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A B S T R A C T

Photomultiplier tubes continue to be a reliable, cost-effective means of detecting light produced by the
interaction of subatomic particles with detectors. For detectors where the expected light yield is modest,
characterizing the low light response of the tube is of paramount importance. Several phenomenological models
addressing this issue exist. This paper presents side-by-side comparison between three such approaches as they
arose from a large scale testing of tubes to be used by a Ring Imaging Cherenkov detector at Jefferson Lab. The
main characteristics of the tubes, such as the gain, were found to be consistent within the expected uncertainties
for all models considered. Leveraging the extensive nature of the study, a machine learning algorithm based on
an artificial neural network capable of obtaining the tube characteristics directly from the raw ADC data was
developed and trained. The trained neural network produced results fully compatible with the three models
considered, with substantial savings in both computation time and experimenter overhead.

1. Introduction

Photomultiplier Tubes (PMTs) have a long history of reliable service
in nuclear and particle physics experiments, as well as other fields that
require precise light detection (astronomy, nuclear medicine, defense).
More modern alternatives, such as avalanche photodiodes, for light
detection do exist; however, PMTs exhibit several desirable charac-
teristics such as large potential gains, good gain stability, radiation
hardness, long life expectancy. These properties, combined with the
cost effectiveness in covering large detection areas will ensure their
continuous usage in current and future experimental setups.

The data presented in this work stems from the more than 1000
PMTs tested in the Nuclear and Particle Physics Laboratory at James
Madison University (JMU-PNP) for the Gas Ring Imaging Cherenkov
(GRINCH) detector [1] in the experimental Hall A at the Thomas Jef-
ferson National Accelerator Facility (JLab). To minimize the cost of the
detector GRINCH has cylindrical mirrors that project the Čerenkov light
onto a large (500+) array of 28.2 mm ET Enterprises 9125FLB17 PMTs.
These were recovered from BABAR’s DIRC [2] detector (‘‘Detection of
Internally Reflected Cherenkov light’’).

As with any Cherenkov detector the anticipated light level in
GRINCH is very low (on average seven photoelectrons (p.e.) per event),
thus the one photoelectron response, the gain and its stability, as
well as the dark current were studied in detail as part of these tests.
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Furthermore, because these were reclaimed PMTs, extensive testing and
selection from a larger pool of tubes was required.

This paper is structured as follows. In Section 2 we briefly describe
the test stand and the testing protocol used for this study. Section 3
introduces the three phenomenologic parameterizations used to model
the low light response of a PMT. Section 4 details the PMT character-
istics relevant for this study and describes the data analysis procedure.
The results from the three models are compared in Section 5. Con-
siderations specific to large scale PMT testing are given in Section 6,
including the development of a Machine Learning technique that can
aid in analyzing such data. The last section presents our conclusions.

2. Test stand

The test stand designed and built in the Nuclear and Particle Physics
Laboratory at JMU was optimized to study the PMT characteristics
relevant to low light environment operation:

• the position of the pedestal and its stability with respect to the
high voltage.

• the position of the one photoelectron peak.
• the peak-to-valley ratio for the one photoelectron peak.
• the PMT gain and its dependence on the high voltage.
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Fig. 1. Test stand layout: Mechanical and Electronic Layout for the PMT test stand used for the current study. Left: Schematic of the PMT test stand built and operated at JMU.
The test stand could accommodate seven PMTs at a time, only four are shown here. Right: Logical scheme for testing one PMT.

• the Dark Current.

The meaning of most of these parameters follows the definitions
from the Photomultiplier Handbook [3]. The peak-to-valley ratio was
defined as the height of the one photoelectron peak divided by the
height of the minimum (valley) between the pedestal and the one
photoelectron peak. During the analysis this provided a convenient way
of identifying and eliminating tubes that did not show a clear pedestal
to one photoelectron peak separation. In this work the dark current
was defined as the count rate above 0.25 photoelectrons in the absence
of the light signal. All measured ADC spectra and relevant fit results
and extracted parameters were saved in a ROOT [4] file to facilitate
subsequent analysis (rejecting tubes, sorting tubes, etc.).

The right side of Fig. 1 shows the logical diagram for testing
one PMT. An AVTEC AVP-AV-1-C pulse generator operating at 500–
1000 Hz was used to pulse a blue LED with a peak emission wavelength
of 460 nm, in the range of the expected Cherenkov radiation the PMTs
are expected to detect. The width of each pulse was 2 ns. The PMT
signals were digitized using a CAEN 16 Channel dual range QDC (V965)
and were recorded using a VME-based data acquisition system running
CODA, the JLab-developed data acquisition software [5]. For each PMT
ADC spectra were recorded both on the 25 fC/channel and on the
coarser 200 fC/channel QDC settings.

The setup was designed to accommodate the testing of several PMTs
in parallel. The light signal from the LED was split into a bundle of
seven optic fibers. Each fiber was fed into a custom 3D-printed cap that
fits over the face of the PMT, as shown on the left hand side of Fig. 1.

To reduce the light level a low-cost (840 steps/rotation), remotely
controlled polarized filter consisting of two linear filters rotating with
respect to one another was built and inserted between the LED and
the optic fiber bundle, as shown in Fig. 1. The reliability of the filter
was tested by measuring the response of a single PMT using various
filter settings (i.e. different readings of the motor encoder). Fig. 2 shows
ADC spectra from this PMT for six light levels corresponding to average
number of photoelectrons between 0.02 and 0.65, as obtained from a
fit of the ADC data to the Bellami et al. model described below. As
shown, the calculated gain of the PMT is very stable (at the 5% level)
for all light levels tested. Based on this finding the filter level for the
bulk testing was set such that ∼90% of the triggers are pedestal events.

After being installed in the dark box (and every time thereafter
when the dark box was opened) the PMTs were conditioned, with the
high voltage turned on, for an hour before starting the data acquisition.
The typical testing sequence for a batch of PMTs involved recording
ADC spectra with the LED pulsed at 500–1000 Hz for several high

Fig. 2. Light source reliability testing: ADC spectra for PMT number 1988 for six
different filter settings.

voltage settings (800–1400 V). The dark current run was taken at
1200 V. The running time was 5–10 min for the light pulsing runs and
at least an hour for the dark current measurements.

3. Modeling the PMT response to low light levels

The low light response of photomultiplier tubes has been investi-
gated extensively and several parameterizations have been developed.
All of these studies make certain assumptions about the underlying
physical phenomena associated with the conversion of the light signal
into an electrical signal and its subsequent amplification and are thus
able to model the phototube’s response to light. The parameters of these
models are obtained by fitting the PMT signal and they can be used to
evaluate the relevant characteristics of the PMT. This section is a brief
overview of the models used in this study [6–8].

3.1. The Dossi et al. model

In developing the ideal Single Electron Response (SER) of a PMT
to a low light source this model assumes that the dark noise differs
significantly from the (low) light signal and therefore cannot be used
for calibration. Multiple photon emission and dynode noise further
complicate the extraction of the ideal SER.
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The ideal SER quoted in [6] is a sum of a Gaussian and an exponen-
tial:
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where 𝐴 is the slope of the exponential part of the SER, 𝑝𝐸 is the
fraction of events under the exponential, 𝑥𝑝 is the pedestal position, 𝑥0
and 𝜎0 are the mean value and the standard deviation of the Gaussian
part of the single p.e. response, respectively. The factor 𝑔𝑁 compensates
for the usage of a truncated Gaussian.
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The observed PMT response is the convolution of the ideal 𝑆𝐸𝑅0
with (Gaussian) noise:

𝑆𝐸𝑅(𝑥) = 𝑆𝐸𝑅0(𝑥)⊗𝑁𝑜𝑖𝑠𝑒(𝑥) (3)

Even for low light intensity the observed PMT response contains
a component stemming from multiple primary p.e. Assuming a linear
PMT response and taking into account the Poisson distribution (and its
Gaussian approximation for the case when the number of photoelec-
trons is larger than 2), the multi photoelectron response is modeled
in [6] as:
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Here 𝜇 is the expected (or average) number of photoelectrons per LED
pulse.

3.2. The Bellamy et al. model

This model [7] treats the PMT as an instrument consisting of two
independent parts: the photon detection system, responsible for con-
verting (a part of) the incoming photon flux into electrons and the
dynode-based amplifier system — which amplifies the initial charge
produced by the photocathode.

The model assumes that the PMT response to a single photoelectron
can be approximated by a Gaussian and that multiple photon emissions
can be treated independently. The ideal SER is then a convolution
between the multielectron Gaussian and the corresponding Poisson
distribution.

𝑆𝐸𝑅0(𝑥) = 𝑃 (𝑛;𝜇)⊗𝐺𝑛(𝑥) (5)

with 𝑃 (𝑛;𝜇) the Poisson probability distribution function and
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with 𝑄1 the average PMT charge for one photoelectron collected at the
first dynode, 𝜎1 the standard deviation of the charge distribution, and
𝑛 the number of photoelectrons collected.

The background processes are modeled as either a Gaussian (low
charge processes present in all events such as leakage current) or as
an exponential function (for discrete processes such as thermal emis-
sion). The ‘‘realistic’’ PMT spectrum is then obtained as a convolution
between the ideal SER and the background processes.

3.3. The Degtiarenko model

In this more recent paper [8] the author develops a new method
for describing the PMT response by taking into account the discrete
statistical behavior of the electron cascade as well as allowing for
non-uniformities in the gain structure of the first dynode. The spread
induced by the second (and subsequent) dynode(s) is taken into ac-
count as well. This approach was used to successfully describe the

performance of several types of photomultiplier tubes. According to this
model, the normalized experimental PMT distribution can be approxi-
mated as:
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where 𝑎 is the pedestal subtracted, normalized signal amplitude (nor-
malized with respect to the model parameter scale), 𝒅 includes the
model variables 𝑠𝑐𝑎𝑙𝑒, 𝜎, 𝜇 and 𝜉, 𝒕 includes the model variables 𝜈1, 𝜈2,
𝜈3, 𝛼2, and 𝛼3. A more detailed list of definitions and physical interpre-
tation of the various quantities appearing in Eq. (7) can be found in [8].
Given the highly convoluted nature of the model the Ref. [8] advocates
fitting the experimental data in stages, with various combinations of
parameters being restricted/fixed while other parameters are allowed
to vary. While this procedure does work, it tends to add a substantial
amount of computer and/or experimenter overhead.

4. Data analysis

The raw data acquired was processed using a JMU-PNP-developed
C++/ROOT-based program that converted the data into ROOT trees
and filled various ADC histograms. To determine the parameters listed
earlier the position of the pedestal and the one photoelectron peak have
to be determined.

Gain Calculation.
For PMTs operating at relatively large light levels (several photo-

electrons) the gain can be calculated from the width and position of
the peak signal in the ADC distribution [9]. This approach relies on
the fact that at large number of photoelectrons the Poisson distribution
can be approximated with a Gaussian. The GRINCH PMTs however are
expected to operate at very low light levels. In such an environment
one needs to carefully model the PMT response in order to obtain
the position of the pedestal and of the one photoelectron peak. As
highlighted in the previous section several papers [6–8] describe the
PMT response to low light intensity levels, providing sophisticated
fitting functions/parameterizations.

For this study methods corresponding to these models were imple-
mented in the PMT class defined in the C++ analysis. These functions
were then used to fit the ADC spectra to obtain the position of the
pedestal and of the first photoelectron peak, based on which the PMT
gain can be calculated. A typical result of such a fitting procedure is
shown in Fig. 3. For this particular run the light level was adjusted,
using the polarized filter, to a level (∼1.3 p.e.) where the contributions
from two/more photoelectrons cannot be ignored. These contributions
are depicted using the dashed curves in Fig. 3. In the code the fit
parameters are named using the same convention as the original paper
for all three models considered. For the Bellamy et al. model 𝑄1 is
proportional to the tube gain.

High voltage dependence of gain.
The gain for each tube was measured at several high voltages

(typically five settings) in the range 800 to 1400 V. The PMT response
was then fitted to the three models described earlier.

For each high voltage setting the fit parameters for each model and
their uncertainties were saved in a database indexed with the PMT
number. For each tube the gain was plotted as a function of the applied
high voltage and fitted with a simple exponential, as shown in Fig. 4:

𝐺 = 𝐴 𝐻𝑉 𝛾 (8)

The 𝐴 and 𝛾 coefficients shown in Fig. 4 are valid if the high voltage
in Eq. (8) is expressed in kV, otherwise the fit suffers from severe
instabilities due to the 𝐴 term becoming very small.1

Dark Current.

1 Alternatively one can try the more robust functional form 𝐺 = 𝑒𝑝0+𝑝1𝐻𝑉 .
Generally the 𝐻𝑉 𝛾 form is preferred as the 𝛾 factor can be related to the
number of PMT dinodes.
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Fig. 3. PMT response fitting using the Bellamy et al. model for PMT # 2029 at 1000
V. The naming of the parameters matches the convention used in [7].

Fig. 4. Gain vs high voltage: PMT gain as a function of the applied High Voltage for
tube # 494, together with an exponential fit of the measured gain.

Another parameter of interest for photomultiplier tubes expected
to operate in low light environments is ‘‘dark current’’ (also known as
‘‘dark noise’’, ‘‘dark count’’, etc.),2 i.e. the response of the PMT in the
absence of any light signal. For an in-depth discussion of the possible
sources of this effect see for example [3].

In the present study the dark count rate was measured at a high
voltage setting of 1200 V, which is in the middle of the operating range
for the 9125FLB17 PMTs. With the light source turned off each tube was
conditioned under high voltage for at least one hour prior to taking
an hour-long data run. The position of the pedestal and of the one
photoelectron peak were obtained using the corresponding low light
data acquired at this voltage. The number of counts above one quarter
photoelectron level in the no-light run was recorded and normalized
with respect to the run time to obtain a rate. A typical result is shown in
Fig. 5. The (red — online) vertical line denotes the position of the 0.25
photoelectron level. As was the case for the gain, the dark count rate
can be used to sort and, if need be, reject tubes based on the particular
experimental needs.

The distribution of dark count rates measured in this study is shown
in Fig. 6. Tubes that had count rates higher than 5 kHz (about 5.5%
of the total) were deemed unsuitable for the GRINCH detector. The
cutoff limit is denoted by the vertical (red — online) line in Fig. 6.
The ‘‘before’’ and ‘‘after’’ counters keep track of the number of tubes
selected based on this criterion.

2 For this study we prefer the term ‘‘dark count rate’’.

Fig. 5. Dark Count rate for a PMT: Dark count rate measurement for PMT tube #
494. The (red — online) vertical line denotes the position of the 0.25 photoelectron
level. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Dark Count Rate for a batch of tubes: Distribution of dark count rates measured
in this study. Tubes with rates higher than 5 kHz were deemed unsuitable for the
GRINCH detector. The cutoff limit is denoted by the vertical (red — online) line. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5. Single photoelectron response model comparison

As mentioned in Section 3 several models for the representation of
the low light response of a PMT exist. Three of these models were
considered in this study. For brevity these were labeled ‘‘0’’ for the
Bellamy et al. [7], ‘‘1’’ for the Dossi et al. [6], and ‘‘2’’ for the
Degtiarenko model [8].

Fig. 7 shows the three-way comparison between these models when
fitted to the same (low light, about 0.1 p.e. per LED pulse) ADC
spectrum. The gains calculated using the three models are in good
agreement with each other.

This comparison was expanded to the whole set of PMTs tested
in this study. Fig. 8 shows the gains obtained using Model 1 (Dossi
et al.) versus the gain obtained using Model 0 (Bellamy et al.). The line
represents the first diagonal. The relative difference between the gain
obtained from an individual model and the weighted average gain is
shown in Fig. 9 for all models considered. It can be seen that, for this
particular (large) batch of PMTs, the gains obtained using the various
models are consistent with each other at the 20% level.
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Fig. 7. PMT model comparison for a single tube: Three-way comparison between the PMT signal response models considered in this study.

Fig. 8. Two-way model comparison for a batch of tubes: Two dimensional comparison
of the gains obtained using two different PMT models for a large batch of tubes. Model
labels are as defined in the text.

Given the shape of the signal all PMT response models considered
are highly non-linear, therefore small changes in the starting fit pa-
rameters often lead to substantial changes in their output values. To
study this effect the main startup parameter (namely the initial guess
for the position of the one photoelectron peak) was varied and the
fitting procedure was repeated, saving the value of the gain and the
𝜒2 per degree of freedom. It was observed that for a change of 1 in
𝜒2∕𝐷𝑂𝐹 (with respect to the 𝜒2∕𝐷𝑂𝐹 of the nominal/best fit) due to
change in the startup parameter, the value of the gain can differ by as
much as 15%–20%.

Furthermore, due to its nonlinearity the convergence of the fitting
procedure is highly dependent on the initial values for the model
parameters. As noted in [8] ‘‘the stability of the multiparametric fitting

Fig. 9. Three-way model comparison for a batch of tubes: Ratio of the gain residual
divided by the average gain for the three different PMT models considered in this
study. Model labels are as defined in the text.

procedure strongly depends on the right choice of the parameters’
initial value’’. An often-used solution is to constrain the fit for at least
some of its parameters (either by fixing them or by only allowing
them to vary in relatively narrow ranges), carry out the fit procedure,
save the best values for the parameters, update/expand the range over
which parameters can vary, redo the fit. The cycle is then repeated
several times. This type of approach can and was automated in our
analysis and it produced reasonable results for most PMT spectra.
Given the complexity of the functions involved (double summations,
convolutions, etc.) and the fact that each spectrum is fitted repeatedly
as explained above, even when working with compiled code, as was the
case in this analysis, the fitting procedure can be lengthy. For the large
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Fig. 10. Typical ANN network: General schematic of a multi layer perceptron network.
Only one hidden layer is shown here.

scale testing reported here this automated constrained fitting procedure
produced acceptable results for ∼80% of the PMT distributions. For
the remaining spectra the startup values of the fit parameters had to
be interactively assigned. This additional step greatly increased the
amount of time required to complete the fit.

6. Artificial neural network based PMT model

Given the difficulties associated with the fitting procedure outlined
above alternative ways of obtaining the PMT gain were explored. Ide-
ally, one would want to leverage the results obtained from model-based
fits while at the same time avoid some of the pitfalls associated with
these. To solve this apparent conundrum an artificial neural network
(ANN) was used to model the PMT response.

In this scheme a subset of the PMT spectra were fitted using the
models and the result (as ‘‘labels’’) of these fits was used to train the
ANN. The results reported here were obtained using the weighted av-
erage gain of the three models as the ‘‘label’’. Training with individual
model results yielded similar performance. This approach takes full
advantage of having a physics-based model while dispensing of the
time-consuming need to repeatedly fit problematic spectra. For testing

significant number of tubes one can fit a subset of the PMTs to a model,
train the neural network, then use the now fixed ANN to obtain the gain
for the remaining tubes. This should result in a substantial increase in
the analysis speed.

In this study a multi layer perceptron (MLP) type of ANN was
used. As shown in Fig. 10 an MLP is a simple feed-forward structure
consisting of ‘‘neurons’’ (circles in Fig. 10) interconnected via weighted
links called ‘‘synapses’’ (arrows in Fig. 10). Each MLP network has an
input layer which accepts the raw data and, optionally, normalizes it,
an output layer, and one or more hidden layers. The neurons in each
layer are connected with all neurons in the previous as well as the next
layer, but are not interconnected among themselves.

The functionality of neurons (other than the input layer which
just copies the raw information) can be summarized as follows: the
neuron calculates the weighted sum of all of its inputs using the weights
associated with each synapse (the set of synapses connecting a layer to
the next has a corresponding ‘‘weight matrix’’ associated with it, 𝑤𝑖𝑗 in
Fig. 10) and applies its bias. These value is then used as the input for
its ‘‘activation’’ function. For this study this was the so-called ‘‘Logistic’’
or ‘‘Sigmoid’’ function:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

(9)

In this study the input layer is the full 12 bit QDC spectrum.
Even accounting for empty channels this will result in too many input
parameters — and correspondingly an unrealistically large number of
network weights to be fitted. To reduce the number of inputs (or
‘‘features’’) to a manageable size the following procedure was used:
interpreting the raw PMT response as a probability distribution func-
tion (PDF) the cumulative distribution function (CDF) was obtained.
The CDF was subsequently divided in q-quantiles and the positions of
the corresponding QDC channels and the original spectrum values at
those points were retained as the ANN input values. In this study each
spectrum was partitioned in ventiles (i.e. 20-quantiles), resulting in 40
inputs for the neural network. Fig. 11 shows four typical PMT spectra
and the position of their 20-quantiles (red dots — online). Through
further optimization of the ANN the number of the input parameters
can be further reduced, though that is beyond the scope of this work.

Fig. 11. PMT spectra and the 20-quantiles: Typical PMT spectra and the position of their 20-quantiles (red dots — online).

48



D. Coquelin, T. Jobin, W. Kemmerer et al. Nuclear Inst. and Methods in Physics Research, A 928 (2019) 43–50

Fig. 12. ANN after training: ANN structure after training. The line thickness is proportional with the weight of that particular synapse.

Using this approach a 40:5:4:1 (two hidden layers with 5 and
4 neurons respectively) ANN was setup and trained using half the
available fitted PMT spectra. The remaining spectra were used for
testing the results of the ANN after training. Fig. 12 shows the structure
of the neural network at the end of the training cycle. The QDC channel
numbers are represented with solid squares while the corresponding
number of counts are represented using open squares. To improve the
efficiency of the training it was useful to normalize both the input
values and the output to one. The two hidden layers are represented via
solid/open triangles, while the output (in this case the gain) is shown
using a star symbol. The line thickness is proportional to the weight
associated with that particular synapse. If one were to further optimize
this network, a close examination of the weights between the input
layer and the first hidden layer and culling the inputs with very low
weights would be the obvious starting place.

To test the validity of this approach the ANN was used to evaluate
the gain for the PMTs not used for training. Fig. 13 shows the relative
difference between the artificial neural network prediction and the
model fit. The distribution shows very little bias (∼1%–2% level) and its
width (∼18%) is commensurable with the differences reported earlier
between various models considered.

7. Conclusion

Results based on the extensive testing of a large (1000+) set of
photomultiplier tubes were presented. As these devices will be used
in a Cherenkov detector the single photoelectron response, the dark
current, and the gain dependence on the tube high voltage were the
main measured parameters. Three different phenomenologic parame-
terizations were implemented in C++ and used to model the low light
PMT response. The gains obtained using these three models were shown
to be equivalent within the estimated 15%–20 % uncertainties. As these
models are highly non-linear they exhibit a very strong dependence on
the initial parameters, often requiring time-consuming fine tuning. To
address this problem a Machine Learning technique was developed to
obtain the gain directly from the raw ADC spectrum: a neural network

Fig. 13. ANN performance: Relative difference between the ANN and model-based
gains, evaluated for the test set only.

was trained on a subset of the existing measurements using the average
model prediction as labels and the 20th quantile of the raw ADC
spectrum as the features. The gain obtained using the neural network
was validated on a test set and its performance was similar with the
analytic models. While this study is specifically aimed at characterizing
tubes for a specific detector (GRINCH) to be used at Jefferson Lab,
some of the techniques developed here can be reused for other similar
PMT-testing projects.
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