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INNOVATION

Objective stress monitoring based on wearable sensors in everyday settings

Hee Jeong Hana, Sina Labbafa, Jessica L. Borellic , Nikil Dutta and Amir M. Rahmania,b

aDepartment of Computer Science, University of California, Irvine, CA, USA; bSchool of Nursing, University of California, Irvine, CA,
USA; cSchool of Social Ecology, University of California, Irvine, CA, USA

ABSTRACT
Monitoring people’s stress levels has become an essential part of behavioural studies for phys-
ical and mental illnesses conducted within the biopsychosocial framework. There have been sev-
eral stress assessment studies in laboratory-based controlled settings. However, the results of
these studies do not always translate effectively to an everyday context. The current state of
wearable sensor technology allows us to develop systems measuring the physiological signals
reflecting stress 24/7 while capturing the context. In this paper, we present a stress monitoring
system that provides objective daily stress measurements in everyday settings based on three
physiological signals: electrocardiogram (ECG), photoplethysmogram (PPG), and galvanic skin
response (GSR) using Shimmer3 ECG, Shimmer3 GSRþ, and Empatica E4 wearable sensors. We
perform controlled stress assessment experiments on 17 participants in which we successfully
detect stress with a 94.55% accuracy for 10-fold cross-validation and an 85.71% accuracy for
subject-wise cross-validation. In everyday settings, the system assesses stress with an 81.82%
accuracy. We also examine whether motion artefacts affect stress assessment and filter the low-
confidence readings to minimise false alarms.
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1. Introduction

Stress is defined by Hans Selye as the body’s response
to one or more stimuli that have disrupted its mental
or physical equilibrium [1]. In contrast to the environ-
ments in response to which our stress reaction system
evolved, people nowadays exhibit more stress due to
the increased mental workload from stressful environ-
ments such as work [2]. In the 2016 Stress Pulse sur-
vey, 60 percent of employees have reported high
levels of stress, and 32 percent of employees report
constant but manageable stress levels [3]. Prolonged
periods of stress are associated with wear and tear on
the system [4], resulting in higher rates of disease,
including psychological illnesses. For instance, it has
been shown that stress correlates with heart disease,
asthma, obesity, and diabetes [5], and also, can lead
to maladaptive health behaviours such as smoking,
irregular sleep, and poor eating habits [6].

Emotion consists of multiple different components
– the experiential or subjective component, which can
often be thought of in terms of how the emotional
experience feels to the person experiencing the
change from neutral or euthymic states; the behav-
ioural component, or the action tendency, which is

the emotion’s expression in the external world, and
can take the form of actions such as running away in
the case of fear or gritting one’s teeth in the case of
anger; and finally, the physiological component of
emotion includes the internal changes at the level of
the autonomic nervous system (sympathetic nervous
system, parasympathetic nervous system) or stress
hormones (detectable in cortisol, salivary alpha-amyl-
ase) that occur in the individual’s biological system as
a reaction to the emotion. Behavioural scientists argue
that these different indices of emotion provide non-
overlapping sources of information regarding emotion;
consistent with this argument, it is not unusual for
these different aspects of emotion to be weakly corre-
lated or even unrelated to one another.

Stress, one type of emotion, can be categorised
into two classes: short-term/acute or long-term/
chronic [7]. Short-term stress is caused by pressures
and demands in the recent past or near future. For
example, test anxiety can cause short-term stress.
However, long-term stress occurs when there are
long-standing pressures and demands. An unsatisfying
interpersonal relationship or career can cause long-
term stress. Long-term stress can cause detrimental
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impacts, which necessities effective stress monitoring
and management [8].

Accurately assessing stress is challenging as stress
can be affected by different factors.One method of
measuring the experiential or subjective aspect of the
emotion of stress is through the use of self-report
assessments using questionnaires [9]. While this
method has certain advantages, such as the ability to
capture the phenomenology of the individual’s experi-
ences, it lacks reliability and feasibility to be used in
everyday settings. Taking a questionnaire every day
can cause survey fatigue [10], which can make the
respondents overwhelmed by the periodic surveys.
Also, it cannot accurately reflect the stress level of the
participants when they are in certain situations such
as during sleep, and often results in a high volume of
missing data. In order to enhance reliability, the use of
objective stress assessments has been recently pro-
posed. Many of these methods are only feasible within
clinical usage. One method consists of using leuko-
cytes to detect hormone changes related to stress
[11]. Although this method has proven to be precise,
it is not a feasible method for continuous monitoring
due to cost and feasibility issues.

As described above, another approach to assessing
the emotion of stress is to monitor the activation of
the autonomic nervous system (ANS), which provides
an index of the physiological aspect of the emotional
response. Stress activates the ANS, and this activation
can be detected through monitoring the changes in
physiological signals [12]. Several physiological signs
are correlating with stress such as heart rate, heart
rate variability, respiration rate, blood pressure, gal-
vanic skin response. The current state of sensor tech-
nology allows us to develop systems measuring
physiological signals reflecting stress levels [2].
Monitoring physiological signals using wearable sen-
sors enables the continuous tracking of personal stress
status. Stress monitoring systems are currently moving
from using traditional physiological sensors such as
electroencephalography (EEG) and electrocardiogram
(ECG) towards using low-cost and comfortable optical
sensors such as photoplethysmogram (PPG) and gal-
vanic skin response (GSR) which are often used in
wristbands or smart rings [12]. Most of the existing
stress assessment systems collect physiological data in
controlled settings [2,13,14]. In these studies, first
stress is invoked using various stress tests (e.g. mem-
ory game, presentation) and then a predictive model
is used to classify the stress level; however, these
methods have not been tested in everyday settings.

In this paper, we propose using a stress monitoring
system evaluated in both controlled as well as every-
day settings. The system collects various physiological
signals (ECG, PPG, and GSR) collected by wearable sen-
sors and building machine-learning based stress
assessment models based on these signals. These
physiological signals are collected using non-invasive
sensors in controlled and everyday settings. Our mod-
els are tested in everyday settings to examine how
motion artefacts affect stress assessment to be able to
filter the low-confidence readings to minimise
false alarms.

The remainder of this paper is organised as follows.
Section 2 provides background information on physio-
logical parameters related to stress. Section 3 presents
prior studies on stress monitoring. Section 4 describes
our methodology for the experimental protocol, data
collection, processing of physiological signals, feature
selection, and classification. Section 5 presents the
experimental results. Section 6 concludes the paper
and states future work.

2. Background

Stress can be measured by monitoring several physio-
logical indicators such as heart activity, blood activity,
and skin response. In this section, we describe the
concept of physiological parameters and features.

2.1. ECG and PPG

ECG is a measure of the electrical activity of the heart
during each cardiac cycle [15]. The ECG uses electro-
des to measure electrical signals produced by depolar-
isation and repolarization of the heart [16]. A typical
heart rate consists of a P wave, a QRS complex, and a
T wave. The R-R interval is the time interval between
adjacent R peaks in the ECG [14]. Heart rate (HR) and
heart rate variability (HRV) are calculated from the R-
R interval.

PPG is a measure of the electrical activity of the
blood during each cardiac cycle [12]. PPG uses an
optical pulse to measure a change in blood volume
and blood pressure. Since the changes in HR and HRV
can be observed from the changes in blood volume
pulse measured from the skin, we intend to extract HR
and HRV.

In a stressful situation, HR increases. HRV is the fluc-
tuation in the time intervals between adjacent heart-
beats [17]. HRV variables change in response to stress.
A decrease in HRV variables has been found to be
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associated with stress [18]. We focus on time-domain,
frequency-domain, and non-linear HRV variables.

2.1.1. Time domain HRV
Time-domain variables of HRV show the amount of
variability in measurements of the interbeat interval
(IBI), which is the time period between successive
heartbeats [19]. In the time-domain analysis, Table 1
shows several time-domain parameters that we
focus on.

2.1.2. Frequency domain HRV
Frequency-domain variables estimate the distribution
of absolute or relative power into certain frequency
bands [19]. Table 2 shows several frequency-domain
parameters that we focus on. The LF band is related
to short-term blood pressure variation. The HF band is
related to breathing rate. Also, the LF and HF compo-
nents are respectively associated with the sympathetic
nervous system (SNS) and parasympathetic nervous
system (PNS) activities in the nervous system [20,21].
The analysis involved in assessing frequency-domain
HRV analysis lies in the energy ratio of LF to HF con-
tent. The most frequently reported stress factor associ-
ated with variation in HRV variables was a low
parasympathetic activity, which is characterised by a
decrease in the HF and an increase in the LF [18].

2.1.3. Nonlinear domain HRV
Non-linear indices quantify the unpredictability of a
time series [22]. Non-linear indices correlate with time-
domain indices and frequency-domain indices. Table 3
shows several non-linear parameters that we focus on.
A Poincar�e plot is a graph plotting every R–R interval
against the prior interval [19]. Poincar�e plot analysis
shows patterns within a sequence of values from

successive R-R intervals. It does not affect changes in
the R-R intervals rapidly [23]. SD1 describes the width
of the ellipse and correlates with HF. SD2 describes
the length of the ellipse and correlates with LF. SD1/
SD2, which is related to LF/HF, is used to measure
stress in sympathetic activity.

2.2. GSR

GSR is a measure of skin conductance during activity
changes. Skin conductance based on sweat gland
activity that activates in response to high stress is indi-
cative in the skin to conduct electricity to detect
increased stress [12]. Since the sweat gland reacts to
the SNS, an increase in sweating causes an increase of
skin conductance in a stressful situation. Therefore, it
can be used as an indicator of stress. We focus on a
parameter of GSR, skin conductance.

3. Related works

Assessing stress has been widely studied in psych-
ology. The most popular subjective methods used for
this purpose are questionnaires and interviews.
Holmes and Rahe [24] established the Social
Readjustment Rating Scale, which became the quanti-
tative standard. Since then, several questionnaire or
interview based methods have been proposed for
measuring stress through self-assessment. For
instance, in [25], the Stress Assessment Questionnaire
(SAQ) is proposed as an on-line self-reporting assess-
ment tool. The SAQ contains 16 areas, where each
area has 8 items for understanding symptoms of stress
in different contexts such as relationships, parenting,
and work. Each participant self-assesses and reports
her/his stress level on a scale from 1 to 5.

Even though questionnaires and interviews are
practical and allow researchers to gather subjective
information from a large number of participants, these
methods suffer from a number of disadvantages. First,
it is possible that respondents may not answer truth-
fully or may ignore some questions. Some respond-
ents answer based on what they may think is socially
acceptable or desirable [26]. Furthermore, it is hard to
design questionnaires and interviews clearly [27]. As a

Table 1. Time domain HRV.
Parameter Description

SDRR the standard deviation of R-R intervals
SDSD the standard deviation of successive differences between

adjacent R-R intervals
RMSSD the root mean square of successive differences between

adjacent R-R intervals
pNN20 the percentage of adjacent intervals that differ from each

other by more than 20ms
pNN50 the percentage of adjacent intervals that differ from each

other by more than 50ms

Table 2. Frequency domain HRV.
Parameter Description

LF the low-frequency band (0.04–0.15 Hz)
HF the high-frequency band (0.15–0.4Hz)
LF/HF the ratio of LF to HF

Table 3. Non-linear domain HRV.
Parameter Description

SD1 the Poincar�e plot standard deviation
perpendicular to the line of identity

SD2 the Poincar�e plot standard deviation
along the line of identity

SD1/SD2 the ratio of SD1 to SD2
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result, respondents may understand questions differ-
ently. Even though psychological experts may inter-
pret and analyse personal answers thoroughly,
questionnaires and interviews are hard modalities for
capturing emotional responses or mental imbalances.

To overcome these challenges, researchers have
proposed the use of laboratory-based objective stress
assessment methods – for instance, by analysing
stress-related physiological reactivity in response to
standardised laboratory stressors. The use of these
standardised stressors enables researchers to test par-
ticipants’ physiological stress reactivity under con-
trolled parameters. For instance, using psychological
stress tests for inducing stress such as the Trier Social
Stress Test (TSST), changes in hormones are used to
investigate stress responses [28]. In these methods,
salivary cortisol was found to correlate with stress, and
since then, it has been used as a stress factor in clin-
ical usage [29]. Besides salivary cortisol, leukocytes are
used for assessing stress [11]. White blood cells from
the blood response can also be used to assess stress
hormones. Even though these methods can provide a
valid stress assessment, they are not feasible to be
used in real-time continuous remote stress monitoring
in everyday settings due to their issues in terms of
cost, delay and need for physical samples.

To provide a real-time stress assessment, research-
ers focus on the ANS, which has the advantage of pro-
viding a moment-to-moment window into people’s
physiological arousal. The parasympathetic nervous
system (PNS) and the sympathetic nervous system
(SNS) are two parts of the ANS [30]. The PNS is
responsible for moving the body during rest. On the
other hand, the SNS is responsible for “fight or flight”
responses to protect the body. Under stress, the SNS
forces the body’s systems to action [8]. Due to the
development of sensor technology, many studies use
heart rate, health behaviours, and other vital signals to

detect individual stress. Table 4 summarises related
work and positions our work with respect to deployed
sensors, test setting, test period, test activities, and
stress classes.

In [13], an automatic stress detection and an allevi-
ation system is proposed based on five physiological
signs: ECG, GSR, respiration rate, blood pressure, and
peripheral capillary oxygen saturation (SpO2). The data
is collected from 32 participants through a laboratory-
based experiment, which takes 94min. Their machine
learning based approach is trained and validated in a
controlled setting where the participants are asked to
carry out specific stress tests (e.g. fly sound or ice
tests). However, this approach suffers from two limita-
tions in terms of its use in everyday settings: 1) it is
not feasible to deploy some of the sensors used in
this study (e.g. blood pressure, SpO2) in continuous
monitoring and 2) the approach does not consider
disturbances and challenges existing in daily life (e.g.
motion artefacts).

In [14], an activity-aware mental stress detection
system is proposed, which also considers the physical
activity. The system gathers ECG, GSR, and accelerom-
eter data for 30min across three activities: sitting,
standing, and walking. Its experimental procedure also
consists of laboratory-based stress tasks such as the
Stroop Colour and Word Test (SCWT) and mental arith-
metic. This study detects mental stress affected by
physical activities. However, even though it provides a
relationship between stress and physical activities, it
does not consider the daily context when determining
stress, i.e. the system is not deployed in every-
day settings.

In [2], a GSR-based pattern recognition system is
proposed for stress assessment. Even though this work
utilises non-laboratory data to find stress levels, it only
uses a GSR sensor which is not as sensitive compared
to other mechanisms. The data is collected from five

Table 4. Related studies and its setting of the experiment.
Related Works Deployed Sensor Test Setting Period Test Activities Stress Classes

Ours PPG, ECG, GSR Lab-based 50mins Memory Game, Mosquito Sound, IAPS 2 levels
Plank, Ice Test, TSST, SCWT (Binary)

non-Lab-based 2days – 2 levels
[31] EMG, ECH, GSR, RSP Lab-based 20mins Music related to emotion 4 levels
[8] ECG Lab-based 9mins Presentation 2 levels
[32] EEG, HR Lab-based not provided Mensa Test 2 levels
[14] ECG, GSR, accelerometer Lab-based 30mins SCWT 2 levels
[33] EEG, GSR, PPG Lab-based 6mins SCWT 3 levels
[34] HR, GSR, Body Temperature Lab-based 30mins Tower of Hanoi 6 discs 2 levels
[13] ECG, GSR, respiration rate, Lab-based 94mins Memory Game, Fly Sound, IAPS, Ice Test 2 levels

blood pressure, blood oximeter
[35] bioradar Lab-based 2mins Mathematical problem 2 levels
[36] EEG Lab-based 10mins Music 2 levels
[37] EEG, ECG Lab-based 40mins Threatening message 4 levels
[38] GSR, PPG Lab-based not-provided Presentation 3 levels
[2] GSR non-Lab-based 8hours x 4weeks – 2 levels
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persons during working hours for four weeks.
However, the paper concludes that GSR data is not
sufficient for determining levels of stress with high
accuracy. It also states that contextual data is needed
when detecting stress in daily activities. Even though
the users are suggested to record their feelings, the
paper does not use this information. In our approach,
we employ a combination of sensors, GSR, PPG, and
ECG to improve accuracy for stress identification.
Furthermore, we collect daily context data from users
and use them when determining stress.

Another significant difference is that these previous
studies have been confined to laboratory environ-
ments, making it impractical to build a stress monitor-
ing system for daily life usage. In contrast, our study
collects various physiological data (ECG, PPG, and GSR)
in both laboratory-based tests and everyday data col-
lection and thus, defines stress levels in everyday life.

4. Methodology

Our stress monitoring system provides an assessment
of stress levels using three main physiological signs:
ECG, PPG, GSR. Our research has been conducted in
two different settings: controlled setting and everyday
setting. To find a correlation between stress and
physiological signals, we perform offline laboratory-
based stress tests to collect bio-signals from wearable
devices. We then process the raw signals to extract
features, build predictive models using these features,
and find the relationship between each feature and

stress. We assume that stress is labelled in binary:
whether each participant is stressed or not. Figure 1
shows the process overview in a controlled setting.
Figure 1(a) shows the training process to build a pre-
dictive stress model. Figure 1(b) shows the inference
process to find the relationship between each feature
and stress by the stress model.

We also collect physiological signals in an everyday
setting through wearable devices to find daily stress
levels. With everyday data, we perform feature extrac-
tion and prediction using the models trained in the
controlled setting to get personal stress levels. Figure
2 shows the process overview in the everyday setting.

4.1. Wearable sensors

We use Shimmer3 ECG, Shimmer3 GSRþ, and Empatica
E4 wearable sensors. We collected ECG signals from
Shimmer3 ECG and PPG and GSR signals from
Shimmer3 GSRþ. Empatica E4 Wristband is also used
for gathering PPG and GSR signals. Table 5 summa-
rises wearable sensors, wearing type of each sensor,
signals collected from each sensor, and sample rate of
each signal.

4.2. Data collection in the controlled setting

In the controlled setting, we conduct laboratory-based
stress tests. Laboratory-based stress tests consist of
several tasks for inducing short-term stress. A total of
17 participants (13 male, 4 female), ranging between

(a)

(b)

Figure 1. Process overview in the controlled setting. (a) Training Process; (b) Inference Process
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20 and 27 years of age, participated in the laboratory-
based controlled experiments. During stress tests, the
expected result is “1” (i.e. stress) for stress tasks, and
“0” (i.e. no stress) otherwise. We implement two types
of laboratory-based tests. Figure 3 shows our two
experimental procedures.

The first laboratory-based test takes approximately
50min for each participant. It consists of five stress
tasks: Memory game, Mosquito sound, Images Test,
Plank, and Ice Test [13]. Each stress task lasts for
2min, followed by a 6min rest period between each
stress task. Baseline is the first stage of the test to col-
lect essential personal physiological signals. We ask
participants to meditate while listening to relaxing
classical music. Rest is a rest period for the participants
after each stress task where they also listen to relaxing
classical music. This period is needed to reduce stress,
which is incurred from the previous stress task.
Memory Game is a card game in which all of the cards
are laid face down, and two cards are flipped face up
over each turn. The goal of the game is to turn pairs
of matching cards [39]. Mosquito sound is a period
where the participants listen to a mosquito sound
with a black screen [40]. Images Test is a period for
the participants to look at selected pictures from the
International Affective Picture System (IAPS) [41]. IAPS
provides affect ratings of pictures. Plank is a period for
the participants to perform a plank for two minutes
while putting their palms up to prevent sensor distor-
tion. Ice Test is a period for the participants to put
their right hand inside an ice cup [13].

The second laboratory-based test also takes
approximately 50min for each participant. It consists
of three stress tasks: The Trier social stress test (TSST),

Images Test, and the Stroop Colour and Word Test
(SCWT). TSST is a laboratory procedure used to reliably
induce stress in human research participants [28]. TSST
consists of two stress tasks: speech and maths. In the
speech portion, there is a preparation step and a pres-
entation step for a given topic, which are each 5min
period. After the presentation, we ask participants to
count backward from 1022 subtracting 13 for 5min.
SCWT, which is based on the Stroop Effect, provides
coloured word lists [42]. Participants read those word
lists while following the instructions.

4.3. Data collection in the everyday setting

In an everyday setting, we collect physiological signals
in daily life. We ask participants to wear Empatica E4
Wristband, and a Shimmer ECG chest strap. We also
collect daily context data labelled with self-reported
stress levels. Participants report whether they feel
stressed or not every 30min. We have 3 subjects (1
female) in the non-laboratory-based experiment.

4.4. Preprocessing and feature extraction

Before extracting features, the data needs to be pre-
processed. Two steps of preprocessing are performed
on the signals to remove noise: filtering and smooth-
ing. Figure 4 shows the procedure of preprocessing
and feature extraction.

In order to extract HR and HRV, ECG and PPG sig-
nals need to be preprocessed using proper digital sig-
nal processing techniques [43]. For the ECG data, we
use band-pass filters to remove noise and use the
moving average filter to smooth the data. From the fil-
tered ECG data, we extract the mean value of HR. We
also extract the mean value of time-domain and non-
linear HRV variables. However, for frequency-domain
HRV variables, we use Fast Fourier Transform and
Power Spectral Density analysis to study how power is
distributed as a function of frequency, which allows
an autonomic balance to be quantified at any given

Figure 2. Process overview in the everyday setting.

Table 5. The list of wearable devices and its specifications.
Device Wearing Type Sensors Sampling Rate

Shimmer3 ECG Chest strap ECG 512 Hz
Shimmer3 GSRþ Wristband PPG 128 Hz

GSR 128 Hz
Empatica E4 Wristband PPG 64Hz

GSR 4 Hz
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time. After preprocessing, we extract the mean of fre-
quency-domain HRV variables.

For the PPG data, we use band-pass and moving
average filters to remove noise and smooth the data.
From the filtered PPG data, we then extract the mean
values of HR. We also extract the mean of time-domain,
frequency-domain, and non-linear HRV variables using
the same feature extraction functions used for the ECG.

In order to extract skin conductance, the GSR signal
needs to be processed with median and moving aver-
age filters. A median filter is used for removing noise,
and a moving average filter is used for smooth the
data. After preprocessing, we extract the mean values
of skin conductance. We also extract the gradient of
skin conductance to calculate the variation.

4.5. Feature selection

Using all features is not necessarily helpful as they
may not help in increasing accuracy. If a feature is not
related to stress, having it among related features may
increase noise [44]. Computing some loosely corre-
lated features may also not be useful because of the
computational complexity. For instance, frequency
domain and independent features have non-linear
computational complexity. Especially in local imple-
mentations in Internet-of-Things [45,46] based sys-
tems, these overheads are considerable. Thus, we
decide to select features that are more correlated
to stress.

In order to find the best subset of features, we
adopt a greedy stepwise method [47]. This method
starts from an empty set. It adds features that increase
accuracy and removes features that decrease it. We
continue doing these two steps until we reach a set
of features in which adding no new feature or remov-
ing any selected feature can increase accuracy. To
evaluate the accuracy of each subset, we use a 5-

nearest-neighbor classifier, correlation-based feature
selection method, and information gain. Based on this
method, the features are shown in Table 6 in bold
are selected.

4.6. Machine learning based classification

The bias of physiological data can vary by using per-
sonal data sets or general data sets [48]. Personal data
sets contain data collected from the same person
(within), and general data sets contain data from other
subjects (between). In order to test the efficiency of
our classifier, we test it in both cases.

We use several machine learning based classifica-
tion algorithms such as K-nearest-neighbor (kNN) with
k 2 f1, 3, 5, 7, 9g, support vector machine (SVM), and
Naive Bayes classifier. kNN is a method that uses k
nearest data-points and does a majority vote to pre-
dict the result [49]. SVM finds hyper-planes to divide
data-points into different classes [50]. We used the
Weka implementation of LIBSVM [51]. Naive Bayes
classifiers predict the result based on the probabilities
of each feature’s probabilistic knowledge [52]. Naive
Bayes classifiers act differently based on the distribu-
tion of data-points [53].

5. Experimental results

In this section, we present our experimental results in
the controlled and everyday settings. First, we validate

Figure 4. The procedure of preprocessing and feature extraction.

Figure 3. Test procedure collecting physiological signals related to stress.

Table 6. Extracted features from sensors, selected features
in bold.
Sensor Features

ECG HR, SDRR, SDSD, RMSSD, pNN20, pNN50,
LF, HF, LF/HF, SD1, SD2, SD1/SD2

PPG HR, SDRR, SDSD, RMSSD, pNN20, pNN50,
LF, HF, LF/HF, SD1, SD2, SD1/SD2

GSR Skin conductance
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our developed stress models using three different clas-
sification algorithms (i.e. kNN, SVM, and Naive Bayes).
We test whether the classifiers generalise across data-
points as well as across subjects. We then apply the
classifier on everyday data to predict stress, observe
and study the contextual factors affecting the results,
and analyse techniques to mitigate them. We use
everyday self-report stress label as ground truth (i.e.
reference point). We also collect context data (e.g. run-
ning, walking, eating, etc.) to evaluate the effect of
noise such as motion artefacts on the decisions in
everyday settings. To examine how a combination of
features affects stress detection accuracy, we create
four groups of bio-signals: GSRþ PPGþ ECG,
GSRþ PPG, GSRþ ECG, and only PPG. The rationale to
study the PPG only case is the fact that this is the
most dominant, cost-effective, and convenient method
used in wearables such as smart bands, watches, and
rings, making it the most feasible monitoring method
for everyday settings.

We use the Weka software package [54] for classifi-
cation and prediction. We collect stress data from 17
participants in our controlled setting. Our participants
are college students between the age of 20 to 27. The
25 features mentioned in Section 4.5 are extracted
from the multi-modal signals for each subject during
the tests. Out of these features, 12 are extracted from
ECG, 12 from PPG, and 1 feature from GSR. We collect
features from each signal for a window size of a
minute resulting in 367min of data for the controlled
experiment as training data. Out of these, 234min are
during stressful tasks, and 133 are during the baseline
(i.e. labelled as no-stress).

In the everyday setting, we collect stress data from
one participant excluded in the controlled setting. We
extract the same 25 features for every minute. 340min
of data are provided with self-reported stress labels.

Labels are associated with the stress reported for
every 30min.

5.1. Stress assessment in a controlled setting

To objectively assess the stress in a controlled setting,
we build a stress model using different classifiers
(kNN, SVM, and Naive Bayes). We conducted two dif-
ferent sets of experiments: i) with all features, and ii)
with selected features (presented in Section 4.5). In
addition, we analyse the data from two different per-
spectives: data-points vs. subjects. In the data-points
view, we treat the data points similarly regardless of
the participant they were collected from whereas in
the subjectwise analysis, we group each individu-
al’s data.

5.1.1. Leave data-points out cross-valid-
ation accuracy
We evaluate the accuracy when the classifiers general-
ise across data-points with 10-fold cross-validation
[55]. Figure 5 shows the accuracy of three different
classifiers, kNN, SVM, and Naive Bayes. The best accur-
acy when all features are used belongs to kNN1, which
is equal to 94.55%. Similarly, kNN1 performs best
when selected features are used with the accuracy of
93.73%. As the test data is chosen randomly from all
participants, we expect to find data-points from the
same subject in both testing and training sets. This
makes kNN1 a better classifier as it eliminates the
effect of other subjects in the result more than
the others.

Table 7 shows a comparison between our work and
the related work in terms of the deployed sensors and
the obtained accuracy. As can be seen from the table,
our obtained accuracy (94.55%) is the highest

Figure 5. 10-fold leave data-points out cross-validation accuracy of the different classifiers using the different number of features.
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compared to the related work. Note that all these
works also report their accuracy in control settings.

5.1.2. Leave subjects out cross-validation accuracy
Since the population is rather small (only 17 subjects)
it can result in a high bias on individual subjects. To
isolate the effect of such bias in the accuracy of the
classifiers, we also evaluate the accuracy when the
classifiers generalise across subjects with 10-fold cross-
validation. Figure 6 shows leave subjects out cross-val-
idation accuracy among the kNN, SVM, and Naive
Bayesian classifiers. As can be seen from the figure,
the best accuracy for the all features case belongs to
the SVM, which is equal to 79.84%. Similarly, the best
accuracy for the selected features also belongs to
SVM, which is 84.71%. Classifiers correspond too
closely to a particular set of data in a high bias.
Overfitted classifiers perform worse on validation [56].
Since SVM can avoid overfitting appropriately, it shows
the best accuracy rather than other classifiers.

Table 8 shows a comparison between our work and
the related work in terms of the deployed sensors and
the obtained accuracy. As can be seen from the table,
our obtained accuracy (84.71%) is the highest com-
pared to the related work. Note that to the best of
our knowledge, there is only one work in the literature

that has used subjectwise cross-validation in
this context.

5.2. Stress assessment in the everyday setting

We predict the stress level in the everyday setting
through the stress model. We split everyday data into
minutes, extract the features, and run them through
the stress model. To get an accuracy of everyday
stress prediction, we use a binary self-described stress
level as ground truth. Participants report their self-
assessment of stress level every 30min. Since we have
the stress model from the controlled setting, we use a
majority vote to prevent an unstable prediction for
data-points due to its inherent noise cancellation
property [57]. We use two-third majority to consider a
prediction reliable.

5.2.1. Cross-validation accuracy without activity
recognition
We evaluate 340min of daily data from participants
across 2 days, which have self-assessed stress labels.
Each data point also includes various kinds of activities
such as sitting, walking, and eating. Figure 7 shows
the cross-validation accuracy of everyday data among
three different classifiers: kNN, SVM, and Naive Bayes.
The best accuracy from all features belongs to kNN1,
kNN7, and kNN9, which is 63.64%. The best accuracy
from selected features belongs to kNN5, which is
81.82%. We observe that the result from selected
features shows higher accuracy than the result

Figure 6. 10-fold leave subjects out cross-validation accuracy of the different classifiers using the different number of features.

Table 8. Comparison of leave subject out cross validation
accuracy between related studies and ours in general model.
Related Works Deployed sensors Accuracy

Ours PPG, ECG, GSR 84.7
[14] ECG, GSR, accelerometer 80.9

Table 7. Comparison of leave data-points out cross-validation
accuracy between related studies and ours in general model.
Related Works Deployed Sensors Accuracy

Ours PPG, ECG, GSR 94.6
[31] EMG, ECH, GSR, RSP 92.0
[14] ECG, GSR, accelerometer 92.4
[33] EEG, GSR, PPG 81.8
[34] HR, GSR, Body Temperature 84.5
[13] ECG, GSR, respiration rate,

blood pressure, blood oximeter
89.3

[35] bioradar 94.4
[36] EEG 80.1
[37] EEG, ECG 79.6
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from all features. This is because loosely correlated
features are removed.

We make subsets of features to examine how a
combination of physiological signals affect stress
assessment accuracy: GSRþ PPGþ ECG, GSRþ PPG,
GSRþ ECG, and only PPG. The first group,
GSRþ PPGþ ECG, is all signals collected in this study.
The second group, GSRþ PPG, is chosen because sen-
sors of GSR and PPG are comfortable to wear on the
body. The third group, GSRþ ECG, is chosen in order
to compare with the second group. The last group
consists of only PPG, which is the most available
physiological sensor. Figure 8 shows a comparison of
each group’s stress accuracy. We present the results in
the controlled settings (leave data-points out cross-val-
idation and leave subjects out cross-validation) and
the everyday setting with selected features mentioned
in Section 4.5. All groups show a similar result in the
controlled settings. However, in the everyday setting,
GSRþ ECG group shows the best accuracy, which is
90.91%. It is the highest accuracy in the everyday set-
tings. Compared to GSRþ ECG, GSRþ PPG group

shows a worse result, and a result is getting worse
when we consider only PPG to assess stress.

ECG signal is required to detect heart activities reli-
ably, but the acquisition of ECG is not easy in daily
life. PPG signal, which is more convenient when col-
lecting data, is an alternative method to track heart
activities [58]. Although PPG is increasingly being used
in a personal healthcare setting, PPG is sensitive to
motion artefacts [59]. In this paper, since participants
are sitting during stress tests, the accuracy among
combinations of signals shows similarity in the con-
trolled settings. However, participants have no choice
but to move in everyday settings, which increases the
PPG signal noise.

5.2.2. Cross-validation accuracy with activity
recognition
Since the PPG signal noise typically increases in every-
day settings, we examine how much motion artefacts
affect the PPG signal. We extract activities based on
personal daily context report. We retain data-points
during low intensive activities such as sitting but

Figure 7. Everyday stress assessment accuracy of the different classifiers using the different number of features.

Figure 8. Comparison of feature combination with feature selection.
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exclude data-points during high intensive activity such
as walking. Figure 9 shows a comparison of everyday
stress assessment between cross-validation accuracy
without activity recognition and cross-validation accur-
acy with activity recognition. The best accuracy is
85.71% without activity recognition, on the other
hand, the best accuracy is 100.00% with activity recog-
nition. When we exclude rapid motion artefacts, the
result presents better accuracy because we exclude
unreliable data. In fact, high intensive activities can
lead to inaccurate signal processing. Therefore, we
need to exclude those activities to decrease false-posi-
tive rates.

6. Discussion

Our objective stress monitoring system performs stress
assessment in both the controlled and the everyday
settings. The overall system is shown to have 94.55%
accuracy in the controlled setting and 85.71% accur-
acy in the everyday setting. We assume that stress is
labelled in binary: whether each participant is stressed
or not. This is indeed a limitation in our work as well
as in the majority of the related works (Table 4, since,
due to the nature of the stress tests, it only allows us
to distinguish the stress level in binary. In the future,
we intend to conduct new experiments to assess
stress with finer granularity. The new stress tests will
include fine-grained labels such as no-stress, low-
stress, medium-stress, and high-stress.

Examining everyday data is more challenging than
controlled data. Physiological data is sensitive to
motion artefact, environmental noise, etc. Unlike the
controlled setting where participants are monitored
while sitting, in everyday settings, many activities such
as walking, running, and eating involving movement

can affect the signal quality as well as the body
responses. These activities can cause noise in the
physiological data and affect the accuracy of the fea-
tures extracted from them. In Section 5, we showed
that detecting reliable PPG data is vital for objective
stress monitoring. We, therefore, used the automatic
PPG confidence assessment technique proposed in
[60] only to apply the calcification on high-confidence
signals. This technique uses a convolutional neural
network based model trained with reliable and unreli-
able samples of PPG. It reports a confidence rate every
minute. In everyday data, the PPG confidence assess-
ment method reported 244min out of 340min of our
data as reliable, meaning that the PPG signals for the
other 96min were unreliable because of motion arte-
facts. This results in preventing false positives in our
stress assessment. It should be noted that PPG is more
prone to motion artefacts and noise compared to
ECG, which makes the signal correction almost impos-
sible in several cases.

7. Conclusions

We proposed a stress monitoring system that was
tested for everyday stress assessment. We designed,
implemented, and analysed the system offering not
only high accuracy stress detection in the controlled
setting but also reasonable predictions in the everyday
setting. We performed controlled stress assessment
experiments on 17 participants and everyday setting
monitoring on 1 volunteer. Our results demonstrate
94.55% accuracy in the generalised model for stress
detection while showing 85.71% accuracy when the
classifier generalises across subjects. The accuracy of
the system in the everyday setting is 81.82%. Our sys-
tem is compared against related studies in terms of

Figure 9. Comparison of everyday stress assessment accuracy between original data and data excluding activities with fea-
ture selection.
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the sensors used, accuracy in the generalised model,
test sets, test period, and test activities.
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