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Abstract. Central-limit (Brownian) approximations are widely used for the performance
analysis and optimization of queueing networks because of their tractability relative to
the original queueing models. The stationary distributions of the approximations are used
as proxies for those of the queues. The convergence of suitably scaled and centered pro-
cesses provides mathematical support for the use of these Brownian models. As with the
central limit theorem, to establish convergence, one must impose assumptions directly on
the primitives or indirectly on the parameters of a related optimization problem. These
assumptions reflect an interpretation of the underlying parameters—a classification into
so-called heavy-traffic regimes that specify a scaling relationship between the utilization
and the arrival rate. Here, it matters whether a utilization of 90% in a queue with an
arrival rate of A =100 is read as p(1)=09=1— 1/VA or as p(A)=0.9, because different
interpretations lead to different limits and, in turn, to different approximations. However,
from a heuristic point of view, there is an immediate Brownian (i.e., normal) analogue of
the queueing model that is derived directly from the primitives and requires no scaling
interpretation of the parameters. In this model, the drift is that of the original queue, and
the noise term is replaced by a Brownian motion with the same variance. This is intuitive
and appealing as a tool, but it lacks mathematical justification. In this paper, we prove that
for the fundamental M/GI/1 + GI queue, this direct intuitive approach works: the Brow-
nian model is accurate uniformly over a family of patience distributions and universally
in the heavy-traffic regime. The validity of this approach extends to dynamic control in
that the solution of the directly derived diffusion control problem is universally accurate.
To build mathematical support for the accuracy of this model, we introduce a frame-
work built around “queue families” that allows us to treat various patience distributions
simultaneously, and it uncovers the role of a concentration property of the queue.
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1. Introduction

evolution

The Basic Building Block (the M /M /1 Queue). The
fundamental building block of queueing theory is the
M/M/1 queue in which Poisson arrivals with Ex-
ponential servicerequirements are processed by asingle
server. The queue is stable when the arrival rate A is
strictly smaller than the service rate i (p:= A/ <1),in
which case the stationary waiting time, W, has the dis-
tribution P{W > x} = pe #1-P)* with moments

pk!

FIW'l= (w1 - p)F

Viewed as a process, the waiting time in the M /M /1
queue (which equates with the workload) satisfies the

1168

A(t)

W(t)=W(0)+ > s, (t-1(1))

A(t)

Zsi—pt

i=1

~ W)+ pi =100+ )

where {s;,i > 1} represent the customer service re-
quirements and are Exponential random variables
with a mean of 1/u, A(t) is the number of arrivals
by time f, and I(t) is the cumulative idle time of the
server by time t. The compound Poisson input satis-
fies, at each t, the central-limit-theorem approximation
Zf:(i) s; = pt + Z(t), where Z(t) is a zero mean normal
random variable with variance AE[s?]t = 2At/u?. Tt is
thus heuristically natural to replace the input process
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by pt + (V2A/u)B(t), where B = (B(t),t > 0) is a stan-
dard Brownian motion, and propose, as an approxima-
tion, the Brownian queue:

W(t)=W(0)+ pt — (t—1(t)) + gB(t),

where the Brownian idleness I(t) is nonnegative and
increases only when W(t) = 0, keeping the latter posi-
tive (W is a so-called reflected Brownian motion). Direct
derivations of a Brownian analogue of a queueing net-
work have a long history that precedes the rigoriza-
tion through limit theorems; see Harrison and Nguyen
(1993) and Harrison and Williams (1987) for an exposi-
tion and discussion of this approach.

If p <1, the Brownian queue’s stationary distribu-
tion is Exponential with a mean of 2A4/(2u*(1 - p))
= p/(u(1 - p)) so that E[W*] = k!p*/(u(1 - p))¥. The
approximation gap for the kth moment is

[E[W*] - E[WH]|
pk! Pl P ATk
mET LR
kA-p"Y) ot k(k_l) Ark-1
=—— ——F[W™ | < —=—F[s JE[W"],
upk2(1=p) [ ] pF2 [s1E] |
where the inequality follows from p <1 (required for
stability) and (1-p*1)/(1—-p)=1+p+---+pF2<k-1.

The gap is 0 for the first moment (k = 1). For the
second moment (k = 2),

[E[W?] — E[W?]| = 2E[s, JE[W],

and for k > 2,
[E[W*] = E[W¥]| ~ k(k — 1)E[s, JE[W" ], @

as p approaches 1.

In contrast with the M/M /1 queue, the M/GI/1+GI
queue (a single-server queue with general service time
and patience distributions) is analytically intractable,
even in its Markovian instance, the M /M /1+ M queue.
A notable exception is the M/G/1 (infinite patience)
queue, where the Pollaczek-Khinchine formula cap-
tures the first moment of both the queue and its Brow-
nian counterpart. It is this intractability that renders
Brownian approximations valuable.

Here, we prove that the approximation quality in (1)
persists in the generality of the M/GI/1 + GI queue:

[E[W*] —E[W*]| < CE[s, JE[W* ], @)
for a constant C that does not depend on A or y and
depends only in a limited way on the patience distri-
bution. Here, W is derived from the intuitive Brownian
counterpart of the M /GI/1+ GI queue whose heuristic

derivation, as in the case of the M/M/1 queue, does
not require familiarity with limit theory.

With finite patience, the waiting time of a customer
arriving at time ¢ is the minimum of his willingness to
wait (his patience) and the offered waiting time V(¢).
The latter is the sum of the residual service time of
the customer in service and the service requirements
of the customers in the queue who will not abandon
before being served. Because V/(t) captures the time
the arriving customer will have to wait to enter ser-
vice, it is often referred to as the virtual waiting time
at t; it materializes as a customer’s real waiting time
only if the customer’s patience exceeds it. With infinite
patience, a customer’s waiting time equals his virtual
waiting time.

The process (V(t),t > 0) is the key mathematical
object. Denoting by F, the patience distribution and
by F,:=1-F,its complement AFE,(V(t)) is the rate of

effectlve arrlvals at time t (i.e., those that increase the
virtual wait). Each of these patient customers brings, in
expectation, 1/ work. The instantaneous drift is then
AE(V(1)/p—1=pE,(V(£) - 1.

In the M/M/1 case, the variance of the compound
Poisson input is AE[s7]. With abandonment, it seems
appropriate to replace A with the throughput rate
A A . We arrive at the following (reflected) diffusion:

V() =V(0)+ /t pE,(V(s))ds —t
0
+ V(A A wE[S2]B(E) + ().

With infinite patience (F,(x) = 1) and p < 1, the drift
term reduces to —(1— p)t and the diffusion coefficient to
AE[s?], and we recover the Brownian counterpart of the
M/GI/1 queue. The stationary distribution of V(t) can
be expressed in a closed form (see Equation (4)) that
can be used for performance analysis and optimization.

That the diffusion model is tractable is not, however,
enough. We simply constructed this Brownian queue
by keeping the (state-dependent) drift and replacing
the centered input process by a Brownian motion with
the same variance. A question remains as to whether
this model, derived heuristically, can be universally
used as a valid approximation for the original queue.
Our answer is a strong affirmative.

Universality in Regimes. Universality is best under-
stood in contrast to the heavy-traffic limit theory. The
implicit idea of the heavy-traffic theory is to embed a
given queue as an element in a convergent sequence
of queues. The limit of this sequence is subsequently
used as an approximation for the original queue. In this
embedding, interpretation is unavoidable because we
can embed an M/GI/1 + GI queue with p =1.1 and
A =110 in at least two distinct ways: we can either treat
the utilization 1.1 as p(A) = 1+ 1/ VA, in which case
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Figure 1. (Color online) Comparison of the First-Moment Approximations for the M/M /1 + GI Queue
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approximation are inaccurate. Implicit in these approximations is that the patience parameters are small or at least moderate relative to A, y.
This is violated in this example. The universal and hazard-rate approximations both perform well. The hazard-rate approximation performs
slightly better for lower values of p, but its performance deteriorates somewhat for larger values.

the appropriate analysis is the heavy-traffic analysis of
a sequence of critically loaded queues with VA(1 — p)
~ —1, or we can treat the utilization 1.1 as a constant
that does not scale with A, p(A) = 1.1, in which case
the appropriate limit approximation is obtained by
studying a sequence of overloaded queues. These two
embeddings lead to two different limits with different
stationary distributions and hence to different approx-
imations; see Ward and Glynn (2005) and Jennings and
Reed (2012). Figure 1 compares the expected average
delay against four approximations: our proposed uni-
versal approximation, a critical loading approximation
(based on modeling the patience only through its den-
sity at 0), an overloaded-queue approximation, and
a hazard-rate approximation developed (for critically
loaded queues) in Reed and Ward (2008). A detailed
discussion of these approximations and further numer-
ical examples are provided in the online appendix to
this paper.

An informative discussion of the heavy-traffic em-
bedding step appears in Ward and Glynn (2003), who
offer, as a remedy, a common (universal) process ap-
proximation for the M/M/1 + M queue. They prove
that in a process convergence sense, the gap between
the suitably scaled queueing process and their univer-
sal Brownian queue is small across multiple heavy-
traffic regimes. Ward (2012) advances a similar idea in
which a universal diffusion process is proposed for the
GI/M/N + GI queue, with universality relative to the
number of servers, N (single server or many servers),
but restricted to critical loading.

Universality in Concentration. With Exponential pa-
tience
Vaw+ L‘/\/ ,
VA

where @ is the first-order approximation® and J is a
random variable whose parameters (mean and stan-
dard deviation) do not depend on A. In particular, the
concentration of the stationary distribution around @ is
of the order of A7'/2; to obtain meaningful limits, we
must consider the scaling VA(V = @) as is common in
the heavy-traffic literature. But this scaling is restrictive.
Fixing the regime, the concentration can vary with the
patience distribution, and fixing the patience distribu-
tion, the concentration can vary across regimes. If the
patience is a shape-2 Erlang distribution, for exam-
ple, an overloaded queue hasa 1/ VA concentration but
the critically loaded one has V ~ @ + (1/AY3)N (with
@ = 0). For meaningful limits one must use the scaling
AV3(V = @). Our framework, based on queue families,
allows us to group together patience distributions that
differ in their natural concentration and obtain a unified
result that is “blind” to these differences.

Our notion of queue families requires that we
formalize this notion of concentration and ground
it in the queue’s primitives. Loosely speaking, the
concentration is the ratio of the variation and the drift.
In the stable M /GI /1 queue, the driftis —(1—p) and the
variance is 0* = AE[s?]. The ratio between the variance
and the absolute value of the drift is AE[s?]/(1 - p),
which, by the Pollaczek-Khinchine formula, is twice
the expected waiting time. If 1 — p ~ 1/VA, the concen-
tration is 1/VA.
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In the M/GI/1 + GI queue, the drift is state depen-
dent and the concentration is a fixed point—namely,
the value of ¢ at which the ratio of variation to drift
equals c:

MBS/ AD) “
lpF (@ +c¢)-1]
We prove that ¢ ~ E[|V — w|]—namely, that it indeed
captures the concentration of V around its first-order
approximation.

With Exponential patience, the concentration is of
the order of 1/VA (see Example 1) so that it suf-
fices to restrict our attention to the “standard” scal-
ing; see Gurvich et al. (2014). The more elaborate
structure brought about by the general patience distri-
bution motivates (indeed, necessitates) an infrastruc-
ture that can accommodate multiple modes of scaling
simultaneously.

The concentration may depend on all the primitives
of the queue—the arrival rate and service and patience
distributions—and it can vary within a queue fam-
ily. Common to all members in the queue family is
a parameter H that bounds the behavior relative to
the concentration. The patience distribution and other
primitives of the queue vary within the queue fam-
ily, but the bounds apply universally to any primitives
within it.

Analysis. Having set up the framework of queue fam-
ilies, our analysis follows the line of work by Gurvich
et al. (2014), Gurvich (2014), and Braverman and Dai
(2017). Braverman and Dai (2017) provide a road map
based on the following three ingredients of (1) genera-
tor coupling, (2) gradient bounds for the Poisson equa-
tion, and (3) a priori moment bounds. This generator-
comparison methodology, inspired by Stein’s method,
is conceptually related to the closure approximations
proposed in Pender and Engblom (2014), which rely
on the forward equations and Poisson-Charlier poly-
nomials to establish asymptotics-free bounds for birth
and death processes. Stein’s method has also been used
to approximate the invariant measures of diffusions
using Malliavin calculus; see, for example, Kusuoka
and Tudor (2012).

Although we do not seek to contribute here to Stein’s
method, our paper expands its scope. Our analysis
of the M/GI/1 + GI queue is the first application of
this method to nonexponential patience, which in turn,
requires venturing beyond the standard VA diffusion
scaling. Our paper also provides a first extension of
these ideas to optimal dynamic control. Conceptually,
Stein’s method extends to control in an (almost) nat-
ural way in that the Poisson equation used for the
performance analysis is replaced with the Hamilton-
Jacobi-Bellman (HJB) equation. Some care is needed
because (1) a priori, the optimal control might be his-
tory dependent, which means that martingale argu-
ments have to be used instead of the direct generator

coupling; and (2) in the absence of a given control, the
a priori moment bounds in the performance analysis
are replaced by bounds under “good controls.”

Our main contribution, then, is not in the mechanics
of establishing the error bounds. Rather, our purpose is
to visit one of the most fundamental queues and build
an infrastructure that allows us to establish, in an acces-
sible way, the universality and accuracy of a (indeed,
the) simple Brownian queue, thus circumventing the
assumptions about heavy-traffic regimes.

We hope that our paper will have not only mathe-
matical value but also modeling value in that we for-
mally and rigorously expand the toolbox of the mod-
eler who can now follow the natural heuristic without
attributing regime interpretation to the parameters or
being concerned with limits.

Heavy-traffic regimes are important. They provide
an elegant and insightful way to map the underlying
economic parameters to the capacity decisions. A flex-
ible universal approximation does not obviate those
insights but allows for direct (maybe simpler) analysis
and optimization of queues.

Notation. We use the convention that N=1{0,1,2,...}.
Following standard terminology, we denote by |x| the
absolute value of a real number x. For an /-times differ-
entiable function f: R — R, we write f?(-) for its Ith
derivative. For three positive numbers a, b, c, we write
a=bzxctomeana €[b—c,b+c]. For a Markov process
X(+)=(X(t),t > 0) that has a stationary distribution,
we denote by X (i.e., without a time index) a random
variable with this distribution.

2. The Virtual Wait Dynamics

The M/GI/1+ GI queue has Poisson arrivals, general
independent service times, and general independent
patience thresholds.

The arrival process is denoted by A(-) = (A(t),
t > 0). The random variable s; stands for the service
time of the ith customer and is drawn from the distri-
bution F,. The service rate is p =1/E[s;] and p=A/u
is the traffic intensity—that is, the amount of work that
arrives per unit of time.

The queue follows the work-conserving first-come-
first-served (FCFS) policy. An arriving customer’s ser-
vice commences immediately if the server is avail-
able. Otherwise, the customer is queued. Customer i’s
patience threshold is v;. The customer abandons the
queue if his service has not commenced by the time
his patience expired. The patience values {v;,i=1,...}
form a sequence of independent and identically dis-
tributed random variables drawn from the distribu-
tion F,. We denote by f, the density of this distribution
and by h, = f,/F, its hazard rate. If patience is infinite,
we have F, = 1. When the patience distribution has a
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finite mean, we denote the mean by E[v, ]. For stability,
we assume that .
AF,(o0) < .

This is satisfied if p = A/u <1 and patience is infinite
and for any A, u provided that all customers have finite
patience (i.e., if F,(co) = 0). The arrival process, service
times, and patience thresholds are mutually indepen-
dent. We refer to p = (A, F,, F,) as the primitives of the
M/GI/1+ GI queue.

System Dynamics. We study the virtual waiting time
process V(-) =(V(t),t > 0). The quantity V(f) is the
effective workload at time ¢ that includes only the work
of customers who will not abandon the queue before
being served. Thus, V(t) signifies the amount of time
that a virtual customer arriving at f would have to wait
before entering service; that is, customer i, arriving at
time 7;, is “offered” the waiting time

w; =V (t;-).

Upon arrival of the ith customer, the process V()
increases by this customer’s service time s; if v; > w; =
V(t;,—) (the customer is sufficiently patient). The pro-
cess V() decreases at a rate of 1 whenever the server is
working; I(#) is the cumulative idleness of the server by
time t so that  —I(t) is the cumulative processing of the
server by time ¢. The virtual wait/effective workload
(including all work that has arrived and will stay for
service minus the amount of work processed) at time ¢
is then given by

Alt)
V() =V(0)+ D510, = (E=1(1).
i=1
As a process, V (t) satisfies the obvious properties,

V(£)>0, Yt>0,

arld [ 1{V(S)>0} dI(S)=0

I(-) is nondecreasing with I(0) =0,

The last of the above is the work conservation require-
ment: the idleness does not increase when there are
customers in the system and hence there is a strictly
positive virtual wait.

It should be intuitively clear that with FCFS service,
V(-)is a Markov process. With AF,(c0) < p1, the Markov
process has a unique stationary distribution (see Sec-
tion 3.1) and we denote by V a random variable having the
stationary distribution of V(-).

The First-Order (a.k.a. Fluid) Stationary Approxima-
tion. The maximum long-run throughput rate is
bounded by A A u (the number of customers served
cannot exceed the arrival rate or the service rate). The
number of customers who get served (i.e., do not aban-
don) per unit of time when the waiting time is w is

AF,(w), and the amount of work the customers bring
is AE[s,]F,(w) = pF,(w). Heuristically, then, given the
primitives p, the virtual waiting time should center at a
point @, where AF,(@,) = u A A, or, equivalently, where

pFﬂ(LTJp) =1Ap.

The Brownian Queue. With abandonments, not all
customers are counted in the virtual wait. Only cus-
tomers whose patience, v;, is greater than the virtual
wait at their moment of arrival are counted, and their
total service requirement is Zf‘:(i) $i1{y>v(z,-), Where T;
is the time of the ith arrival and V(t;-) is the wait
“offered” to that customer. Because a customer’s vir-
tual waiting time is independent of his service time
and patience threshold, we expect that

A() t
[E[ sil{vi>V(7i)}] = /\[E[Si]/o P{v; > V(s)}tds
i=1
t -
=p [ Eveas,
0

where F, is the patience distribution.

Given a standard Brownian motion B(-) and prim-

itives p, let (V(-),I(+)) be the unique solution to the
following stochastic differential equation (SDE):

V() =V(0)+ / t pE,(V(s))ds —t +oB(t) +1(t),
V(-)>0,

I(+)is nondecreasing and starts at 0,

-/O‘ 1{\A/(s)>0} dj(s) =0,

where ¢ = \//\[E[sf]l:“ﬂ(sz) =+/AE[s?]((1/p) A 1). Because
F, <1, the existence and uniqueness of a strong solu-
tion (V(-),I(-)) follows from theorem 3.1 of Zhang
(1994). The appeal of the diffusion model is the sim-
plicity of its stationary distribution: V(-) has a unique
stationary distribution (which is also a steady-state dis-
tribution) if

o * oF,(u) -1 -
Gz(/ exp(z/ %du) dx) < 0o,
0 0 0

(which holds, in particular, if AF,(c0) < p), in which
case its density is given by

7t(dx) = Gexp(Z/X % du) dx,
0
x€[0,00). (4

We denote by V a random _variable following this distribu-
tion. We will prove that V provides a universally accu-
rate approximation to V.
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3. Performance Analysis

We first introduce a notion of universality that accom-
modates variation in the patience distribution and the
traffic intensity p.

Definition 1 (Queue Families). Fix H > 1. Denote by
@(H) the family of primitives p = (A, F,, F,) such that

(i) exponential service-time moments: E[exp(Oy(s;/
E[s,]))] < H, for some 6, >0,
and there exists a constant ¢, > E[s;]/H such that, as a
pair, (p, c,) satisfy

(ii) finite load: p € [H™',H], p > 1-H/(Ac,);

(iii) subpolynomial patience density:® F, is differen-
tiable with density f, that satisfies

)

forally € [@, +c,H, ),

]/—ZTJ,,

H
fo(y) < /\_Cl%(1+ )

(iv) inward drift:

_ 1
-1< - -1_—
pF,(y)—-1 H i, ,

and

_ 1
Y -1_—
pF,(y)-1>H Acp ,

forally € [0, @, —c,H],

where the second part is satisfied trivially if w, <c,H.

We refer to the constant ¢, as the concentration under
the primitives p. Given H > 1, the set @(H) includes
the M/M/1 queue with p € [H™,1) (@, =0 and ¢, =
1/(A(1 - p))) and is, hence, nonempty. The constants
in Theorem 1 are uniform over p € @(H) and depend
only on H and not on Cp,s which is allowed to vary
with p within @(H). Moreover, while p is restricted to
[H™', H], the arrival rate is not by itself restricted and can
grow without bounds within @(H) as long as p grows
with it.

Example 1. Consider the M/GI/1 + M queue with pa-
tience rate 6 = 1. Letting ¢, =1/ VA, we have for 1 €
{_1/ 1}/

pE (@, +1/VA) =1 = pe @+ /VD _q,

From the definition of w,, we have pﬁa(a)p) = pe~ =

p A1 so that using eV ~1-n/VA,

- pAl
F,(@,+n/VA)-1~(pAl)-1-n"—.
p p T p n i
Condition (iv) is then satisfied for any H > 1. If p <1,
w, =0, and we only need the first part of (iv) to hold.
Furthermore, for any H > 1, H > f,(0) = 1, so condi-
tion (iii) is satisfied. O

Table 1 lists patience distributions together with the
concentration ¢, and the value of H for which p € @(H).
Reading from H backwards, the table defines, given H,
which primitives are included in @(H). These do not
apply to cases in which the mean patience is short
relative to the mean service time; see Remark 3. Evi-
dently, given H > 1, there are multiple instances of
each of these distributions (and of the service time dis-
tribution and arrival rates A) that fit within the fam-
ily @(H). When restricting attention to the Exponential
distribution, this table shows that, for example, tak-
ing H=2, any M/G/1 + M queue with a light-tailed
service time distribution and p € [1/2,2] is a member
of @(2). Thus, @(2) covers simultaneously underloaded,
critically loaded, and overloaded queues.

We prove that v provides an accurate approximation
for V across multiple performance metrics and uni-
versally (i.e., for all queues in @(H)). Because a queue
family covers a range of values for p, this strong notion
of universality implies, in particular, universality in
heavy-traffic regimes.

Theorem 1 (Virtual Waiting Time). Given H > 0and k €N,
there exists a constant C}q i > 0 such that

E[(V - @,)] - E[(V - @,)"]
= +Cpy s, JE[|V - @, ]

- ic;llk%[E[u‘/ —@, [, pea(H).

Remark 1 (Time Units). The constant H is indepen-
dent of the time unit (seconds, minutes, or hours)
and, consequently, so are the constants Cj, , in Theo-
rem 1. Given p € @(H), changing the time units (using,
say, minutes instead of seconds) leaves p € @(H) with
the same H. Table 1 illustrates this insensitivity. The
concentration ¢, and the constant @, do have to be
changed (dividing by 60, for example, if we move from
seconds to minutes).

The virtual waiting time does obviously depend on
the time unit, but the theorem’s statement can be made
unit free by multiplying both sides by A* to get

E[A*(V —@,) ] -E[AN(V —@,)"]
=+CL pE[N |V @, [, peaH). o

Remark 2 (When Is the Concentration 1/VA?). It is stan-
dard in deriving heavy-traffic limits to consider the
scaling VA(V — w,); see Ward and Glynn (2005),
Jennings and Reed (2012). This scaling is not always
suitable: Table 1 shows, for example, that with p =1
and F,(x)=x" for x € [0,1] and m > 1, the concentration
is ¢, = A7/ 50 that VAV - w,) would “explode”
with A. To place sequences of queues within our queue-
families framework, Lemma EC.2 in the e-companion
specifies sufficient conditions for 1/vA concentration.
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Table 1. Parameters c, and H for a Family of Patience Distributions

F, o H
Infinite (M/GI /1) = 1/(A1-p)), p<1 1/p
pslicAc,, p>lic,Ac,
% %
E[v E[v
exp(0) [AT] [}LT] max(2,p,1/p)
HyperExp(0, ¢)* [E[)TT] [E[;JT] max(6,2/6, p,1/p)
[E[U ]k 1/(k+1) [E[v ] 2k+1(p v k)k"HEl“(k)
Gamma(k, G)b ( /\1 ) W max Tlo, u
Uniform|[0, a] \/g \/g max(p,1/p)
_(xAa)f ak e a k+1 .
s T A= C A
1 1 294(p v a)l'(a + B)
B c P [
eta(a, f) Al/(a+1) [A(p — 1)l Die max( (p ADT(a)T(B) min(L,1)” u

*Here, E[v,] = 3K, /0, with Z&, ¢, = 1. In the table, 0 := max, 0,E[v,] and 0 := min, O,E[v,]. These two constants do not

depend on the time units.

PHere, k > 1 is the shape parameter and 6 is the rate parameter. We use the superscript 1 for the special case 6 = k (i.e., with
the density f!(x) := (k¥ /T'(k))x*"1e7**). Letting F! and h! be the corresponding distribution and hazard-rate functions, we define
U :=sup,, f1(x)(1/F}(1) - 1)~*V/* and Hf = max(e*, 1/L), where L =inf,, h}(x) > 0.

“Here, @, > 1 are the shape parameters; f,(x) = (T'(a + B)/(T(a)T(B)))x*"*(1 — x)’'. Letting h, be the hazard-rate function, we
define U :=sup_, f,(x)(1/F,(1/2) = 1)"*V/* < 0o, L =inf,., , h,(x) > 0.

Exponential, Uniform, and Hyperexponential patience
distributions satisfy these conditions in alignment with
Table 1.

The connection to heavy-traffic sequences is explored
formally in Section EC.3 of the e-companion. O

Let W follow the stationary distribution of the wait-
ing time, which is the minimum of the stationary vir-
tual waiting time, V, and the patience threshold v. The
diffusion analogue W is similarly represented as the
minimum of V and v:

W=ovAYV, Wzv/\V,

where v is drawn from the patience distribution F, and
is independent of V (respectively of V). The following
proposition generalizes our introductory observation
(2) about the M /M /1 queue.

Proposition 1 (Waiting Time). Given H and k € N, there
exists a constant C%I . > 0 such that

E[W*] —E[W*] = £C}, E[s, JE[W* ]
cz.
= ip%’kﬂf[wk—l], p € Q(H).

For k = 1, E[W*'] = 1 so the gap is bounded by
C%L E[s,] and is of the order of a single service time. Next,
let Q be arandom variable following the stationary dis-
tribution of the queue length process. Little’s law and
Proposition 1 yield the following corollary.

Corollary 1 (Queue Length). Given H, there exists a con-
stant C, | > 0 such that

E[Q] = AE[W]=AE[W]+pC,, p €@(H).

Remark 3 (The Case of Light Traffic or Short Patience).
For light-traffic queues or those with very impatient
customers the resultembedded in (2) is noninformative.

Consider the case of k =1 (first moment). If p <1,
the stationary virtual waiting time in the M /GI/1+ GI
queue is bounded from above by the stationary work-
load in the corresponding (infinite patience) M/GI/1
queue. For the latter, by the Pollaczek-Khinchine
formula,

p 1+ CoVZ(sl)
-p 2 4

E[W]=Els]5

where CoV?(s,) is the service time distribution’s
squared coefficient of variation. If p is small, the wait-
ing time is of the order of E[s, ]. Thus, both the expected
waiting time and the approximation error in Proposi-
tion 1 are of the order of p/A =E[s,].

A similar conclusion applies to the case in which
customers’ patience is of the order of (or smaller than)
the service time. Because a customer’s waiting time is
shorter than his patience E[W] < E[v,], if E[v,] is of the
order of the mean service time, then so is the expected
waiting time. Again, both the expected waiting time
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and the approximation error are of the order of E[s,];
see numerical examples in Section 3.3. O

Finally, let Ab be the long-run (and hence stationary)
fraction of customers who abandon the queue.

Proposition 2 (Abandonment). Given H, there exists a
constant C,; > 0 such that

.
P (1 - l)
VEV @]\ p

Cy

+E[F,(V)-F,(w,)] + m,

Ab=E[F, (V)]
p € @(H).

The approximation has two terms: ((A — u)/A)* =
(1-(1/p))" is the first-order (fluid) proxy for the frac-
tion of abandoning customers and the second term
is the second-order (Brownian) correction. In the case
where E[|V — wp|2] is proportional to 1/A, the error
reduces to Cy; /A for a redefined constant C;. Focusing
onasingle regime rather than seeking universal bounds
may lead to tighter bounds. Bassamboo and Randhawa
(2010) show, for example, that for overloaded queues
the fluid approximation already achieves an accuracy
of 1/A.

Thus far, our approximation errors were stated in
terms of moments of the diffusion rather than in terms
of the concentration c,. The next result shows that they
are one and the same: namely, that c,, satisfying condi-
tions (ii)—(iv) in the definition of queue families, is (up
to a multiplicative constant) the diffusion’s concentra-
tion E[|V — w,|].

Lemma 1 (Concentration Bounds) Given H > 0 and
k €N, there exist constants Cl‘fl y H y CI‘Q" o and cIV{"/k >0
(depending only on H and k) such that

(i) Forthe M/GI/1+ GI queue,

E[IV - @,[1 < Cy k¢,

Hk p’
E[WK] < Cgk(wp + c’;), p € G(H).

(if) For the Brownian queue,
E[|V-w,] € [efixh, Chicyl,  pe@H),
and

E[WK] e [ch(w +ck) cw k(w +c")] p €@Q(H).

A lower bound on E[|V —@|*] can also be established;
see Remark 4. The following is now a corollary of The-
orem 1, Proposition 1, Corollary 1, and Proposition 2.

Corollary 2. Given H > 0 and k € N, there exist Cy ; >0
(in particular, Cy , > 0) and Cgb > 0 such that, for all
p € G(H),

IE[(V - ZDp)k] -

. C
E[W*] - E[WF] = i—;'k (@ + k),

4
Ab

H
2.2
/\cp

E[Q]=AE[W]+Cy,, Ab=E[F, (V)]

Example 2 (The M/GI/1 Queue Revisited). The M/GI/1
queue (no abandonments) is stable if and only if p <1,
in which case @, =0. Condition (ii) reduces to p—1>
—-H/(Ac,), and condition (iv) to p-1<-H™/(Ac,).
Thus, with H > 1/p, p = (A, F,,F,) € @H) with ¢, =
1/(A(1 - p)). By Theorem 1 and Corollary 2, there exist
constants C; 1, C; ,, C; 5 such that

G Cyr
A FTA-p
= £Cy5(1- pE[WH]. O

E[WX] - E[W"] = +——E[W" ] =

3.1. What Makes This Work

Lemma 2. The process V() is an ergodic strong Markov
process. For a differentiable function f such that E[| f(x +5;)
— f(x)|] <coforall x >0, let

Af(x) == fO(x) + AF,(0)E[f (x +51) = f(x)]

(A is the generator of V(-)). Let ¥V be such a continu-
ously differentiable function with WW(0) =0: (i) If ¥ >0
and sup,, A¥(x) < oo, then E[AW(V)] > 0, where V
has the stationary distribution of V(-). (ii) If, instead,
E[[W(V)|] < oo and E[|W(V + s,) — W(V)|*] < oo (where
s, is F,(-)-distributed and is independent of V'), then
E[AP(V)] =

Taking a differentiable function W and using Taylor’s
expansion heuristically to replace

E[W(x +5,)]  W(x) + WO (x)E[s,] + 1 WP (x)E[s3],

we have, after some manipulations (recall that u =
1/E[s,]), that

AW (x) ~ (pF,(x) - )W (x) + FAE[sT TP (x)F, (x)
= (pF,(x) - 1)WV(x) + JAE[s7 ¥ (x)F,(@,)
+ LAE[sT W (x)(F, (x) = F,(@,))
= AY(x) + JAE[s]]WP (x)(F,(x) - F,(@,)), (5)
where A is the generator of the diffusion; that is,

AW (x) = (pF,(x) =)W (x) + (AE[s3]F () /2) WP (x).
Take

o= fk(ﬁ)

_ (- @,)" ~E[(V - @,)"]
(E[IV —@, 1)

, (6)
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(notice that E[ f,(V)] = 0) and suppose that W is a solu-
tion to AV = —f,. This is the so-called Poisson equa-
tion for the diffusion. It is this “self-scaling” definition
of the performance function fi—normalized by the
expectation E[|V — W, |]—that allows for the universality
in concentration.

Taking expectations on both sides of (5) with respect
to the stationary distribution of V, we have

E[AV(V)]

~E[AY(V)] + 3 AE[sTJE[WP(V)(F,(V) - F,(@,))]

= —E[ (V)] + 3 AE[STIE[WP (V)(F, (V) = F,(@,))],
which, if E[A¥(V)] =0, gives

ELf(V)] ~ 3 AE[sT]E[¥"

Proving that the term on the right is small would
imply that E[ f,(V)] = 0 and, because f;(x) = ((x - a")p)" -
E[(V - sz)k])/([E[W —,|])", that V approximates V in
the sense of

D(V)E(V) = E,(@,))]-

E(V ~ @, ~ E[(7 - @,)] + o((E[IV - , ).

It is clear that this argument, building on a second-
order Taylor expansion, requires suitable bounds for
the second and third derivatives of W. The proof
of Theorem 1 that follows formalizes this heuristic
argument.

3.2. Proof of Theorem 1 and Propositions 1 and 2
Proof of Theorem 1. Fix k € N and let f, and f, be as
in (6). Note that with C, := max(max(C}, ,, 1)/(cy; 1), k),
for all x,

Co(1+|x|*) and
Co(1+ |x[HrH+2), @)

| ()]
|0 (x)]

Lemma 3. There is a unique solution (up to an additive
constant) to the initial value problem:

<
<

AY(x)=~-f(x), ¥Y0)=0, x>0.
Denote the unique solution by V.. For any H > 0, there is a

positive constant Cy (which also depends on H and k), such
that for p € G(H),
H+k+1)

x—wp

o
— X1+ —
E[|V-wm,l] E[|V -w,]]

x—wp

v (x)<C,C xAx(1+A—
W, (x0)|<CoCy HIV =]

2H+k+2
[W(x)| < CyCy X )

The proof of Lemma 3 is presented in the e-compan-
ion. For notational simplicity, we omit the subscript k

in W, and denote by W a solution to AV =
W(0) = 0. Using Taylor’s expansion,

W(x +5,) =W(x) + WV (x)s; + 1WP (x)s7
+ %\I](:;)(x + Ax(sl))sf/

where A, (s;) is some number between 0 and s, that can
depend on x. Simple manipulations give

AY(x) = (pF,(x) - )WV (x) + %Sﬂ‘y(z)(x)ﬁa(x)
+ %)\[E[sf‘l’@(x + A, (s))]F,(x)
3 AE[s7] o
= (pFa(x) - 1)‘y(1)(x) + TW(Z)(x)Fa(wp)

+ e, (- @, )
+ %A[E[sfw% + A (s))E, (%)
~ /\[E[S%] 2) = T (7

= AW (@) + — S WO @)(F, () - (@)

N %A[E[sfw% + A (s))E, ().

In turn,

AE[s?

| AW (x) - AW (x)| < x| W (x) | x|F, (x) = F,(@,)]

+ZESIVO A, ()IIE, D). ®)

Next, we plug in the derivative bounds from
Lemma 3 and the properties of the queue family @(H).
Notice that

_r
E[[V -]

X+z— w

[I w,|]

WO (x+2)| <CyCy x

(1+

2H+k+2
) < 22H+k+2 xC C\y

ZD 2H+k+2

( ‘[E[IV

2H+k+2)

+‘—
B[V,

The last inequality follows from the fact |x + y|" <
(Ix]+1yD" < 2"(|x|" +|y|") for all x,y € R and n =
1,2,....

Furthermore, F,(-) <
@(H) (and Lemma 1),

1, and per the definition of

o)~ Fo0)] €
P
(‘ X -1, ‘ X -, H“)
X = + =
E[lV -, [E[|V —m,|]
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for some constant C. Thus,

| AW (x) — AV (x)|

pz[E[(ysl)z] Co X Cy é(l
2 AEV -]

x—sz

E[|V-w,I]

2H+k+2)

x — ,(/Dp H+k+1)
+ " —

E[IV -w,|]
H+1) p322H+k+2COC\P

e
6AE[V — @, ]

N

x—wp

E[IV —,[]
[E[(MS )2H+k+5] ) (9)
(yE[lV |])2H+k+2

Recall that for p € @(H), p < H, 1/(uc,) < H and
that, by the exponential moment requirement, E[(us,)']
< By, for some constant By, ;. Because W satisfies the
inequalities in Lemma 3, it is bounded by a polynomial
function. By Lemma 1, the assumptions of Lemma 2(ii)
then hold, and hence E[AW(V)] = 0. This gives us

X ([E[(ysl)3](1 +

E[f(V)]l = [E[AY(V)]| = [E[AY(V)] - E[AV(V)]|

. 1
<E[|AVY(V)-AY(V)|]] = ———

[[A¥(V) Wl T
(1+ =

V-1 2H+k+2
E[lV —w,]] )}
1 _

X CoCy, X E £
<——C 10
AE[|V —a@,] a0

for some constants Cy , and Cy, ,, where the last in-
equality follows from Lemma 1, which provides a
lower bound on E[|V — @ »|] and an upper bound on

E[|V - wp|2H*"+z] as a funct1on of c,. Plugging this
bound back in the definition of f;, we have

[E[(V —@,) ] —E[(V —@,)"]|
o 1 1)k-1 o k=1
< H,k([E[IV Awpl]) <C}“[E[IV Awpl ],

for an appropriate constant Cj, ,, where the last in-
equality follows from the upper bound on E[|V - w,|]

and the lower bound on E[|V — sz|k‘1] in Lemma 1.
This concludes the proof. O

Before proceeding, note that the only properties of f;
that we use in the proof of Equation (10) are that
E[ fk(V)] =0, that f, is differentiable, and that it is sub-
polynomial in the sense of (7). The same bounds thus
apply to any function g that has these properties.

Remark 4. For any k > 2, the function
o |k 7 _ |k
|x—@,|" ~F[|V -,["]
(ELV =@, ]

fe(x) =

satisfies the required conditions of f;. As a conse-
quence, Theorem 1 can be expanded to include the
absolute-value statement

E[IV —@,[]-E[IV - @,["]
PE

=+Ch 7 EIV-@,"], k>2,pea(H).
By Lemma 1 E[|V — w,|] € [ch ’;,Cl‘gk p] and we
then have
E[V =0, [F] 3 ¢!, ck — Ak it
H,k A p

for a suitable constant Cy; ;. Considering p € @(H) with
Ac, > (1 +€)Cy i /cfy, for some € > 0, it follows that
[|V | 1> (e/(1 Y e))CH ‘ p The existence of such
€ is guaranteed if Ac, grows with A, as when ¢, = A7
for any 0 € (0,1).
A lower bound for k =1 can also be derived but re-
quires special treatment to circumvent the nondifferen-
tiability of the absolute value function. O

Proof of Proposition 1. Define

1 k
HIV—a, e A

1 kg _ETA
[E[lV—szl]x[E[Wkl](/o ku*"F,(u)du —E[W*]|,

—E[W*])

Si(x) =

and g;(x) = gx(w, +xE[|V -@ »11). Because W=ovAV,
we have [E[gk(V)] 0. Let {’k(x) gk(x) 21(0). Then
(%) = 6,(x) — E[6,((V - @,)/E[|V = @,]])]. Moreover,
g and £, are differentiable w1th
KE[|V —,]]
13 (=160 ()] = —————T
E[|V -, [] X E[W*1]
X F (@, +xE[|V —w,|D|(@, + xE[|V -
KE[|V —@
< _[I wpl]A ]
E[IV —@,|]1x (@' + E[|V =@, []DF1)
X (@, + | x[E[|V =@, )
SkC (1 +|x) 1 <2k C (1 + x|k,

@, )]

where C, is chosen based on the inequalities in
Lemma 1 and depends only on k and H.

From |(,(x)] < 25'%kC (1 + |x[*"Y)|x| < 2FkC;
(Jx] + |x|*) and Lemma 1, we get a constant C, such that

|gk(x)|<C0(l+|x|k) and |gk)(x)| C0(1+|x|2H+k+2),

The function g, thus satisfies the conditions of
Lemma 3, and followmg the steps leading to (10), we
get |E[g,(V)]] < k/()\[E[|V w,|]) for an appropri-
ately chosen constant cs ik We thus have

E[W*] ~E[W*] = E[g(V)IE[IV - @, [JE[W*"]

+C E[W']. o
A
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Proof of Proposition 2. Recall that the process (V(t),
t > 0) is an ergodic strong Markov process. We denote
by my its stationary distribution and write E, [-] for
the expectation operation when V(0) is drawn from 7.
Note that

B [ ] AEXE[F,(V)]
Ab=1lim = _—
t—o0 [ETEV [A(t)] t—o0 At

=E[F,(V)]

:Fa(wp)—i_[E[Fa(V)_Fa(wp)] (11)

_ (1_%)++E[Fﬂ<v>-a<@>]
= (1 - %) +E[F (V)= F,(@,)] + Cy(AE[|V =@, |]) .

The second equality uses the following lemma.

Lemma 4. Suppose that V(0) is drawn from 1,,. Then we
have the identity:

A(t)
E,., [Z_; 1{vi<wi}} = At xE[F,(V)].

The last equality in (11) uses AF,(w,)=A - AF, (w,)=
A—=AAu and the following argument. Let g(x) =
§((x —@,)/E[|V —@,[]), where &(x):={(x)—E[£((V -
ZD,;)/EE“V —w,|])] with £(x) = AE[|V —@,|](F,(@, +
xE[|V =w,[])-F,(@,)). Then, by the dgfinition of @(H)
and Lemma 1, there exists a constant C,,

180 () =16M ()| = | AE[V =@, 1) £, (@, + XE[|V =, |])]
<Co(1+]x]™),

and from |£(x)| < Co(1 + |x|")|x| = Cy(]x| + |x|"*") and
Lemma 1, we get a constant C,, such that

|§(x)|<CO(1+|x|H”)I and |g(1)(x)|<co(1+|x|3H+3).

Hence, g satisfies the condition of Lemma 3 with
k=H +1, so that, following the steps leading to (10),
we have E[g(V)] = +Cy /(AE[|V — @,[]), and we con-
clude that

Elg(V)]
AE[[V —@,]
T

(AE[V —w,])?

E[F,(V)~F,(V)]=

O

3.3. Numerical Examples

The M/M/1 + GI queue (i.e., with exponential ser-
vice time) is useful for numerical comparisons. Closed-
form expressions for the stationary virtual waiting are
presented in Zeltyn and Mandelbaum (2005), allow-
ing us to circumvent the complexities of steady-state
simulation.

The first set of figures comprises numerical manifes-
tations of the predictions in Theorem 1 and Proposi-
tion 1. Figure 2 reports the results for two power-law
patience distributions. We plot the moments of the sta-
tionary virtual waiting time and the gap scaled by 1/A.
The distribution F,(x) = x has a positive density at 0
while F,(x) = x? does not. In the context of asymptotic
convergence, the process limits require different treat-
ment. The case F,(x) = x* requires hazard-rate scaling;
otherwise, the patience distribution disappears in the
limit; see further discussion in Section EC.3. As pre-
dicted in Theorem 1, the scaled gap is bounded by a
constant.

In addition to further showcasing the precision of
the approximation, Figure 3 highlights a point that
the mathematical results do not capture. On the left-
hand side of the figure, we plot the second moment
of the waiting time E[W?], its approximation E[W?],
and the approximation gap relative to the first moment
approximation E[W] divided by A. Proposition 1 states

Figure 2. M/M/1+ GI with p=1and F,(x) = x on [0, 1] (Left) and F,(x) = x> on [0, 1] (Right)
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Figure 3. M/M/1+ GI with Patience F,(x) = (1 —e ) + 2(1 - ¢™*/?) (Hyperexponential): p =1.2 and A (Hence Also u) Varied

(Left) and u =100 Fixed and p (Hence Also A) Varied (Right)
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that this scaled error is bounded. In these numerical
instances, it not only is bounded but decreases as A
grows large. The right-hand side shows that the scaled
error is the greatest in the critically loaded case of p ~ 1
and decreases as the queue becomes overloaded. Thus,
when focusing only on overloaded queues, it may be
possible to obtain tighter bounds (as in Bassamboo and
Randhawa 2010).

We repeat this exercise for a different patience distri-
bution in Figure 4. This is an instance where the con-
centration ¢, changes with p. It is of the order of A7/
for p =1 but of the order of A7'/2 for p = 1.2 so that,
in particular, process limit theorems for p =1 would
require different scaling than those for p > 1. The uni-
versal approximation is indifferent to this fact, as are
the bounds.

Exact value and approximations for E[W?]
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Figures 5 and 6 consider settings that violate our
assumptions to explore the necessity (or lack thereof)
of our sufficient conditions. In Figure 5, we consider the
patience distribution F, = Gamma(0.5,2), which vio-
lates our requirement (iii) in the definition of queue
families. The precision in Figure 5 is nevertheless
impressive. The performance of the M /D /1+ GI queue
is computed via simulation (the 95% confidence inter-
vals are smaller than 0.0008).

In Figure 6, we revisit our requirement that the ser-
vice times have light tails (the patience distribution is
the one used in Figure 3). Our proofs are based on a
second-order Taylor expansion and the bounds, con-
sequently, depend on the third moment of the service
time being finite. In fact, we also use higher moments.
An exponentially decaying tail is not necessary for

Figure 4. M/M/1+ GI with Patience F,(x) =1— e —2xe™>* (Erlang): p =1.2 and A (Hence Also 1) Varied (Left) and u = 100

Fixed and p (Hence Also A) Varied (Right)
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Figure 5. M/D/1+ GI with p=1(w, =0) and F, = Gamma(0.5,2)
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these moments to be finite, but it does guarantee that
[E[s’l‘] is not too large relative to (E[s;])*. With subex-
ponential distribution, the third moment can be very
large, making our bounds loose. Figure 6 reports the
simulation results for the M/GI/1+ GI queue with (i) a
Pareto service time (where E[s}] = (a—1)*/(a* (@ —k))-
(E[s;])*, where « is the shape parameter). With k =3
and a =5, E[s7] = 1.28(E[s,])°, the third moment is not
too large and the performance is rather good. With
a =3, the third moment is infinite. While the approxi-
mation error is not too large for the range of A values
we tried, it does grow slowly with A; and (ii) a Log-
Normal service time where E[sf] = (1 + CoV?)*nk-1)/2.
(E[s,])¥, where CoV =2 is the coefficient of variation of
the distribution. With k = 3, E[s]] = 125(E[s, ])*. For the
Log-Normal distribution, E[s¥]/(E[s,]) grows expo-
nentially with k, and the approximation is relatively
inaccurate.

Underloaded Queues. In Remark 3 we pointed out that
the mathematical bounds are of the order of the quan-
tity we are trying to approximate. It is a priori plausible
that the bounds are not tight and that the actual error
is small. Figure 7 rules this out: strictly underloaded
queues (as in p = 0.5) fall outside of the scope of the
Brownian models.

4. Static Optimization

We expect the universal accuracy of the Brownian
approximation to translate to nearly optimal prescrip-
tions. Randhawa (2016) shows in a many-server context

how an O(1) performance-approximation gap trans-
lates to smaller o(1) errors in staffing prescriptions.

We revisit a standard capacity optimization problem
for the M /GI/1+ GI queue. We fix a patience distribu-
tion F, with a bounded density f,(-) < U (in particular,
F,(c0) =0) and let the service time be given by F'(x) =
F,(ux), where F,(-) is fixed. With these restrictions,
variation within a queue family @(H) reduces to varia-
tion of A and u, so we can write (A, u) € @(H) instead
ofpe@H)and c,=c, .

Given strictly positive constants C,, C,;, C,,, we con-
sider the total cost

G(u):=C,u+ CyAAb, + C,AE[W, ],
and seek to solve

U, =argmin€(u). 12)

u>AE
Here, Ab,, is the stationary fraction of customers who
abandon the queue before being served, and W, fol-
lows the stationary distribution of the waiting time
process, given that the service rate is u. £ €(0,1) is a
prespecified lower bound on the fraction of customers
who must be served.* The optimizer y, balances the
cost of capacity and the combined costs of abandon-
ment and delay.

Let V, be a random variable following the station-
ary distribution of the virtual waiting time process
when the service rate is . Then, as in (11), Ab, =
E[F,(V,)] and

() = C, it + Co AE[F,(V,)] + C, AE[W,].
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Figure 6. Subexponential Service Times: Pareto Service Time Distribution with Shape Parameter a =5 (Top Left) and a =3
(Infinite Third Moment) (Top Right); Log-Normal Service Time (Bottom)
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Notes. The figure displays the expected waiting time, approximation, and error as a function of the arrival rate A. The arrival rate A is varied,

and the mean service time is set to 1/A so that the utilization is kept at 1. Each replication runs for 100,000 time units. Per arrival rate A in the

tested range, we choose the number of replications so that, in expectation, 1.6E+9 arrivals are generated. In the collection of statistics, the first

10% of the arrivals are left out as a warm-up period.

Figure 7. An Underloaded Queue with p =0.5 and F,(x) =1—¢ % —2xe > (Erlang) (Left) and F,(x) = (1 —e ™) + 2(1 - ¢™/?)
(Hyperexponential) (Right)
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The intuitive Brownian approximation for the total
cost is

G(p) = C,u+ Cy AE[F,(V,)] + C, AE[W,],

where Vy follows the stationary distribution of the
Brownian queue with the service rate p as in (4), and
W, =0v AV, is the Brownian approximation for the
waiting time. The Brownian analogue of the optimiza-
tion problem (12) is then

ft. = argmin{€(u)}. (13)

u=AE
For H > 1, we define G(H) as an M-stable queue family
if, for A such that (A, 1) € @(H),
{(A, p): p e [AE, AL+ My 1)1} € a(H).

Stability here is relative to changes in the service rate.
The queue family is stable if it contains a sufficiently
wide range of service-rate values.

Proposition 3. Assume @(H) is an M-stable family for
M > H,:=(C, - Cf U+ C,, - Cf1)/C, (with C}},, Clf

H,1/
as in Lemma 1). Then, with C4?, Cy, 1 as in Corollary 2,
1 1
0<6(f1,)—€(u,) < +——]|C,,CA +2C,Cy 1,
(IJ) ([Ll) (ACA/P* AC%/’[L*) ab~H w>~H,1

forall As.t. (A, A)e@(H).

Consequently, if c, 5, ¢y, ., 21/ VA, the error is bounded by
the constant 2(C,,Ci + C,,Cpy 1)

The stability requirement guarantees that both the
optimal service rate u, and the approximate rate fi,
are within the queue family so that we can build on
our performance analysis bounds in Theorem 1 and its
corollaries. The Uniform, Exponential, and Hyperex-
ponential distributions with E[v;] =1 are instances of
patience distributions for which the queue family @(H)
is M-stable for any M smaller than H. These three
distributions have, in fact, c, =cy (the concentration
depends only on the arrival rate) for u < A(1+Mc, ,).
For example, the Exponential case (A, p) with p <
A+MVA is in the queue family with c,=c, = 1/VA.
In the case of the Gamma distribution, by contrast, the
concentration does depend on the service rate (through
its dependence on p; see Table 1). For all of these dis-
tributions ¢, , > 1/ VA, as required in the second part
of the proposition.

Figure 8 is a numerical illustration for Hyperexpo-
nential patience, Exponential service time, and A = 100.
To bring out multiple utilization levels, we consider
a range of values for C,, = C,, (normalizing the cost
so that C, = 1). We compare the cost at the optimal
solution €(y,) (found through search) against the cost
under the approximate solution €({1,). At the lowest
end of the cost spectrum (C,, = C,, = 1), the queue oper-
ates optimally with a utilization of about 1.2 and can
be interpreted as overloaded,” whereas when the coef-
ficient increases to 2.3, the optimal utilization is below
1, which we interpret as critical loading. Notably, the

Figure 8. (Color online) Service-Rate Optimization: A = 100, Exponential Service Time, and Hyperexponential Patience:

F(x)=%(1-e*)+2(1-eP?)
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percentage error in the resulting cost, (€(f1,) —€(u.))/
6(u.), is smaller than the percentage error in staffing
g, — .1/ .. This is because the objective function is rel-
atively flat around the optimal solution.

Proof. We claim that if A is such that (A, A) € @(H),
then both

p, <A(1+Mc, ;) and [, <A(1+Mc, ,), (14)

where M is as in the M-stability requirement. This
guarantees that both (A, u,) and (A, fi,) are in @(H).
Propositions 1 and 2 then guarantee that for either u €

{p., 1.},

() — €(w)l
< CyAE[IF,(V,) = F, (V)T + C, AIE[W, ]~ E[W, ]|

1
Ab
<C,,Cy e +CyChy-
Chu

By definition, €(f1,)— €(u.) > 0and €(f1,)—€(w.) <O0.
In sum,

<e(p,) - e(f.) +6u) - e(u.)

)CubCﬁb +2C,Cy 4
A A, i

oL, 1
S Ae? Ac?
< Z(Cubcﬁb + CwCH,l)/

where the last inequality follows from our assumption
thatc, , >1/VA.

To prove (14) we use the two assumptions (A, 1) €
@(H) (and has @, =0) and F,(x) = [; f,(y)dy < Ux and
apply Lemma 1 to get

G(A) = C,A + CuAE[F,(V,)] + C,AE[W,]
<C,A+AC,Cf  Uc, ,+AC,Cl 1y a
= Cr/\(]. + H()CA[/\),

where H,, is as in the statement of the theorem. For any
service rate u > A + AMc, ,,

€(u) > C,u>C,A(1+Hyc, ;) > €(A),

so it must be the case that i, < A(1+Mc, ,). The proof
for u, is identical given the corresponding bounds in
Lemmal 0O

5. Dynamic Optimization

In this section, we turn to ergodic control. We consider
a specific and well-studied control problem, that of ser-
vice speed/rate control for the M/G/1 queue, similar
to that considered in Doshi (1978) and Mitchell (1973).

Our objective is to show how the same approach,
via an intuitive Brownian control problem, yields con-
trols that are universally nearly optimal. As a by-
product, we illustrate how the generator view (a la
Stein’s method) is extended to dynamic control.

In this section, the service requirement is drawn
from a (fixed) distribution F,(-) and the service rate
is controllable. The distribution F.(-) has a mean
of 1, standard deviation of o, and finite exponential
moments.

This is different from our model in the previous sec-
tions, where the server works at a rate of 1 and arrival
i brings an amount of work s; whose mean is a param-
eter of the model (and can vary within the queue fam-
ily). Here, following the model of Doshi (1978), the rate
itself is the choice.

The base service rate equals A and can be sped up
using a multiplier 1+ 0, where 0 > 0. The actual service
rate is then

w(0)=A(1+0).

The speed-up is A6, and the larger it is, the costlier it
is but the smaller the workload.

We consider the sum of a long-run-average polyno-
mial holding cost and a quadratic control cost:

t

57,(6) = limsup <E, [ [ oo+ aoeras),
t—o00 0

where m >2 and V (6, t) is the workload at time t under

the control 6. The workload control problem is given by

Vi _ 14
F¥ou= inf 77,(0), (15)

where ©,, is the family of nonanticipative controls in
the standard sense—that is, with respect to the history

F, =of{V(6,s),/ O(u)du;s < t}.
0

Because the service time distribution is fixed and
arrivals are Poisson, the pair p = (A,h) captures the
moving pieces in the model, and given H, we let
GH):={(A,h): A>H',0<h<H}.

Within an asymptotic framework one can “push”
the queue into different asymptotic regimes by spec-
ifying how h scales with A. Consider the case m =2.
In optimality, the stationary workload is proportional
to h"/*VA (see Lemma 6). If hy — 7 >0 as A — oo,
the optimally controlled stationary workload is of the
order of VA as in the so-called conventional heavy-
traffic regime. If, instead, /1, — 0 as A > 0, the opti-
mal workload is orders of magnitude larger. With any
bounded sequence h* < H, the utilization approaches
100% as A grows. The way in which the utilization
approaches 100% is the regime.

Our result is universal and obviates the need to inter-
pret whether A =100 and & = 0.1 should be read as
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h* =1/ (and, hence, converging to 0) or as a con-
stant 0.1. Our recommended control and the perfor-
mance guarantee are given in terms of / itself rather
than an interpretation thereof.

When positive, the drift of V under a speed-up con-
trol Bis A —A(1+6)=—-A0. Given an admissible control
(6(t), £ >0),

V(Q,t)zV(O)—A/f 6(s)ds
+/t/\(1+6(s))]l{V(9,s)=0} ds + M(t),

where M(t) is a zero mean martingale that does
not depend on the control with predictable quadratic
variation

(M(1)) = A(1+ o)t

It is heuristically intuitive to consider the reflected dif-
fusion,

Y(0,H)=Y(0)-A /t 0(s)ds +VA(1+ 02)B(t)
0
dL(s),
+/\/0(1+6(s)) L(s)
L(t):/ 1{Y(6,s) =0} ds,
0

as a proxy for V. The diffusion-optimal control is deter-
mined from the Brownian counterpart of the workload
control problem (15),

Z;/:jn = inf limsup 1[Ex[/t[h(f/(e,s))’”+()\6(s))2] ds|,
0

00y 4o t

(16)

where ©y is the family of processes (6(s),s > 0) that
are nonnegative and progressively measurable with
respect to the self-filtration of the Brownian motion,
and 6 takes values in [0,).° A more complicated
version of this diffusion control problem, where a
finite buffer is also optimized, appears in Ghosh and
Weerasinghe (2007).

As is typical for diffusion control problems, we es-
tablish a verification lemma that stipulates the optimal-
ity of a stationary control derived from the following
HJB equation:

min {43 W(x)+(Az) +hx"} =y,
w(0)=v1(0)=0 and WP (x)>0, forallx>0, (17)

where, given a constant z > 0, f‘lj is the operator

N N
AA__AZE-FEA(l-’-G )ﬁ (18)

Given x >0, p € @(H), and a pair (¥, ,,(-), 7, ) soOlv-
ing (17), the optimal z is trivially given by

. Wil (x)
fp,m(x) = ZA ’ (19)

so that the HJB equation translates to

IA+a)WE, ()=, () P+hx"=y, .,

v, 0)=v,0)=0 and W, (x)>0,
forall x>0. (20)

Using the speed-up &, ,,(x), derived from the diffu-

p,m
sion control problem, results in the workload dynamics

Vi(t)=V(0)-A /(: Sy, m(V'(s))ds
+ /Ot AL+Z, (V' () L{V"(s) =0} ds + M(2),
and the control follows the trajectory
6; ()=, (V*(1)). (21)

Theorem 2 (Universality of the Diffusion Solution for the
Workload Problem). Fix m > 2. The HJB equation has a
unique solution. The stationary control ép o and the corre-
sponding workload process V(é;,m, ) = V() yield a cost
that is nearly optimal for the workload control problem: there
exists a constant Cy, ,,, such that, for all p € G(H),

(0= 5300 % CrBu(A, T,
= 5;‘9/:;1 + CH,mBm(A/ h)j;/::n_ll
where Bm(/\/ h) = (hm—lA—Z(m—l))1/((m+1)(m+2)).
In the special case where m =2, sz(é;,z) = 327/2 the
diffusion-based stationary control is optimal (not just nearly
optimal) for the workload control problem.

Notably, the optimality gap for the problem with
holding cost hV (0, t)" is given in terms of the opti-
mal cost in the problem with the lower-order holding
cost hV(0,t)"!. This parallels Theorem 1 where the
approximation gap for the kth moment of the virtual
waiting time is given in terms of the (k — 1)st moment.
For m > 2, because

Bm(/\/ I’l) < (H Vv 1)/\—2(m—1)/((n1+1)(m+2)),
the optimality gap is negligible relative to the optimal

cost of the lower-order problem. For m =2, the opti-
mality gap is 0.
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Optimality Gaps and Generator Comparisons. The H]B
equation is a Ricatti-type equation. Ricatti equations
are first-order, nonlinear ODEs and are relatively well
studied in the literature. Here, the added element is the
requirement on the positivity of the solution W(x).
The challenge for us is that we are not interested merely
in solvability (existence and uniqueness) but, rather, in
the derivative bounds. Having set up the ingredients,
the following informal discussion parallels the one in
Section 3.1, with the main exception being the replace-
ment of the Poisson equation with the HJB equation.
We spell these steps out to make these connections
clear.

The workload control problem for the Markov pro-
cess (not the diffusion) is studied by Doshi (1978).
Restricting attention to the Markov controls, Doshi
proves that if there exists a nonnegative service rate
(&(x), x 0), a function ¥, and a nonnegative con-
stant y?, such that

(i) for all admissible (according to Doshi’s defini-
tion) (C(t, x);t,x = 0)

tliszO, x>0, and

(ii) the constant ¥ together with the function W(-)

satisfies the Bellman equation

yP = m>igl{()\z)2 +hx" = A1+ 2)¥D(x)
+AE[W(x +51) - W(x)]}, x>0

and &(x) is the minimizer:

D= (AE(x))? + ha™ — A1+ &(x)) WV (x)
+AE[W(x +5,) -W(x)], x>0,

then &(x) is the workload optimal control (and p(x) =
A(1+&(x)) is the optimal service rate); see theorem 4 in
Doshi (1978). In operator notation, the Bellman equa-
tion translates to

= ing{(/\z)2 +hx" + AW (x)},
where A7 is the operator
AW (x)=-A(1+2)WV (x) + AE[W(x+5,)-W(x)]. (22)

By Taylor’s expansion,

W(x+s5;) = W(x) =W (x)s; + 392 (x)s7 +O(WD; 1),

|f(z)|. AsE[s,] =1and E[s?] =

1 ) X,y = supze[x,x+y]
+07,

AE[W(x +5,) —W(x)] = AWV (x) + l\y<2>(x))\(1 +0?)
+ AOE[[P; , s7]).

Defining e(x) = E[|W®)]; | s7], we have

AZW(x) = =A(1+2)P D (x) + AE[W(x +5;) — W(x)]
=-1zWD(x) + 1A(1 + 0?) WP (x) + 10(e(x)).

We conclude that the Bellman equation should satisfy

yP ~ izgg{(Az)z +ha™ + AW(x) + A0(e(x))}, x>0,
where A% is defined as for the diffusion in (18). In
turn, the Bellman equation for the jump process is
“almost” the HJB equation for a diffusion control prob-
lem. If AO(e(x)) is suitably bounded, then the solutions
to the jump-process’s Bellman equation and the HJB
equation should be suitably close. This connection is at
the core of the argument.

We do not rely directly on Doshi’s analysis of the
Markov policies in our proofs. We allow for a larger
family of policies, and within this larger family, we
show the universal near optimality of the stationary
policy that arises from the diffusion’s HJB equation.

As our outline above suggests, the first ingredient
in the proof of Theorem 2 is an analysis of the HJB
equation and the third derivative of its solution.

For a family of positive pairs {(a, ,,, b,, ), p € @(H)},
we writea,, ,, ~b, ,, if there exists a constant C > 1 such

p,m p,m
thatC"'<a, /b, , < C forall p € G(H).

Lemma 5 (HJB and the Diffusion Control Properties). Fix
m > 2. A unique solution (W ) to the H]B equation
exists for each p € G(H).

p,mrs yp,m

Properties:
(i) The third derivative satisfies, for all p € G(H),

xh /) \™ 1
_Cgl,mBm(/\rh)(m) Vp,m- 1S \p(3)n1(x)

1/ m+2) \ 32
H mBm()L h)( (W) )yp,m—ll

where CY, , depends only on H and m.
(ii) The constant y,, ,, satisfies y,, , ~
(iii) For m =2, (¥, 5(x),7,,,) = (Vhx%, A(1 + 6*)Vh),

3 —

so that \I/;,Z =0.

Verification: y,, ,, is the optimal long run average cost in

the diffusion control problem (i.e., jp w = Vp,m), and it is
optimal to use the stationary control (19).

AZ"I/(m+2)I’l2/("’+2).

Lemma 6 below is the control analogue of the con-
centration bounds in Lemma 1. It provides order-of-
magnitude estimates that are subsequently useful for
the optimality-gap bounds. Equation (24) captures how
the optimally controlled workload scales with k and A.

Lemma 6 (A Priori Bounds). Fix m > 2. Then



Huang and Gurvich: Universal Bounds and Controls for the Single-Server Queue

1186

Operations Research, 2018, vol. 66, no. 4, pp. 1168-1188, ©2018 INFORMS

In particular, T ~ Vpom ~ AZM D[22 - Moreover,
V(Qp s 1) is positive recurrent, and for any k > 2,

E[V(8;,,,,0)"] = lim 1E, [ / V(8 ,,5)" ds]

~ AR/ maDpokf(me2) s ) (24)

Recall the operators A3 and A3 as defined in (22)
and (18).

Lemma 7. Fix p = (A, h) and m > 2, and let (W, ..., ¥, )
be the solution to the H|B equation. For any admissible con-
trol O,

E, / t[h(V(Q,s))’” +(A0(s))*]ds
0
V() =B, (V(O, D)+ 7, mt + A, (0,8),

x,t >0,

where

A3 (0,0 =E, [ / AW, (V(0,9)

AW, L (V(0,9)ds|, x,t>0.

F6=0;,,
ity. In the special case where m =2, A}
control 0.

then the inequality is replaced with an equal-

»m(6,1) =0 for any

In proving the near optimality of the diffusion-based
control 67 , we must show that no other control can
do much better To that end, we require performance
bounds for all “reasonable” control policies and not
only for the optimal control (which we do not explicitly
identify or assume to exist) or the diffusion-optimal
control.

A family of admissible policies (6, ,,,p € G(H)) is
said to be order optimal if

IO )~ F

Lemma 8. Fix m and let (\V, ., 7, ) be the (family of)
solutions to the HJB equation. Then, there exist constants
Chy s Ch  stich that, for any order optimal family of policies

{6,,,.,p €AH)},

Cll'-l mB (/\ h)jp m-1/
x>0,pe@H),

1
hmmf tA; w(Op s ) 2

and under the stationary policy O

p,m’

Hm m(A h)jpm 1/
x>0, pe@H).

1
llm sup t [7 ﬂl(ep m’ )

t—o0

If an optimal control O; , exists for each p € G(H),
then the family (0, ,,, p € @(H)) is order optimal, in
which case Lemma 8 immediately implies bounds for
the optimal controls. If optimal controls do not exist for
some p, then we must work, instead, with the infimum
over the admissible controls.

Proof of Theorem 2. From Lemma 7 it follows that,
under any admissible control 0,

E, / Th(V(0,5)" + (A0()2] ds

Wy () =E[W,, (V(O, )]+ Y, ut + A ,(6,1),
x,t>0.

Dividing by t and using Lemma 8, we have for any
order optimal family of policies

limsup —[E [/ [R(V(O,5))" +(A0(s))*] ds]

t—o0

Z Vpm C}i mBm(A h)jp m-1°

Recall that j;,/m =infyee, 5Xm(9) < 00, where finite-
ness follows from Lemma 6. For each p, let ép €0y be
such that

pon(0,) < Fy5 +5Ch ,Bu(A, )7

p,m=1°

By Lemma 6, j;’:ﬂ ~ j;f:jﬂ
(h//\z)z/((erl)(erZ))Vp,m < H6/ ((m+1)(m+2)) y . and
B, (A, h) < H3m=D/(ms)m+2) e have that 0, pe
@(H)) is an order optimal family and, in turn, that

~ Vp m:* Because yp,m—l <

v = Ty n(0,) =

pm =

1CH wBu(A, h)jpm )
>yp,m_3cllq m m(/\ h)jp m—1°

Using the second parts of Lemmas 7 and 8 for 6 = Gp r
we have

Fym<F ,m(é* )

—hmsup —E [ [h(V(Qp m,S))m‘F(/\@p V() ]ds

t—o0

<V, m+c%-1mB AWFy,

p,m=1°

Thus, the error bounds hold with Cy, =3Cp .
+C2, .. Finally, it follows from Lemma 6 that ¥,

i p,m-1
NZ p,;—l o

6. Concluding Remarks

Brownian approximations, like the central limit theo-
rem that they generalize to queueing processes, pro-
vide significant tractability. They are typically sup-
ported by limit theorems, and these, in turn, are based
on assumptions reflecting an implicit interpretation of
a concrete system at hand.
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Figure 9. (Color online) Time-Dependent Performance for M/M/1 with pu=1: p =0.9 (Top Left) and p =1 (Top Right), Scaled
Absolute Gaps (Bottom) (for p = 0.9, the Sign of the Gap Changes at About t =110.)
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Notes. In the left and right panels, the black dashed lines correspond to the approximations, and the red solid lines show the exact values.
As t grows, the scaled gap will eventually reach that of the stationary distributions.

In this paper, we establish the universality of the
most intuitive Brownian approximation of the funda-
mental M/GI/1 + GI queue. We cover performance
analysis as well as static and dynamic optimization.

From a toolbox perspective, this paper supports the
often applied heuristic of using Brownian approxima-
tions for modeling. From a technical perspective, our
analysis presents a generalizable framework based on
queue families that can be used, we hope, to study uni-
versality for extensions to our base model (to multiple
servers, multiple customer classes, etc.).

Our analysis of stationary performance leaves open
the question of whether Brownian approximations
are universally accurate for transient (time-dependent)
performance. A simple experiment suggests that the
answer may be positive. For the M/M/1 queue,
we computed the time-dependent first and second
moments (starting empty) using known expressions
for the time-dependent distribution (Asmussen 2003,
theorem II1.8.5). We also computed these moments for

the corresponding Brownian queue (Harrison 1985,
section 3.4). The results are plotted in Figure 9.

Evidently, the M/M/1 and its natural Brownian
queue are very close for both values of p. The bot-
tom graph suggests that Proposition 1 extends to
time-dependent performance—that is, that E[W?(t)] —
E[W?2(t)] = £(Cy ,/A)E[W(t)] for suitable constant Cy ,.
That the gap is exactly E[W(t)] for p =1 is expected
because, for a null recurrent or transient M/M/1, the
boundary is rarely hit and the reflection has little effect.
The second moments of the free Brownian motion and
the free Poisson process are the same. The scaled gap
varies with time for p = 0.9 but remains bounded.

The motivation for using Brownian approximations
is their relative tractability. Time-dependent expecta-
tions for the M /GI /1 + GI are difficult to compute, but
for the Brownian queue, these expectations can be com-
puted by solving suitable PDEs. To bound the approx-
imation error, the theory of strong approximations pro-
vides a framework for sample path comparisons, but it
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may be too heavy a hammer. It seems that, to compare
marginal moments (rather than sample path gaps),
tighter bounds can be obtained by using an approach
that builds on the underlying Markovian structure of
the queue. Our small experiment above suggests that
it may be possible to expand universality and the
bounds that accompany it, which express the error in
the kth-moment approximation in terms of the (k —1)st
moment, from ¢ =co to t € [0, ).
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Endnotes

T The exception is the very special case in which u equals the patience
rate 0.

2The virtual waiting time, in the first order, stabilizes at the point at
which input = output: AF, (@) = p A A.

3This condition can be relaxed to Ac,|F (@, +yc,) = F (@, + xc,)| <
H(+(|x] v |lyD™)|y — x| without affecting the results that follow.

4 Although this constraint is not necessary, it simplifies the exposition
of what follows. The service rate of 0 can be ruled out by imposing,
instead, a condition on the cost parameters.

5Since the Hyperexponential distribution has a decreasing hazard
rate, it indeed follows from Bassamboo and Randhawa (2010) that for
sufficiently low abandonment costs, the optimal choice is to overload
the queue.

6To be precise, we should write j;’:‘m(x) to capture the possible
dependence on the initial condition. The independence of x does
follow, as is standard, from the verification arguments in Lemma 5.
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