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ABSTRACT: Differentiation and replication are the two major fates of the cells.
They are the fundamental processes for completing the cellular functions.
Although the underlying biological processes have been considerably explored
for each of these processes and significant progresses have been made, global
quantification and physical understanding are still challenging, especially for the
relationship among them. In this study, we developed a theoretical framework
for both the cell cycle and cell differentiation by exploring the associated global
dynamics and their underlying relationship. We found that the dynamics of the
cell cycle and cell differentiation is governed by both the landscape gradient and
rotational curl flux. While landscape attracts the system down to the stable state
basins, the curl flux drives the stable oscillation flow. We uncovered the irregular
sombrero-shaped landscapes of the cell cycle at different developmental stages.
We studied how the cells develop from undifferentiated cells to differentiated
cells and how the cell cycle proceeds at different developmental stages. We
investigated how the cell differentiation can influence the cell cycle where more progressive differentiation can lead to the
changes of the cell cycle oscillations. In contrast, we can also quantitatively illustrate how the cell cycle can influence the cell
differentiation where cell cycle regulation can lead to the changes of the differentiation processes. Through the landscape and
flux analysis, we uncovered the key regulatory elements controlling the progression of the cell differentiation and cell cycle. This
can help to design an effective strategy for drug discovery against associated diseases.

■ INTRODUCTION

The cells have two major fates. One is the differentiation and
the other is the replication. The development of a multicellular
organism involves many different organs and tissues and thus
displays the integration of these two processes. One of the
above-mentioned two processes is related to the phenotypic
diversification of the cell populations by the completion of the
cell fate decisions (cell differentiation). The other of the above-
mentioned two processes is related to the increase of cellular
amount or mass through the progress of the cell cycle. Both the
cell fate decision and the cell cycle are crucial processes not
only for the biological cell growth and proliferation but also for
the maturation of the whole multicellular organism. Devel-
opmental cells change their phenotypes in an almost
discontinuous manner, which manifest discrete developmental
stages from multipotent stem cells to terminally differentiated
types.
In the 1940s, Conrad Waddington proposed a qualitative

picture of the epigenetic landscape to understand the
dynamical pattern of the cell development. In this picture, a
cell imagined as being a marble rolls down from the top of a

hill and followed the pre-existing paths of the valleys of the
surface (landscape). When it arrives in the watersheds, the
“marble” makes a fateful decision and randomly chooses one of
the two available paths. Once the developing cell chooses a
possible path, it decreases the cellular potential and restricts its
subsequent fate. Waddington’s picture clearly hints the
conceptions of stability and instability in the modern language
of dynamics. Recently, Waddington’s epigenetic landscape has
been understood more quantitatively. This is due to the
discovery of the genetic regulatory mechanisms for driving the
cell development and the theoretical framework developed for
providing the foundation and quantification of Waddington’s
landscape for the cell development and differentiation.
However, the biological cell duplicates its own components

and divides into two daughter cells by the cell cycle to achieve
the cell reproduction. The complete cell cycle is a periodic
process that consists of four phases: the synthesis of DNA (S
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phase), mitosis (M phase), and the two intervening phases G1
and G2. Sometimes, the cell also can stay in a quiescence state
called the G0 phase where the cell temporarily stops dividing.
A few checkpoints of the cell cycle dominate the sequence of
the progression and thus enable the whole process to maintain
the proper order. This mechanism can guarantee the beginning
of the new phase dependent on the achievement of the
pervious one.
With the profound understanding of the biology, it is now

believed that both cell cycle and cell differentiation are
delicately controlled by the underlying genetic regulatory
mechanisms. Furthermore, the respective mathematical models
have also been proposed to uncover the individual mechanisms
of the cell cycle or differentiation. For example, the cell cycle is
mainly controlled by the negative feedback loop composed of
cyclin-dependent kinases (CDKs) and their associated cyclin
protein, which dominate the process of the cell cycle.1 The cell
fate decision process is determined by a gene-circuit containing
self-active and mutual repressive genes for controlling the cell
differentiation. Meanwhile, the cell differentiation is tightly
associated with the cell cycle in a biologic cell. The coupling
between cell differentiation and the cell cycle has recently been
investigated.2−7 However, a quantitative framework of how the
dynamics of a multigene regulatory circuit can coordinate the
emergence of both cell cycle and cell differentiation has not
been proposed yet.
Furthermore, the intrinsic fluctuations from the finite

number of molecules and extrinsic fluctuations from the
environments are present in the living cells.8,9 Therefore, the
stochastic feature should be considered in studying the cell
cycle and the cell fate decisions in differentiation.10−15

Although the stochastic nature of the gene regulatory network
has been studied, it is still challenging to reach global
quantifications and physical explanations for both the cell
fate and the cell cycle together to uncover their joint
underlying mechanisms.
In this work, we explore the global mechanisms of the cell

cycle and the cell differentiation together on the basis of the
gene regulatory network motif. We develop a theoretical
framework to quantify the landscape for this regulatory gene
circuit. The state space of the underlying gene regulatory
network motif can represent the different gene expression
patterns of the cell differentiation and the cell cycle. The
occurrence of each gene expression pattern can be quantified
by the probability distribution in the state space. Each state in
the state space can occur with certain probability. The higher
probability represents a larger chance of appearance and has
higher chances of being observed in the experiments. The
specific functional states or phases of the cell are closely related
to the specific gene expression patterns, which often have
higher probabilities (or lower potential valleys) on the
landscape. By the quantifications of the underlying landscape
and the associated probability flux, we can identify the driving
force of the cell differentiation and the cell cycle and further
explore the global stabilities of the undifferentiated or
differentiated states and the flow of the cell cycle. We find
that the driving force of dynamics is dependent not only on the
gradient of potential landscape but also on the rotational curl
flux. These two types of driving forces guarantee the cell fate
stabilities of the normal development and differentiation, as
well as the stability of the oscillation flows of the reproduction
of the biological cell−cell cycle. Furthermore, we study how
the cells develop from undifferentiated cells to differentiated

cells and how the cell cycle proceeds at different devel-
opmental stages. Furthermore, we investigate how the cell
differentiation can influence the cell cycle. We find the
pluripotent transcript factor Oct4 can regulate the cell cycle by
repressing phosphatases Cdc25. With the increase of related
regulation, the period of the cell cycle oscillation in the cell
differentiation state of higher level expression of Cdx2 is
decreased significantly. We also explore how the cell cycle can
influence the cell differentiation. We find cyclin-dependent
kinases 1 can influence the cell fate by regulating transcript
factor Cdx2. When the related regulation is increased to a
threshold value, the multipotent stem cell only transforms to a
certain differentiation state. We quantify the dissipation cost of
the cell differentiation and the cell cycle while investigating
dissipation consumption in different cellular phases. Through
the landscape and flux analysis, we uncover the key regulatory
elements controlling the progression of the cell differentiation
and cell cycle. This can help to design an effective strategy for
drug discovery against associated diseases.

■ MATERIALS AND METHODS

The mathematical model for the dynamics of the underlying
gene regulatory network motif can be described by a set of
ordinary differential equations with the driving force
determined by the underlying gene regulations, synthesis and
degradations. Through solving the ODEs, we can explore the
dynamical behavior of the regulatory network. However, the
intrinsic statistical fluctuations resulting from the finite number
of molecules in the cell and external fluctuations from the
cellular environments can influence the network dynamics.
These indicate that the deterministic description cannot
accurately capture the stochastic dynamics of the regulatory
networks inside the cell. For the animal cells in our study, the
number of molecules is often large within the cell. Thus, the
intrinsic statistical fluctuations from the molecular numbers are
expected to be small. Therefore, we only consider extrinsic
fluctuations in this study. In this case, the mathematical model
of the regulatory network motif dynamics can be expressed by
the stochastic different equations with the noise term x

t
d
d

=

F(x) +η, where x is the concentration of the protein or gene
expression levels and F(x) is the dynamical driving force of the
system. η is defined as Gaussian white noise with zero mean,
and its autocorrelation function is defined as ⟨η(t) η(0)⟩ =
2Dδ(t), where D is the diffusion coefficient. This diffusion
parameter characterizes the intensity of the intrinsic and
cellular environmental fluctuations, with the diffusion co-
efficient being possibly concentration dependent.
Due to the presence of the stochastic fluctuations, even if the

same initial conditions are given, the time evolution of the
expression levels or concentration is not predictable. We can
only obtain their statistical behavior by studying a large
number of the trajectories. Therefore, a more appropriate
quantitative representation can be utilized by the probability
distribution evolution. By doing statistical analysis for the
simulated trajectories, one can quantify the probability
distribution function when the system reaches the steady
state. However, the probability evolution follows the diffusion
equations in the continuous case.16 The diffusion equations are
also called the Fokker−Planck equations, which have
equivalent mathematical representation with the one by
Langevin equations for describing the stochastic dynamics,
one for the trajectory and another for the probabilistic

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b00509
J. Phys. Chem. B 2019, 123, 3490−3498

3491

http://dx.doi.org/10.1021/acs.jpcb.9b00509


description. The Fokker−Planck equations can be formulated
as a probability conservation law: ∂P/∂t + ∇·J = 0, where J is
the flux defined as the probability flux and dictated both by the
deterministic driving force by the underlying chemical
reactions of synthesis, degradation, activation, and repression
regulations and by the stochastic force from the fluctuations
characterized by the diffusion J = FP − D∇P. If the appropriate
time-dependent solution P(x,t) is obtained, it will describe not
only the stationary behaviors but also the probability evolution
dynamics of the systems.
In the steady state, ∂P/∂t = 0, so that the divergence of flux

∇·J = 0 is zero. In the steady state, there are two possibilities
here, one is the flux itself is zero. If that is the case, from the
expression above we see that we can define a potential function
U where U = −ln Pss and Pss represents the steady state
probability. The driving force of the dynamics F can then be
written as the gradient of the diffusion related to the
inhomogeneity of the fluctuations ∇·D and the gradient of
the potential U, − D·∇U. The flux J = 0 means no net input or
output to or from the system. It is the detailed balance
condition. So the system is in equilibrium. For an equilibrium
system, the flux is zero and the whole system can be
characterized by the potential U, which links directly to the
probability by U = −ln Pss, the Boltzmann law. Here the Pss
represents the equilibrium probability. Furthermore, the
dynamics is dictated by the gradient of the potential and the
inhomogeneity of the fluctuations. Therefore, we uncovered
the link between the equilibrium systems and the dynamical
systems with detailed balance.17

However, for general dynamics of the general gene networks,
the steady state does not necessarily satisfy the detailed balance
condition, that is, Jss ≠ 0. In the general case, we can still define
a potential landscape U as U = −ln Pss. The driving force now
can be decomposed into three terms F = −D·∇U + Jss/Pss + ∇·
D,17 the gradient of the potential U, U = −ln Pss; the steady
state flux-dependent term Jss/Pss; and diffusion-coefficient-
dependent term ∇·D. (The last term is the derivative of the
fluctuation strengths or the diffusion coefficient with respect to
the concentrations. For the animal cells, the intrinsic statistical
fluctuations due to the molecular numbers are usually small.
Therefore, only the extrinsic fluctuations are considered in this
study, which is assumed to be independent of the expression
levels or concentrations. In this case, the derivative term is
usually zero.) Since the flux is not zero, there is a net input or
output to or from the environment. The detailed balance
condition is not satisfied. The system is at nonequilibrium. In
fact, the flux quantitatively measures the degree of detailed
balance breaking. Since the flux satisfies the divergent free
property in the steady state, the contribution to the driving
force has a curl nature. This is because there can be no sources
or sinks for the divergent free flux lines to go into and come
out. The only way for the nonzero flux is to rotate around.
Therefore, we can establish a link between the general

network dynamics and the nonequilibriumness of the system.
The global nature of the network can still be described by a
potential landscape U since the U is directly related to the
steady state probability, which quantifies the weights of each
state of the whole network for global characterization. The
dynamics, however, is not only determined by the gradient of
the potential and inhomogeneity of the fluctuations as in the
equilibrium systems. There exists an additional contribution to
the driving force coming from the nonzero flux that breaks the
detailed balance. A global description is still in terms of the

potential landscape reflecting the steady state probability.
However, distinctly different from equilibrium dynamics, the
driving force is determined not only by the gradient of the
potential but also by the curl flux. Therefore, equilibrium
dynamics is analogous to an electron moving in an electric field
while the nonequilibrium system dynamics is analogous to an
electron moving in an electric and a magnetic field.
For the two-dimensional or three-dimensional systems, we

can work out the landscape by directly solving the Fokker−
Planck equation and obtain the steady state distribution for
quantifying the landscape and flux. In this multidimensional
system, it is difficult to solve directly the Fokker−Planck
equation numerically due to the memory issues for the partial
differential equation. Here, we collect the statistics of the
simulated trajectories to obtain the probability distribution at
steady state. More concretely, the probability distribution can
be quantified and obtained from the long time simulated
trajectories of the underlying stochastic Langevin dynamics for
the gene expressions/protein concentrations. To visualize the
landscape, we reduce the four-variable probability distribution
to a three-variable distribution by introducing a new variable
Xc to represent the two of the four variables.
The biological system can exchange the energy, materials,

and information with the environments. This can generate
dissipation. The system entropy can be defined as S =
−∫ P(x,t) ln P(x,t) dx. By differentiation of the above the
formula, the change rate of the system entropy can be written
as Ṡ = ∫ (J·D−1·J)/P dx − ∫ (J·D−1·(F − ∇·D)) dx, where ∫ (J·
D − 1·J)/P dx = ep = Ṡtot is defined as the entropy production
rate(EPR). It denotes the total entropy change rate (including
both system and environment). ∫ (J·D − 1·(F − ∇·D)) dx = hd
= Ṡenv is the rate of the heat dissipation or the entropy change
rate from the environment. When the nonequilibrium system is
in a steady state, the change rate of the system entropy Ṡ is
equal to zero. Therefore, the heat dissipation from the
environment in the steady state is equal to the total entropy
production rate of the nonequilibrium system and the
environment.18,19 According to this equation, the energy
dissipation hd can be quantified by the total entropy
production ep, which is related directly to the curl flux J. The
more nonequilibrium is, the larger the flux is and the more the
dissipation is. The entropy rate equation can also be written as
Ṡtot = Ṡ + Ṡenv. This gives the first law of nonequilibrium
thermodynamics. The entropy production is always larger or
equal to zero. This gives the second law of nonequilibrium
thermodynamics.18

■ RESULTS AND DISCUSSION
Gene Regulatory Network Motif of Differentiation

and Cell Cycle. A gene regulatory circuit motif or wiring
diagram determining the developmental cell fates and cell cycle
is shown in Figure 1. In this simplified motif, the network
consists of two mutual regulated modules. On top of the wiring
diagram, the cell cycle module mainly controls the process of
the mitosis. The mitotic cyclin synthesis is represented by a
constant rate ks. The newly synthesized cyclin is converted to
cyclin−Cdk1 complexes and rapidly phosphorylated by the
Cdk-activating kinase CAK. Under this condition, the mitotic
cyclin generates active Cdk1−cyclin. These complexes can be
inactivated by kinases Wee1A and reactivated by phosphatase
Cdc25. Both active and inactivated Cdk1−cyclin complexes
can also be eliminated through cyclin degradation with the
increase of activation of ubiquitin ligase APC/CCdc20 by active
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Cdk1.20 The periodic changes of the mitotic cyclin and the
active Cdk1−cyclin represent the progression of the cell cycle.
At the bottom of the wiring diagram, the self-activation and
mutual inhibition regulations between transcription factor
Oct4 (octamer-binding transcription factor 4) and Cdx2
govern the binary cell fate decision making process of
differentiation. Oct4 is known as pluripotent transcription
factor playing an essential role in maintaining the pluripotency
state of self-renewing stem cells. The high expression of Oct4
induces stem cell differentiation into inner cell mass. However,
the high expression of Cdx2 leads to the formation of
trophectoderm differentiated state from the pluripotent stem
like state. Meanwhile, the genes of the two modules of the cell
differentiation and cell cycle can also mutually regulate each
other. Oct4 can repress the reactivation of Cdk1 complexes by
inhibiting phosphatases Cdc25 and influence on the
progression of the cell cycle. The Cdk1 complexes can repress
the expression of transcription factor Cdx2 and influence the
cell differentiation.21,22 These genes and regulations collec-
tively determine how the multipotent progenitor cell divides
into two daughter cells and differentiates into adult cell.
Mathematical models of the cell differentiation or the cell

cycle have been proposed, respectively.20,23−34 The under-
standing of the cell cycle, proliferation, and differentiation
together is still challenging due to the less clear knowledge on
the mutual regulation of cell differentiation and the cell cycle.
In this study, we associate the simplest regulatory motif of the
cell cycle with the simplest cell fate module to explore the cell
division, proliferation and differentiate process. In the kinetic
scheme, the hollow arrow represents the activation or self-
activation between two proteins. It can be quantitatively
formulated by the Hill function in the model equation. For
example, activating Cdk1−cyclin complex activates the APC/
CCdc20. The ⊥ represents the repression between two proteins.

It can be quantitatively formulated by the Hill function of
repression. For example, Oct4 represses Cdx2. The cross sign
between the hollow arrow and solid arrow represents the
production or degradation. It can be quantitatively formulated
by kB. B represents the reactant concentration, and k denotes
activation rate. For example, total mitotic Cdk1−cyclin (active
cdk1−cyclin and inactive cdk1−cyclin) degrades. On the basis
of the above gene regulatory wiring diagram, we build the
model represented by the following four equations

= − ·
t

k ka Cyc
d
d

Cyc s deg

= + − − ·

− ·
t

k ka kr

ka

d
d

Cdk1 (Cyc Cdk1) Cdk1

Cdk1

s cdc wee1

deg

= + − ·
t

ka kr k
d
d

Oct4 Oct4Oct4 Cdx2

= + + − ·
t

ka kr kr k
d
d

Cdx2 Cdx2Cdx2 Oct4 Cdk1

Here, the first equation describes the synthesis and degradation
of the total mitotic cyclins. In our model, this concentration is
equal to the sum of the inactive and active Cdk1−cyclin
complexes. ks represents the rate constant of cyclin synthesis.
kadeg represents the rate constant of cyclin degradation varied
with the activity of Cdk1 as a result of the activation of APC/
CCdc20 by Cdk1 and can be described by the Hill function: kadeg
= adeg + bdeg +S

Cdk1
Cdk1

n

n n

deg

deg
deg deg

. The second equation describes the

production of active Cdk1−cyclin complexes. The parameter
kacdc represents the production rate of protein Cdc25C, which
can reactivate Cdk1 by removing phosphate. The rate krwee1
denotes the production rate of protein kinase Wee1A, which
can accelerate the conversion from the active Cdk1 to inactive
Cdk1 complexes. kacdc is a function of the active Cdk1
concentration and the expression level of Oct4. krWee1 is a
function of the active Cdk1 concentration. Their steady state
response was determined by the experimental studies and can
be approximated by the Hill functions:20,35,36 kacdc = acdc +

b cdc +S
Cdk1

Cdk1

n

n n

cdc

cdc
cdc cdc

+ b23 +
S

S Oct4

n

n n , krwee1 = awee1 + bwee1

+
S

S Cdk1

n

n n
wee1

wee1

wee1
wee1 wee1

. The third equation and the final equation

describe the production and degradation of Oct4 and Cdx2.
Their regulations were determined by the experimental studies
and can also be represented by the Hill equation:31,32,37 kaOct4
=

+a
S

Oct4
Oct4

n

n n , krCdx2 = +b S
S Cdx2

n

n n , kaCdx2 = +a
S

Cdx2
Cdx2

n

n n , and krCdk1 =

+b S
S42 Cdk1

n

n n
42

42

Figure 1. Wiring diagram for cell cycle and cell differentiation gene
regulatory circuit motif.

Table 1. Parameters for the Four-ODE Computational Model

parameter value parameter value parameter value

adeg 0.01 min−1 acdc 0.16 min−1 awee1 0.08 min−1

bdeg 0.04 min−1 bcdc 0.8 min−1 bwee1 0.4 min−1

ndeg 17 ncdc 11 nwee1 3.5
Sdeg 32 nM Scdc 35 nM Swee1 30 nM
a 1 min−1 b 1 min−1 n 4
S 0.5 nM k 1 nM/min
ks 1 nM/min S42 30 nM
b23 0.1 min−1 b42 0.1 min−1
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As shown is Table 1, we display the related rate parameters
for the gene regulatory circuit motif model. The regulation
parameters for the developmental and cell cycle modules are
chosen from the related experimental studies or the classical
model studies.20,31,35−39 In our work, the developmental
module and cell cycle module can mutually regulate each
other through two regulations quantified by the regulation
strength parameters b23 and b42. Therefore, we mainly focus on
these two regulation parameters for the coupling of the two
modules while keeping other parameters fixed to explore how
the cell cycle and cell differentiation influence each other.
Meanwhile, we assume the rate of the parameter change is
much slower than the relaxation time scale. This is reasonable
because the parameter change is often coming from the
environment. The environmental changes are often much
slower than the gene regulation dynamics. Therefore, in this
case, the probability evolution can reach the steady state for a
specific fixed set of parameters(mimicking a fixed environ-
ment).
Note that the regulations between the cell cycle module and

the cell differentiation module are from the repression of Oct4
to the active Cdk1 through repressing the Cdc25 (differ-
entiation to cell cycle) and from the repression of Cdk1 to
Cdx2 (cell cycle to differentiation).
Landscape and Flux of the Cell Cycle and Cell

Differentiation. On the basis of the above mathematical
model of the cell cycle and cell differentiation, we explore the
associated stochastic dynamics. By following the probabilistic
evolution, we can obtain the steady state probability
distribution in the state space. The quantitative landscape of
the cell cycle and differentiation with the fixed parameters are
shown in Figure 2. In the visual landscape representation, the
different colors represent the different depths of the potential
landscape U (inversely related to the probability landscape Pss:
U = −ln Pss). The red denotes the higher landscape potential U
while the blue denotes the lower landscape potential U. Total

cyclin axis and Cdk1 axis denote the expression levels of the
total mitotic cyclin and active Cdk1, respectively. The Xc axis
denotes the distance between the current cell state and the
diagonal line of Oct4 and Cdx2 expression plane. Because the
expression level of the two opposing fate determining
transcription factors is equal at the diagonal line of Oct4 and
Cdx2 expression plane, this type of cells often stays in the
undifferentiated undecided multipotent stem cell state. There-
fore, the plane of Xc = 0 represents the undifferentiated cell
state, and the plane of Xc > 0 and Xc < 0 represents the two
types of differentiated cell state with mutually excluding
expression of Oct4 and Cdx2. We see that the landscape has an
irregular sombrero shape in different cell states. For the 3-
dimensional landscapes in different cell states, the red center
region (hat region of the sombrero shape) is higher in
potential while the blue region (the ring valley region of the
sombrero shape) has the potential lower than that of the red
center. The outside of the ring region also (edge region of the
sombrero shape) has higher potential. The topography of the
landscape is an inhomogeneous irregular sombrero shape. The
different sombrero shape has different color contrast on the
landscape. The deeper color contrast indicates that the cell
cycle proceeds more easily in the cell differentiation stages.
The shape of the sombrero topography of the landscape
implies that when starting anywhere in the state space, the
gradient of the landscape will drive the state to the ring region
of the landscape since the potentials there are relatively lower
than the other regions of the state space. This guarantees the
stabilities of the states on the ring. This is analogous to the
situation of the river in the mountain where the river has the
lowest height so that everywhere else on the mountain the
water flows down to the nearest place in the river. However,
once the states are stabilized on the ring valley, the states tend
to stay in the lowest potential region on the ring valley. This
does not support a stable oscillation flow. For a stable
oscillation, there is a need for a rotational force driving the
dynamics along the close ring valley. This is provided by the
steady state probability flux. Therefore, the steady state
probability flux with the curl rotational nature guarantees the
stability of the oscillation flow while the landscape guarantees
the stabilities of the states on the oscillation ring valley. While
the landscape gradient attracts the system down to the
oscillation ring valley, stabilizing the states on the oscillation
path, the flux drives the stability of the cell cycle flow.
During the cell developmental process, the changes of the

self-activation strength of the transcription factors Oct4 and
Cdx2 provide a significant measure and the direction of the
development. When the self-activation is strong (characterized
by large value of self-activation parameter a), the cell is more
preferred to stay in the undifferentiated multipotent stem cell
state. When the self-activation is weaker, the cell is preferred to
be at differentiated states. With the continual decrease of self-
activation, finally the stem cell becomes unstable and only stays
in the differentiated states. The gradually decrease of self-
activation parameter a manifests one possible mechanism for
the development from undifferentiated stem cell to one of the
two types of differentiated cells. Through the change of the
self-activation parameter a, we can quantitatively map out the
landscape of cell cycle at different developmental stages, as
shown in Figure 3. The vertical axis represents the different
developmental stage by the change of self-activation strength
parameter a. For the different self-activation parameters, Figure
3 shows the different planes representing the different cell

Figure 2. Landscapes of cell cycles at multipotent and differentiated
states. Xc = Oct4 cos(π/4) − Cdx2 sin(π/4) represents the distance
between the current cell state and undifferentiated cell state. Total
cyclin concentration is equal to the sum of concentrations of active
and inactive Cdk1−cyclin complexes. Cdk1 represents the concen-
tration of active Cdk1−cyclin complexes.
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differentiation stages. The right and left planes display the two
types of the differentiated cell states at different stages of
differentiation. The left plane represents the differentiation
state 2 for the high level expression of Cdx2 in the cell. The
right plane represents the differentiation state 1 for the high
level expression of Oct4. The center plane denotes the
undifferentiated multipotential stem cell state. When the self-
activation is strong, we can see the emergence of the cell cycle
at the center of the three planes. The multipotent stem cell
state can enter into the mitosis of cell cycle. With the decrease
of the self-activation strengths parameter a, the oscillation ring
with the sombrero shape in the middle of the planes gradually
disappears. The probability or the chance of the cell cycle
emergence reduces for the multipotent stem cell state.
Meanwhile, a clear cell cycle ring with the sombrero shape
appears on the left plane representing robust oscillation of cell
cycle as differentiation progresses. We can see the cell makes a
fate decision and enters into one of the differentiated states.

Influence on Cell Cycle from Cell Differentiation. To
investigate the dynamics and the thermodynamic dissipation
consumption of the cell cycle at different cell stages, we
calculate the integral of flux along the limit cycle, the entropy
production rate(EPR), and period of cell cycle oscillation at
different cell differentiation stages with different regulation
parameters.
As shown in Figure 4a,b, the flux and EPR increase with the

increase of the regulation parameter b23 in the differentiation
state 2. But the change of the EPR and flux is small with the
increase of parameter b23 in the differentiation state 1 and
multipotent state. The regulation parameter b23 denotes the
maximum generation rate from the regulation of Octamer-
binding transcription factor 4 (Oct4) to the kinase Cdk1 by
repressing Cdc25. In Figure 4c, we plot the change of period of
cell cycle oscillation with the regulation parameter b23. We can
see the period decreases with the increase of b23 in the
differentiation state 2. The change of period of cell cycle
oscillation is small in the differentiation state 1 and multipotent
state. This shows that the flux and associated thermodynamic
dissipation (EPR) can significantly influence period of cell
cycle oscillation. The increase of regulation parameter b23 can
accelerate the cell cycle on the differentiation state 2 by
stronger flux and more associated dissipation of energy per unit
time. Furthermore, we can also see that the period of cell cycle
oscillation in the differentiation state 1 is longer than in the
other states in all the range of the regulation parameter b23.
Due to high expression level of Oct4 in the differentiation state
1, the longer period shows the inhibition function from Oct4
to the cell cycle. Our results are consistent with the correlated
experimental study, which reported ectopic expression of Oct4
can delay the mitotic entry and elongate the progression of cell
cycle.21

In Figure 5a−c, we plot the relationship between the
entropy production rate and the flux in three cell states. The
entropy production quantifies the input energy supply or
consumption. We show that the entropy production rate is
positively related to the integral flux along the limit cycle in all
of the cell states. This indicates that the consumption of energy
of the system is tightly correlated with the flux of the cell cycle.
Since the rotational curl flux is the driving force for the cell
cycle flow and dynamical requirement for the emergence of a

Figure 3. Landscapes of cell cycles at different developmental stages.
Regulation parameter a represents the self-activation and the direction
of the development. The landscapes of the cell cycles gradually change
in different developmental stages.

Figure 4. (a) Entropy production rate of the different cell states at different regulation parameters b23. Regulation parameter b23 represents the
regulation strength of Oct4 to cell cycle by repressing the phosphatase Cdc25. (b) Integral of flux along the limit cycle of the different cell states at
different regulation parameters b23. (c) Period of the cell cycle oscillation of the different cell states at different regulation parameters b23.
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new stable phase (cell cycle), the production and progression
of the cell cycle originates from the input of energy or nutrition
supply.
In Figure 6a−c, we show the relationship between period of

cell cycle oscillation and entropy production rate in the
different regulation parameter b23. We can see EPR increases
with an increase of the cell cycle oscillation period in the
multipotential state and differentiation state 1. But the EPR
decreases with an increase of the period of cell cycle oscillation
in differentiation state 2. In the multipotent state and
differentiation state 1, the inhibition effect for the cell cycle
strengthens because of higher expression of Oct4. This slow
down in period of cell cycle oscillation comes from the more
tight repression regulation, which requires more input energy
supply through entropy production to support. In the
differentiation state 2, high expression of Cdx2 does not
repress the cell cycle. Thus the higher entropy production rate
can accelerate the progression of cell cycle.
Influence on Cell Differentiation from Cell Cycle.

Through the change of the regulated parameter b42, we can
quantitatively map out the landscape of the cell cycle at
different regulation parameters b42, as shown in Figure 7. The
regulation parameter b42 denotes the regulation strength of
Cdk1 to transcript factor Cdx2. It represents a regulation
connecting cell cycle to cell differentiation. As shown in Figure
7, the stem cell state and two differentiation states have the

complete ring shape landscape of the cell cycle at the lower
values of regulation parameter b42. With the increase of

Figure 5. Entropy production rate versus the integral of flux along the
limit cycle ∮ J dl/∮ dl in three cell states: (a) differentiation state 1;
(b) differentiation state 2; (c) multipotential state.

Figure 6. Entropy production rate versus period of cell cycle
oscillation in three cell states: (a) differentiation state 1;(b)
differentiation state 2; (c) multipotential state.

Figure 7. Landscape of cell cycle and cell differentiation at different
regulation parameters b42. Regulation parameter b42 represents the
regulation strength of Cdk1 complexes to cell differentiation.
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regulation parameter b42, the landscape in the differentiated
state 1 eventually cannot shape a closed loop. This shows that
the cell differentiation can only enter into certain differ-
entiation state 2 (trophectoderm) when the regulation b42
increases beyond a certain threshold value. In this differ-
entiation state, the expression level of transcript factor Cdx2
becomes high and the expression level of Oct4 becomes lower.
Therefore, we can see that the cyclin-dependent kinases 1
(Cdk1) mainly controlling the cell cycle can also regulate the
differentiation of the stem cells.
As shown in Figure 8a,b, we plot the integral of flux along

the limit cycle and EPR at different repression regulation
parameters b42. When the regulation b42 is small, the flux or
EPR results of the different cell states are almost equal. Under
this condition, the cell fate is not influenced by the regulated
gene Cdk1 from the cell cycle. With the increase of the
regulation parameter b42, the flux and dissipation cost EPR of
the differentiation state 2 increase. Meanwhile, the flux and
dissipation cost EPR of the differentiation state 1 gradually
decrease. When the EPR reaches a threshold value, not enough
energy can support the completion of the cell cycle progression
in the differentiation state 1. The differentiation state 1
disappears from the possible cell states. The multipotential
stem cell can only be differentiated and enter into the
differentiation state 2. In Figure 8c, we can see the period of
the multipotential state is equal to that of the differentiation
state 1. Therefore, the differentiation state 1 and multipotential
state merge when the regulation parameter b42 is more than
0.2. By the changes of the oscillation periods in different cell
states, we can further see that Cdk1 can also regulate the
differentiation of the stem cells.

■ CONCLUSIONS
In this work, we developed a theoretical framework to uncover
the underlying mechanism of the interplay between the cell
differentiation and cell cycle. On the basis of the gene
regulatory network motif, we show the cell cycle at the
developmental stages evolves from the undifferentiated state to
the differentiated state. We quantitatively uncovered the
driving forces for the dynamics of the cell cycle and cell
differentiation as the negative gradient of landscape and the
curl flux. The landscapes at different states of the differ-
entiation and development show irregular sombrero shapes.
While the gradient force of the landscape guarantees the
stability of the states on the cell cycle path, the curl flux drives

the stable oscillation flow of the cell cycle. Through our
theoretical framework, we explained quantitatively how the cell
differentiation influences the cell cycle. In contrast, we also
explained quantitatively how the cell cycle influences the cell
differentiation. We studied the regulations between the cell
cycle and cell differentiation through the change in the
regulation parameters. We found that the pluripotent transcript
factor Oct4 can influence the progression of the cell cycle by
the regulation of Cdk1 reactivation. With the increase of the
related regulation, the period of cell cycle oscillation in the cell
differentiation state of a high level expression of Cdx2 is
decreased significantly. Meanwhile, we found cyclin-dependent
kinases 1 can influence the cell differentiation by regulating the
transcript factor Cdx2. With the increase of related regulation,
the multipotent stem cell can transform into a certain
differentiation state. Through the landscape and flux analysis,
we uncovered the key regulatory elements (b23 and b42) by
controlling the progression of the cell differentiation and cell
cycle. This can help to design an effective strategy for drug
discovery against associated diseases.
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