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Abstract

This paper investigates the capability of millimeter-wave (mmWave) channel sounders with phased
arrays to perform super-resolution parameter estimation, i.e., determine the parameters of multipath
components (MPC), such as direction of arrival and delay, with resolution better than the Fourier
resolution of the setup. We analyze the question both generally, and with respect to a particular
novel multi-beam mmWave channel sounder that is capable of performing multiple-input-multiple-
output (MIMO) measurements in dynamic environments. We firstly propose a novel two-step calibration
procedure that provides higher-accuracy calibration data that are required for Rimax or SAGE. Secondly,
we investigate the impact of center misalignment and residual phase noise on the performance of
the parameter estimator. Finally we experimentally verify the calibration results and demonstrate the

capability of our sounder to perform super-resolution parameter estimation.

I. INTRODUCTION

Communication in the millimeter wave (mmWave) band will constitute an essential part of 5G
communications systems, both for mobile access, as well as fixed wireless access and backhaul

[?], [?]. The design and deployment of such systems requires a thorough understanding of the



propagation channel, since important design questions, such as beamforming capability, coverage,
and equalizer length, all critically depend on the propagation conditions.

Understanding of mmWave channels is challenging because the physical propagation mech-
anisms differ significantly from those at lower frequencies. The free-space pathloss increases
with frequency (assuming constant antenna gain) [?], and diffraction processes become less
efficient. Meanwhile, due to the large bandwidth, and the relatively large antenna arrays used
at mmWave frequencies, the percentage of delay/angle bins that carry significant energy is low
[?], which can be interpreted as a sparse structure either in the multipath delay or angular
domain. Due to these different propagation conditions, new channel models are required. Several
standardization groups, e.g., 3GPP [?] and METIS2020 [?], have established such models.
However, it must be stressed that these models were finalized under time pressure and have the
purpose of comparing different systems under comparable circumstances; they are not suitable
for complete understanding of propagation effects or absolute performance predictions. Several
other standardization groups, such as IC1004 [?] and NIST 5G mmWave channel model [?], are
currently developing more detailed models.

Any improved understandings of mmWave channels, as well as the new channel models, rely
on thorough and extensive measurements. Since the late 1980s, hundreds of paper have been
published describing mmWave channel measurements in different environments, see, e.g., [?]
for an overview and references. Since mmWave systems use (massive) MIMO, directionally
resolved channel measurements are of special interest. For outdoor long distance measurements,
a popular mmWave channel sounding method is based on the use of rotating horn antennas [?],
[?], [?], i.e., the horn antennas are mechanically pointed into different directions at different
times. Depending on the horn beam width, the mechanical rotation of both transmitter (TX)
and receiver (RX) antennas could potentially take up to several hours. The phase between TX
and RX local oscillators (LOs) is extremely difficult to preserve over such a long period of
time, so that only noncoherent evaluations are possible: data can be evaluated by spectrum peak
searching methods, e.g., [?], [?]. Despite the simplicity and effectiveness in some scenarios,
there are obvious drawbacks attributed to the discarding of the phase information, e.g., difficulty
to resolve multiple paths whose directions are within the half power beamwidth (HPBW) of the
horn antenna, and accounting for the sidelobes of imperfect beam patterns, in particular deciding

whether any secondary peak is attributed to the sidelobes of the main peak or the contribution



from a weak multipath component (MPC).

In contrast, phase-coherent measurements are possible with (i) setups based on a vector net-
work analyzers (VNAs) combined with virtual arrays (mechanical movement of a single antenna)
for short-distance measurements, or (ii) real-time mmWave multi-beam channel sounders, which
may be based on switched horn arrays [?] or phased-arrays with electronically switched beams
[?]. Data can be evaluated by advanced signal processing algorithms that rely on the maxi-
mum likelihood estimator (MLE). For instance, the space-alternating generalized expectation-
maximization (SAGE) [?] is used in Ref. [?], [?] along with rectangular virtual arrays and in
Ref. [?] with rotating horns, while Rimax [?] was applied in an indoor mmWave measurement
campaign at 60 GHz with VNA and virtual arrays. Indoor measurements from a switched beam
sounder were evaluated with SAGE in Ref. [?].

We have recently constructed a real-time mmWave multi-beam channel sounder, which is
based on phased arrays and electronically switched beams [?]. The phased array is integrated
with other RF elements, such as converters, filters and power amplifiers (PAs), in one box,
which we refer to as RFU for the remainder of the paper. More details about the RFU can be
found in Ref. [?]. The setup achieves a measurable path loss of 159 dB without any averaging
or spreading gain, which is sufficient to handle challenging outdoor non-line-of-sight (NLOS)
scenarios. More importantly compared to the sounder equipped with rotating horn antennas, our
setup is capable to switch between beams in less than 2 with a control interface implemented in
field-programmable gate array (FPGA). As a result, the duration of one multiple-input multiple-
output (MIMO) snapshot is reduced from hours to milliseconds. Along similar lines, Papazian
et al. built a mmWave sounder that also has a small antenna switching time of 65.5 [?]. This
feature has three main benefits. Firstly it allows the collection of data at tens of thousands
of measurement locations in a single measurement campaign; secondly it makes the sounder
suitable for measurement campaigns in dynamic environments; thirdly given the small phase
drift indicated in [?, Fig. 9] the data evaluation with High Resolution Parameter Estimation
(HRPE) algorithms such as Rimax is feasible.

An essential prerequisite for applying HRPE algorithms on MIMO measurement data is
sounder calibration. Calibration usually consists of two steps: the first is the cable-through
calibration, also known as the back-to-back calibration. It mainly serves the purpose to charac-

terize the TX and RX system frequency response within the operating bandwidth at different



gain settings, such that the effects of the channel sounder on the channel impulse response
can be compensated. The second step is the antenna array calibration, which is critical for any
HRPE algorithm that intends to estimate the directions of MPCs. By this procedure, it is possible
to produce the antenna de-embedded characterization of the propagation channel [?], which is
highly desirable for mmWave system simulations where directional horn antennas with different
gains and HPBWs, or arrays with different shapes and sizes, might be tested [?].

A variety of calibration procedures have been used in the literature. The rotating-horn-based
sounder from NYU performs back-to-back calibration with two horn antennas pointing towards
each other in an anechoic chamber [?]; the procedures are relatively simple because the analysis
mostly considers the noncoherent response (the power delay profile (PDP) and the angular power
spectrum (APS)). The Keysight sounder in [?] uses power dividers and two separate back-to-back
experiments to obtain the system frequency variation, however limited details are available on
the calibration of inter-channel phase imbalance or antenna patterns. Papazian ef al. present their
complete two-step calibration for their mmWave sounder in Ref. [?], where they first perform the
back-to-back calibration after disconnecting the antennas, then use the NIST near-field probe to
obtain the phase centers and individual complex antenna patterns. Unfortunately these methods
cannot be applied to sounders where the antennas are integrated with other RF elements on
the same printed circuit board (PCB) - a situation that occurs not only in our sounder, but is
of general interest for mm-wave and higher frequencies, as system integration and efficiency
considerations often require a joint packaging of these components.

In this paper, we thus present the calibration procedures and the verification experiments
for mmWave MIMO channel sounders based on phased arrays with integrated RF electronics.
To accommodate the integrated antenna/electronics design and still obtain the system response
and frequency-independent array response needed in HRPE analysis, we propose a novel two-
setup calibration scheme and formulate the extraction and separation of the two responses as an
optimization problem.

The main contributions are thus as follows,

« we introduce detailed calibration procedures for a beam-switching channel sounder based

on a pair of RFUs, which contains the baseline RFU calibration and the multi-gain RFU
calibration;

o to comply with the data model of Rimax, we formulate the extraction of the frequency-



independent array response and the system response as an optimization problem and propose
an optimal solution based on the low rank approximation (LRA) method;

we analyze the impact of several imperfections of the channel sounder and calibration
method on the performance of Rimax evaluations;

we perform verification experiments in an anechoic chamber with artificially added static

reflectors.

This paper is organized as follows. In section II we introduce the signal model of phased arrays

and the data model used in the path parameter estimation. In section III we introduce calibration

procedures that enable the HRPE for mmWave channel sounders with integrated antenna arrays.

Section IV discusses the impact of two unavoidable calibration impairments, namely array center

misalignment and the residual phase noise, on the performance of Rimax evaluations. Section

V presents the results of the verification experiments with a mmWave MIMO sounder in an

anechoic chamber. In section VI we draw the conclusions.

The symbol notation in this paper follows the rules below:

Bold upper case letters, such as B, denote matrices. B() represent matrix valued functions.
Bold lower case letters, such as b, denote column vectors. b; is the jth column of the matrix
B. b() stands for a vector valued function.

Bold symbols I denote identity matrices. I, means that its number of rows equals the length
of b.

Calligraphic upper-case letters denote higher dimensional tensors.

[B];; denotes the element in the ith row and jth column of the matrix B.

Superscripts *, T and T denote complex conjugate, matrix transpose and Hermitian transpose,
respectively.

The operators |f(x)| and ||b|| denote the absolute value of a scalar-valued function f(x),
and the L2-norm of a vector b.

The operators ®, © and ¢ denote Kronecker, Schur-Hadamard, and Khatri-Rao products.
The operator @ represents the element-wise division between either two vectors, matrices
or tensors, and the operator o is the outer product of two vectors.

The operators | | and [ | are the floor and ceiling functions, respectively.



II. SIGNAL MODEL
A. Phased Arrays

We consider a uniform rectangular array (URA) in this paper, which is a popular array
configuration for mmWave phased arrays. We assume without loss of generality that the array
lies in the y-z plane. Boresight of the array orientation is thus the azimuth angle ¢ = 0° and the
elevation angle ¢ = 90°, see Fig. ??. The array has IV, elements along the y-axis and N, elements
along the z-axis; we denote the total number of antenna elements N = N,/NV,. We assume that
the antenna elements are separated by A/2, i.e. half a wavelength, in both directions.

We label antennas based on their y-z coordinates, for example we choose the bottom left
antenna in Fig. ?? as the (1,1) element. If the center of the URA is aligned with the origin of

the cartesian coordinates, the coordinates of the (n,,n,) element are

N,+1 A

y’nym,z = (ny - y2 )5 (1)
N, +1 A

Ny, My z o) 2

where n, € {z|lx € Z,1 <2z < N,} and n, € {z|z € Z,1 <z < N,}. We also assume that all
antenna elements share the same individual pattern that is given by Ag(p, ) with ¢ € [—7,7)
and 6 € [0, ). Let X(p,6) be a matrix-valued function, i.e., X : R? — CMv*¥=_ It provides the
received signal at the URA when a plane wave with unit gain arrives from the direction (i, 6).

The function is determined by

X (0, 0)]ny m. = €7 Prunz Ay (0, 6), 3)

where p,, , is the antenna position vector,

T
Pnyn. = [O Ynym, Z”y,nzi| )

and the wave vector Kk is given by

2T

T
k= BN [cosgpsin@ singsinf cos 9} : &)

To allow the phased array to steer beams in different directions, we add narrowband phase
shifters to each antenna element. The complex phase weighting matrix W shares the same dimen-

sion with X(¢, 0), and [W],,, . is the corresponding complex weight for the (n,,n.)-th antenna
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Fig. 1. The structure of URA with N, elements along the y-axis and N, elements along the z-axis

element. The virtual beam pattern when the URA is excited with W can be mathematically
determined by
bw(p,0) = tr(WTX(go, 0)) = vec(W)” - vec(X (¢, 0)), 6)

where vec() is the vectorization operator. The phase shifters translate the signals from the antenna
ports to the beam ports that are associated with different weighting matrices. If the phase shifter
matrices are DFT (discrete Fourier transform) matrices, the beamports correspond to the beams
in the “virtual channel representation” of [?]. We assume that measurements at different beam

ports occur at different times, but are all within the coherence time of the channel.

B. Rimax Data Model

Similar to the data model in Refs. [?], [?], we use a vector model for the input 7" MIMO
snapshots, and denote it as 'y € CMx1 where M = M X Mg x MpxT'. It includes contributions
from specular paths (SP) s(£2;), dense multipath component (DMC) ngy,. and measurement noise
ng:

Y= S(Qs) + Ngme + Ny, (7)



where the vector {2, represents the parameters of P SPs. It consists of polarimetric path weights
~ and the structural parameters g that include 7, (1, 0r), (¢r,Or), and v. @7, g and v are
normalized to between —n and w, O and O are between 0 and 7, while T is normalized to
between 0 and 27. The DMC follows a Gaussian random process with frequency correlation, and
its PDP has an exponentially decaying shape [?]. The measurement noise is i.i.d. and follows
the zero-mean complex Gaussian distribution. The original SAGE [?] adopts a similar signal
data model except that the DMC contribution is neglected.

An important assumption in the original Rimax algorithm is the array narrowband model,
which means the array response is considered constant over the frequency band that the channel
sounder measures. Although an extension of Rimax to include the wideband array response
between 2GHz and 10 GHz is included in Ref. [?], the narrowband approach has been used
almost exclusively in practice; we thus leave wideband calibration for future work. Section
?? discusses how to find the best frequency-independent array pattern from the over-the-air
calibration data.

We also assume that the single polarized model is applicable, because the antennas in our
phased-array are designed to be vertically polarized. The cross polarization discrimination (XPD)
of the beam patterns is over 20dB in the main directions. A detailed discussion of the impact
of ignoring the additional polarized components in parameter estimation is available in Ref. [?].

We assume that a common frequency response g, attributed to the system hardware is shared
between antenna pairs in a MIMO channel sounder. Meanwhile we adopt the array modeling
through effective aperture distribution functions (EADFs) [?], which provides a reliable and
elegant approach for signal processing on real-world arrays. The EADFs are obtained through
performing a two-dimensional (2D) discrete Fourier transform (DFT) on the complex array
pattern either from simulations or array calibration in an anechoic chamber. We denote the
EADFs for TX and RX RFUs as G7y and Gpy respectively. Before breaking down the details
about s(£2,), we first introduce the phase shift matrix A(u;) € CM*F [?], which is given by

el (M5 i L i (=M e
A(p) = : : : ()

.o M;—1 Lo M;—1
el (i . i (55 )mip

1; is a structural parameter vector that represents either 7, 7, 07, @ g, O or v. These quantities

will be essential for HRPE evaluations.



Based on the system response and the EADFs introduced above, we obtain the basis matrices:

By =Gy A(-7) 9
Bry = [Grv - (A(0r) © Alr))] (10)
Br = |Gy - (A(0r) o Alen)) | (11)

B, =A(v). (12)

G/ is a diagonal matrix with its diagonal elements given by g,. With phased arrays we use
the beam ports instead of the antenna ports, hence M and My become the number of beam
ports and reflect how many different beamforming matrices W are applied to TX and RX arrays

respectively. Finally the signal data model for the responses of SPs is given by
s(2;) =B, oBry oBry 0By - yyy (13)

If the measurement environment is static such as an anechoic chamber, and one measurement
snapshot y contains only one MIMO snapshot, i.e. My x Mg pairs of sweeping-beam measure-

ments, the signal model of SPs can be simplified to

s(Q2s) =Bry oBry 0By - yyy (14)

III. CALIBRATION PROCEDURES

In this section, we describe a novel calibration scheme for mmWave channel sounders with
phased-arrays. The simplified diagram of the time-domain setup is given in Fig. ??(a), which is
the measurement setup for the phase stability test in Section ?? and verification measurements
in Section ??. The overall calibration procedures can also be categorized into a back-to-back
calibration in Fig. ??(b) and the RFU/antenna calibration in Fig. ??(c).

Conventional array calibration is based on the assumption that the antenna or beam ports can be
connected to RF signals at the operating frequency, and typically the array to be calibrated would
consist only of passive components. In contrast, we consider here the situation that the RFU has
an amplifier as well as an embedded mixer and an LO at 26 GHz, so that the input and output
frequencies are different. The intermediate frequency (IF) frequency is between 1.65 GHz and
2.05 GHz. This motivates us to use both TX and RX RFUs in the antenna calibration, so that the

generator and receiver of the calibration signal in a VNA can operate on the same frequency (even
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Fig. 2. The system diagrams for the RFU calibration and verification experiments

though it is lower than the operating frequency of the array). Although the measured frequency
response based on the setup in Fig. ?? varies significantly over the 400 MHz frequency band,
we still attempt to find the best narrowband fit of the RFU pattern to the calibration data, in
order to match the assumption of the data model introduced in Section ??.

In this subsection we introduce the main procedures of RFU calibration. Here we limit our
objective to calibrating the frequency and beam pattern responses of one TX and one RX RFU.!
The procedures consist of two main steps

1) the baseline calibration of the TX and RX RFUs, i.e., calibration of the gain pattern and

frequency response for one setting of the amplifier gains at the TX and RX;

2) the PNA-assisted multi-gain calibration of the TX and RX RFUs.

The main motivation for a two-step calibration is that - for reasons explained below - the
complex phase pattern can only be extracted for the combination of TX and RX. On the other

hand, performing such a joint calibration for all possible combinations of gain settings at TX

'The calibration procedures can be applied to the setup where both the TX and RX have multiple panels.
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and RX is practically infeasible due to the excessive time it would take, so that the multi-gain
calibration has to be done separately for TX and RX, with the help of a different setup.

To simplify the discussion, we only consider calibration as a function of azimuth; elevation can
treated similarly. The measurement setup is illustrated in Fig. ??. The same Rubidium reference
is shared between the two RFUs and the VNA (in our experiments, the VNA we use is Keysight
model KT-8720ES). The main procedures are given as follows. In the first experiment we treat
the TX RFU as the probe and the RX RFU as the device under test (DUT), so we fix both the
orientation and the beam setting of the TX RFU while placing the RX RFU on a mechanical
rotation stage and turning it to different azimuthal orientations and measuring with the VNA.
The VNA outputs S21 responses at different RX phase shifter settings (i.e., beams) and different
azimuth angles, which are denoted as Yi(n, ¢g, f), where the beam index n = 1,2,...,19.
The calibration sequence for these three dimensions basically follows embedded FOR loops,
and the loop indices from inside to outside are f — n — @g. This sequence is motivated
by the fact that scanning through frequencies is faster than scanning through beams (which
requires phase shifter switching, which takes a few microseconds), which in turn is faster than
scanning through observation angles, which requires mechanical rotation and thus a few seconds.
Shortening the measurement time is not only a matter of convenience, but also reduces the
sensitivity to inevitable phase noise, see Section ??. Similarly after swapping the positions and
the roles of the TX and RX RFUs, we perform the second experiment that generates Ys(m, @1, f)
with the TX beam index m = 1,2,...,19.

The goal of the baseline calibration is to estimate the frequency-independent beam patterns
Br(m, pr) and Bg(n,pgr) from Y] and Y;. We can build a joint estimator by minimizing the

sum of squared errors, and the corresponding optimization problem is stated as

min Z ’BTQBR(TZ, (PR)GO(]C) - le(nv PR, f)’Q

Br.Br,Go.k
+ |kBroBr(m, o7)Go(f) — Ya(m, o7, f)|?, (15)

where k is a complex scalar that attempts to model the gain and reference phase offset be-
tween two experiments illustrated in Fig. ??. The gain difference is due to the small boresight
misalignment and the phase offset is because of different phase values in LOs at the start
of the two experiments. Besides the gains of two probes are given by Bry = Br(10,0) and

Bro = Br(10,0).
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To simplify the problem formulation, we use the vector notation. For example by = vec(Bg),
br £ vec(Br) and g; is the frequency vector related to Go(f). We also need to transform the two
data sets into matrices, Y; = reshape(Y;(n, og, f),[], N;) and Yy = reshape(Ya(m, o7, f), [], Ny).
Here reshape() is the standard MATLAB function. The original problem in (??) can then be

rewritten as

min | Brobrg; — Y13 + ||k Brobrgy — Yo7 (16)
br.br.g; .k

If we combine the two data sets into one, we can have Y = [Yy;Y3]. The problem in (??) is

equivalent to

min |juv’ — Y||%, (17)

)

which is a typical LRA problem and it can be efficiently solved through singular value decom-
position (SVD) of Y [?]. If we denote its optimal solutions as u°® and v°, we easily find the
mapping from u® to by, br and k, as well as the mapping from v° to g,. The optimal solution

to (??) can be found through Alg. ??. We also normalize the probe gains by setting By and

Algorithm 1 The SVD-based algorithm to solve the problem (??)
1: Stack Y; and Y in the rows, Y = [Y1;Ys)

2: Perform the SVD on Y = UXVT and find the largest singular value o; and its related
singular vectors u; and v,

3. Initialize gr = o1v7; Divide u; into two halves with equal length u; = [111,1; ulvg]

4: Finally br = au, ;; a is selected such that the center element of by is 1

5: Uy = auy g, the final g, = 1g;

6: Finally k equals the center element of @, o, the final by = @ /k

B ro to 1.
After implementing and testing the algorithm on actual calibration data with 100 MHz band-
width, we have obtained quite good pattern extraction results®. The sorted singular values of Y

are shown in Fig. ??, where the ratio between the largest and the second largest singular value

“The larger the processing bandwidth is, the worse the agreement becomes between the assumed model and the data, which
negatively impacts the accuracy of the HRPE. On the other hand a larger bandwidth could help improving the resolution of

delay estimation. The determination of the optimal bandwidth is out of the scope of this paper.
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Fig. 4. The distribution of the ten largest singular values of Y = [Y1;Y2] in Alg. ??.

is 16.7. For the ideal solution there should only be one nonzero eigenvalue. With the solutions
to (2?), we compare Y;(n, ¢, f) against Y; in Fig. 22 while fixing f = 1.85 GHz. Similarly the
comparison results of Y5 can be found in Figs. ?? when we fix n = 8. The complex scalar £ is
0.078 — 1.045¢, and its amplitude is about 0.40 dB.

We now turn to the second step of the calibration. In order to calibrate the RFU responses at
different gain settings, we need to have a calibration setup that can handle the gain variations
at both TX and RX RFUs without saturating any device. The requirement is quite difficult to
fulfill in the baseline calibration setup highlighted in Fig. ??, therefore we propose to perform a

second multi-gain calibration procedure via using a PNA for TX and RX separately. The setup is
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Fig. 5. The comparison between Y and reconstructed Y to demonstrate the goodness-of-fit for the pattern extraction algorithm

in Alg. 2.

illustrated in Fig. ??. It uses the measurement class known as the frequency converter application
(Option 083) in the Keysight PNA series. We use the configuration known as “SMC + phase”
which provides good measurement results on the conversion loss and the group delay of the
DUT. To simplify the task of measuring the conversion loss and the phase response of a mixer,
Dunsmore [?] introduces a new calibration method on a VNA by using a phase reference, such as
a comb generator traceable to NIST, to calibrate the input and output phase response of a VNA
independently, which eliminates the need for either reference or calibration mixer in the test
system. However we cannot measure with the vector mixer calibration (VMC) configuration,
which could have provided the reference phase apart from the group delay, because finding
reciprocal calibration mixers that match the IF and the mmWave RF frequency is very difficult.
The quality of the calibration mixers ultimately limits the performance of the VMC method [?].
Although we do not have a direct control of the LO into the RFU, we can share the 10 MHz
reference clock of the PNA with the RFU, so that the phase response from the PNA is also
stable.
The objectives of this multi-gain calibration are twofold: (i) validating the frequency-independent

patterns in the baseline calibration®; (ii) calibrating and estimating the frequency responses of

the TX and RX RFUs separately. As shown in [?, Fig. 8], the variable gain controller affects the

3We expect the frequency-independent EADFs implicitly required by Rimax to hold well at different RFU gain settings.
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signal power at IF for both TX and RX RFUs. The calibration procedures for the setup in Fig.
?? are given as follows. We align a standard gain horn antenna with the boresight of the RX
RFU, then measure the S21 for the RX RFU with different beam configurations, different gain
settings before we rotate the RFU to the next azimuth angle. The same steps are repeated for the
TX RFU, except that we reverse the input and output signals when the horn antenna becomes the
receiving antenna. These two steps produce two data sets, which we denote as Yz (g, n, ¢, f) and
Yr(g,n,p, ), where the 4-tuple (g, n, ¢, f) represents the RFU IF gain setting, the beam index,
the azimuth angle and frequency index. Similarly to the baseline calibration setup, the calibration
procedures here closely follow embedded FOR loops. and the loop indices from inside to the
outside are f — n — g — . An important feature about the two data sets is that they are only
phase coherent within the same frequency sweep, because of the random initial phase of each
sweep in the “SMC+phase” calibration configuration. For this reason, they cannot be used for
the baseline calibration.

First we remove the responses of the standard gain horn and the line-of-sight (LOS) channel
from Yy or Yp. To estimate different frequency responses and verify the magnitude of RFU

patterns extracted in the baseline calibration, we formulate the following optimization problem,
min [[bg" — Yr|% (18)
7g
s.t. |b| = b,.

This problem formulation tries to find the best rank-1 approximation to Yy subject to the
constraint that the magnitude of the optimal b is equal to the amplitude pattern b, extracted from
the baseline calibration. Comparing to the problem in (??), the vector equality constraint prevents
us from applying Alg. ??. However we can substitute b with b, ® €/ in the objective function,
and propose an iterative algorithm based on the alternating projection method in Alg. ??. The
algorithm attempts to solve two smaller sub-problems iteratively until the solution converges.
The two matrices in the subproblems are given by A, =1, ® (b, © ¢’?) and A, = g ® L.
Firstly we process Y, when the RFU gain setting equals that in the baseline calibration, so
that we can obtain the frequency response from TX and RX RFUs separately, because only one
RFU is involved in the PNA-aided gain calibration. However the product of these two frequency
responses should in principle be close to g, extracted from Alg. ??, which serves as a part

of the verifications. Secondly we repeat the steps in Alg. ?? for different TX and RX RFU
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Algorithm 2 The iterative optimization algorithm to solve the problem (??
1: Find initial estimates for the pattern phase vector ¢ and frequency response g;

2: while ||(b, ® ¢/?)gT — Y||% has yet converged do
3. Fix ¢, and use the least-square method to solve the sub-problem 1:

ming [[Apg — vec{Y }|

2.
s

4. Fix g, and use the Levenberg-Marquardt method [?] to solve the nonlinear optimization
sub-problem 2:
ming ||A, (b, ® €7?) — vec{Y }||%.

5: end while

gain settings. Among them we select the set of gain settings whose mismatch errors, evaluated
according to the objective function in (??), are relatively small, and we consider using these

gain settings in future measurements.

IV. CALIBRATION PRACTICAL LIMITATIONS

This section investigates two important practical issues in the mmWave calibration procedure.
The first is the misalignment between the calibration axis and the center of the antenna array.
The second is the phase stability measurement of two RFUs in the anechoic chamber, and we
observe that the residual phase noise is composed of a slow-varying component and another
fast-varying term. We study the impact of these issues on the performance of Rimax evaluation

with simulations.

A. Center Misalignment

It is important to align the rotation axis with the phase center of an antenna in the antenna
calibration in the anechoic chamber. Different methods have been proposed to calculate the
alignment offset based on the phase response of the calibration data [?], [?].

We again consider the URA shown in Fig. ??. Let us assume that the origin of the Cartesian
coordinates is aligned with the center of the URA. The probe horn antenna is placed at p, =
[5,0,0]”. The antenna position vector with the ideal alignment is given by (2?) for the n,-th

and the n,-th element. We assume that this is the initial position with ¢ = 0° and 6 = 90° of the



17

array pattern calibration. If we denote the offset vector at the initial position as Ap, the actual
initial position is given by p,, ., = P, .. + Ap.
To measure the array at ¢, and 6, we can compute the new antenna position with the rotation

matrix, which is given by

f)ny,nz(go[% 00) = Ry(eo - 9O)RZ(§00)f)ny,nz (19)

where R, and R, are the standard 3 x 3 transformation matrices that represent rotation along the
y axis with the right-hand rule and the z axis with the left-hand rule respectively [?]. The distance
between the probe and the rotated antenna is given by dy, .. (0, 00) = [Py, . (¥0, 00) — Pyll2-

Therefore the simulated “distorted” calibration response is given by

~ dny ,Mz

by . (90, 00) = Any . (00, 00)e 270 (20)

where f. is the carrier frequency, c, is the speed of light in air, and A, . (¢o,0) is the
element pattern. For simplicity we assume in the simulations that antennas are isotropic radiators,
ie. Ay, . (o, 00) = 1. Similarly we could acquire the ideal pattern b, ., (o, 6) via setting Ap
as 0. Examples are shown in Fig. ??. As the offset Ap increases we can observe that the high
power coefficients in EADFs tend to be more spread-out when compared to the ideal case in Fig.
??. This will decrease the effectiveness of mode gating, where we could truncate the coefficients
in EADF in order to reduce the calibration noise. Landmann et al. suggest estimating the phase
drift due to the center misalignment together with EADFs from the array calibration data [?].
However this method becomes less effective in our case when the calibration is further affected
by the fast phase variation, see Section ??.

The array ambiguity function is used to check the performance of the array to differentiate

signals from different directions [?]. It is usually defined as

b (1, 01)b (s, 0)
Ap(p1, 01, p2,02) = 7 - . (21)
(b e o) = o - Iblen 03]

We can replace the second b with b in the above equation and examine the “cross” ambiguity

function. Fig. ?? shows that it presents a high ridge in the off-diagonal direction, which means
that if the actual response is b while the calibrated array response is b, the estimator is very
likely to provide the correct result, as shown through the following simulation results.

We provide simulation results with Rimax evaluation based on synthetic channel responses,

in order to study the impact of center misalignment and phase noise during the calibration.
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Fig. 8. The APDP comparison between the synthetic channel response, the reconstructed channel response from Rimax estimates

and the residual channel response based on center-misaligned RFU patterns

A similar approach to generate synthetic channel responses is also presented in Ref. [?]. The
carrier frequency is set to 28 GHz and the bandwidth is 100 MHz. Both the TX and RX arrays
follow the URA configuration shown in Fig. ??. We have simulated channel responses when
the ideal calibrated array response b is used. In the Rimax evaluation, we then use the EADFs
extracted from the “distorted” patterns when the center offset Ap = 3A1, which is the upper
limit on the center misalignment considering our efforts to align the probe with the RFU. Fig.
?? provides the EADF amplitude pattern for one of the corner elements. In Fig. ?? we compare
the average power delay profiles (APDPs) of the synthetic channel response, the reconstructed
channel response based on Rimax estimates and the residual channel response due to the center
misalignment. The peak reduction is around 30 dB for each path. We define the peak reduction
as the power difference between APDP peaks of the original signal and the residual signal after
the parameter estimation. Tab. ?? provides the comparison of parameters for each path. Because
of the imperfect amplitude estimate of path 1, the residual peak of path 1 is still higher than

that of path 10 in this simulation, and consequently the estimator fails to detect path 10.

B. Phase Noise

Because the LO signals in two RFUs are generated separately, although the TX and RX RFUs

share the same 10 MHz reference clock, there still remain some small phase variations. To study



TABLE 1

COMPARE THE ESTIMATED PATH PARAMETERS WITH THE CENTER MISALIGNED ARRAY RESPONSES, FORMAT

20

TRUE/ESTIMATED
Path ID 7(ns) pr (deg) 07 (deg) pr (deg) O (deg) P (dBm)
1 100.00/100.00  18.45/18.67  109.53/108.60 -31.21/-30.70 104.56/104.36  -20.00/-20.00
2 165.17/165.17  -0.70/-0.33 90.00/89.51 46.38/45.97 53.39/5391  -22.83/-22.85
3 311.45/311.45  33.49/33.60 88.39/87.37  -56.56/-55.77  55.72/55.47 -29.18/-29.20
4 383.01/382.99  25.80/26.07  122.38/121.98  -1.21/-0.84 91.73/91.36 -32.29/-32.31
5 430.16/430.16  48.45/48.48 98.79/98.66  -39.85/-39.14  57.74/57.64 -34.34/-34.35
6 468.86/468.86  46.91/46.89 99.41/98.95 57.44/56.81  115.45/114.16  -36.02/-36.02
7 561.61/561.60 -19.90/-19.43 118.76/118.68  25.52/25.53  115.40/114.16  -40.05/-40.04
8 661.73/661.74  23.85/23.97 114.44/113.21 0.06/0.47 107.80/105.80  -44.40/-44.39
9 662.94/662.94 -36.26/-35.76  96.14/95.58 -3.47/-3.03 61.99/61.88 -44.45/-44.52
10* 990.65/100.00  -56.34/3.59 64.63/-19.28  -52.85/-30.48 102.77/102.41 -58.68/-52.66

the potential impact of phase noise on the pattern calibration in Section ??, we measured the
system phase response for about 15 minutes. We denote the time-varying S21 measurement
as So1(f,t), and the normalized phase response as ¢w(f,t) = arg(Soi(f,t)/So1(f,0))* As
shown in Fig. ??, the relative phase averaged over frequency ¢ri(t) = E;{¢w(f,t)} shows a
combination of fast and slow variations over time.

The slow-varying phase response can be observed by performing a moving average on ¢ (),
and Fig. ?? presents the autocorrelations of two types of variations. The local fast phase variation
can be closely modeled by an i.i.d. Gaussian process with a mean —0.01° and a standard deviation
4.8°. Tts fitting to a normal distribution passes the two-sample KS test with a 5% confidence
level.

To model its influence on the measured response, we consider the calibration scheme high-
lighted in Section ?? and assume that there is an i.i.d. Gaussian variation between switched
beams at the same panel rotation angle, while another slow-varying term is kept constant within

different beams at the same angle and only changes between orientations.

*The arg(z) function returns the phase in radians of the complex variable z
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Fig. 10. The statistics of the “slow” and “fast” phase variations based on the phase stability test

We then conduct simulations to study the effects of residual phase noise in the calibrated
pattern on Rimax evaluation. Phase noise also impacts the actual measurement data obtained
in real-time, however they are only corrupted with the fast phase variation but free from the
slow-varying phase noise (PN), because each MIMO measurement with the time domain setup
indicated in Fig. ??(a) takes about 1.4ms, which is insignificant when compared with the
correlation time of the slow-varying phase term shown in Fig. ??. Fig. ?? shows the comparison

of APDPs after we perform a Rimax evaluation with the PN-corrupted RFU patterns. The peak
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Fig. 11. The APDP comparison between the synthetic channel response, the reconstructed channel response from Rimax

estimates and the residual channel response based on PN-corrupted RFU patterns

reduction is only 18dB in this scenario.

In summary, the limiting factor on the performance of Rimax evaluation with our mmWave
channel sounder is the PN corruption on the calibrated RFU patterns, where the peak reduction
is limited to about 20dB for each path, and it could lead to the existence of “ghost” paths as
well as failures to detect relatively weaker paths at larger delays. However it may be sufficient in
most of practical environments, such as indoor office and outdoor macrocell, where the power of
DMC could contribute between 10% and 90% of the total power [?], [?], therefore the residual
signals would be below the spectrum of DMC and have a limited influence on the estimation
results especially when the Rimax-based estimator considers DMC as a part of the channel

response [?].

V. MEASUREMENT

In this section, we first summarize the steps to apply the calibration results from Section ??
to pre-process the measurement data before running an HRPE algorithm. Secondly, we conduct
MIMO channel measurements in an anechoic chamber and present the Rimax evaluation results
for two types of test channels. The first is the two-path channel that consists of a direct LOS
signal and a strong reflection from a metallic plane. The second is the two-pole test channel

where two standing poles provide potential weaker reflections, and we also move one of the
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poles to create different angular separation between the two reflections.

A. Preprocessing with Calibration Results

We provide the recipe to apply various calibrated frequency responses to the measurement
data before putting them into Rimax. The measurement data are generally produced by the
time-domain setup given in Fig. ??(a), and we denote them as Yy, (f,m,n). We calibrate the
through cable between 1.65 GHz and 2.05 GHz, represented by the green line in Fig. ??(b), with
a VNA and obtain its response Hupe(f). On the other hand, the data generated by the through
calibration in Fig. 22(b) is denoted as Yig(f). The common frequency response of two RFUs,
which is produced by the two-step calibration and extracted according to Alg. ?? and Alg. ??,
is denoted as Go(f).

As a result, the frequency compensation to the original data Yg,, 1S given by

~ o Y:iata(fa m7 n)
Y mn) = G e () Hoae ) (22)

which is ready as an input to a super-resolution estimation algorithm such as Rimax or SAGE.

B. Two-path Experiment

To experimentally verify the calibration results, we created a two-path test channel in an
anechoic chamber with our MIMO mmWave channel sounder [?]. The setup is illustrated in
Fig. ?? and ??. Although the reflector is a plane, since we enforce the reflector to be parallel
to the wall of the chamber, the actual specular reflection point should have the same distance
to both TX and RX. Consequently the distances indicated in Fig. ?? are a = b = 3.15m, and
dros = 5.65 m. Based on trigonometry, the azimuth direction of departure (DoD) of the reflected
path is around 26° and the azimuth direction of arrival (DoA) is about —26°. The extra path
delay of the reflection, when compared with LOS, is about 2.17 ns, which is about one quarter
of the inverse of the 100 MHz bandwidth. The channel is basically composed of one dominant
LOS path and a reflection from a metallic plane. The metallic plane is elevated to the same
height of TX and RX RFUs, hence we can assume all significant signals travel in the azimuth
plane.

We analyzed in total 470 MIMO snapshots with Rimax following the steps in Section. ??.

The statistics, such as mean and standard deviation, of path parameters is listed in Tab. ??. Path
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Fig. 12. The two-path test channel with mmWave RFUs in the anechoic chamber

1 is the LOS path, and Path 2 is the reflected path, and both of their path directions match well
with the geometry. The theoretical LOS power is —26.03dB, which is calculated by 1/4mwd?.
The extra delay of Path 2 is 2.25ns, which equals 67.5cm in path length and is close to the
65 cm computed based on the geometry. Path 3 is the double-reflection between two RFUs when
they are aligned and facing each other. The extra run length is about 10.55 m which is close to
two times of dips. The peak reduction is about 12dB and the unresolved residual signal power
is less than 8% of the original signal, which is somewhat close to the peak reduction level in the
PN-corrupted-data simulation. Path 4 is a “ghost” path as its power is more than 10 dB lower
than that of Path 2 and it cannot be physically mapped to any reflector in the chamber. Based on
the results of this verification measurement and the simulations in Section ??, paths with similar
delay values (less than 1ns) whose power are more than 10 dB weaker than the strongest one

should be considered as “ghost” paths and discarded for further processing.

C. Two-pole Experiment

We further investigate the capability of the setup to differentiate signals with a limited angular
separation, and compare the results with the geometry as well as the Fourier-based beamforming
APS. The measurement setup can be found in Fig. ??. We place two standing posts with their
upper parts wrapped with reflective aluminum foil. The diameters of these posts are small so that
they are weaker reflectors compared to the metallic plane in the previous two-path experiment.

The metallic plane is inserted between TX and RX so that the direct LOS is attenuated.
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TABLE I

LIST OF RIMAX ESTIMATES FOR THE THE TWO-PATH TEST CHANNEL IN THE ANECHOIC CHAMBER, MEAN / STANDARD

DEVIATION
Path ID 7 (ns) T (deg) pr (deg) P (dB)
1 20.30/0.06  -1.43/0.06 -0.14/0.03  -23.80/0.06

22.55/0.07 26.27/0.07  -25.55/0.19  -28.83/0.23
55.47/0.08 -1.18/0.07  -0.25/0.02  -40.94/0.11
22.40/7.58 6.54/17.30 13.57/30.92 -46.74/3.36
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Fig. 13. The APDP comparison between the two-path test channel, the reconstructed two-path test channel and the residual

response

Fig. 14. The picture of the two-pole experiment in an anechoic chamber, the two poles are marked with yellow stars.
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TABLE III
LI1ST OF RIMAX ESTIMATES FOR THE THE TWO POLE MEASUREMENT IN AN ANECHOIC CHAMBER WHEN POST A IS AT

POSITION 1

Path type T (ns) 7 (deg) ¢r (deg) P (dB)

Diffraction 18.81 -4.62 3.32 -37.99
Post A 20.68 40.10 -17.44 -40.29
Diffraction 18.26 6.33 -5.90 -46.99
Unidentified | 20.80 37.33 34.54 -43.81
Post B 21.23 23.75 -29.37 -44.03
Unidentified | 18.79 -3.98 -27.59 -49.67

We name the post that is closer to the TX RFU in Fig. ?? as post A, and the other as post B.
We move post A to five different positions so that the angular separation of reflected signals from
the two posts gradually decreases. For one of the positions, a complete parameter list of six paths
is provided in Tab. ??. Path 2 and 5 are from post A and B, respectively. The angular difference
is about 17° for the azimuth DoD and 10° for the azimuth DoA. The estimates of two diffraction
signals around the metallic plane are consistent when post A moves among the five locations.
The summary of the estimated reflections from post A and post B is available in Tab. ??. We can
observe that the estimated azimuth DoDs of both reflections and the diffracted signals have an
approximate offset of 5° when compared to their true values based on the geometry. This offset
is most likely due to the mismatch of orientation angles of RFUs in the setup. However the
estimated angular differences are aligned with those from the true values, and thus the estimated
angular spreads will also be close. Besides, we also see that the calibrated setup with Rimax is
unable to see two reflected signals from position 4, where the azimuth DoA separation is about
5°. This angular separation limit is certainly affected by the imperfect estimation of other strong
signals such as the diffractions and other reasons mentioned in Section ??. If we compare these
results with the Fourier-based beamforming results of position 1 and position 4 in Fig. ??, we
could see in Fig. ?? that even for position 1 when two posts have the largest separation, the
APS appears to fail to produce two distinguishable peaks around the region that matches the

directions of the posts, thus showing the clear superiority of HRPE.
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TABLE IV
RIMAX ESTIMATES OF THE REFLECTIONS FROM TWO POLES IN THE TWO-POLE EXPERIMENT IN AN ANECHOIC CHAMBER,

ESTIMATE/TRUE

Post A position | Post A ¢r (deg) Post A ¢r (deg) Post B o7 (deg) Post B ¢r (deg)

1 40.10/45.89 -17.44/-17.12 23.75/28.64 -29.37/-27.57
2 37.11/42.44 -20.38/-19.22 24.94/28.64 -28.72/-27.57
3 34.48/39.53 -22.81/-21.66 21.99/28.64 -28.94/-27.57
4 30.41/36.50 -27.05/-22.98 NA/28.64 NA/-27.57
5 NA/31.35 NA/-22.77 24.92/28.64 -28.60/-27.57
60 Joint Angular Spectrum based on BF a5 60 Joint Angular Spectrum based on BF a5
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Fig. 15. The two-dimensional beamforming APS of the measurements for position 1 and position 4 of the two-pole measurement

VI. CONCLUSION

In this paper, we presented the calibration procedures and the verification experiments for a
MIMO mmWave channel sounder based on phased arrays, in order to demonstrate its capability
to perform an HRPE evaluation such as Rimax or SAGE. The integrated design of antenna array
with other RF electronics requires us to rethink the traditional sounder calibration procedures.
As a result, we proposed a novel two-setup calibration scheme and formulated the extraction and
separation of system frequency response and the beam pattern as two optimization problems.

We also investigated two practical issues that might impact mmWave array calibration, such
as the array center misalignment and the phase noise variation. We also conclude through

simulations that the fast-varying phase noise could lead to a limitation of the dynamic range
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to 18dB, a similar level that we observed in the chamber verification experiment. The two-

path channel measurement in an anechoic chamber show that the sounder with the calibration

results can perform HRPE evaluation, and the estimates of strong paths match well with the

environment. The two-pole channel measurement suggests that the calibration enables the sounder

to differentiate signals from two reflectors which are only about 5° apart in azimuth DoA.

In the future, we will study if there is an optimal set of beams to estimate propagation

paths. Besides we will investigate the optimal bandwidth in the narrowband pattern extraction

algorithm. We will also investigate how to apply the wideband Rimax to the data evaluation and

if the calibration procedures can therefore be simplified.
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