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Abstract. Central-limit (Brownian) approximations are widely used for the performance
analysis and optimization of queueing networks because of their tractability relative to
the original queueingmodels. The stationary distributions of the approximations are used
as proxies for those of the queues. The convergence of suitably scaled and centered pro-
cesses provides mathematical support for the use of these Brownian models. As with the
central limit theorem, to establish convergence, one must impose assumptions directly on
the primitives or indirectly on the parameters of a related optimization problem. These
assumptions reflect an interpretation of the underlying parameters—a classification into
so-called heavy-traffic regimes that specify a scaling relationship between the utilization
and the arrival rate. Here, it matters whether a utilization of 90% in a queue with an
arrival rate of λ � 100 is read as ρ(λ) � 0.9 � 1− 1/

√
λ or as ρ(λ) ≡ 0.9, because different

interpretations lead to different limits and, in turn, to different approximations. However,
from a heuristic point of view, there is an immediate Brownian (i.e., normal) analogue of
the queueing model that is derived directly from the primitives and requires no scaling
interpretation of the parameters. In this model, the drift is that of the original queue, and
the noise term is replaced by a Brownian motion with the same variance. This is intuitive
and appealing as a tool, but it lacks mathematical justification. In this paper, we prove that
for the fundamental M/GI/1+ GI queue, this direct intuitive approach works: the Brow-
nian model is accurate uniformly over a family of patience distributions and universally
in the heavy-traffic regime. The validity of this approach extends to dynamic control in
that the solution of the directly derived diffusion control problem is universally accurate.
To build mathematical support for the accuracy of this model, we introduce a frame-
work built around “queue families” that allows us to treat various patience distributions
simultaneously, and it uncovers the role of a concentration property of the queue.
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1. Introduction
The Basic Building Block (the M/M/1 Queue). The
fundamental building block of queueing theory is the
M/M/1 queue in which Poisson arrivals with Ex-
ponential servicerequirementsareprocessedbyasingle
server. The queue is stable when the arrival rate λ is
strictly smaller than the service rate µ (ρ :� λ/µ < 1), in
which case the stationary waiting time, W , has the dis-
tribution � {W > x} � ρe−µ(1−ρ)x , withmoments

Ɛ[W k]�
ρk!

(µ(1− ρ))k .

Viewed as a process, the waiting time in the M/M/1
queue (which equates with the workload) satisfies the

evolution

W(t)� W(0)+
A(t)∑
i�1

si − (t − I(t))

� W(0)+ ρt − (t − I(t))+
(A(t)∑

i�1
si − ρt

)
,

where {si , i > 1} represent the customer service re-
quirements and are Exponential random variables
with a mean of 1/µ, A(t) is the number of arrivals
by time t, and I(t) is the cumulative idle time of the
server by time t. The compound Poisson input satis-
fies, at each t, the central-limit-theorem approximation∑A(t)

i�1 si ≈ ρt +Z(t), where Z(t) is a zero mean normal
random variable with variance λƐ[s2

1]t � 2λt/µ2. It is
thus heuristically natural to replace the input process
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by ρt + (
√

2λ/µ)B(t), where B � (B(t), t > 0) is a stan-
dard Brownian motion, and propose, as an approxima-
tion, the Brownian queue:

Ŵ(t)� W(0)+ ρt − (t − Î(t))+
√

2λ
µ

B(t),

where the Brownian idleness Î(t) is nonnegative and
increases only when Ŵ(t) � 0, keeping the latter posi-
tive (Ŵ is a so-called reflected Brownian motion). Direct
derivations of a Brownian analogue of a queueing net-
work have a long history that precedes the rigoriza-
tion through limit theorems; see Harrison and Nguyen
(1993) and Harrison andWilliams (1987) for an exposi-
tion and discussion of this approach.
If ρ < 1, the Brownian queue’s stationary distribu-

tion is Exponential with a mean of 2λ/(2µ2(1 − ρ))
� ρ/(µ(1 − ρ)) so that Ɛ[Ŵ k] � k!ρk/(µ(1 − ρ))k . The
approximation gap for the kth moment is

|Ɛ[W k] − Ɛ[Ŵ k]|

�
ρk!

(µ(1− ρ))k (1− ρ
k−1)�

1− ρk−1

ρk−1 Ɛ[Ŵ k]

�
k(1− ρk−1)
µρk−2(1− ρ)Ɛ[Ŵ

k−1] 6 k(k − 1)
ρk−2 Ɛ[s1]Ɛ[Ŵ k−1],

where the inequality follows from ρ < 1 (required for
stability) and (1−ρk−1)/(1−ρ)� 1+ρ+ · · ·+ρk−2 6 k−1.
The gap is 0 for the first moment (k � 1). For the

second moment (k � 2),

|Ɛ[Ŵ2] − Ɛ[W2]| � 2Ɛ[s1]Ɛ[Ŵ],

and for k > 2,

|Ɛ[W k] − Ɛ[Ŵ k]| ≈ k(k − 1)Ɛ[s1]Ɛ[Ŵ k−1], (1)

as ρ approaches 1.
In contrast with the M/M/1 queue, the M/GI/1+GI

queue (a single-server queue with general service time
and patience distributions) is analytically intractable,
even in its Markovian instance, the M/M/1+M queue.1
A notable exception is the M/G/1 (infinite patience)
queue, where the Pollaczek–Khinchine formula cap-
tures the first moment of both the queue and its Brow-
nian counterpart. It is this intractability that renders
Brownian approximations valuable.
Here, we prove that the approximation quality in (1)

persists in the generality of the M/GI/1+GI queue:

|Ɛ[W k] − Ɛ[Ŵ k]| 6 CƐ[s1]Ɛ[Ŵ k−1], (2)

for a constant C that does not depend on λ or µ and
depends only in a limited way on the patience distri-
bution. Here, Ŵ is derived from the intuitive Brownian
counterpart of the M/GI/1+GI queue whose heuristic

derivation, as in the case of the M/M/1 queue, does
not require familiarity with limit theory.

With finite patience, the waiting time of a customer
arriving at time t is the minimum of his willingness to
wait (his patience) and the offered waiting time V(t).
The latter is the sum of the residual service time of
the customer in service and the service requirements
of the customers in the queue who will not abandon
before being served. Because V(t) captures the time
the arriving customer will have to wait to enter ser-
vice, it is often referred to as the virtual waiting time
at t; it materializes as a customer’s real waiting time
only if the customer’s patience exceeds it. With infinite
patience, a customer’s waiting time equals his virtual
waiting time.

The process (V(t), t > 0) is the key mathematical
object. Denoting by Fa the patience distribution and
by F̄a :� 1− Fa its complement, λF̄a(V(t)) is the rate of
“effective” arrivals at time t (i.e., those that increase the
virtual wait). Each of these patient customers brings, in
expectation, 1/µ work. The instantaneous drift is then
λF̄a(V(t))/µ− 1 � ρF̄a(V(t)) − 1.
In the M/M/1 case, the variance of the compound

Poisson input is λƐ[s2
1]. With abandonment, it seems

appropriate to replace λ with the throughput rate
λ∧ µ. We arrive at the following (reflected) diffusion:

V̂(t)� V(0)+
∫ t

0
ρF̄a(V̂(s)) ds − t

+

√
(λ∧ µ)Ɛ[s2

1]B(t)+ Î(t).

With infinite patience (F̄a(x) ≡ 1) and ρ < 1, the drift
term reduces to−(1−ρ)t and the diffusion coefficient to
λƐ[s2

1], andwe recover the Brownian counterpart of the
M/GI/1 queue. The stationary distribution of V̂(t) can
be expressed in a closed form (see Equation (4)) that
can be used for performance analysis and optimization.

That the diffusion model is tractable is not, however,
enough. We simply constructed this Brownian queue
by keeping the (state-dependent) drift and replacing
the centered input process by a Brownian motion with
the same variance. A question remains as to whether
this model, derived heuristically, can be universally
used as a valid approximation for the original queue.
Our answer is a strong affirmative.

Universality in Regimes. Universality is best under-
stood in contrast to the heavy-traffic limit theory. The
implicit idea of the heavy-traffic theory is to embed a
given queue as an element in a convergent sequence
of queues. The limit of this sequence is subsequently
used as an approximation for the original queue. In this
embedding, interpretation is unavoidable because we
can embed an M/GI/1 + GI queue with ρ � 1.1 and
λ � 110 in at least two distinct ways: we can either treat
the utilization 1.1 as ρ(λ) ≈ 1 + 1/

√
λ, in which case
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Figure 1. (Color online) Comparison of the First-Moment Approximations for the M/M/1+GI Queue
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Notes. Left: µ�100, patience Fa(x)�1− e−0.2x−0.1xe−0.2x (Erlang), and varying ρ. The actual performance is plotted as a square and the universal
as an ×. That the × is inside the square captures the universal (in ρ) precision of the approximation. This is the only approximation that shows
consistently good performance. Right: µ � 100 and Fa(x)� 0.9(1− e−x)+ 0.1(1− e−200x) (Hyperexponential). The critical loading and overloaded
approximation are inaccurate. Implicit in these approximations is that the patience parameters are small or at least moderate relative to λ, µ.
This is violated in this example. The universal and hazard-rate approximations both perform well. The hazard-rate approximation performs
slightly better for lower values of ρ, but its performance deteriorates somewhat for larger values.

the appropriate analysis is the heavy-traffic analysis of
a sequence of critically loaded queues with

√
λ(1 − ρ)

≈ −1, or we can treat the utilization 1.1 as a constant
that does not scale with λ, ρ(λ) ≡ 1.1, in which case
the appropriate limit approximation is obtained by
studying a sequence of overloaded queues. These two
embeddings lead to two different limits with different
stationary distributions and hence to different approx-
imations; see Ward and Glynn (2005) and Jennings and
Reed (2012). Figure 1 compares the expected average
delay against four approximations: our proposed uni-
versal approximation, a critical loading approximation
(based on modeling the patience only through its den-
sity at 0), an overloaded-queue approximation, and
a hazard-rate approximation developed (for critically
loaded queues) in Reed and Ward (2008). A detailed
discussion of these approximations and further numer-
ical examples are provided in the online appendix to
this paper.
An informative discussion of the heavy-traffic em-

bedding step appears in Ward and Glynn (2003), who
offer, as a remedy, a common (universal) process ap-
proximation for the M/M/1 + M queue. They prove
that in a process convergence sense, the gap between
the suitably scaled queueing process and their univer-
sal Brownian queue is small across multiple heavy-
traffic regimes. Ward (2012) advances a similar idea in
which a universal diffusion process is proposed for the
GI/M/N + GI queue, with universality relative to the
number of servers, N (single server or many servers),
but restricted to critical loading.

Universality in Concentration. With Exponential pa-
tience

V ≈ w̄ +
1√
λ
N ,

where w̄ is the first-order approximation2 and N is a
random variable whose parameters (mean and stan-
dard deviation) do not depend on λ. In particular, the
concentration of the stationary distribution around w̄ is
of the order of λ−1/2; to obtain meaningful limits, we
must consider the scaling

√
λ(V − w̄) as is common in

the heavy-traffic literature. But this scaling is restrictive.
Fixing the regime, the concentration can vary with the
patience distribution, and fixing the patience distribu-
tion, the concentration can vary across regimes. If the
patience is a shape-2 Erlang distribution, for exam-
ple, an overloaded queue has a 1/

√
λ concentration but

the critically loaded one has V ≈ w̄ + (1/λ1/3)N (with
w̄ � 0). For meaningful limits one must use the scaling
λ1/3(V − w̄). Our framework, based on queue families,
allows us to group together patience distributions that
differ in their natural concentration andobtain aunified
result that is “blind” to these differences.

Our notion of queue families requires that we
formalize this notion of concentration and ground
it in the queue’s primitives. Loosely speaking, the
concentration is the ratio of the variation and the drift.
In the stable M/GI/1 queue, the drift is−(1−ρ) and the
variance is σ2 � λƐ[s2

1]. The ratio between the variance
and the absolute value of the drift is λƐ[s2

1]/(1 − ρ),
which, by the Pollaczek–Khinchine formula, is twice
the expected waiting time. If 1− ρ ≈ 1/

√
λ, the concen-

tration is 1/
√
λ.
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In the M/GI/1 + GI queue, the drift is state depen-
dent and the concentration is a fixed point—namely,
the value of c at which the ratio of variation to drift
equals c:

λƐ[s2
1]((1/ρ) ∧ 1)

|ρF̄a(w̄ + c) − 1|
� c. (3)

We prove that c ≈ Ɛ[|V − w̄ |]—namely, that it indeed
captures the concentration of V around its first-order
approximation.
With Exponential patience, the concentration is of

the order of 1/
√
λ (see Example 1) so that it suf-

fices to restrict our attention to the “standard” scal-
ing; see Gurvich et al. (2014). The more elaborate
structure brought about by the general patience distri-
bution motivates (indeed, necessitates) an infrastruc-
ture that can accommodate multiple modes of scaling
simultaneously.
The concentration may depend on all the primitives

of the queue—the arrival rate and service and patience
distributions—and it can vary within a queue fam-
ily. Common to all members in the queue family is
a parameter H that bounds the behavior relative to
the concentration. The patience distribution and other
primitives of the queue vary within the queue fam-
ily, but the bounds apply universally to any primitives
within it.
Analysis. Having set up the framework of queue fam-
ilies, our analysis follows the line of work by Gurvich
et al. (2014), Gurvich (2014), and Braverman and Dai
(2017). Braverman and Dai (2017) provide a road map
based on the following three ingredients of (1) genera-
tor coupling, (2) gradient bounds for the Poisson equa-
tion, and (3) a priori moment bounds. This generator-
comparison methodology, inspired by Stein’s method,
is conceptually related to the closure approximations
proposed in Pender and Engblom (2014), which rely
on the forward equations and Poisson–Charlier poly-
nomials to establish asymptotics-free bounds for birth
and death processes. Stein’s method has also been used
to approximate the invariant measures of diffusions
using Malliavin calculus; see, for example, Kusuoka
and Tudor (2012).
Althoughwe do not seek to contribute here to Stein’s

method, our paper expands its scope. Our analysis
of the M/GI/1 + GI queue is the first application of
this method to nonexponential patience, which in turn,
requires venturing beyond the standard

√
λ diffusion

scaling. Our paper also provides a first extension of
these ideas to optimal dynamic control. Conceptually,
Stein’s method extends to control in an (almost) nat-
ural way in that the Poisson equation used for the
performance analysis is replaced with the Hamilton-
Jacobi-Bellman (HJB) equation. Some care is needed
because (1) a priori, the optimal control might be his-
tory dependent, which means that martingale argu-
ments have to be used instead of the direct generator

coupling; and (2) in the absence of a given control, the
a priori moment bounds in the performance analysis
are replaced by bounds under “good controls.”

Our main contribution, then, is not in the mechanics
of establishing the error bounds. Rather, our purpose is
to visit one of the most fundamental queues and build
an infrastructure that allows us to establish, in an acces-
sible way, the universality and accuracy of a (indeed,
the) simple Brownian queue, thus circumventing the
assumptions about heavy-traffic regimes.

We hope that our paper will have not only mathe-
matical value but also modeling value in that we for-
mally and rigorously expand the toolbox of the mod-
eler who can now follow the natural heuristic without
attributing regime interpretation to the parameters or
being concerned with limits.

Heavy-traffic regimes are important. They provide
an elegant and insightful way to map the underlying
economic parameters to the capacity decisions. A flex-
ible universal approximation does not obviate those
insights but allows for direct (maybe simpler) analysis
and optimization of queues.

Notation.We use the convention that �� {0, 1, 2, . . .}.
Following standard terminology, we denote by |x | the
absolute value of a real number x. For an l-times differ-
entiable function f : �→ �, we write f (l)( · ) for its lth
derivative. For three positive numbers a , b , c, we write
a � b± c to mean a ∈ [b− c , b + c]. For a Markov process
X( · ) � (X(t), t > 0) that has a stationary distribution,
we denote by X (i.e., without a time index) a random
variable with this distribution.

2. The Virtual Wait Dynamics
The M/GI/1 + GI queue has Poisson arrivals, general
independent service times, and general independent
patience thresholds.

The arrival process is denoted by A( · ) � (A(t),
t > 0). The random variable si stands for the service
time of the ith customer and is drawn from the distri-
bution Fs . The service rate is µ � 1/Ɛ[s1] and ρ � λ/µ
is the traffic intensity—that is, the amount of work that
arrives per unit of time.

The queue follows the work-conserving first-come-
first-served (FCFS) policy. An arriving customer’s ser-
vice commences immediately if the server is avail-
able. Otherwise, the customer is queued. Customer i’s
patience threshold is vi . The customer abandons the
queue if his service has not commenced by the time
his patience expired. The patience values {vi , i � 1, . . .}
form a sequence of independent and identically dis-
tributed random variables drawn from the distribu-
tion Fa . We denote by fa the density of this distribution
and by ha � fa/F̄a its hazard rate. If patience is infinite,
we have F̄a ≡ 1. When the patience distribution has a
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finite mean, we denote the mean by Ɛ[v1]. For stability,
we assume that

λF̄a(∞) < µ.
This is satisfied if ρ � λ/µ < 1 and patience is infinite
and for any λ, µ provided that all customers have finite
patience (i.e., if F̄a(∞) � 0). The arrival process, service
times, and patience thresholds are mutually indepen-
dent. We refer to p � (λ, Fs , Fa) as the primitives of the
M/GI/1+GI queue.
System Dynamics. We study the virtual waiting time
process V( · ) � (V(t), t > 0). The quantity V(t) is the
effective workload at time t that includes only the work
of customers who will not abandon the queue before
being served. Thus, V(t) signifies the amount of time
that a virtual customer arriving at t would have to wait
before entering service; that is, customer i, arriving at
time τi , is “offered” the waiting time

ωi � V(τi−).

Upon arrival of the ith customer, the process V( · )
increases by this customer’s service time si if vi > ωi �

V(τi−) (the customer is sufficiently patient). The pro-
cess V( · ) decreases at a rate of 1 whenever the server is
working; I(t) is the cumulative idleness of the server by
time t so that t− I(t) is the cumulative processing of the
server by time t. The virtual wait/effective workload
(including all work that has arrived and will stay for
service minus the amount of work processed) at time t
is then given by

V(t)� V(0)+
A(t)∑
i�1

si1{vi>ωi } − (t − I(t)).

As a process, V(t) satisfies the obvious properties,

V(t)> 0, ∀ t > 0, I( · ) is nondecreasing with I(0)�0,

and
∫ ∞

0
1{V(s)>0} dI(s)�0.

The last of the above is the work conservation require-
ment: the idleness does not increase when there are
customers in the system and hence there is a strictly
positive virtual wait.
It should be intuitively clear that with FCFS service,

V( · ) is aMarkov process.With λF̄a(∞)< µ, theMarkov
process has a unique stationary distribution (see Sec-
tion 3.1) and we denote by V a random variable having the
stationary distribution of V( · ).
The First-Order (a.k.a. Fluid) Stationary Approxima-
tion. The maximum long-run throughput rate is
bounded by λ ∧ µ (the number of customers served
cannot exceed the arrival rate or the service rate). The
number of customers who get served (i.e., do not aban-
don) per unit of time when the waiting time is w is

λF̄a(w), and the amount of work the customers bring
is λƐ[s1]F̄a(w) � ρF̄a(w). Heuristically, then, given the
primitives p, the virtual waiting time should center at a
point w̄p where λF̄a(w̄p)�µ∧λ, or, equivalently, where

ρF̄a(w̄p)� 1∧ ρ.

The Brownian Queue. With abandonments, not all
customers are counted in the virtual wait. Only cus-
tomers whose patience, vi , is greater than the virtual
wait at their moment of arrival are counted, and their
total service requirement is ∑A(t)

i�1 si1{vi>V(τi−)}, where τi
is the time of the ith arrival and V(τi−) is the wait
“offered” to that customer. Because a customer’s vir-
tual waiting time is independent of his service time
and patience threshold, we expect that

Ɛ

[A(t)∑
i�1

si1{vi>V(τi−)}

]
� λƐ[si]

∫ t

0
� {vi >V(s)} ds

� ρ

∫ t

0
F̄a(V(s)) ds ,

where Fa is the patience distribution.
Given a standard Brownian motion B( · ) and prim-

itives p, let (V̂( · ), Î( · )) be the unique solution to the
following stochastic differential equation (SDE):

V̂(t)� V̂(0)+
∫ t

0
ρF̄a(V̂(s)) ds − t + σB(t)+ Î(t),

V̂( · ) > 0,
Î( · ) is nondecreasing and starts at 0,∫ ∞

0
1{V̂(s)>0} dÎ(s)� 0,

where σ�
√
λƐ[s2

1]F̄a(w̄p)�
√
λƐ[s2

1]((1/ρ) ∧ 1). Because
F̄a 6 1, the existence and uniqueness of a strong solu-
tion (V̂( · ), Î( · )) follows from theorem 3.1 of Zhang
(1994). The appeal of the diffusion model is the sim-
plicity of its stationary distribution: V̂( · ) has a unique
stationary distribution (which is also a steady-state dis-
tribution) if

G �

(∫ ∞

0
exp

(
2
∫ x

0

ρF̄a(u) − 1
σ2 du

)
dx

)−1

<∞,

(which holds, in particular, if λF̄a(∞) < µ), in which
case its density is given by

π̂(dx)� G exp
(
2
∫ x

0

ρF̄a(u) − 1
σ2 du

)
dx ,

x ∈ [0,∞). (4)

We denote by V̂ a random variable following this distribu-
tion. We will prove that V̂ provides a universally accu-
rate approximation to V .
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3. Performance Analysis
We first introduce a notion of universality that accom-
modates variation in the patience distribution and the
traffic intensity ρ.

Definition 1 (Queue Families). Fix H > 1. Denote by
Q(H) the family of primitives p � (λ, Fs , Fa) such that

(i) exponential service-time moments: Ɛ[exp(δH(s1/
Ɛ[s1]))] 6 H, for some δH > 0,
and there exists a constant cp > Ɛ[s1]/H such that, as a
pair, (p , cp) satisfy
(ii) finite load: ρ ∈ [H−1 ,H], ρ > 1−H/(λcp);
(iii) subpolynomial patience density:3 Fa is differen-

tiable with density fa that satisfies

fa(y) 6
H
λc2

p

(
1+

���� y − w̄p

cp

����H)
;

(iv) inward drift:

ρF̄a(y) − 1 6 −H−1 1
λcp

, for all y ∈ [w̄p + cpH,∞),

and

ρF̄a(y) − 1 > H−1 1
λcp

, for all y ∈ [0, w̄p − cpH],

where the second part is satisfied trivially if w̄p < cpH.

We refer to the constant cp as the concentration under
the primitives p. Given H > 1, the set Q(H) includes
the M/M/1 queue with ρ ∈ [H−1 , 1) (w̄p � 0 and cp �

1/(λ(1 − ρ))) and is, hence, nonempty. The constants
in Theorem 1 are uniform over p ∈ Q(H) and depend
only on H and not on cp , which is allowed to vary
with p within Q(H). Moreover, while ρ is restricted to
[H−1 ,H], the arrival rate is not by itself restricted and can
grow without bounds within Q(H) as long as µ grows
with it.

Example 1. Consider the M/GI/1+ M queue with pa-
tience rate θ � 1. Letting cp � 1/

√
λ, we have for η ∈

{−1, 1},

ρF̄a(w̄p + η/
√
λ) − 1 � ρe−(w̄p+η/

√
λ) − 1.

From the definition of w̄p , we have ρF̄a(w̄p) � ρe−w̄p �

ρ∧ 1 so that using e−η/
√
λ ≈ 1− η/

√
λ,

ρF̄a(w̄p + η/
√
λ) − 1≈ (ρ∧ 1) − 1− η

ρ∧ 1
√
λ
.

Condition (iv) is then satisfied for any H > 1. If ρ 6 1,
w̄p � 0, and we only need the first part of (iv) to hold.
Furthermore, for any H > 1, H > fa(0) � 1, so condi-
tion (iii) is satisfied. �

Table 1 lists patience distributions together with the
concentration cp and the value of H for which p ∈ Q(H).
Reading from H backwards, the table defines, given H,
which primitives are included in Q(H). These do not
apply to cases in which the mean patience is short
relative to the mean service time; see Remark 3. Evi-
dently, given H > 1, there are multiple instances of
each of these distributions (and of the service time dis-
tribution and arrival rates λ) that fit within the fam-
ily Q(H). When restricting attention to the Exponential
distribution, this table shows that, for example, tak-
ing H � 2, any M/G/1 + M queue with a light-tailed
service time distribution and ρ ∈ [1/2, 2] is a member
of Q(2). Thus, Q(2) covers simultaneously underloaded,
critically loaded, and overloaded queues.

We prove that V̂ provides an accurate approximation
for V across multiple performance metrics and uni-
versally (i.e., for all queues in Q(H)). Because a queue
family covers a range of values for ρ, this strong notion
of universality implies, in particular, universality in
heavy-traffic regimes.

Theorem 1 (Virtual Waiting Time).Given H > 0 and k ∈�,
there exists a constant C1

H, k > 0 such that

Ɛ[(V − w̄p)k] − Ɛ[(V̂ − w̄p)k]
�±C1

H, kƐ[s1]Ɛ[|V̂ − w̄p |k−1]

�±C1
H, k

ρ

λ
Ɛ[|V̂ − w̄p |k−1], p ∈ Q(H).

Remark 1 (Time Units). The constant H is indepen-
dent of the time unit (seconds, minutes, or hours)
and, consequently, so are the constants C1

H, k in Theo-
rem 1. Given p ∈ Q(H), changing the time units (using,
say, minutes instead of seconds) leaves p ∈ Q(H) with
the same H. Table 1 illustrates this insensitivity. The
concentration cp and the constant w̄p do have to be
changed (dividing by 60, for example, if we move from
seconds to minutes).

The virtual waiting time does obviously depend on
the time unit, but the theorem’s statement can be made
unit free by multiplying both sides by λk to get

Ɛ[λk(V − w̄p)k] − Ɛ[λk(V̂ − w̄p)k]
�±C1

H, kρƐ[λk−1 |V̂ − w̄p |k−1], p ∈ Q(H). �

Remark 2 (When Is the Concentration 1/
√
λ?). It is stan-

dard in deriving heavy-traffic limits to consider the
scaling

√
λ(V − w̄p); see Ward and Glynn (2005),

Jennings and Reed (2012). This scaling is not always
suitable: Table 1 shows, for example, that with ρ � 1
and Fa(x)� xm for x ∈ [0, 1] and m > 1, the concentration
is cp � λ−1/(m+1) so that

√
λ(V − w̄p) would “explode”

with λ. To place sequences of queueswithin our queue-
families framework, Lemma EC.2 in the e-companion
specifies sufficient conditions for 1/

√
λ concentration.
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Table 1. Parameters cp and H for a Family of Patience Distributions

Fa cp H

Infinite (M/GI/1) c∞p :� 1/(λ(1− ρ)), ρ < 1 1/ρ

ρ 6 1: c∞p ∧ cc
p , ρ > 1: cc

p ∧ co
p

cc
p co

p

exp(θ)
√

Ɛ[v1]
λ

√
Ɛ[v1]
λ

max(2, ρ, 1/ρ)

HyperExp(θ,ϕ)a
√

Ɛ[v1]
λ

√
Ɛ[v1]
λ

max(θ̄, 2/
¯
θ, ρ, 1/ρ)

Gamma(k , θ)b
(
Ɛ[v1]k
λ

)1/(k+1)
√

Ɛ[v1]
λ(ρ− 1)(k−1)/k max

(
2k+1(ρ∨ k)kk HE

0 Γ(k)
ρ∧ 1 ,U

)
Uniform[0, α]

√
α
λ

√
α
λ

max(ρ, 1/ρ)

F(x)� (x ∧ α)
k

αk

(
αk

λ

)1/(k+1) √
α

λ(ρ− 1)(k−1)/k
k + 1

k(1∧ ρ) ∨ (2
k(k ∨ ρ))

Beta(α, β)c 1
λ1/(α+1)

1√
λ(ρ− 1)(α−1)/α

max
(

2α+β(ρ∨ α)Γ(α+ β)
(ρ∧ 1)Γ(α)Γ(β)min(L, 1) ,U

)
aHere, Ɛ[v1] �

∑K
k�1 ϕk/θk with ∑K

k�1 ϕk � 1. In the table, θ̄ :� maxk θkƐ[v1] and ¯
θ :� mink θkƐ[v1]. These two constants do not

depend on the time units.
bHere, k > 1 is the shape parameter and θ is the rate parameter. We use the superscript 1 for the special case θ � k (i.e., with

the density f 1
a (x) :� (kk/Γ(k))xk−1e−kx). Letting F1

a and h1
a be the corresponding distribution and hazard-rate functions, we define

U :� supx>0 f 1
a (x)(1/F̄1

a (1) − 1)−(k−1)/k and HE
0 � max(e k , 1/L), where L � infx>1 h1

a(x) > 0.
cHere, α, β > 1 are the shape parameters; fa(x) � (Γ(α + β)/(Γ(α)Γ(β)))xα−1(1− x)β−1. Letting ha be the hazard-rate function, we

define U :� supx>0 fa(x)(1/F̄a(1/2) − 1)−(α−1)/α <∞, L � infx>1/2 ha(x) > 0.

Exponential, Uniform, and Hyperexponential patience
distributions satisfy these conditions in alignmentwith
Table 1.
The connection to heavy-traffic sequences is explored

formally in Section EC.3 of the e-companion. �
Let W follow the stationary distribution of the wait-

ing time, which is the minimum of the stationary vir-
tual waiting time, V , and the patience threshold v. The
diffusion analogue Ŵ is similarly represented as the
minimum of V̂ and v:

W � v ∧V, Ŵ � v ∧ V̂,

where v is drawn from the patience distribution Fa and
is independent of V (respectively of V̂). The following
proposition generalizes our introductory observation
(2) about the M/M/1 queue.
Proposition 1 (Waiting Time). Given H and k ∈ �, there
exists a constant C2

H, k > 0 such that

Ɛ[W k] − Ɛ[Ŵ k]�±C2
H, kƐ[s1]Ɛ[Ŵ k−1]

�±ρ
C2

H, k

λ
Ɛ[Ŵ k−1], p ∈ Q(H).

For k � 1, Ɛ[Ŵ k−1] � 1 so the gap is bounded by
C2

H, kƐ[s1] and is of the order of a single service time. Next,
let Q be a random variable following the stationary dis-
tribution of the queue length process. Little’s law and
Proposition 1 yield the following corollary.

Corollary 1 (Queue Length). Given H, there exists a con-
stant C2

H, 1 > 0 such that

Ɛ[Q]� λƐ[W]� λƐ[Ŵ] ± ρC2
H, 1 , p ∈ Q(H).

Remark 3 (The Case of Light Traffic or Short Patience).
For light-traffic queues or those with very impatient
customers the result embedded in (2) is noninformative.

Consider the case of k � 1 (first moment). If ρ < 1,
the stationary virtual waiting time in the M/GI/1+GI
queue is bounded from above by the stationary work-
load in the corresponding (infinite patience) M/GI/1
queue. For the latter, by the Pollaczek–Khinchine
formula,

Ɛ[W]� Ɛ[s1]
ρ

1− ρ
1+CoV2(s1)

2 ,

where CoV2(s1) is the service time distribution’s
squared coefficient of variation. If ρ is small, the wait-
ing time is of the order of Ɛ[s1]. Thus, both the expected
waiting time and the approximation error in Proposi-
tion 1 are of the order of ρ/λ � Ɛ[s1].
A similar conclusion applies to the case in which

customers’ patience is of the order of (or smaller than)
the service time. Because a customer’s waiting time is
shorter than his patience Ɛ[W] 6 Ɛ[v1], if Ɛ[v1] is of the
order of the mean service time, then so is the expected
waiting time. Again, both the expected waiting time
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and the approximation error are of the order of Ɛ[s1];
see numerical examples in Section 3.3. �

Finally, let Ab be the long-run (and hence stationary)
fraction of customers who abandon the queue.

Proposition 2 (Abandonment). Given H, there exists a
constant CH > 0 such that

Ab � Ɛ[Fa(V̂)] ±
CH

λ2Ɛ[|V̂ − w̄p |2]
�

(
1− 1

ρ

)+
+ Ɛ[Fa(V̂) − Fa(w̄p)] ±

CH

λ2Ɛ[|V̂ − w̄p |2]
, p ∈ Q(H).

The approximation has two terms: ((λ − µ)/λ)+ �

(1− (1/ρ))+ is the first-order (fluid) proxy for the frac-
tion of abandoning customers and the second term
is the second-order (Brownian) correction. In the case
where Ɛ[|V̂ − w̄p |2] is proportional to 1/λ, the error
reduces to CH/λ for a redefined constant CH . Focusing
ona single regime rather than seekinguniversal bounds
may lead to tighter bounds. Bassamboo and Randhawa
(2010) show, for example, that for overloaded queues
the fluid approximation already achieves an accuracy
of 1/λ.
Thus far, our approximation errors were stated in

terms of moments of the diffusion rather than in terms
of the concentration cp . The next result shows that they
are one and the same: namely, that cp , satisfying condi-
tions (ii)–(iv) in the definition of queue families, is (up
to a multiplicative constant) the diffusion’s concentra-
tion Ɛ[|V̂ − w̄p |].
Lemma 1 (Concentration Bounds). Given H > 0 and
k ∈ �, there exist constants CV

H, k , cV
H, k , CW

H, k , and cW
H, k > 0

(depending only on H and k) such that
(i) For the M/GI/1+GI queue,

Ɛ[|V − w̄p |k] 6 CV
H, k ck

p ,

Ɛ[W k] 6 CW
H, k(w̄k

p + ck
p), p ∈ Q(H).

(ii) For the Brownian queue,

Ɛ[|V̂ − w̄p |k] ∈ [cV
H, k ck

p ,C
V
H, k ck

p], p ∈ Q(H),

and

Ɛ[Ŵ k] ∈ [cW
H, k(w̄k

p + ck
p), CW

H, k(w̄k
p + ck

p)], p ∈ Q(H).

A lower bound on Ɛ[|V− w̄ |k] can also be established;
see Remark 4. The following is now a corollary of The-
orem 1, Proposition 1, Corollary 1, and Proposition 2.

Corollary 2. Given H > 0 and k ∈ �, there exist CH, k > 0
(in particular, CH, 1 > 0) and CAb

H > 0 such that, for all
p ∈ Q(H),

Ɛ[(V − w̄p)k] − Ɛ[(V̂ − w̄p)k]�±
CH, k

λ
ck−1

p ,

Ɛ[W k] − Ɛ[Ŵ k]�±
CH, k

λ
(w̄k−1

p + ck−1
p ),

Ɛ[Q]� λƐ[Ŵ] ±CH, 1 , Ab � Ɛ[Fa(V̂)] ±
CAb

H

λ2c2
p
.

Example 2 (The M/GI/1 Queue Revisited). The M/GI/1
queue (no abandonments) is stable if and only if ρ<1,
in which case w̄p �0. Condition (ii) reduces to ρ−1>
−H/(λcp), and condition (iv) to ρ−1 6 −H−1/(λcp).
Thus, with H > 1/ρ, p � (λ, Fs , Fa) ∈ Q(H) with cp �

1/(λ(1− ρ)). By Theorem 1 and Corollary 2, there exist
constants Ck , 1 ,Ck , 2 ,Ck , 3 such that

Ɛ[W k] − Ɛ[Ŵ k]�±
Ck , 1

λ
Ɛ[Ŵ k−1]�±

Ck , 2

λk(1− ρ)k−1

�±Ck , 3(1− ρ)Ɛ[Ŵ k]. �

3.1. What Makes This Work
Lemma 2. The process V( · ) is an ergodic strong Markov
process. For a differentiable function f such that Ɛ[| f (x+ s1)
− f (x)|] <∞ for all x > 0, let

¡ f (x)�− f (1)(x)+ λF̄a(x)Ɛ[ f (x + s1) − f (x)]

(¡ is the generator of V( · )). Let Ψ be such a continu-
ously differentiable function with Ψ(1)(0) � 0: (i) If Ψ > 0
and supx>0 ¡Ψ(x) < ∞, then Ɛ[¡Ψ(V)] > 0, where V
has the stationary distribution of V( · ). (ii) If, instead,
Ɛ[|Ψ(V)|] <∞ and Ɛ[|Ψ(V + s1) −Ψ(V)|2] < ∞ (where
s1 is Fs( · )-distributed and is independent of V), then
Ɛ[¡Ψ(V)]� 0.

Taking a differentiable functionΨ and using Taylor’s
expansion heuristically to replace

Ɛ[Ψ(x + s1)] ≈Ψ(x)+Ψ(1)(x)Ɛ[s1]+ 1
2Ψ
(2)(x)Ɛ[s2

1],

we have, after some manipulations (recall that µ �

1/Ɛ[s1]), that

¡Ψ(x) ≈ (ρF̄a(x) − 1)Ψ(1)(x)+ 1
2λƐ[s

2
1]Ψ(2)(x)F̄a(x)

� (ρF̄a(x) − 1)Ψ(1)(x)+ 1
2λƐ[s

2
1]Ψ(2)(x)F̄a(w̄p)

+
1
2λƐ[s

2
1]Ψ(2)(x)(F̄a(x) − F̄a(w̄p))

� ¡̂Ψ(x)+ 1
2λƐ[s

2
1]Ψ(2)(x)(F̄a(x) − F̄a(w̄p)), (5)

where ¡̂ is the generator of the diffusion; that is,
¡̂Ψ(x)� (ρF̄a(x)−1)Ψ(1)(x)+ ((λƐ[s2

1]F̄a(w̄p))/2)Ψ(2)(x).
Take

fk(x)� f̄k

( x − w̄p

Ɛ[|V̂ − w̄p |]

)
:�
(x − w̄p)k − Ɛ[(V̂ − w̄p)k]
(Ɛ[|V̂ − w̄p |])k

, (6)
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(notice that Ɛ[ fk(V̂)] � 0) and suppose thatΨ is a solu-
tion to ¡̂Ψ � − fk . This is the so-called Poisson equa-
tion for the diffusion. It is this “self-scaling” definition
of the performance function fk—normalized by the
expectation Ɛ[|V̂ − w̄p |]—that allows for the universality
in concentration.
Taking expectations on both sides of (5) with respect

to the stationary distribution of V , we have

Ɛ[¡Ψ(V)]
≈ Ɛ[¡̂Ψ(V)]+ 1

2λƐ[s
2
1]Ɛ[Ψ(2)(V)(F̄a(V) − F̄a(w̄p))]

�−Ɛ[ fk(V)]+ 1
2λƐ[s

2
1]Ɛ[Ψ(2)(V)(F̄a(V) − F̄a(w̄p))],

which, if Ɛ[¡Ψ(V)]� 0, gives

Ɛ[ fk(V)] ≈ 1
2λƐ[s

2
1]Ɛ[Ψ(2)(V)(F̄a(V) − F̄a(w̄p))].

Proving that the term on the right is small would
imply that Ɛ[ fk(V)] ≈ 0 and, because fk(x)� ((x− w̄p)k −
Ɛ[(V̂ − w̄p)k])/(Ɛ[|V̂ − w̄p |])k , that V̂ approximates V in
the sense of

Ɛ[(V − w̄p)k] ≈ Ɛ[(V̂ − w̄p)k]+ o((Ɛ[|V̂ − w̄p |])k).

It is clear that this argument, building on a second-
order Taylor expansion, requires suitable bounds for
the second and third derivatives of Ψ. The proof
of Theorem 1 that follows formalizes this heuristic
argument.

3.2. Proof of Theorem 1 and Propositions 1 and 2
Proof of Theorem 1. Fix k ∈ � and let fk and f̄k be as
in (6). Note that with C0 :�max(max(CV

H, k , 1)/(cV
H, 1)k , k),

for all x,

| f̄k(x)| 6 C0(1+ |x |k) and
| f̄ (1)k (x)| 6 C0(1+ |x |2H+k+2). (7)

Lemma 3. There is a unique solution (up to an additive
constant) to the initial value problem:

¡̂Ψ(x)�− fk(x), Ψ(1)(0)� 0, x > 0.

Denote the unique solution byΨk . For any H > 0, there is a
positive constant CΨ (which also depends on H and k), such
that for p ∈ Q(H),

|Ψ(2)k (x)|6C0CΨ×λ×
(
1+

���� x− w̄p

Ɛ[|V̂− w̄p |]

����H+k+1)
,

|Ψ(3)k (x)|6C0CΨ×
λ

Ɛ[|V̂− w̄p |]
×

(
1+

���� x− w̄p

Ɛ[|V̂− w̄p |]

����2H+k+2)
.

The proof of Lemma 3 is presented in the e-compan-
ion. For notational simplicity, we omit the subscript k

in Ψk and denote by Ψ a solution to ¡̂Ψ � − fk with
Ψ(1)(0)� 0. Using Taylor’s expansion,

Ψ(x + s1)�Ψ(x)+Ψ(1)(x)s1 +
1
2Ψ
(2)(x)s2

1

+
1
6Ψ
(3)(x +∆x(s1))s3

1 ,

where ∆x(s1) is some number between 0 and s1 that can
depend on x. Simple manipulations give

¡Ψ(x)� (ρF̄a(x) − 1)Ψ(1)(x)+
λƐ[s2

1]
2 Ψ(2)(x)F̄a(x)

+
1
6λƐ[s

3
1Ψ
(3)(x +∆x(s1))]F̄a(x)

� (ρF̄a(x) − 1)Ψ(1)(x)+
λƐ[s2

1]
2 Ψ(2)(x)F̄a(w̄p)

+
λƐ[s2

1]
2 Ψ(2)(x)(F̄a(x) − F̄a(w̄p))

+
1
6λƐ[s

3
1Ψ
(3)(x +∆x(s1))]F̄a(x)

� ¡̂Ψ(x)+
λƐ[s2

1]
2 Ψ(2)(x)(F̄a(x) − F̄a(w̄p))

+
1
6λƐ[s

3
1Ψ
(3)(x +∆x(s1))]F̄a(x).

In turn,

|¡Ψ(x)−¡̂Ψ(x)|6
λƐ[s2

1]
2 ×|Ψ(2)(x)|× |F̄a(x)− F̄a(w̄p)|

+
λ
6 Ɛ[s3

1 |Ψ(3)(x+∆x(s1))|]F̄a(x). (8)

Next, we plug in the derivative bounds from
Lemma 3 and the properties of the queue family Q(H).
Notice that

|Ψ(3)(x+z)|6C0CΨ×
λ

Ɛ[|V̂−w̄p |]

×
(
1+

���� x+z−w̄p

Ɛ[|V̂−w̄p |]

����2H+k+2)
622H+k+2×C0CΨ

× λ

Ɛ[|V̂−w̄p |]
×

(
1+

���� x−w̄p

Ɛ[|V̂−w̄p |]

����2H+k+2

+

���� z
Ɛ[|V̂−w̄p |]

����2H+k+2)
.

The last inequality follows from the fact |x + y |n 6
(|x | + |y |)n 6 2n(|x |n + |y |n) for all x , y ∈ R and n �

1, 2, . . . .
Furthermore, F̄a( · ) 6 1, and per the definition of

Q(H) (and Lemma 1),

|F̄a(x) − F̄a(w̄p)| 6
C̄

λƐ[|V̂ − w̄p |]

×
(���� x − w̄p

Ɛ[|V̂ − w̄p |]

����+ ���� x − w̄p

Ɛ[|V̂ − w̄p |]

����H+1)
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for some constant C̄. Thus,

|¡Ψ(x) − ¡̂Ψ(x)|

6
ρ2Ɛ[(µs1)2]

2 × C0 ×CΨ × C̄

λƐ[|V̂ − w̄p |]

(
1+

���� x − w̄p

Ɛ[|V̂ − w̄p |]

����H+k+1)
×

(���� x − w̄p

Ɛ[|V̂ − w̄p |]

����+ ���� x − w̄p

Ɛ[|V̂ − w̄p |]

����H+1)
+
ρ322H+k+2C0CΨ
6λƐ[|V̂ − w̄p |]

×
(
Ɛ[(µs1)3]

(
1+

���� x − w̄p

Ɛ[|V̂ − w̄p |]

����2H+k+2)
+

Ɛ[(µs1)2H+k+5]
(µƐ[|V̂ − w̄p |])2H+k+2

)
. (9)

Recall that for p ∈ Q(H), ρ 6 H, 1/(µcp) 6 H and
that, by the exponential moment requirement, Ɛ[(µs1)l]
6 BH, l for some constant BH, l . Because Ψ satisfies the
inequalities in Lemma 3, it is bounded by a polynomial
function. By Lemma 1, the assumptions of Lemma 2(ii)
then hold, and hence Ɛ[¡Ψ(V)]� 0. This gives us

|Ɛ[ fk(V)]| � |Ɛ[¡̂Ψ(V)]| � |Ɛ[¡̂Ψ(V)] − Ɛ[¡Ψ(V)]|

6 Ɛ[|¡̂Ψ(V) −¡Ψ(V)|]� 1
λƐ[|V̂ − w̄p |]

×C0C̄Ψ, k × Ɛ
[(

1+
���� V − w̄p

Ɛ[|V̂ − w̄p |]

����2H+k+2)]
6

1
λƐ[|V̂ − w̄p |]

C̄H, k (10)

for some constants C̄Ψ, k and C̄H, k , where the last in-
equality follows from Lemma 1, which provides a
lower bound on Ɛ[|V̂ − w̄p |] and an upper bound on
Ɛ[|V − w̄p |2H+k+2] as a function of cp . Plugging this
bound back in the definition of fk , we have

|Ɛ[(V − w̄p)k] − Ɛ[(V̂ − w̄p)k]|

6 C̄H, k

(Ɛ[|V̂ − w̄p |])k−1

λ
6 C1

H, k

Ɛ[|V̂ − w̄p |k−1]
λ

,

for an appropriate constant C1
H, k , where the last in-

equality follows from the upper bound on Ɛ[|V̂ − w̄p |]
and the lower bound on Ɛ[|V̂ − w̄p |k−1] in Lemma 1.
This concludes the proof. �

Before proceeding, note that the only properties of fk
that we use in the proof of Equation (10) are that
Ɛ[ fk(V̂)] � 0, that fk is differentiable, and that it is sub-
polynomial in the sense of (7). The same bounds thus
apply to any function g that has these properties.

Remark 4. For any k > 2, the function

fk(x)�
|x − w̄p |k − Ɛ[|V̂ − w̄p |k]
(Ɛ[|V̂ − w̄p |])k

satisfies the required conditions of fk . As a conse-
quence, Theorem 1 can be expanded to include the
absolute-value statement

Ɛ[|V − w̄p |k] − Ɛ[|V̂ − w̄p |k]

�±C1
H, k

ρ

λ
Ɛ[|V̂ − w̄p |k−1], k > 2, p ∈ Q(H).

By Lemma 1 Ɛ[|V̂ − w̄p |k] ∈ [cV
H, k ck

p ,C
V
H, k ck

p], and we
then have

Ɛ[|V − w̄p |k] > cV
H, k ck

p −
CH, k

λ
ck−1

p ,

for a suitable constant CH, k . Considering p ∈ Q(H)with
λcp > (1 + ε)CH, k/cV

H, k for some ε > 0, it follows that
Ɛ[|V − w̄p |k] > (ε/(1 + ε))cV

H, k ck
p . The existence of such

ε is guaranteed if λcp grows with λ, as when cp � λ
−δ

for any δ ∈ (0, 1).
A lower bound for k � 1 can also be derived but re-

quires special treatment to circumvent the nondifferen-
tiability of the absolute value function. �
Proof of Proposition 1. Define

gk(x) :�
1

Ɛ[|V̂ − w̄p |] × Ɛ[Ŵ k−1]
(Ɛ[(v ∧ x)k] − Ɛ[Ŵ k])

�
1

Ɛ[|V̂ − w̄p |] × Ɛ[Ŵ k−1]

(∫ x

0
kuk−1F̄a(u) du − Ɛ[Ŵ k]

)
,

and ḡk(x) � gk(w̄p + xƐ[|V̂ − w̄p |]). Because Ŵ � v ∧ V̂ ,
we have Ɛ[gk(V̂)] � 0. Let `k(x) � ḡk(x) − ḡk(0). Then
ḡk(x) � `k(x) − Ɛ[`k((V̂ − w̄p)/Ɛ[|V̂ − w̄p |])]. Moreover,
ḡk and `k are differentiable with

| ḡ(1)k (x)|� |`
(1)
k (x)|�

kƐ[|V̂ − w̄p |]
Ɛ[|V̂ − w̄p |]×Ɛ[Ŵ k−1]

× F̄a(w̄p + xƐ[|V̂ − w̄p |])|(w̄p + xƐ[|V̂ − w̄p |])k−1 |

6Ck

kƐ[|V̂ − w̄p |]
Ɛ[|V̂ − w̄p |]× (w̄k−1

p + (Ɛ[|V̂ − w̄p |])k−1)
× (w̄p + |x |Ɛ[|V̂ − w̄p |])k−1

6 kCk(1+ |x |)k−1 6 2k−1kCk(1+ |x |k−1),

where Ck is chosen based on the inequalities in
Lemma 1 and depends only on k and H.

From |`k(x)| 6 2k−1kCk(1 + |x |k−1)|x | 6 2k−1kCk ·
(|x |+ |x |k) and Lemma 1, we get a constant C0 such that

| ḡk(x)| 6 C0(1+ |x |k) and | ḡ(1)k (x)| 6 C0(1+ |x |2H+k+2).

The function gk thus satisfies the conditions of
Lemma 3, and following the steps leading to (10), we
get |Ɛ[gk(V)]| 6 C2

H, k/(λƐ[|V̂ − w̄p |]) for an appropri-
ately chosen constant C2

H, k . We thus have

Ɛ[W k] − Ɛ[Ŵ k]� Ɛ[gk(V)]Ɛ[|V̂ − w̄p |]Ɛ[Ŵ k−1]

�±
C2

H, k

λ
Ɛ[Ŵ k−1]. �
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Proof of Proposition 2. Recall that the process (V(t),
t > 0) is an ergodic strong Markov process. We denote
by πV its stationary distribution and write ƐπV

[ · ] for
the expectation operationwhen V(0) is drawn from πV .
Note that

Ab � lim
t→∞

ƐπV
[∑A(t)

i�1 1{vi6ωi }]
ƐπV
[A(t)] � lim

t→∞

λt×Ɛ[Fa(V)]
λt

�Ɛ[Fa(V)]
�Fa(w̄p)+Ɛ[Fa(V)−Fa(w̄p)] (11)

�

(
1− 1

ρ

)+
+Ɛ[Fa(V)−Fa(w̄p)]

�

(
1− 1

ρ

)+
+Ɛ[Fa(V̂)−Fa(w̄p)]±CH(λƐ[|V̂ − w̄p |])−2.

The second equality uses the following lemma.

Lemma 4. Suppose that V(0) is drawn from πV . Then we
have the identity:

ƐπV

[A(t)∑
i�1

1{vi6ωi }

]
� λt × Ɛ[Fa(V)].

The last equality in (11) uses λFa(w̄p)�λ−λF̄a(w̄p)�
λ − λ ∧ µ and the following argument. Let g(x) �
ḡ((x − w̄p)/Ɛ[|V̂ − w̄p |]), where ḡ(x) :� `(x) − Ɛ[`((V̂ −
w̄p)/Ɛ[|V̂ − w̄p |])] with `(x) � λƐ[|V̂ − w̄p |](Fa(w̄p +

xƐ[|V̂− w̄p |])−Fa(w̄p)). Then, by the definition of Q(H)
and Lemma 1, there exists a constant C̄0,

| ḡ(1)(x)|� |`(1)(x)|� |λ(Ɛ[|V̂− w̄p |])2 fa(w̄p +xƐ[|V̂− w̄p |])|
6 C̄0(1+ |x |H),

and from |`(x)| 6 C̄0(1 + |x |H)|x | � C̄0(|x | + |x |H+1) and
Lemma 1, we get a constant C0 such that

| ḡ(x)| 6 C0(1+ |x |H+1), and | ḡ(1)(x)| 6 C0(1+ |x |3H+3).

Figure 2. M/M/1+GI with ρ � 1 and Fa(x)� x on [0, 1] (Left) and Fa(x)� x2 on [0, 1] (Right)
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Hence, g satisfies the condition of Lemma 3 with
k � H + 1, so that, following the steps leading to (10),
we have Ɛ[g(V)] � ±CH/(λƐ[|V̂ − w̄p |]), and we con-
clude that

Ɛ[Fa(V) − Fa(V̂)]�
Ɛ[g(V)]

λƐ[|V̂ − w̄p |]

�± CH

(λƐ[V̂ − w̄p])2
. �

3.3. Numerical Examples
The M/M/1 + GI queue (i.e., with exponential ser-
vice time) is useful for numerical comparisons. Closed-
form expressions for the stationary virtual waiting are
presented in Zeltyn and Mandelbaum (2005), allow-
ing us to circumvent the complexities of steady-state
simulation.

The first set of figures comprises numerical manifes-
tations of the predictions in Theorem 1 and Proposi-
tion 1. Figure 2 reports the results for two power-law
patience distributions. We plot the moments of the sta-
tionary virtual waiting time and the gap scaled by 1/λ.
The distribution Fa(x) � x has a positive density at 0
while Fa(x) � x2 does not. In the context of asymptotic
convergence, the process limits require different treat-
ment. The case Fa(x) � x2 requires hazard-rate scaling;
otherwise, the patience distribution disappears in the
limit; see further discussion in Section EC.3. As pre-
dicted in Theorem 1, the scaled gap is bounded by a
constant.

In addition to further showcasing the precision of
the approximation, Figure 3 highlights a point that
the mathematical results do not capture. On the left-
hand side of the figure, we plot the second moment
of the waiting time Ɛ[W2], its approximation Ɛ[Ŵ2],
and the approximation gap relative to the first moment
approximation Ɛ[Ŵ] divided by λ. Proposition 1 states
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Figure 3. M/M/1+GI with Patience Fa(x)� 4
7 (1− e−4x)+ 3

7 (1− e−x/2) (Hyperexponential): ρ � 1.2 and λ (Hence Also µ) Varied
(Left) and µ � 100 Fixed and ρ (Hence Also λ) Varied (Right)
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that this scaled error is bounded. In these numerical
instances, it not only is bounded but decreases as λ
grows large. The right-hand side shows that the scaled
error is the greatest in the critically loaded case of ρ ≈ 1
and decreases as the queue becomes overloaded. Thus,
when focusing only on overloaded queues, it may be
possible to obtain tighter bounds (as in Bassamboo and
Randhawa 2010).

We repeat this exercise for a different patience distri-
bution in Figure 4. This is an instance where the con-
centration cp changes with ρ. It is of the order of λ−1/3

for ρ � 1 but of the order of λ−1/2 for ρ � 1.2 so that,
in particular, process limit theorems for ρ � 1 would
require different scaling than those for ρ > 1. The uni-
versal approximation is indifferent to this fact, as are
the bounds.

Figure 4. M/M/1+GI with Patience Fa(x)� 1− e−2x − 2xe−2x (Erlang): ρ � 1.2 and λ (Hence Also µ) Varied (Left) and µ � 100
Fixed and ρ (Hence Also λ) Varied (Right)
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Figures 5 and 6 consider settings that violate our
assumptions to explore the necessity (or lack thereof)
of our sufficient conditions. In Figure 5, we consider the
patience distribution Fa � Gamma(0.5, 2), which vio-
lates our requirement (iii) in the definition of queue
families. The precision in Figure 5 is nevertheless
impressive. The performance of the M/D/1+GI queue
is computed via simulation (the 95% confidence inter-
vals are smaller than 0.0008).

In Figure 6, we revisit our requirement that the ser-
vice times have light tails (the patience distribution is
the one used in Figure 3). Our proofs are based on a
second-order Taylor expansion and the bounds, con-
sequently, depend on the third moment of the service
time being finite. In fact, we also use higher moments.
An exponentially decaying tail is not necessary for
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Figure 5. M/D/1+GI with ρ � 1 (w̄p � 0) and Fa �Gamma(0.5, 2)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

0.01

0.02

0.03

0.04

0.05

0.06

�
[V

]

0.07

0.08

0.09

0.10

0 200 400 600 800 1,000 1,200 1,400 1,600

Sc
al

ed
 e

rr
or

Exact value and approximations for �[V ]

|�[V ] – �[V ]|
1/�

�

Exact Approximation Scaled error

these moments to be finite, but it does guarantee that
Ɛ[sk

1] is not too large relative to (Ɛ[s1])k . With subex-
ponential distribution, the third moment can be very
large, making our bounds loose. Figure 6 reports the
simulation results for the M/GI/1+GI queue with (i) a
Pareto service time (where Ɛ[sk

1]� (α−1)k/(αk−1(α−k)) ·
(Ɛ[s1])k , where α is the shape parameter). With k � 3
and α � 5, Ɛ[s3

1] � 1.28(Ɛ[s1])3, the third moment is not
too large and the performance is rather good. With
α � 3, the third moment is infinite. While the approxi-
mation error is not too large for the range of λ values
we tried, it does grow slowly with λ; and (ii) a Log-
Normal service time where Ɛ[sk

1] � (1+CoV2)(kn(k−1))/2 ·
(Ɛ[s1])k , where CoV� 2 is the coefficient of variation of
the distribution. With k � 3, Ɛ[s3

1] � 125(Ɛ[s1])3. For the
Log-Normal distribution, Ɛ[sk

1]/(Ɛ[s1])k grows expo-
nentially with k, and the approximation is relatively
inaccurate.

Underloaded Queues. In Remark 3we pointed out that
the mathematical bounds are of the order of the quan-
tity we are trying to approximate. It is a priori plausible
that the bounds are not tight and that the actual error
is small. Figure 7 rules this out: strictly underloaded
queues (as in ρ � 0.5) fall outside of the scope of the
Brownian models.

4. Static Optimization
We expect the universal accuracy of the Brownian
approximation to translate to nearly optimal prescrip-
tions. Randhawa (2016) shows in amany-server context

how an ¯(1) performance-approximation gap trans-
lates to smaller o(1) errors in staffing prescriptions.
We revisit a standard capacity optimization problem

for the M/GI/1+GI queue. We fix a patience distribu-
tion Fa with a bounded density fa( · )6U (in particular,
F̄a(∞) � 0) and let the service time be given by Fµs (x) �
Fs(µx), where Fs( · ) is fixed. With these restrictions,
variation within a queue family Q(H) reduces to varia-
tion of λ and µ, so we can write (λ, µ) ∈ Q(H) instead
of p ∈ Q(H) and cp � cλ, µ.

Given strictly positive constants Cr , Cab , Cw , we con-
sider the total cost

C(µ) :� Crµ+CabλAbµ +CwλƐ[Wµ],

and seek to solve

µ∗ � arg min
µ>λξ

C(µ). (12)

Here, Abµ is the stationary fraction of customers who
abandon the queue before being served, and Wµ fol-
lows the stationary distribution of the waiting time
process, given that the service rate is µ. ξ ∈ (0, 1) is a
prespecified lower bound on the fraction of customers
who must be served.4 The optimizer µ∗ balances the
cost of capacity and the combined costs of abandon-
ment and delay.

Let Vµ be a random variable following the station-
ary distribution of the virtual waiting time process
when the service rate is µ. Then, as in (11), Abµ �

Ɛ[Fa(Vµ)] and

C(µ)� Crµ+CabλƐ[Fa(Vµ)]+CwλƐ[Wµ].
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Figure 6. Subexponential Service Times: Pareto Service Time Distribution with Shape Parameter α � 5 (Top Left) and α � 3
(Infinite Third Moment) (Top Right); Log-Normal Service Time (Bottom)
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Notes. The figure displays the expected waiting time, approximation, and error as a function of the arrival rate λ. The arrival rate λ is varied,
and the mean service time is set to 1/λ so that the utilization is kept at 1. Each replication runs for 100,000 time units. Per arrival rate λ in the
tested range, we choose the number of replications so that, in expectation, 1.6E+9 arrivals are generated. In the collection of statistics, the first
10% of the arrivals are left out as a warm-up period.

Figure 7. An Underloaded Queue with ρ � 0.5 and Fa(x)� 1− e−2x − 2xe−2x (Erlang) (Left) and Fa(x)� 4
7 (1− e−4x)+ 3

7 (1− e−x/2)
(Hyperexponential) (Right)
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The intuitive Brownian approximation for the total
cost is

Ĉ(µ) :� Crµ+CabλƐ[Fa(V̂µ)]+CwλƐ[Ŵµ],

where V̂µ follows the stationary distribution of the
Brownian queue with the service rate µ as in (4), and
Ŵµ � v ∧ V̂µ is the Brownian approximation for the
waiting time. The Brownian analogue of the optimiza-
tion problem (12) is then

µ̂∗ � arg min
µ>λξ

{Ĉ(µ)}. (13)

For H > 1, we define Q(H) as an M-stable queue family
if, for λ such that (λ, λ) ∈ Q(H),

{(λ, µ): µ ∈ [λξ, λ(1+ Mcλ, λ)]} ⊆ Q(H).
Stability here is relative to changes in the service rate.

The queue family is stable if it contains a sufficiently
wide range of service-rate values.
Proposition 3. Assume Q(H) is an M-stable family for
M > H0 :� (Cab · CV

H, 1U + Cw · CW
H, 1)/Cr (with CV

H, 1 ,C
W
H, 1

as in Lemma 1). Then, with CAb
H ,CH, 1 as in Corollary 2,

06C(µ̂∗)−C(µ∗)6
(

1
λc2

λ, µ∗

+
1

λc2
λ, µ̂∗

)
CabCAb

H +2CwCH, 1 ,

for all λ s.t. (λ, λ) ∈Q(H).

Consequently, if cλ, µ̂∗ , cλ, µ∗ > 1/
√
λ, the error is bounded by

the constant 2(CabCAb
H +CwCH, 1).

Figure 8. (Color online) Service-Rate Optimization: λ � 100, Exponential Service Time, and Hyperexponential Patience:
Fa(x)� 4

7 (1− e−4x)+ 3
7 (1− e−x/2)
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Note. For different values of Cab � Cw (Cr ≡ 1), the graph displays the cost optimality gap (�) and the capacity-prescription gap (4).

The stability requirement guarantees that both the
optimal service rate µ∗ and the approximate rate µ̂∗
are within the queue family so that we can build on
our performance analysis bounds in Theorem 1 and its
corollaries. The Uniform, Exponential, and Hyperex-
ponential distributions with Ɛ[v1] � 1 are instances of
patience distributions for which the queue family Q(H)
is M-stable for any M smaller than H. These three
distributions have, in fact, cp ≡ cλ (the concentration
depends only on the arrival rate) for µ 6 λ(1+ Mcλ, λ).
For example, the Exponential case (λ, µ) with µ 6
λ+ M

√
λ is in the queue family with cp ≡ cλ � 1/

√
λ.

In the case of the Gamma distribution, by contrast, the
concentration does depend on the service rate (through
its dependence on ρ; see Table 1). For all of these dis-
tributions cλ, µ > 1/

√
λ, as required in the second part

of the proposition.
Figure 8 is a numerical illustration for Hyperexpo-

nential patience, Exponential service time, and λ� 100.
To bring out multiple utilization levels, we consider
a range of values for Cab � Cw (normalizing the cost
so that Cr � 1). We compare the cost at the optimal
solution C(µ∗) (found through search) against the cost
under the approximate solution C(µ̂∗). At the lowest
end of the cost spectrum (Cab �Cw � 1), the queue oper-
ates optimally with a utilization of about 1.2 and can
be interpreted as overloaded,5 whereas when the coef-
ficient increases to 2.3, the optimal utilization is below
1, which we interpret as critical loading. Notably, the
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percentage error in the resulting cost, (C(µ̂∗)−C(µ∗))/
C(µ∗), is smaller than the percentage error in staffing
|µ̂∗−µ∗ |/µ∗. This is because the objective function is rel-
atively flat around the optimal solution.

Proof. We claim that if λ is such that (λ, λ) ∈ Q(H),
then both

µ∗ 6 λ(1+ Mcλ, λ) and µ̂∗ 6 λ(1+ Mcλ, λ), (14)

where M is as in the M-stability requirement. This
guarantees that both (λ, µ∗) and (λ, µ̂∗) are in Q(H).
Propositions 1 and 2 then guarantee that for either µ ∈
{µ∗ , µ̂∗},

|C(µ) − Ĉ(µ)|
6 CabλƐ[|Fa(Vµ) − Fa(V̂µ)|]+Cwλ |Ɛ[Wµ] − Ɛ[Ŵµ]|

6 CabCAb
H

1
λc2

λ, µ

+CwCH, 1.

By definition,C(µ̂∗)−C(µ∗)> 0 and Ĉ(µ̂∗)−Ĉ(µ∗)6 0.
In sum,

0 6 C(µ̂∗) −C(µ∗)
�C(µ̂∗) − Ĉ(µ̂∗)+ Ĉ(µ̂∗) − Ĉ(µ∗)+ Ĉ(µ∗) −C(µ∗)
6 C(µ̂∗) − Ĉ(µ̂∗)+ Ĉ(µ∗) −C(µ∗)

6

(
1

λc2
λ, µ∗

+
1

λc2
λ, µ̂∗

)
CabCAb

H + 2CwCH, 1

6 2(CabCAb
H +CwCH, 1),

where the last inequality follows from our assumption
that cλ, µ > 1/

√
λ.

To prove (14) we use the two assumptions (λ, λ) ∈
Q(H) (and has w̄p � 0) and Fa(x)� ∫ x

0 fa(y) dy 6Ux and
apply Lemma 1 to get

Ĉ(λ)� Crλ+CabλƐ[Fa(V̂µ)]+CwλƐ[Ŵµ]
6 Crλ+ λCabCV

H, 1Ucλ, λ + λCwCW
H, 1cλ, λ

� Crλ(1+H0cλ, λ),

where H0 is as in the statement of the theorem. For any
service rate µ > λ+ λMcλ, λ,

Ĉ(µ) > Crµ > Crλ(1+H0cλ, λ) > Ĉ(λ),

so it must be the case that µ̂∗ 6 λ(1+Mcλ, λ). The proof
for µ∗ is identical given the corresponding bounds in
Lemma 1. �

5. Dynamic Optimization
In this section, we turn to ergodic control. We consider
a specific andwell-studied control problem, that of ser-
vice speed/rate control for the M/G/1 queue, similar
to that considered in Doshi (1978) and Mitchell (1973).

Our objective is to show how the same approach,
via an intuitive Brownian control problem, yields con-
trols that are universally nearly optimal. As a by-
product, we illustrate how the generator view (à la
Stein’s method) is extended to dynamic control.

In this section, the service requirement is drawn
from a (fixed) distribution Fs( · ) and the service rate
is controllable. The distribution Fs( · ) has a mean
of 1, standard deviation of σ, and finite exponential
moments.

This is different from our model in the previous sec-
tions, where the server works at a rate of 1 and arrival
i brings an amount of work si whose mean is a param-
eter of the model (and can vary within the queue fam-
ily). Here, following the model of Doshi (1978), the rate
itself is the choice.

The base service rate equals λ and can be sped up
using amultiplier 1+θ,where θ > 0. The actual service
rate is then

µ(θ)� λ(1+ θ).
The speed-up is λθ, and the larger it is, the costlier it
is but the smaller the workload.

We consider the sum of a long-run-average polyno-
mial holding cost and a quadratic control cost:

JV
p ,m(θ) :� lim sup

t→∞

1
t
Ɛx

[∫ t

0
[h(V(θ, s))m + (λθ(s))2] ds

]
,

where m > 2 and V(θ, t) is theworkload at time t under
the control θ. The workload control problem is given by

JV, ∗
p ,m � inf

θ∈ΘV

JV
p ,m(θ), (15)

where ΘV is the family of nonanticipative controls in
the standard sense—that is, with respect to the history

F t � σ f

{
V(θ, s),

∫ s

0
θ(u) du; s 6 t

}
.

Because the service time distribution is fixed and
arrivals are Poisson, the pair p � (λ, h) captures the
moving pieces in the model, and given H, we let
Q(H) :� {(λ, h): λ > H−1 , 0 < h 6 H}.

Within an asymptotic framework one can “push”
the queue into different asymptotic regimes by spec-
ifying how h scales with λ. Consider the case m � 2.
In optimality, the stationary workload is proportional
to h−1/4

√
λ (see Lemma 6). If hλ → h̄ > 0 as λ→∞,

the optimally controlled stationary workload is of the
order of

√
λ as in the so-called conventional heavy-

traffic regime. If, instead, hλ → 0 as λ > 0, the opti-
mal workload is orders of magnitude larger. With any
bounded sequence hλ 6 H, the utilization approaches
100% as λ grows. The way in which the utilization
approaches 100% is the regime.

Our result is universal and obviates the need to inter-
pret whether λ � 100 and h � 0.1 should be read as
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hλ � 1/
√
λ (and, hence, converging to 0) or as a con-

stant 0.1. Our recommended control and the perfor-
mance guarantee are given in terms of h itself rather
than an interpretation thereof.
When positive, the drift of V under a speed-up con-

trol θ is λ−λ(1+θ)�−λθ. Given an admissible control
(θ(t), t > 0),

V(θ, t)� V(0) − λ
∫ t

0
θ(s) ds

+

∫ t

0
λ(1+ θ(s))�{V(θ, s)� 0} ds + M(t),

where M(t) is a zero mean martingale that does
not depend on the control with predictable quadratic
variation

〈M(t)〉 � λ(1+ σ2)t .

It is heuristically intuitive to consider the reflected dif-
fusion,

Ŷ(θ, t)� Ŷ(0) − λ
∫ t

0
θ(s) ds +

√
λ(1+ σ2)B(t)

+ λ

∫ t

0
(1+ θ(s)) dL(s),

L(t)�
∫ t

0
�{Ŷ(θ, s)� 0} ds ,

as a proxy for V . The diffusion-optimal control is deter-
mined from the Brownian counterpart of the workload
control problem (15),

JY, ∗
p ,m � inf

θ∈ΘY

lim sup
t→∞

1
t
Ɛx

[∫ t

0
[h(Ŷ(θ, s))m + (λθ(s))2] ds

]
,

(16)

where ΘY is the family of processes (θ(s), s > 0) that
are nonnegative and progressively measurable with
respect to the self-filtration of the Brownian motion,
and θ takes values in [0,∞).6 A more complicated
version of this diffusion control problem, where a
finite buffer is also optimized, appears in Ghosh and
Weerasinghe (2007).
As is typical for diffusion control problems, we es-

tablish a verification lemma that stipulates the optimal-
ity of a stationary control derived from the following
HJB equation:

min
z>0
{¡̂z

λΨ(x)+(λz)2+hxm}�γp ,m ,

Ψ(0)�Ψ(1)(0)�0 and Ψ(1)(x)>0, for all x>0, (17)

where, given a constant z > 0, ¡̂z
λ is the operator

¡̂z
λ �−λz

∂
∂x

+
1
2λ(1+ σ

2) ∂
2

∂x2 . (18)

Given x > 0, p ∈Q(H), and a pair (Ψp ,m( · ), γp ,m) solv-
ing (17), the optimal z is trivially given by

S ∗p ,m(x)�
Ψ
(1)
p ,m(x)
2λ , (19)

so that the HJB equation translates to

1
2λ(1+σ2)Ψ(2)p ,m(x)− 1

4 [Ψ
(1)
p ,m(x)]2+hxm�γp ,m ,

Ψp ,m(0)�Ψ(1)p ,m(0)�0 and Ψ
(1)
p ,m(x)>0,
for all x>0. (20)

Using the speed-up S ∗p ,m(x), derived from the diffu-
sion control problem, results in theworkload dynamics

V ∗(t)� V(0) − λ
∫ t

0
S ∗p ,m(V ∗(s)) ds

+

∫ t

0
λ(1+S ∗p ,m(V ∗(s)))�{V ∗(s)� 0} ds + M(t),

and the control follows the trajectory

θ̂∗p ,m(t)�S ∗p ,m(V ∗(t)). (21)

Theorem 2 (Universality of the Diffusion Solution for the
Workload Problem). Fix m > 2. The HJB equation has a
unique solution. The stationary control θ̂∗p ,m and the corre-
sponding workload process V(θ̂∗p ,m , ·) � V ∗( · ) yield a cost
that is nearly optimal for the workload control problem: there
exists a constant CH,m such that, for all p ∈ Q(H),

JV
p ,m(θ̂∗p ,m)� JV, ∗

p ,m ±CH,mBm(λ, h)JY, ∗
p ,m−1

� JV, ∗
p ,m ±CH,mBm(λ, h)JV, ∗

p ,m−1 ,

where Bm(λ, h) :� (hm−1λ−2(m−1))1/((m+1)(m+2)).
In the special case where m � 2, JV

p , 2(θ̂∗p , 2) � JV, ∗
p , 2: the

diffusion-based stationary control is optimal (not just nearly
optimal) for the workload control problem.

Notably, the optimality gap for the problem with
holding cost hV(θ, t)m is given in terms of the opti-
mal cost in the problem with the lower-order holding
cost hV(θ, t)m−1. This parallels Theorem 1 where the
approximation gap for the kth moment of the virtual
waiting time is given in terms of the (k − 1)st moment.
For m > 2, because

Bm(λ, h) 6 (H ∨ 1)λ−2(m−1)/((m+1)(m+2)) ,

the optimality gap is negligible relative to the optimal
cost of the lower-order problem. For m � 2, the opti-
mality gap is 0.
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OptimalityGapsandGeneratorComparisons. TheHJB
equation is a Ricatti-type equation. Ricatti equations
are first-order, nonlinear ODEs and are relatively well
studied in the literature. Here, the added element is the
requirement on the positivity of the solution Ψ(1)(x).
The challenge for us is that we are not interestedmerely
in solvability (existence and uniqueness) but, rather, in
the derivative bounds. Having set up the ingredients,
the following informal discussion parallels the one in
Section 3.1, with the main exception being the replace-
ment of the Poisson equation with the HJB equation.
We spell these steps out to make these connections
clear.
The workload control problem for the Markov pro-

cess (not the diffusion) is studied by Doshi (1978).
Restricting attention to the Markov controls, Doshi
proves that if there exists a nonnegative service rate
(ξ(x), x > 0), a function Ψ, and a nonnegative con-
stant γD , such that
(i) for all admissible (according to Doshi’s defini-

tion) (ζ(t , x); t , x > 0)

lim
t→∞

Ɛx[Ψ(V(ζ, t))]
t

� 0, x > 0, and

(ii) the constant γD together with the function Ψ( · )
satisfies the Bellman equation

γD
� min

z>0
{(λz)2 + hxm − λ(1+ z)Ψ(1)(x)

+ λƐ[Ψ(x + s1) −Ψ(x)]}, x > 0;

and ξ(x) is the minimizer:

γD
� (λξ(x))2 + hxm − λ(1+ ξ(x))Ψ(1)(x)
+ λƐ[Ψ(x + s1) −Ψ(x)], x > 0,

then ξ(x) is the workload optimal control (and µ(x) �
λ(1+ξ(x)) is the optimal service rate); see theorem 4 in
Doshi (1978). In operator notation, the Bellman equa-
tion translates to

γD
� inf

z>0
{(λz)2 + hxm

+¡z
λΨ(x)},

where¡z
λ is the operator

¡z
λΨ(x)�−λ(1+z)Ψ(1)(x)+λƐ[Ψ(x+s1)−Ψ(x)]. (22)

By Taylor’s expansion,

Ψ(x+ s1)−Ψ(x)�Ψ(1)(x)s1 +
1
2Ψ
(2)(x)s2

1 +¯(|Ψ(3) |∗x , s1
s3

1),

where | f |∗x , y � supz∈[x , x+y] | f (z)|. As Ɛ[s1]� 1 and Ɛ[s2
1]�

1+ σ2,

λƐ[Ψ(x + s1) −Ψ(x)]� λΨ(1)(x)+ 1
2Ψ
(2)(x)λ(1+ σ2)

+ λ¯(Ɛ[|Ψ(3) |∗x , s1
s3

1]).

Defining e(x)� Ɛ[|Ψ(3) |∗x , s1
s3

1], we have

¡z
λΨ(x)�−λ(1+ z)Ψ(1)(x)+ λƐ[Ψ(x + s1) −Ψ(x)]

�−λzΨ(1)(x)+ 1
2λ(1+ σ

2)Ψ(2)(x)+ λ¯(e(x)).

We conclude that the Bellman equation should satisfy

γD ≈ inf
z>0
{(λz)2 + hxm

+ ¡̂z
λΨ(x)+ λ¯(e(x))}, x > 0,

where ¡̂z
λ is defined as for the diffusion in (18). In

turn, the Bellman equation for the jump process is
“almost” the HJB equation for a diffusion control prob-
lem. If λ¯(e(x)) is suitably bounded, then the solutions
to the jump-process’s Bellman equation and the HJB
equation should be suitably close. This connection is at
the core of the argument.

We do not rely directly on Doshi’s analysis of the
Markov policies in our proofs. We allow for a larger
family of policies, and within this larger family, we
show the universal near optimality of the stationary
policy that arises from the diffusion’s HJB equation.
As our outline above suggests, the first ingredient

in the proof of Theorem 2 is an analysis of the HJB
equation and the third derivative of its solution.

For a family of positive pairs {(ap ,m , bp ,m), p ∈ Q(H)},
we write ap ,m ∼ bp ,m if there exists a constant C > 1 such
that C−1 6 ap ,m/bp ,m 6 C for all p ∈ Q(H).
Lemma 5 (HJB and the Diffusion Control Properties). Fix
m > 2. A unique solution (Ψp ,m , γp ,m) to the HJB equation
exists for each p ∈ Q(H).
Properties:
(i) The third derivative satisfies, for all p ∈ Q(H),

−C0
H,mBm(λ, h)

(
xh1/(m+2)

λ2/(m+2)

)m−1

γp ,m−1 6 λΨ
(3)
p ,m(x)

6 C0
H,mBm(λ, h)

(
1+

(
xh1/(m+2)

λ2/(m+2)

)3m/2)
γp ,m−1 ,

where C0
H,m depends only on H and m.

(ii) The constant γp ,m satisfies γp ,m ∼ λ2m/(m+2)h2/(m+2).
(iii) For m � 2, (Ψp , 2(x), γp , 2) � (

√
hx2 , λ(1 + σ2)

√
h),

so thatΨ(3)p , 2 ≡ 0.
Verification: γp ,m is the optimal long-run average cost in

the diffusion control problem (i.e., JY, ∗
p ,m � γp ,m), and it is

optimal to use the stationary control (19).

Lemma 6 below is the control analogue of the con-
centration bounds in Lemma 1. It provides order-of-
magnitude estimates that are subsequently useful for
the optimality-gap bounds. Equation (24) captures how
the optimally controlled workload scales with h and λ.

Lemma 6 (A Priori Bounds). Fix m > 2. Then

JV, ∗
p ,m ∼ JY, ∗

p ,m . (23)
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In particular, JV, ∗
p ,m ∼ γp ,m ∼ λ2m/(m+2)h2/(m+2). Moreover,

V(θ̂∗p ,m , t) is positive recurrent, and for any k > 2,

Ɛ[V(θ̂∗p ,m ,∞)k]� lim
t→∞

1
t
Ɛx

[∫ t

0
(V(θ̂∗p ,m , s))k ds

]
∼ λ2k/(m+2)h−k/(m+2) , x > 0. (24)

Recall the operators ¡z
λ and ¡̂z

λ as defined in (22)
and (18).

Lemma 7. Fix p � (λ, h) and m > 2, and let (Ψp ,m , γp ,m)
be the solution to the HJB equation. For any admissible con-
trol θ,

Ɛx

[∫ t

0
[h(V(θ, s))m + (λθ(s))2] ds

]
>Ψp ,m(x) − Ɛx[Ψp ,m(V(θ, t))]+ γp ,m t +�x

p ,m(θ, t),
x , t > 0,

where

�x
p ,m(θ, t)� Ɛx

[∫ t

0
(¡θ(s)

λ Ψp ,m(V(θ, s))

− ¡̂θ(s)
λ Ψp ,m(V(θ, s))) ds

]
, x , t > 0.

If θ � θ̂∗p ,m , then the inequality is replaced with an equal-
ity. In the special case where m � 2, �x

p ,m(θ, t) ≡ 0 for any
control θ.

In proving the near optimality of the diffusion-based
control θ̂∗p ,m we must show that no other control can
do much better. To that end, we require performance
bounds for all “reasonable” control policies and not
only for the optimal control (which we do not explicitly
identify or assume to exist) or the diffusion-optimal
control.
A family of admissible policies (θp ,m , p ∈ Q(H)) is

said to be order optimal if

JV
p ,m(θp ,m) ∼ JV, ∗

p ,m .

Lemma 8. Fix m and let (Ψp ,m , γp ,m) be the ( family of )
solutions to the HJB equation. Then, there exist constants
C1

H,m , C2
H,m such that, for any order optimal family of policies

{θp ,m , p ∈ Q(H)},

lim inf
t→∞

1
t
�x

p ,m(θp ,m , t) > −C1
H,mBm(λ, h)JY, ∗

p ,m−1 ,

x > 0, p ∈ Q(H),

and under the stationary policy θ̂∗p ,m ,

lim sup
t→∞

1
t
�x

p ,m(θ̂∗p ,m , t) 6 C2
H,mBm(λ, h)JY, ∗

p ,m−1 ,

x > 0, p ∈ Q(H).

If an optimal control θ∗p ,m exists for each p ∈ Q(H),
then the family (θ∗p ,m , p ∈ Q(H)) is order optimal, in
which case Lemma 8 immediately implies bounds for
the optimal controls. If optimal controls do not exist for
some p, then we must work, instead, with the infimum
over the admissible controls.

Proof of Theorem 2. From Lemma 7 it follows that,
under any admissible control θ,

Ɛx

[∫ t

0
[h(V(θ, s))m + (λθ(s))2] ds

]
>Ψp ,m(x) − Ɛx[Ψp ,m(V(θ, t))]+ γp ,m t +�x

p ,m(θ, t),
x , t > 0.

Dividing by t and using Lemma 8, we have for any
order optimal family of policies

lim sup
t→∞

1
t
Ɛx

[∫ t

0
[h(V(θ, s))m + (λθ(s))2] ds

]
> γp ,m −C1

H,mBm(λ, h)JY, ∗
p ,m−1.

Recall that JV, ∗
p ,m � infθ∈ΘV

JV
p ,m(θ) <∞, where finite-

ness follows from Lemma 6. For each p, let θ̃p ∈ΘV be
such that

JV
p ,m(θ̃p) 6 JV, ∗

p ,m +
1
2 C1

H,mBm(λ, h)JY,∗
p ,m−1.

By Lemma 6, JV, ∗
p ,m ∼ JY, ∗

p ,m ∼ γp ,m . Because γp ,m−1 6
(h/λ2)2/((m+1)(m+2))γp ,m 6 H6/((m+1)(m+2))γp ,m and
Bm(λ, h) 6 H3(m−1)/((m+1)(m+2)), we have that (θp , p ∈
Q(H)) is an order optimal family and, in turn, that

JV, ∗
p ,m > J

V
p ,m(θ̃p) − 1

2 C1
H,mBm(λ, h)JY, ∗

p ,m−1

> γp ,m − 3
2 C1

H,mBm(λ, h)JY, ∗
p ,m−1.

Using the second parts of Lemmas 7 and 8 for θ� θ̂∗p ,m ,
we have

JV,∗
p ,m6J

V
p ,m(θ̂∗p ,m)

�limsup
t→∞

1
t
Ɛx

[∫ t

0
[h(V(θ̂∗p ,m ,s))m+(λθ̂∗p ,m(V(s)))2]ds

]
6γp ,m+C2

H,mBm(λ,h)JY,∗
p ,m−1.

Thus, the error bounds hold with CH,m �
3
2 C1

H,m

+C2
H,m . Finally, it follows from Lemma 6 that JY,∗

p ,m−1
∼JV,∗

p ,m−1. �

6. Concluding Remarks
Brownian approximations, like the central limit theo-
rem that they generalize to queueing processes, pro-
vide significant tractability. They are typically sup-
ported by limit theorems, and these, in turn, are based
on assumptions reflecting an implicit interpretation of
a concrete system at hand.
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Figure 9. (Color online) Time-Dependent Performance for M/M/1 with µ � 1: ρ � 0.9 (Top Left) and ρ � 1 (Top Right), Scaled
Absolute Gaps (Bottom) (for ρ � 0.9, the Sign of the Gap Changes at About t � 110.)
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As t grows, the scaled gap will eventually reach that of the stationary distributions.

In this paper, we establish the universality of the
most intuitive Brownian approximation of the funda-
mental M/GI/1 + GI queue. We cover performance
analysis as well as static and dynamic optimization.
From a toolbox perspective, this paper supports the

often applied heuristic of using Brownian approxima-
tions for modeling. From a technical perspective, our
analysis presents a generalizable framework based on
queue families that can be used, we hope, to study uni-
versality for extensions to our base model (to multiple
servers, multiple customer classes, etc.).

Our analysis of stationary performance leaves open
the question of whether Brownian approximations
are universally accurate for transient (time-dependent)
performance. A simple experiment suggests that the
answer may be positive. For the M/M/1 queue,
we computed the time-dependent first and second
moments (starting empty) using known expressions
for the time-dependent distribution (Asmussen 2003,
theorem III.8.5). We also computed these moments for

the corresponding Brownian queue (Harrison 1985,
section 3.4). The results are plotted in Figure 9.

Evidently, the M/M/1 and its natural Brownian
queue are very close for both values of ρ. The bot-
tom graph suggests that Proposition 1 extends to
time-dependent performance—that is, that Ɛ[W2(t)] −
Ɛ[Ŵ2(t)]�±(CH, 2/λ)Ɛ[Ŵ(t)] for suitable constant CH, 2.
That the gap is exactly Ɛ[Ŵ(t)] for ρ � 1 is expected
because, for a null recurrent or transient M/M/1, the
boundary is rarely hit and the reflection has little effect.
The second moments of the free Brownian motion and
the free Poisson process are the same. The scaled gap
varies with time for ρ � 0.9 but remains bounded.
The motivation for using Brownian approximations

is their relative tractability. Time-dependent expecta-
tions for the M/GI/1+GI are difficult to compute, but
for the Brownian queue, these expectations can be com-
puted by solving suitable PDEs. To bound the approx-
imation error, the theory of strong approximations pro-
vides a framework for sample path comparisons, but it
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may be too heavy a hammer. It seems that, to compare
marginal moments (rather than sample path gaps),
tighter bounds can be obtained by using an approach
that builds on the underlying Markovian structure of
the queue. Our small experiment above suggests that
it may be possible to expand universality and the
bounds that accompany it, which express the error in
the kth-moment approximation in terms of the (k−1)st
moment, from t �∞ to t ∈ [0,∞).
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Endnotes
1The exception is the very special case in which µ equals the patience
rate θ.
2The virtual waiting time, in the first order, stabilizes at the point at
which input� output: λF̄a(w̄)� µ∧ λ.
3This condition can be relaxed to λcp |Fa(w̄p + ycp) − Fa(w̄p + xcp)| 6
H(1+ (|x | ∨ |y |)H)|y − x | without affecting the results that follow.
4Although this constraint is not necessary, it simplifies the exposition
of what follows. The service rate of 0 can be ruled out by imposing,
instead, a condition on the cost parameters.
5Since the Hyperexponential distribution has a decreasing hazard
rate, it indeed follows from Bassamboo and Randhawa (2010) that for
sufficiently low abandonment costs, the optimal choice is to overload
the queue.
6To be precise, we should write JY, ∗

p ,m(x) to capture the possible
dependence on the initial condition. The independence of x does
follow, as is standard, from the verification arguments in Lemma 5.
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