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ABSTRACT 
A self-powered, and self-actuating lithium ion battery (LIB) has 
the potential to achieve large deformation while still maintaining 
actuation force.   The energy storage capability allows for 
continual actuation without an external power source once 
charged.  Reshaping the actuator requires a nonuniform 
distribution of charge and/or bending stiffness.  Spatially 
varying the state of charge and bending stiffness along the length 
of a segmented unimorph configuration have the effect of 
improving the tailorability of the deformed actuator.  In this 
paper, an analytical model is developed to predict the actuation 
properties of the segmented unimorph beam to determine its 
usefulness as an actuator.  The model predicts the free deflection, 
blocked deflection, and blocked force at the tip as a function of 
spatially varying state of charge and bending stiffness.  The main 
contribution of the paper is the development of blocked 
deflection over the length of the segmented unimorph, which has 
not yet been considered in the literature.  The model is verified 
using experimental data and commercial finite element analysis. 

NOMENCLATURE 
𝑇1 uniform stress at material interface  
𝑆1 interfacial strain  
𝐸 elastic modulus 
S1

* induced actuation strain 
β linear strain rate 
𝐶̂𝐿𝑖 average normalized concentration of lithium 

ions (state of charge) 
𝐸𝐼 equivalent stiffness 
𝑣 vertical deflection 
𝑀𝑒𝑞 equivalent end moment 
𝑥 distance along the length of the beam 
𝐿 beam length 
𝐹𝑏 blocked force 
𝜅 curvature 
𝐼 area moment of inertia 
𝑤 beam width 
ℎ𝐶𝑡 coating layer thickness 
ℎ𝐶𝑢 copper layer thickness 
ℎ neutral axis 
𝑈 strain energy  
𝑁𝑠𝑒𝑔 number of segments 
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𝑀𝑒𝑞,𝑁𝑠𝑒𝑔𝑚𝑜𝑑
 modified equivalent end moment of the tip 

segment  
C constants of integration  

 
1. INTRODUCTION 

 
Lithium-ion batteries (LIB) are ubiquitous and effective 

devices for energy storage.  Besides being capable of energy 
storage, LIB can be designed as multifunctional devices capable 
of actuation and sensing when configured in a composite 
unimorph structure.  The unimorph consists of a LIB with a 
copper current collector coated with an active composite layer of 
silicon, binder, and conductive agent.  The actuation strain is 
induced by charging the battery, and the actuation stress is 
proportionally dependent on the state of charge (SOC) such that 
the maximum deflection of a uniform unimorph occurs at 100% 
SOC.   

 In previous work by the authors, an analytical model was 
developed to predict the free deflection of a segmented LIB 
unimorph actuator with spatially varying geometry or state of 
charge [1].  The focus of the current paper is on expansion of the 
model to include the blocked force and deflection of the 
segmented LIB unimorph and validation using experimental data 
and finite element simulation.  The experimental data is used to 
validate the uniform unimorph free deflection and allow for the 
determination of the optimal linear strain rate while the finite 
element simulation is used to verify the analytical model of the 
blocked deflection and blocked force. 

The key to achieving large deflection in the LIB unimorph 
actuator is the lithiation of silicon which causes over 300% 
volumetric expansion [2].  Embedding Si nanoparticles in the 
soft composite coating on a layer of copper allows 
transformation of this volumetric expansion to deflection of the 
beam.  The actuation mechanism is the restrained expansion 
caused by the copper foil, i.e., while the composite coating layer 
expands the copper foil is relatively inextensible.  This results in 
the unimorph bending, as seen in Figure 1.  As the battery is 
charged and Li ions are inserted, the Silicon nanoparticles form 
an alloy with Li creating 𝐿𝑖𝑥𝑆𝑖.  This alloying increases the 
volume of the particle by 310% causing the voids formed during 
the fabrication of the actuator to shrink and the coating layer to 
expand longitudinally [2].  The relationship between the 
volumetric expansion driven by the SOC of the battery is the 
linear strain rate 𝛽.  

 

FIGURE 1: Unimorph charging actuation mechanism.  

The volume expansion and resulting actuation can be 
harnessed further by segmenting the unimorph along its length 
and spatially varying the thickness and SOC. By segmenting the 

beam and changing the geometry, SOC, or both, of each 
segment, complex actuation shapes can be obtained for such 
tasks as soft robotics gripping.  A schematic for spatially varying 
SOC can be seen in Figure 2, and a schematic for spatially 
varying geometry can be seen in Figure 3.  Figure 2 shows the 
case where theoretically each segment is electrically insulated 
and charged separately such that spatially varying SOC (charge 
varying along the beam length) can be achieved.  In the case 
presented the charge is spatially varied uniformly such that the 
tip is charged to full 100% SOC while the base segment remains 
uncharged at 0% SOC.  The intermediate segments are charged 
to fractions of full charge.  By varying the SOC of each segment, 
complex actuation shapes can be achieved.  Moreover, the shape 
of the actuator can be changed by redistributing the charge 
among the segments costing no additional energy beyond that 
lost to internal resistance.  In this way this LIB actuator may be 
considered superior to those relying on pneumatic power or those 
relaying on an externally applied electric of magnetic field. 

 

 
FIGURE 2: Segmented beam with spatially varying SOC. 

Further shape complexity can be achieved by spatially 
varying (along the length of the beam) the geometry of the 
unimorph.  While both the active and passive layer thickness can 
be varied, here only the passive layer (the copper foil) thickness 
is varied.  Seen in Figure 3, the beam is held at a uniform charge 
of 100% while the geometry is spatially varied by tapering the 
thickness of the passive layer toward the tip.   In doing so, 
nonuniform curvature along the length can be achieved.  
Furthermore, although not studied here, varying both the SOC 
and the geometry of the beam can provide an optimized design 
for a specific application. 

 

 
FIGURE 3: Segmented beam with spatially varying SOC.  

Because of the nature of the LIB actuation mechanism, large 
deformation can be achieved while maintaining actuation force.  
Reshaping, while limited in terms of time scale by lithium 
diffusion, is also achievable by redistribution of charge.  All this 
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can occur while the LIB actuator still acts as a means of energy 
storage. 

The unimorph actuator is modeled as a cantilever composite 
beam.  The performance metrics of interest are the free deflection 
and blocked force as a function of SOC.  While analytical models 
have been developed to predict free deflection of these types of 
structures, the deflection during the blocked force condition has 
not been considered in the literature due to the nonlinear nature 
of a clamped-roller beam with applied moment and end loading 
[3–7]. 

Current methods for solving the large blocked deflection of 
cantilevered elastica include both shooting methods such as in 
the work of Holland et al., Banerjee et al., and Phungpaingam et 
al. [8–10].  They also include finite element analysis [8], 
Adomian decomposition [9], and elliptic integrals [11].  Crawley 
et al. and Wada et al. discuss the merits of various models for 
beam actuation as well including Euler-Bernoulli versus a 
uniform strain model [12,13]. Elliptic integrals and the use of 
constants to take into account the vertical deflection as a function 
of the slope of a beam are discussed by Howell [3].  Normally 
the nonlinearity of the problem can be ignored for beams with 
small deflections, but this cannot be assumed for elastica.  In this 
paper, an Euler-Bernoulli model for the deflection of a blocked 
cantilever unimorph is developed and is compared with its 
commercial FEA simulated equivalent.   
  
 
2. ANALYTICAL MODEL BLOCKED DEFLECTION 

AND BLOCKED FORCE 
 

The analytical model of the segmented unimorph actuator is 
derived based on beam theory accounting for large deflections 
and the induced axial strain in the coating layer caused by lithium 
insertion.  The free deflection of a clamped-free segmented 
unimorph has been developed previously [1] and is summarized 
briefly here.   Stress in the unimorph at the interface of the active 
and passive material layers T1 is: 
 

𝑇1 = 𝐸𝑐𝑡(𝑆1 + 𝑆1
∗)  (1) 

 
where 𝐸𝑐𝑡  is the elastic modulus of the active coating layer and 
𝑆1 is the transverse strain experienced in response to the coating 
layer axial strain upon lithium insertion, S1

*.  This actuation 
strain is assumed to be equal to the product of the normalized 
average lithium concentration 𝐶̂𝐿𝑖 and the linear strain rate β 
(Equation 2). The actuation stress used in the simulation of the 
deflection of the unimorph is found by multiplying the actuation 
strain by the elastic modulus of the coating layer. 
 

𝑆1
∗ = 𝛽𝐶̂𝐿𝑖        (2) 

 
2.1 Blocked force for a uniform beam 
 

The blocked force 𝐹𝑏 is defined as the reaction force at the 
tip of the unimorph when the vertical deflection of the tip is 
constrained to be zero. The blocked force required to prevent tip 
deflection due to actuation can be calculated for the end of any 
segment by simulating a cantilever beam with a constrained tip 
with an equivalent end-moment due to the actuation strain 

caused by Li insertion.  This statically indeterminate beam can 
be solved using Castigliano’s theorem.   

The strain energy due to bending is expressed as 𝑈, where 
𝑀(𝑥) is the internal bending moment and 𝐹𝑏 is the blocked force 
required to prevent deflection at the end of segment 𝑖.  
Castigliano’s theorem states the variation of the strain energy 
with respect to the blocked force is equal to the deflection at the 
tip, which for a blocked beam is zero, as shown in Equation (3a).  
Equation (3b) shows the calculated blocked force for a given 
equivalent end moment where the length of the beam is 𝐿. 

 
𝜕𝑈

𝜕𝐹𝑏
= ∫

𝑀

𝐸𝐼𝑒

𝜕𝑀

𝜕𝐹𝑏

𝐿

0
𝑑𝑥    

=
1

𝐸𝐼
∫ [(𝑀𝑒𝑞 + 𝐹𝑏(𝑥 − 𝐿))(𝑥 − 𝐿)]𝑑𝑥

𝐿

0
= 0  (3a) 

 
𝐹𝑏 =

3𝑀𝑒𝑞

2𝐿
   (3b) 

 
where 𝑀𝑒𝑞  is the product of the curvature 𝜅 and the equivalent 
bending stiffness of the beam 𝐸𝐼 (Equation 3d) found using 
standard analysis of a composite beam found in Equations (3c-
3f): 

 
𝑀𝑒𝑞 = 𝜅𝐸𝐼   (3c) 

 
𝐸𝐼 = 𝐸𝐶𝑡𝐼𝐶𝑡 + 𝐸𝐶𝑢𝐼𝐶𝑢.  (3d) 

 
Here the area moment of inertia of the coating layer is: 
 

𝐼𝐶𝑡 =
1

12
𝑤ℎ𝐶𝑡

3 + whCt (ℎ𝐶𝑢 +
ℎ𝐶𝑡

2
− ℎ)

2

 (3e) 
 

and the area moment of inertia of the copper foil is: 
 

𝐼𝐶𝑢 =
1

12
𝑤ℎ𝐶𝑢

3 + 𝑤ℎ𝐶𝑢 (
ℎ𝐶𝑢

2
− ℎ)

2

  (3f) 
 

 
2.2 Blocked force for a segmented beam 

 

 
 
FIGURE 4: Blocked force for a segmented beam using modified 
equivalent end moments. 

For a segmented unimorph, each segment can have its own 
thickness and SOC and must be considered independently 
(Figure 4). Here we introduce a modified equivalent end moment 
for each 𝑖𝑡ℎ segment, 𝑀𝑒𝑞,𝑖𝑚𝑜𝑑 to find the blocked force of the 
segmented beam. 

An expansion of Castigliano’s theorem can be seen in 
Equations (4a-4d) for a beam of 𝑁𝑠𝑒𝑔  segments.  The summation 
of the integral of the product of each segments’ internal bending 
moment and the derivative of the internal bending moment with 
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respect to blocked force divided by the equivalent stiffness of 
each respective segment is set equal to zero (Equation 7a) and 
the blocked force is solved for. The modified equivalent end 
moment is obtained by subtracting the previous segment’s 
equivalent end moment from the current segment’s equivalent 
end moment. Thus, in Equation (4d), the 𝑁𝑡ℎ segment end 
moment is subtracted from the next segment from the tip (𝑁 −
1)𝑡ℎ.  The analytical expression for blocked force follows in 
Equations (5a-5d). 
 

𝜕𝑈

𝜕𝐹𝑏
= ∑ ∫

𝑀𝑖

𝐸𝐼𝑒𝑖

𝜕𝑀𝑖

𝜕𝐹𝑏

𝑖𝐿/𝑁𝑠𝑒𝑔
(𝑖−1)𝐿

𝑁𝑠𝑒𝑔

𝑑𝑥
𝑁𝑠𝑒𝑔

𝑖=1
= 0  (4a) 

𝑀𝑖 = 𝑀𝑒𝑞𝑖
+ 𝐹𝑏(𝑥 − 𝐿)   (4b) 

𝑀𝑒𝑞,𝑁𝑠𝑒𝑔𝑚𝑜𝑑
= 𝜅𝑁𝑠𝑒𝑔

𝐸𝐼𝑁𝑠𝑒𝑔
= 𝑀𝑒𝑞𝑁𝑠𝑒𝑔

 (4c) 

𝑀𝑒𝑞,𝑁𝑠𝑒𝑔−1𝑚𝑜𝑑 = 𝜅𝑁𝑠𝑒𝑔−1𝐸𝐼𝑁𝑠𝑒𝑔−1 − 𝜅𝑁𝑠𝑒𝑔
𝐸𝐼𝑁𝑠𝑒𝑔

  
= 𝑀𝑒𝑞𝑁𝑠𝑒𝑔−1

− 𝑀𝑒𝑞𝑁𝑠𝑒𝑔
  (4d) 

 
Equations (5a-5d) allow for calculation of the blocked force for 
a beam of 𝑁𝑠𝑒𝑔  segments with spatially varying stiffness and 
curvature where Equation (5a) is the analytical expression for 
calculating the blocked force of a segment beam, and the 
constants are defined in Equations (5b-5d).    

 

𝐹𝑏 =
∑

𝑐𝑖𝜅𝑖𝐿2

𝑎𝑁𝑠𝑒𝑔

𝑁𝑠𝑒𝑔
𝑖=1

∑
𝑏𝑖𝐿3

3𝑁𝑠𝑒𝑔
3 𝐸𝐼𝑖

𝑁𝑠𝑒𝑔
𝑖=1

                   (5a) 

where: 
𝑎𝑖 = 𝑎𝑖−1 + 4𝑖 − 2:  𝑤ℎ𝑒𝑟𝑒 𝑚1 = 1; 

 𝑓𝑜𝑟 𝑖 = 2: 𝑁𝑠𝑒𝑔   (5b) 
𝑏𝑖 = 𝑏𝑖+1 − 6𝑖 + 6𝑁𝑠𝑒𝑔:  𝑤ℎ𝑒𝑟𝑒 𝑏𝑁𝑠𝑒𝑔

= 1; 
𝑓𝑜𝑟 𝑖 = 𝑁𝑠𝑒𝑔 − 1: 1    (5c) 

𝑐𝑖 = 𝑐𝑖+1 + 2: 𝑤ℎ𝑒𝑟𝑒 𝑐𝑁𝑠𝑒𝑔
= 1; 

𝑓𝑜𝑟 𝑖 = 𝑁𝑠𝑒𝑔 − 1: 1   (5d) 
 
2.3 Blocked deflection for a uniform unimorph 
 

In this blocked condition, we are interested in the vertical 
deflection along the length of the beam, called the blocked 
deflection.  The blocked deflection 𝑣(𝑥) for a uniform unimorph 
can be found at any location along the length of a beam 𝑥 using 
Euler-Bernoulli beam theory, where 𝑀𝑒𝑞  is the equivalent end 
moment. The vertical deflection can be found using Equation 
(6): 
 

𝑣(𝑥) =
1

𝐸𝐼
(

𝑀𝑒𝑞𝑥2

2
+ 𝐹𝑏 (

𝑥3

6
−

𝐿𝑥2

2
)) ; 

0 ≤ 𝑥 ≤ 𝐿       (6); 
 
where the blocked force 𝐹𝑏 of a uniform beam is found using 
Equation (3b). 

 

2.4 Blocked deflection for a segmented unimorph 
 
Blocked deflection for a segmented unimorph can be found 

using standard analysis of a non-prismatic beam coupled with 
composite beam analysis, accounting for the interfacial 
conditions between segments. 

One can use the deflection of the first segment (Equation 7a) 
taken and modified from Equation (6) coupled with the slope of 
the first segment (Equation 7b) to find the constants for the 
second segment and repeat until the 𝑁𝑡ℎ segment deflection has 
been solved for. 

 

𝑣1(𝑥) =
1

𝐸𝐼1

(
𝑀𝑒𝑞𝑥2

2
+ 𝐹𝑏 (

𝑥3

6
−

𝐿𝑥2

2
)) 

0 ≤ 𝑥 ≤
𝐿

𝑁𝑆𝑒𝑔
       (7a) 

𝑣1
′ (𝑥) =

1

𝐸𝐼1

(𝑀𝑒𝑞1
𝑥 + 𝐹𝑏 (

𝑥2

2
− 𝐿𝑥)) 

0 ≤ 𝑥 ≤
𝐿

𝑁𝑆𝑒𝑔
       (7b) 

 
The expression for the tip deflection and slope of the first 

segment can then be set equal to the base of the succeeding 
segment due to continuity at the interface.  A further 
2(𝑁𝑠𝑒𝑔 − 1) additional equations must be solved to find the 
constants of the continuity conditions. The continuity equation 
for deflection at the interface is shown in Equation (8a) and the 
continuity equation for the slope is shown in Equation (8b).  
 

1

𝐸𝐼𝑖

(𝑀𝑒𝑞𝑖
𝑥 + 𝐹𝑏 (

𝑥2

2
− 𝐿𝑥)) + 𝐶2,𝑖 

=
1

𝐸𝐼𝑖+1

 (
𝑀𝑒𝑞𝑖+1

𝑥2

2
+ 𝐹𝑏 (

𝑥3

6
−

𝐿𝑥2

2
)) + C2,i+1 

(i − 1)LSeg ≤ x ≤ i ∗ LSeg;  (8a) 
1

𝐸𝐼𝑖

(𝑀𝑒𝑞𝑖
𝑥 + 𝐹𝑏 (

𝑥2

2
− 𝐿𝑥)) + 𝐶1,𝑖 

=
1

𝐸𝐼𝑖+1

(𝑀𝑒𝑞𝑖+1
𝑥 + 𝐹𝑏 (

𝑥2

2
− 𝐿𝑥)) + 𝐶1,𝑖+1 

(𝑖 − 1)𝐿𝑆𝑒𝑔 ≤ 𝑥 ≤ 𝑖 ∗ 𝐿𝑆𝑒𝑔;  (8b) 
 

where: 
 𝑖 = 1: 𝑁𝑆𝑒𝑔 − 1   (8c) 

 
The constants of integration are solved for using these continuity 
equations and the deflection can be plotted for the entire 
unimorph.   
 
2.5 Commercial FEA Simulation 

 
Comsol finite element analysis (FEA) software was used to 

model the segmented unimorph using overlaid shells.  A mesh 
was then created using these shells with sufficiently many 
elements to capture the large deformation.  Quadratic order 
elements are used.  A Newton solver with constant step iteration 
was used with linearly elastic materials to solve for the large, 
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geometrically nonlinear deformation.  The boundary conditions 
used in the free deflection of the uniform unimorph were 
clamped-free and the boundary conditions used in the blocked 
deflection were clamped-roller with the roller implemented by 
prescribing zero vertical displacement at the tip while still 
allowing for nonzero slope and horizontal displacement.   

A mesh convergence study was conducted and it was found 
that for a uniform unimorph of five segments, 30 elements 
appeared to show mesh convergence in terms of the deflection 
along the length.  Thus, for a five-segment beam, each segment 
is simulated using 5 elements across the width and 6 elements 
along the length with a uniform distribution of elements.  

 With regard to the spatially varying SOC case, the mesh of 
the uniform unimorph was still deemed suitably dense; however, 
the spatially varying geometry case required finer meshing 
around the segment interfaces to capture the large deformation.  
For the unimorph of spatially varying geometry, a mesh study 
was conducted and suitable mesh convergence was found for a 
mesh of 6 elements in width and 10 elements in length per 
segment with an element ratio of 10 distributed symmetrically in 
a geometric sequence biased toward the segment interfaces. 
 
3. RESULTS AND DISCUSSION 

 
 The free deflection of a uniform unimorph and the blocked 

deflection and blocked force of a segmented unimorph are 
simulated using FEA.  Previous experimental results [14] are 
used to validate the analytical model and the FEA simulation of 
the free deflection of the uniform unimorph. Blocked deflection 
of a uniform unimorph and a segmented unimorph are simulated 
to predict the actuation properties of the unimorph actuator under 
load conditions and used to validate the analytical model.  The 
analytical solution for the blocked force and the resulting 
blocked deflection of the segmented unimorph with spatially 
varying geometry or SOC is part of our ongoing work. 

 The purpose of collecting model and simulation data for the 
uniform unimorph and comparing it to the experimental data is 
for validation of the simulation and model.  The analytical model 
was used to predict the free deflection for a unimorph of uniform 
thickness and state of charge.  This unimorph has width (𝑤) of 
4mm, unimorph length (𝑙) of 30mm, coating thickness (ℎ𝐶𝑡) of 
6µm, copper foil thickness (ℎ𝐶𝑢) of 34µm, coating elastic 
modulus (𝐸𝐶𝑡) of 1GPa, and copper elastic modulus (𝐸𝐶𝑢) of 
120GPa.  Figure 5 displays data for the analytical model (red), 
experimental data (green) and experimental data fitted for 
uniform curvature taken from previous work of the authors [1, 
14], along with commercial FEA simulation (black) of the 
deflection of the uniform unimorph cantilever.  

The collection of the experimental data for the uniform 
unimorph involved the tracking of individual points along the 
length of the beam using digital image correlation. When 

assuming uniform curvature in the experimental data, the Y  
component of the deflection varies no more than 10% from the 
deflection based on the tracked nonuniform curvature of the 
beam [14].   

The best values of β for the simulation and model were 
determined based on the minimum root mean square error 
(RMSE) compared to the raw experimental data.  The RMSE is 
calculated for the vertical deflection predicted by the model and 
the simulation for various values of β (Table 1). This RMSE is 
taken over 20 data points of raw experimental data and 100 data 
points of the data fitted for uniform curvature.  While this may 
skew the error taken due to increased number of data points, a 
minimum of 100 data points was found to be necessary to 
achieve accurate prediction of the uniform unimorph.   

The highlighted data in Table 1 identify the simulation and 
model cases that best predict the unfitted experimental data, and 
these values are displayed in Figure 5.  It can be seen that all data 
clearly overlaps at SOC =20%.  However, as the SOC increases 
an increase in β is needed to match the experimental data.  This 
could be due to plastic deformation that occurs during charging 
in the experiment.  It is also consistent with the fact that the 
simulation does not require as high a β as does the model because 
it is better suited at capturing the nonlinear behavior of the 
deflecting unimorph.  As to the efficacy of both simulation and 
analytical model prediction, neither has larger RMSE than 1 cm 
compared to the experimental data (fitted and unfitted) for a 
unimorph length of 30 cm.  In fact, at lower states of charge there 
is less than a single mm of error over the unimorph length.   

The commercial FEA simulation for overall deflection 
along the length agrees best with a lower β at lower SOC. As the 
SOC is increased, a larger β is needed to accurately predict the 
unimorph deflection.  When the experimental data is fitted for 
uniform curvature, as has been done in a previous study [14], the 
requisite β to predict the deflection is higher at β=18% for 40% 
and 60% SOC.  A range of β=18-19% has the best prediction 
over the range of SOC with a larger β being necessary for larger 
SOC.  While an assumed uniform β is appropriate for this study, 
as there is no larger RMSE found than 3 cm or 10% over the 
length, it is possible for other cases that β is not uniform but 
charge dependent as both the simulation and model data indicate. 
 
 
 
 

TABLE 1: Mean squared error of simulation and model y deflection compared against experimental data. 
  

Y data (cm) β=15% β=16% β=17% β=18% β=19% β=20% 
Simulation vs. raw experimental data 20%SOC 0.0748 0.1867 0.3138 0.4426 0.5727 0.7047 

40%SOC 0.4368 0.2568 0.3358 0.5778 0.8717 1.1836 
60%SOC 0.8744 0.5624 0.7442 1.2900 1.8945 2.5634 

Model vs. raw experimental data 20%SOC 0.3029 0.1943 0.0933 0.0721 0.1649 0.2743 
40%SOC 1.0435 0.8086 0.5690 0.3506 0.2500 0.3604 
60%SOC 1.8067 1.4204 1.0327 0.6820 0.5598 0.8663 
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FIGURE 5: Free uniform unimorph model, simulation, fitted 
experimental data, and unfitted experimental data: SOC = 
(20,40,60%). 

The Euler-Bernoulli analytical model was used to predict 
the blocked deflection for a unimorph of uniform thickness and 
state of charge.  The unimorph has width (𝑤) 4mm, unimorph 
length (𝑙) 30mm, coating thickness (ℎ𝐶𝑡) of 6µm, copper foil 
thickness (ℎ𝐶𝑢) of 34µm, coating elastic modulus (𝐸𝐶𝑡) of 1GPa, 
and copper elastic modulus (𝐸𝐶𝑢) of 120GPa.  The model 
assumes a linear strain rate β = 0.20.  Figure 6 displays the 
blocked deflection using the Euler-Bernoulli model (red) and 
simulation (black).  The simulations are grouped by state of 
charge with a range of 𝛽 = 16-19% in increments of 1%.  The 
lowest 𝛽 has the lowest deflection of a particular grouping, so it 
can be clearly seen how deflection varies with both 𝛽 and SOC.  
The data from the classical beam theory and the simulation 
appears to agree well as the SOC is increased from 20 to 60% 
meaning the small deflection assumption is valid for the cases 
studied.   

 

 
FIGURE 6: Blocked uniform unimorph model, Simulation 𝛽 = 
(0.16-0.18); SOC = (20,40,60%). 

Figure 7 shows simulation data for deflection along the 
length of the unimorph for spatially varying SOC.   The SOC is 
varied as follows: A maximum SOC is selected, SOCmax, as 
noted in the Figure.  Segment one closest to the root has a 0% 
SOC, segment two has a 25% of SOCmax, segment three has a 
50% of SOCmax, segment four has 75% of SOCmax, and segment 
five at the tip is fully charged at 100% SOCmax.  Each segment 
maintains the same other parameters as the previous examples 
with segment lengths of 6mm.  

 
 
unimorph, simulation (𝛽 = 0.18). 

 Figure 8 displays the FEA simulation of the blocked 
deflection along the length of the beam for spatially varying 
thicknesses at constant state of charge. This five-segment 
unimorph has a length of (𝑙) 30mm, width (w) of 4mm, coating 
thickness (ℎ𝐶𝑡) of 6µm, coating elastic modulus (𝐸𝐶𝑡) of 1GPa, 
and a copper elastic modulus (𝐸𝐶𝑢) of 120GPa.  Segments one 
through five have respective copper foil thicknesses (ℎ𝐶𝑢) of: 34, 
30, 24, 18, and 12µm.  Note that the scale of the deflection has 
been increased to highlight the large deformation of the 
unimorph despite the blocked tip.  This is primarily due to the 
reduced stiffness caused by tapering the unimorph toward the tip.  
It can be observed that the deflection near the tip is so large that 
the simulation predicts that the tip actually rotates past 90 
degrees, which may not be possible in practice. 
 

Increasing SOC 
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FIGURE 8: Blocked spatially varying geometry unimorph 
simulation 𝛽 = 0.18. 

One additional blocked deflection case was considered with 
the FEA simulation, as shown in Figure 9.  This five-segment 
unimorph has the same properties as the cases discussed in 
Figure 8 with two exceptions.  The unimorph has 60% uniform 
SOC and the unimorph tapers from a base thickness of 34µm to 
a tip thickness of 30µm. The figure is plotted using Comsol 
plotting software to display the mesh density.  It can be observed 
that the very large rotation of the tip does not occur in this case, 
which is expected due to the thicker segments and lower SOC.   
 

 
 
FIGURE 9: Blocked spatially varying geometry unimorph 
simulation 𝛽 = 0.18. 

The magnitude of the blocked force, or reaction force when 
the tip is fixed in the vertical direction, is shown in Figure 10 for 
the three cases modeled: uniform, spatially varying SOC, and 
spatially varying geometry.  The simulated blocked force 
assumes β=15% for the uniform case.  There is some slight 
divergence from the model as might be expected since β is 
assumed to be constant at all SOC.  All modeled cases shown 
assume a β=20%. 

It can be seen that the blocked force increases with SOC in 
all cases, as expected, and that the spatially varying SOC case 
exhibits the least blocked force.  The modeled and simulated 

uniform case agree well considering that β is assumed to be 
constant. 
  

 
FIGURE 10: Modeled and simulated blocked force at 
increasing SOC. 
 
4. SUMMARY AND CONCLUSIONS 
 

A lithium ion battery unimorph actuator has the potential to 
achieve large deflection in complex shapes and is capable of 
blocked force on the order of mN.  Segmenting the unimorph has 
the potential to achieve even more complex shapes and 
potentially more blocked force.   

Deflection results from experiments, simulations, and an 
analytical model are compared for a uniform unimorph to 
provide experimental validation on which to build a model and 
subsequent simulation for blocked deflection and blocked force.   

Spatially varying the SOC and the geometry of the unimorph 
allows for improved tailorability and generation of complex 
shapes.  A novel derivation for the blocked force of a segmented 
unimorph has also been derived to potentially supplant its 
uniform analytical equivalent.   

Although the model and simulation are capable of predicting 
excessive curvature, it is expected that the blocked force in these 
cases is not accurate.  As a result, accurate prediction of blocked 
force by both the model and simulation is currently restricted to 
lower SOC and stiffness cases.  A combination of high SOC and 
low stiffness where excessive curvature occurs, results in 
inaccurate prediction of the blocked force.  In a case where no 
curl over occurs due to sufficiently large stiffness, it may be 
possible that the increased curvature caused by the drop in 
stiffness may overcome the decreased blocked force resulting 
from lowered stiffness.  As blocked force is proportional to the 
sum of the product of the curvature and stiffness as seen in 
Equation (5a), a tradeoff may be possible and therefore an 
optimal design may exist at a particular unimorph design. 

With complex shapes achieved and the potential for 
actuation characterized by prediction of blocked deflection and 
blocked force, applications for human-robot interfaces look 
more possible as larger forces appear to be achieved by 
segmenting the unimorph.  Potential applications that are 
interesting for the cases studied include rehabilitation using 
interfaces between robotic exoskeletons and humans.  The ability 
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of a series of these batteries to reshape by redistributing the 
charge would be applicable to maintaining uniform pressure 
between the padding of an exoskeleton and human during 
locomotion.   

Future work will compare the blocked deflection of a 
segmented unimorph predicted with this analytical model with 
the same predicted by commercial FEA simulation. 
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