partitions and does not use all available data. This
is to be differentiated from typical regression-based analyses in causal inference problems in
which the objective is to use all available data to parameterize the model. In the classroom, it was
necessary to reinforce this point on differences in data process flow between ML prediction and
causal inference tasks. We also found it useful to include evaluation questions in supporting
discussion questions and problem sets in order to help students solidify these comparative
concepts related to data processing. Students reported that debriefs on data process flows between
prediction and causal inference tasks helped to facilitate learning (e.g. Assignments facilitated
learning 5.0 / 5.0, Spring 2019, N=19 students).

In the classroom discussion, students also learn to identify the ethical issues and risks of
having sampling imbalances in the training data, which can lead to algorithmic or observational
biases, especially when analyzing subpopulations from historical data [24]. This is because many
machine classification algorithms are known to propagate errors that favor the dominant labels or
groups, and thus supervised learning methods often require a human in the loop. Students discuss
how machine classification algorithms can often supplement but not replace human expert
capabilities in many social domains (for example, in assisting judges in crime-and-sentencing
decisions or resource allocations in health and safety or fire code inspections). For a recent
exposition of the importance of fairness in algorithmic decision, see [25] for reference. It is
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common for data scientists to train algorithms on data that is not representative of the population
of interest, or is replete with historical or naturally prevalent biases. By allowing students to
experiment hands-on with decisions about the training data used to build a classifier, the benefits
and limitations of the tool are revealed empirically. For example, does the training data favor
urban or non-urban locations, potentially leaving out review samples from certain subgroups or
under-represented communities? How would this affect the appraisal of consumer sentiment for
subpopulations? Students benefit from discussion and intuition about ethical and other practical
implementation issues. For example, a student writes: “I enjoyed using the theory to implement
practical solutions...I think these will be useful ways to collect and present data.”

Machine Learning Pipeline

Data —)  Data Split

l S———

Pre-processing Train Model @ Validate Model 1 Test Model

' 1

Fig 1. A general machine learning data process flow

Prior to training a model, students learn some technical details about the steps needed to
pre-process data. This included a hands-on demo of coding implementations such as harmonizing
data formats, removing stop words, and other tasks, which are represented in the data and pre-
processing steps in Figure 1. For example, a general machine learning process flow typically
involves selection and tuning of hyper-parameters, which are ancillary parameters needed to
optimize performance. For this exercise, students build a classifier using guided protocols. They
learn to classify consumer reviews using a single layer neural network based on a convolutional
neural network (CNN) as the supervised learning classifier. CNNs have recently been shown to
be effective in many natural language processing tasks that deal with short sentences of text and
consistently outperform conventional non-neural net-based classification models such as SVM or
logistic regression. For a quantitative comparison, see [15].

Students convert the input review text into pre-trained vector representations of words
using the ‘word2vec’ word embeddings depicted in Figure 2. The purpose of these word
embeddings is to make the text data amenable to mathematical operations as word vectors of the
kind required in the training process. Word embeddings closer together in the vector space are
more similar to each other, whereas those that are far apart in the vector space represent concepts
that are more dissimilar. These word embeddings are found to accurately represent patterns of
natural language as they have been pre-trained on over 100 billion words and phrases from
Google news [26]. These word vectors are then programmatically padded with null tokens to
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ensure they are all of the same length, making them a matrix of representations for sentences. For
convenience, this manipulation such as data cleaning, data normalization and other pre-
processing steps have been completed and provided for student use using protocols described
elsewhere [15]. As data science practitioners spend a significant time on data cleaning and
processing, it is useful in a classroom discussion to communicate this so that students could
anticipate such challenges in their future roles. More advanced students are able to modify
parameters in the code and are encouraged to experiment with additional features.
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Fig 2. A typical neural network model architecture showing the vector representations of words
and the CNN structure.

Another key idea for discussion in the training stage is model validation. This refers to
setting aside a small percentage of the training data to be used exclusively for hyperparameter
tuning. This becomes important because we want to ensure that the hyperparameters we tune our
model with do not overfit to the intricacies of the specific training data and can generalize well to
new data. Overfitting a model in machine classification is a very common temptation and it
usually happens when the model learns the detail and noise of the training data to the extent that it
performs poorly on new data.

Following the in-class demos, students were provided instructions to independently train
the CNN classifier and then run the model on the test data to generate binary sentiment
predictions which are used to analyze performance. By this stage, students fully execute a
machine learning pipeline, which allows them to understand how various parameters impact the
accuracy of the classifier predictions and decide on appropriate metrics to evaluate performance.
In the interactive case, students are given sample replication code and are encouraged to
experiment with various parameters. Students learn that the classifier can be iteratively improved
upon based on its performance on the test data, until an optimal accuracy is reached. Constraints
include factors such as such as the nature of the data, the structure of the model, and the
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computational resources available. While interested students are encouraged to experiment with
the hyperparameters, the case materials include default values for these hyperparameters with
which optimal results are expected to be readily replicable. For additional details, students are
able to reference the technical articles in [15][16][17].

In order to accommodate students from a variety of backgrounds, the sample code and
implementation instructions provided in this case are carefully tailored to ensure that students can
run the models off-the-shelf with little to no modification by users. In the classroom discussion,
students learn that machine learning algorithms are truly no panacea to predictive problems, but
can in combination with human input, extend capabilities to automatically process large volumes
of text to help lower evaluation costs. Next, we describe the nature of the data and visualizations.

Mobile app data

We introduced students to a digital dataset of electric vehicle (EV) charging station
reviews from a popular mobile app. This includes charger location information, unstructured user
reviews (e.g. text data) including the ML generated sentiment classifications (e.g. positive and
negative), and surrounding point of interest information overlaid on U.S. Census data. The dataset
provides rich information that can be used to answer questions about consumer sentiment and the
provisioning of EV charging services. A key objective is to secure the source data, while allowing
students to access derived data from the unstructured EV charging reviews [15], with
visualization capacity to introduce the underlying civic data science described previously. After
the hands-on implementation of sentiment classification tasks, the next step is to make sense of
the output derived data.

Streaming data and classifying EV reviews

Students are given access to a dataset comprising ~25,000 electric vehicle charging
stations consumer reviews in California. The objective of the exercise is twofold: (i) to build a
robust and accurate classifier that captures the sentiment of the user reviews in this domain, (ii) to
use this trained, generalizable classifier on a different set of given user reviews to set the stage for
specific policy-relevant discussions about EV charging service provision. The use of machine
classified reviews to evaluate large-scale consumer sentiment offers a lower cost computational
solution for research evaluation. For the training, students process a sample of ~9000 consumer
reviews that have previously been labelled by human expert annotators as positive or negative
experiences. Although the full implementation details of the training data curation are outside of
the scope of this case, more advanced students can nonetheless experiment with different
modeling parameters and compare the technical performance for both neural-net classifiers as
well as non-neural net based classifiers, which have been built as addendums in the code.

In order to familiarize all students with the tools needed to seamlessly replicate the code
and promote experimentation, prior to the case, we offered a series of hands-on training sessions
such as A Beginner’s Guide to Python in partnership with the Georgia Tech Library. These data
boot camps get students up and running and help them to be able to initialize and load open
source packages in Python. This was a particularly important cascading option for learners to
separate the basic tool setup and code navigation from the case content. We note that the
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accompanying case code is intended to be user friendly and utilizes open-source tools to support
the analysis (e.g. Tensorflow, Keras among others) to perform sentiment prediction using
different techniques. The code also includes instructions for evaluating the performance of
learning algorithms using both conventional baseline techniques for classification such as logistic
regression, support vector machines as well as neural-net-based classifier based on CNNs.
Although performance can be evaluated with accuracy or balance measures for the classifier, it is
also helpful to visualize the results to provide a more complete picture of the ability for the
predictive algorithm to discover the words that most strongly contribute to positive or negative
sentiment. Having completed the demos and training sessions for machine classification, the next
steps involved generating visualizations to improve model interpretability as well as spatial
analysis of the consumer data.

Visualizing machine classifier performance

Given the black box criticism of many machine learning models, a key feature of our
teaching case is the ability to provide students with a tool to enhance the interpretability of
model’s sentiment predictions. This is a pivotal area in machine learning research today, as many
scholars argue that the future success of the field depends critically on algorithms being
transparent enough to build user trust [27]. We instructed students to generate so-called ‘saliency
heatmaps’ for a sample of user reviews. The saliency heatmaps highlight specific words or sets of
words that most strongly contribute to the CNN sentiment predictions across the 300-dimensional
word embeddings. For example, Figure 3 provides sample visualizations for four typical
consumer reviews in the dataset. The purple shaded areas in the figure represent more salient
terms for classification. In Figure 3, students can qualitatively see that in the first 2 examples, the
algorithm has automatically learned from the context that the bi-gram “not working” or unigram
“broken” most strongly contributed to the negative sentiment classification; whereas in the next 2
examples, terms like “it’s working just fine” or “many thanks” or “wonderful charging station”
strongly contributed to positive sentiment. These heatmaps help to somewhat demystify the inner
architecture of the neural net algorithm, while offering the ability to check performance with
relatively simple to understand visualizations. Next, we focus on additional visualizations for
spatial analysis.
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Fig 3 Sahency heatmaps The top two heatmap examples correspond to negatlve sentlment
predictions, while the bottom two heatmaps correspond to positive sentiment predictions. The
words highlighted in purple in each of these heatmaps gives an indication of the most salient
words that contribute to this model’s classification output [16].

Visualization Tasks

For students in many social sciences fields, data visualization is often a critical
competency that has not been well-integrated into the methods curriculum, particularly
considering the wealth of newly available social and administrative datasets and related analysis
techniques. For example, a few years ago the Georgia Tech Library initiated a campus survey
asking what resources it should offer students as part of its effort to reimagine the future of
library services. Data visualization services emerged as one of the top unmet needs across a
variety of fields of study. Since its opening in Fall 2017, the Georgia Tech Library Data
Visualization Lab has been supporting a variety of visualization tools for research and teaching.
Previous cases in the literature have focused primarily on interactive visualization of large
datasets primarily as a query processing problem [28]. However, given the efficient database
support that now exists for scaling large database processing tasks with very little latency, we
decided to focus this case on the visual data exploration. Here we describe the rationale for
selecting user friendly cloud-based visualization tools to complement the machine learning
analysis.

Use of Tableau Server: challenges and opportunities

The analysis of processed datasets such as from unstructured to structured data, due to the
large sizes and complexity, often benefits from two key features. The first is online collaboration,
which could be useful to engage students and managers in data literacy through web-based
analytics. However, big data sources can also be proprietary and restricted from public access, a
phenomenon that has been described as a big data divide [29], the separation that exists between
those who curate and control data on a platform, and those who generate it. Consequently, a
second important feature is the ability to balance data security issues with public accessibility.
Given these two competing requirements, namely, online collaboration and data security, we
selected a visualization tool for the ML output with both capabilities that could easily be
implemented in a classroom setting and that is adaptable to distance or remote learning.
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Data security

Following an independent IT procurement process not related to this research, we
selected Tableau server as the platform. After considering various security requirements for
Georgia tech provisioned software, we decided to keep the anonymized data on a secure cloud
service maintained by Georgia Tech. We offered students the ability to connect to the source data
with online visualization functions, but with restricted access to download or share the source
data locally. This setting prevents direct sharing or distribution of raw data, and therefore, lowers
the security risk. Tableau server also offers the option of hosting source data for non-restricted
data sources on a cloud service with flexible security settings. According to their website,
Tableau software is certified with the U.S. Department of Commerce in complying with the EU-
U.S. Privacy Shield Framework (http://www privacyshield.gov) in the event of any international
personal data transfers. It is also in compliance with Sarbanes-Oxley requirements for financial
data. It should be noted that, while students had no access to download the raw source data, once
they completed and saved their visualizations on the server, students were able to download and
share their own interactive visualizations. Although these restrictions on data accessibility are not
normally required for public or open datasets, specifically for this case example, the source data
is secured with instructor access only and 2-factor authentication.

Online collaboration

Another key objective was to introduce students to a cloud-based tool that offers the
ability to create collaborative, interactive visualizations [30]. Modern visualization platforms
have incorporated a number of interactive software features to a user’s interface including
zooming, panning, filtering, brushing, aggregation, feature or layer selection (examples include
Esri ArcGIS, VIS, IVEE, Spotfire, Rivet, Polaris, Tableau). On Tableau server, once the
workbook for a project is created, collaborators granted access can log in and work on the same
visualization in real time either remotely or be collocated. This is a useful feature for distance or
online learning situations in which students collaborate in small group or team settings. This
approach can also readily be used in blended learning environments such as flipped classrooms,
face-to-face courses, asynchronous distance learning or synchronous live learning [31]. After
completion, the visualizations can be shared publicly including various interactive features.
Cloud-based collaboration tools are often useful for big data projects that need different temporal
or spatial analysis, multimodal interaction, or record linkages from a variety of databases [32].
Given the rapid pace of software enhancements, these features are subject further enhancements
in the future.

Visualization Principles and Practice in Public Policy Studies

Basic design principles

During the visualization instruction, the data visualization librarian shared a set of best
practices and design principles for the creation of interactive analytics dashboards to represent
consumer sentiment. As part of this effort, a series of guided visualization tasks were demoed in
the classroom as interactive tutorials. Students were encouraged to implement and design their

10
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own visualizations using Tableau server. They were asked to build dashboards that incorporated

five design best practices that we summarize below:

1. Select appropriate graphical elements, such as color, size and shape to help users identify

information using culturally relevant norms [33];

2. Simplify cognitive load for end users by limiting the number of design elements [34];

3. Consider hierarchical graphical elements to showcase various levels of information
[351[36];

4. Normalize scales and axes to represent large counts or data;

5. Add brief supporting text and phrases to connect the information flow from multiple
frames into meaningful stories or dashboards.

Following these visualization best practices, a sample interactive dashboard was designed
interactively to help users communicate spatial information from machine classified consumer

sentiment data and evaluate infrastructure service provision. The sample analytics dashboard that

we provided to students is shown in Figure 4 and an online interactive version is available at
https://b.gatech.edu/2CImFKf.

Visualizing Big Data and Machine Learning Analyses in Policy Studies:
A Case in Sustainable Transportation Infrastructure

Reviewers’ Predicted Sentiment by Points of Interest (POIs)-California
Shopping Center, eviews
Parking
Garages/Lot and
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Fig 4. Sample Analytics Dashboard in Tableau
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Generating Policy Insights

In this article, we highlight a policy teaching case in which derived data generated from
text classification algorithms yields insights on a large amount of performance data, from
unstructured text. Key to the interactive visualization tasks is the analysis of spatial features or
dimensions. These guided visualization exercises have been designed to enable in-class
discussions on a number of transportation policies related to vehicle electrification. This includes
evaluation of consumer issues related to public EV charging services at various scales. For
example, at a local scale, classroom discussions might focus on analysis of “EV capable” and
“EV ready” policies that require property owners to reserve a certain number of spaces for EV
charging as part of building codes and ordinances. At a regional scale, discussions might focus on
calls for targeted policies to cultivate local EV clusters as an innovation priority for advancing the
U.S. EV market [37], which benefits from spatial analysis. At a national scale, this case is also
relevant for discussions about spillovers from Federal and State incentive policies such as rebates,
income tax credits, subsidies, sales tax exemptions, and fee exemptions [38][39][40][41], all of
which can benefit from spatial visualization tasks in both urban and non-urban environments.

By using a hands-on approach to data visualization for consumer analysis, students
demystify the predictions or outputs of typical machine learning models. This helps to overcome
the issue of ‘opacity’ between mathematical procedures in machine learning and human styles of
semantic interpretation [42]. In a series of guided sessions, students are able to process streaming
text data with relatively little technical background. In generating policy insights, first, students
learn that easy access to a high density of EV charging infrastructure does not necessarily lead to
higher consumer sentiment among EV users [15][16][17]. Second, urban centers generally
receive more negative reviews at EV charging stations as compared to non-urban areas per spatial
unit. Third, user experiences at EV charging stations also vary greatly by point of interest. For
example, EV users in urban areas are most positive about charging stations located near
restaurants, shopping centers and hotels/lodging destinations, while users in smaller urban
clusters give the most positive feedback to charging stations located in residential areas and
restaurants, with lower consumer sentiment observed in car rental locations and car dealerships.
This heterogeneity suggests station hosts or operators may have different underlying incentives or
ability to provide a high quality charging experience. Importantly, a regional analysis of EV
charging stations in Los Angeles county, one of the largest areas in the U.S. for EV adoption and
use, reveals that lower income neighborhoods are not necessarily disadvantaged in access to EV
charging stations. Further analyses and visualizations could be done in different areas or
geographies to examine these trends nationally.

We close with practical student feedback on the learning experience: “Social science
students need more accessible classes that can bridge social science fields to cutting-edge
techniques. This class really worked... it provided a wide range of knowledge in the field and
helped me to have overall understanding about this [data science] field.”

Case Study Questions
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433
434 On Machine Classification and Properties of the Classifier

435

436 1. Describe the purpose of using a machine learning classifier and describe what

437 information is typically needed to build confidence in sentiment predictions when

438 comparing machine versus human classifications. Under what circumstances would a
439 machine classifier be more effective than a human classifier for research evaluation? Be
440 sure to consider a range of performance metrics.

441

442 2. Describe the classification accuracy of the baseline models (SVM, Logistic Regression)
443 versus the specific CNN neural network based classifier. Do the CNN models

444 consistently outperform the baseline models? Hint: Consider possible differences of
445 means and distributions for 100 runs, and make an informed judgment based on the

446 evidence.

447

448 3. Compare and contrast any possible tradeoffs in accuracy improvement versus

449 computational time for CNN versus the non-neural net-based reference models. In what
450 situations would one be preferred to the other?

451

452 4. What might be some ethical concerns raised regarding the uses of training data in this
453 domain? How would you propose to mitigate them? Hint: Consider issues such as

454 balance in the training data, nature of human raters, spatial sampling, incidental

455 disclosure, reidentification, privacy and data security.

456

457  On Visualizing Classifier Performance

458

459 5. Generate saliency heat maps for the given pool of sample reviews and interpret the CNN
460 model by giving context to the word embeddings. How well does a classifier identify the
461 strongest words that contribute to the sentiment?

462

463 6. How would you ensure that your visualization framework remains robust to streaming
464 (increasing) or anomalous data?

465

466  On Social and Policy Implications

467

468 7. Evaluate whether public investments in EV charging infrastructure have resulted in

469 access disparities by income or other under-represented communities.

470

471 8. Determine whether urban on non-urban areas received the highest negative sentiment by
472 consumer areas. What behavioral or policy theories predict your results? Do the results
473 match your expectations?

474

475 9. Recommend a set of policies or incentives to address potential gaps, access disparities or
476 issues in reliable service provision based on the evidence gleaned from the data.
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Figures and Figure Legends

Figure 1. A general machine learning process flow. After data collection and pre-processing,
the data is split for training, testing and model validation.

Figure 2. A Single Layer Neural Network Architecture for Sentiment Analysis. The
architecture of the Convolutional Neural Network (CNN) used for the experiment including the
vector representations of words and the CNN structure as in ref. [15].

Figure 3. Saliency Heatmaps. In this figure, we compare four different saliency heatmaps with
positive and negative sentiments, drawing student attention to specific words in the examples that
strongly contributed to the classification output. The top two heatmap examples correspond to
negative sentiment predictions, while the bottom two heatmaps correspond to positive sentiment
predictions. The words highlighted in purple in each of these heatmaps gives an indication of the
most salient words that contribute to this model’s classification output.

Figure 4. Sample Analytics Dashboard in Tableau. The dashboard provides model
visualizations for spatial analysis of consumer sentiment. They are available as interactive
visualizations at: https://b.gatech.edu/2CJmFK{.
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