
Representable Matrices: Enabling High Accuracy
Analog Computation for Inference of DNNs using

Memristors

Baogang Zhang∗, Necati Uysal∗, Deliang Fan† and Rickard Ewetz∗
∗University of Central Florida, Orlando, FL, 32816, USA

†Arizona State University, Tempe, AZ, 85281, USA

baogang.zhang@knights.ucf.edu, necati@knights.ucf.edu, dfan@asu.edu, rickard.ewetz@ucf.edu

Abstract—Analog computing based on memristor technology
is a promising solution to accelerating the inference phase of
deep neural networks (DNNs). A fundamental problem is to
map an arbitrary matrix to a memristor crossbar array (MCA)
while maximizing the resulting computational accuracy. The
state-of-the-art mapping technique is based on a heuristic that
only guarantees to produce the correct output for two input
vectors. In this paper, a technique that aims to produce the
correct output for every input vector is proposed, which involves
specifying the memristor conductance values and a scaling factor
realized by the peripheral circuitry. The key insight of the
paper is that the conductance matrix realized by an MCA
is only required to be proportional to the target matrix. The
selection of the scaling factor between the two regulates the
utilization of the programmable memristor conductance range
and the representability of the target matrix. Consequently, the
scaling factor is set to balance precision and value range errors.
Moreover, a technique of converting conductance values into state
variables and vice versa is proposed to handle memristors with
non-ideal device characteristics. Compared with the state-of-the-
art technique, the proposed mapping results in 4X-9X smaller
errors. The improvements translate into that the classification
accuracy of a seven-layer convolutional neural network (CNN)
on CIFAR-10 is improved from 20.5% to 71.8%.

I. INTRODUCTION

Deep neural networks (DNNs) have in recent years achieved

remarkable results in terms of image, audio, and video recog-

nition [6]. The arising solution to enable the computation-

ally heavy DNNs to be deployed on edge-devices in the

Internet of Things is to leverage memristor-based technology.

Memristor crossbar arrays (MCAs) can perform matrix-vector

multiplication in the analog domain with orders of magnitude

smaller power and latency than in the digital domain [5], [4].

Moreover, the use of MCAs allow matrices to be stored in-

place, which reduces data fetching and communication costs

that fundamentally bounds the performance of any computing

system that processes large amounts of data [8], [2], [9].

Matrix-vector multiplication is performed using an MCA

with access transistors by first programming the conductance

values of the memristors to realize a conductance matrix G,

which is illustrated in Figure 1(a) [3]. Next, an input vector of

voltages (vin) are applied to the vertical columns and a vector

of output voltages (vout) are measured from the horizontal

rows. The inputs are provided to the MCA using digital-

to-analog converters (DACs) and the outputs are converted

This research was supported in part by NSF awards CCF-1755825 and
CNS-1908471.

(a) (b)

Fig. 1. (a) An MCA used for matrix-vector multiplication. (b) Classification
accuracy in software and MCA based hardware on MNIST and CIFAR-10
using the mapping in [5].

into digital values using transimpedance amplifiers (TIAs) and

analog-to-digital converters (ADCs). The output voltages vo
are equal to RsGvi, where Rs is the feedback resistances of

the TIAs [3], [5]. Next, the output voltages are scaled into

digital values. However, if a weight matrix is mapped to an

MCA without considering effects as IR-drop, programming

errors, and non-ideal device characteristics, the computational

accuracy will be degraded into noise [5]. In particular, the

accuracy is degraded by the IR-drop across the non-zero input,

output and wire resistance in the MCA.

Techniques to map an arbitrary matrix W to an MCA have

been studied in [3], [12], [7], [5]. The conductance matrix

G realized by a set of memristor conductance values g can

be determined analytically using Modified Nodal Analysis

(MNA) [7]. Next, the effective matrix realized by an MCA

(W r) is obtained by scaling G with a factor (1/α), which

is realized by the peripheral circuitry. In [7], the conductance

values g were determined by minimizing the square of the

Frobenius norm of (W −W r) using steepest gradient decent.

However, the method is unable to consistently converge for

arbitrary matrices. In [5], a technique of tunning conductance

values (or state variables of non-ideal memristor devices)

to minimize ||(W − W r) · vcal||
2 using Newton’s method

was proposed, where vcal is a calibration vector. The main

limitation of these works is that the scaling factor α was

not explicitly optimized. Nevertheless, the technique in [5]

enabled a five-layer feed-forward neural network to be mapped

to a memristor based platform while achieving software level

accuracy on the MNIST dataset. However, when the technique

is used to map a seven-layer convolutional neural network

(CNN) to a MCA based platform, the classification accuracy

drops from 75.2% to 20.5%, which is shown in Figure 1.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE

In this paper, a technique is proposed to map an arbitrary

matrix W into a scaling factor α and memristor state variables

s. The main innovations of the paper are summarized, as

follows:
• The problem of specifying (s, α) is converted into a

problem of specifying (g, α). The technique is based

on replacing each series connected memristor and access

transistor with an ideal conductor. After the conductance

values g have been determined, Newton’s method is used

to obtain the equivalent state variables s.

• The memristor conductance values g are only required

to be specified to realize a conductance matrix G that

is proportional to the matrix W . Next, the conductance

matrix is effectively scaled with 1/α such that W is

effectively realized. Nevertheless, the utilization of the

memristor conductance range is also regulated by the

scaling factor α. If α is set too small, the errors will

be dominated by the limited precision of the memristors.

If α is set too large, the errors will be dominated by

value errors introduced by IR-drop. In particular, it is

impossible to represent small and large values in the

far-end of an MCA because of IR-drop. We refer to

the insights of the matrices that can be realized at

different locations in an MCA as defining the space of

representable matrices. Consequently, α is specified while

balancing precision and value range errors.

• Given α, the conductance values g are specified mini-

mizing ||(W − W r)||2F using steepest gradient decent,

where ||(W −W r)||2 is called the total errors. After it is

impossible to further reduce the total errors, the matrix

W is updated into a new target matrix W t in order to

ensure that ||(W − W r) · vcal||
2 = 0, where vcal is a

calibration vector selected from the input vector space.

• The experimental results show that the proposed mapping

technique results matrix-vector multiplication with 4X-

9X higher computational accuracy compared with in [5].

The improvements translate into that the classification

accuracy of a seven-layer CNN is improved from 20.5%
to 71.8% on CIFAR-10, which is close to the software

accuracy of 75.2%.

II. PRELIMINARIES

A. Circuit model of MCAs [7], [5]

Figure 2 shows two circuit models for the MCAs in Fig-

ure 1. In Figure 2(a), the memristors and the access transistors

are modeled using non-linear equations. The current im(s, vm)
through a memristor is a non-linear function of the state

variable s and the voltage vm across the device. The current

through each access transistor it(vs, vd, vg) is a non-linear

function of the source, drain, and gate voltage. A simplified

circuit model of the MCA when both the memristors and

the access transistors are treated as ideal devices is shown in

Figure 2(b), which allows them to be replaced with a single

ideal memristor g (or an conductor with lower and upper

bounds).

B. Matrix realized by an MCA

The matrix W r realized by an MCA is a function of g and

α, i.e., W r = f(g, α). For the circuit model in Figure 2(b), the

(a) (b)

Fig. 2. MCA with (a) non-ideal and (b) ideal devices.

realized matrix W r can be obtained analytically, as follows:

W r = G/α (1)

where G is the conductance matrix realized by the resistive

network and and α is an arbitrary scaling factor realized by the

peripheral circuitry. The conductance matrix G is a non-linear

function of the memristor conductance values g. G is obtained

by formulating a system on linear equations that capture the

resistive network using MNA, as follows:

Y (g)

[

v
vdac

]

=

[

0
vin

]

, (2)

where Y (g) is a matrix with dimensions (2NM +
M)x(2NM +M) that is a function of g. M and N are the

number of inputs and outputs, respectively. v and vdac are

respectively the node voltages of the MCA and DACs; vin is

the input voltages. Next, G is obtained analytically, as follows:

G = SY −1(g)B, (3)

where B = [0, 0, I]T and I is an MxM identity matrix. S is

an Nx(2 ·N ·M +M) matrix that selects the output voltages

from Y −1B.

C. Problem formulation

This paper considers the problem of specifying the memris-

tor state variables s and the scaling factor α that maximizes

the computational accuracy when performing matrix-vector

multiplication using an MCA. If the memristor devices are

ideal, the problem consists of specifying the conductance

values g and the scaling factor α. The computational accuracy

is evaluated while accounting for that memristors only can be

programmed to a limited number of distinguishable states [1],

[4]. In the experimental results, the impact of the proposed

mapping technique is also evaluated in terms of classification

accuracy when DNNs trained in software are mapped to an

MCA based platform for inference.

The problem is approached by first converting problem of

specifying state variables and a scaling factor (s, α) into a

problem of specifying memristor conductance values and a

scaling factor (g, α). This enables g to be specified while

minimizing ||(W −W r)||2 or ||(W −W r) · vcal||. Lastly, the

conductance values g are converted back into state variables

s.

(a) (b) (c)
Fig. 3. (a) The value range and precision of an matrix element is dependent on the location in the MCA. (b) and (c) shows a trade-off between the value
ranges and the precision based on the scaling factor α.

III. PREVIOUS WORK

A. Specification of conductance values g in [7]

In [7], α was fixed and the conductance values g were

determined by formulating an optimization problem, where the

square of the Frobenius norm of (W −W r) was minimized,

as follows:

minF (g, α) = ||W −W r||2 =

N
∑

i=1

M
∑

j=1

(wij − wr
ij)

2, (4)

where ||.||2 is the square of the Frobenius norm. wij and wr
ij

are the elements in row i and column j in the weight matrix

W and the realized matrix W r, respectively. The function F
is minimized using steepest gradient decent, as follows:

gk+1 = gk + tF (g)

= gk + t ·

N
∑

i=1

M
∑

j=1

2 · (wij − wr
ij) ·

∂wr
ij

∂g
, (5)

where
∂wr

ij

∂g
is the derivative of wij with respect to g. t is the

step size, which is determined using a linear search. g0 is equal

to W linearly mapped into the memristor conductance range.

Iterative tuning is performed to compensate for IR drop in the

MCA. The main limitations is that the method is unable to

consistently converge to solutions with high accuracy because

α was fixed.

B. Specification of state variables s in [5]

In [5], a technique of specifying the state variables of the

memristors s was proposed. The matrix W is first linearly

mapped into the programmable memristor conductance range

to obtain an ideal conductance matrix Gideal. The ideal

current (iideal) through each memristor device is obtained

using Gideal and an input calibration vector vcal, which also

implicitly defines the scaling factor α. Next, MNA is used to

formulate a system of (4NM+2N+2M)x(4NM+2N+2M)
equations to capture the circuit model in Figure 2(a). NM
of the equations are used to force the currents through each

memristor to be equal to iideal and the remaining equations are

used to capture the behavior of the circuit. The state variables s
are determined by solving the system of equations using New-

ton’s method. If Newton’s algorithm does not converge, iideal
is updated to ensure that the full programmable conductance

range was utilized. The limitation is that only the zero input

vector (0̄) and the calibration vector (vcal) are guaranteed to

produce the correct output, i.e., ||(W − W r) · 0̄||2 = 0 and

||(W −W r) · vcal||
2 = 0.

IV. SPACE OF REPRESENTABLE MATRICES

In this section, we define the space of matrices that are

representable using an MCA and analyse the impact of the

scaling factor α. The observations motivates our proposed

mapping technique.

The value range and precision for each matrix element is

dependent on the location in the MCA and the scaling factor α,

which is illustrated in Figure 3. Based on Eq (1) and Eq (3),

the scaling factor α directly regulates the utilization of the

programmable conductance range, i.e., a larger α implies a

utilization of larger conductance values. The value range for

a matrix element consists of a lower and upper bound on the

value that can be realized. The upper bound mainly stems

from IR-drop. The lower bound stems from that currents may

flow from an vertical line i to an horizontal line j even if the

memristor device connecting vertical line i to horizontal line

j is set to be non-conductive (maximum resistance), i.e., the

current would flow on paths in the MCA containing more than

one memristor. The length of the value range is the longest

in the top-right corner and the shortest in the bottom-left

corner of an MCA. Moreover, there is an equal number of

distinguishable states between every lower and upper bound.

The number of states is dependent on the accuracy of the

closed loop programming and the selected utilization of the

programmable conductance range. Consequently, the worst

(best) precision is obtained for value range’s with the longest

(shortest) length, which is illustrated in Figure 3(a). Moreover,

by reducing the utilization of the conductance range, every

value range becomes more flexible at the expense of worse

precision because the number of distinguishable states within

each value range is reduced, which is illustrated in (b-c) of

Figure 3. The explanation is that utilization of high conductive

increases the currents on the paths with multiple memristors

and IR-drop.

The described observations directly explain the space of

matrices that are representable using an MCA, i.e., every

matrix can be realized using an MCA but the computational

accuracy depends on the sum of the value range errors and the

precision errors (called total errors). Value range errors occur

when matrix elements are attempted to be realized outside

their respective value ranges. The precision errors depend pro-

foundly on how large portion of the programmable memristor

conductance range is utilized. Consequently, a critical problem

is to specify the scaling factor α to balance the value range

and the precision errors, which is shown in Figure 4.

(a) (b)

Fig. 4. (a) Memristor conductance range utilization vs. scaling factor α. (b)
Total errors, value range errors, precision errors vs. scaling factor α. The
results are obtained for an MCA with dimensions 64x64.

In Figure 4(a), it is shown that the utilization of the

programmable memristor conductance range is dependent on

α. In Figure 4(b), the trade-off between value range errors

and precision errors is shown based on α. If α is selected

too small, the value range errors will neglectable but large

precision errors will be introduced. If α is selected to large,

the precision errors will be neglectable but large value range

errors will be introduced. Hence, α should be selected so only

a few values are slightly outside the value ranges such that the

algorithm in [7] can be used to specify the conductance values

by minimizing ||W −W r||.

V. PROPOSED METHODOLOGY

We propose a five step flow to map an arbitrary target matrix

W to an MCA which is shown in Figure 5. The first step

consists of replacing each non-ideal memristor and access

transistor with an equivalent ideal memristor. As mentioned

earlier, the conversion is performed to allow W r to be com-

puted using Eq (1). The details are provided in Section V-A.

The second step is to determine the scaling factor α that

minimizes the total errors ||W − W r||2, which is explained

in Section V-B. The third step is to specify the conductance

values g that minimize the total errors while guaranteeing

that, ||(W − W r) · vcal||, is close to zero, which is outlined

in Section V-C. The motivation is to leverage the known

properties of the input vector space. Fourth, the state variables

s of the non-ideal memristors are determined by solving a

system of non-linear equations using Newton’s method, as

explained in Section V-D. Lastly, closed loop programming

is applied to program the memristors on-chip to the desired

states s using the techniques in [1], [4].

✁ ✂

✁

✁

Fig. 5. Proposed flow for mapping W to an MCA.

A. Convert non-ideal devices to ideal devices

The first step is to convert the non-ideal memristors and

access transistor to ideal memristor with a conductance of

g, i.e., converting the circuit in Figure 2(a) to the circuit in

Figure 2(b). g is bounded within [gmin, gmax], where gmin and

gmax are respectively the conservatively estimated minimum

and maximum conductance of the series connection of each

memristor and access transistor. These conductance values are

different from the programmable memristor conductance range

because the estimated conductance of the access transistor is

included.

B. Specification of scaling factor α

In this section, a technique of specifying the scaling factor

αopt that minimizes the total errors ||(W−W r)||2 is proposed.

The method used in this paper is based on first guessing an

scaling factor α0. Given α0, the technique in [7] is utilized

to specify the memristor conductance values g by minimizing

||W−W r||. Next, αk is updated to αk+1 based on the relation

between the value range errors and the conversion errors to

minimize the total errors. If the value range errors are larger

than the precision errors, αk is updated to αk+1 = αk ·(1−β).
If the precision errors are larger than the value range errors,

αk+1 = αk · (1 + β). (Experimentally we have observed that

the total errors are close to the minimum when the value

range errors are equal to the precision errors.) The process

is repeated until no further improvements in terms of total

errors are achieved over t iterations. The parameters β and t
are set to balance a trade-off between errors and run-time.

Specifically, the total errors are obtained by first quantizing

g (based on the bit-accuracy of the closed loop programming).

Next, W r is obtained using Eq (1) and the total errors are

computed as ||W−W r||2. The value range errors are obtained

as ||W−W r||2 without first quantizing the conductance values

g. The precision errors are set to the difference between the

total errors and the value range errors.

C. Specification of conductance values g

In this section, the conductance values g are specified

given W , αopt, and a calibration vector vcal from the input

vector space. The objective is to minimize ||W −W r||2 while

guaranteeing that ||(W −W r) · vcal|| = 0. The motivation for

minimizing ||(W −W r) · vcal|| is to exploit that the outputs

from neurons in DNNs are non-negative due to the activation

functions.

This step is performed by updating W to a new target

matrix W t. Next, given W t and αopt the conductance values

g are specified using the approach based on minimizing

||W t − W r||2 using the method in [7]. Unfortunately, it is

impossible eliminate the errors by updating elements in W that

are realized too small (or too large) because the corresponding

memristors are already tuned to the lower (or upper) bound of

the programmable memristor conductance range. Hence, the

errors are distributed to the matrix elements in the same row

to ensure that ||(W −W r) · vcal|| = 0.

Let R = (W r −W) be the difference between the realized

matrix W r and the matrix W . Next, let r be a vector

containing the sum of the elements in each row of R and

let c be a vector containing the number of memristors with a

conductance not equal to gmin in each row of the MCA. Next,

let u be equal to r element-wise divided by c. Subsequently,

W is updated to W t by adding u(i) to each element in row i
where the conductance of the corresponding memristor is not

equal to gmin. Next, W t is mapped into conductance values

using the technique in [7].

D. Specification of state variables s

In this section, the state variables of the memristors are de-

termined from the ideal conductance values g and a calibration

signal vcal, which is illustrated in Figure 6. First, the node

voltages vc and vr and the currents through the conductors ig
are computed using g and vcal, which is shown in Figure 6(a).

Next, the state variables s are computed using vc, vr, and ig ,

which is illustrated in Figure 6(b).

Computation of vc, vr, ig: First, the node voltages vc and

vr in the MCA are computed with respect to a calibration sig-

nal vcal by solving Eq (1) with vin=vcal. We use vcal=vmax/2
in our implementation (vcal can also be set based on prior

knowledge of the input vectors of a specific application).

Next, the currents though each conductor g is obtained using

ig = g · (vc − vr).

(a) (b)

Fig. 6. Specification of s from g and vcal.

Computation of state variables s: The state variables s
are found by solving a non-linear system of two equations, as

follows:

X =

[

s
vp

]

, F (X) = ig −

[

im(s, vc-vp)
it(vp, vr, vg)

]

, (6)

where vp is the node voltages between the memristors and the

access transistors. Next, Newton’s method is used to solve for

F (X) = 0, as follows:

Xk+1 = Xk − J−1F (Xk), (7)

where J−1 is the inverse of the Jacobian of F . Note that New-

tons method can be applied independently for each memristor

and access transistor pair.

VI. EXPERIMENTAL EVALUATION

The experimental results are obtained using a quad core 3.4

GHz Linux machine with 32GB of memory. The proposed

techniques are implemented in MATLAB. The default MCA

in the evaluation has dimensions 128x128, a wire resistance

rw=1Ω, and both the input and output resistance are 100Ω.

The programmable memristor conductance range is 2kΩ to

3MΩ [5]. We use the same non-ideal device models for the

memristors and access transistors as in [5], which is available

in [11]. The bit-accuracy for the memristors is set to 8 bits. The

programming errors are modeled using quantization, where it

is assumed that the distinguishable states in memristor con-

ductance range (or state space) are equidistant. The maximum

input voltage is set to 0.2V . The determined state variables

s and scaling factors α are evaluated using circuit simulation

with SPICE accuracy using the circuit model in Figure 2(a). In

Section VI-A, the proposed mapping is evaluated in terms of

matrix-vector multiplication. In Section VI-B, the proposed

mapping technique is evaluated in an DNN application. We

compare our results with the technique proposed in [5]. No

direct comparison is provided with in [7], since that work

considered a subproblem of our problem formulations.

A. Evaluation of matrix-vector multiplication

In this section, we compare the proposed mapping technique

with the state-of-the-art mapping technique in [5] using full

analog simulation using state variables s. The evaluation is

performed with respect to the maximum output error for

various input vectors and weight matrices. In Figure 7, it

is demonstrated that the proposed mapping results in 4X to

9X smaller errors based on the wire resistance, crossbar size,

number of memristors used per matrix element/weight, and

memristor device model. It is not surprising that significant

smaller maximum output errors are obtained because [5] is a

heuristic and the proposed mapping technique specifies both

g and α by leveraging the insights provided by the space of

representable matrices. Since the benefits are obtained using

only parameter optimization, the power and area is expected to

be extremely similar to in [5], [4], i.e., the benefits are obtained

with no overhead. In general, we find that when square MCAs

of size 32/64/128 are used, 64/60/48% of the programmable

memristor conductance range is utilized. The average run-time

is 0.5/1.5/5 min per matrix with a dimension of 32/64/128,

respectively. Note that for MCAs of dimension 128x128, only

a few α values were evaluated in order to control the run-time.

(a) (b)

(c) (d)

Fig. 7. Comparison with [5] using different (a) wire resistance, (b) crossbar
sizes, (c) number of memristors per weight, and (d) non-ideal device models.

B. Evaluation of DNN applications

In this section, the proposed mapping and the method

in [5] are used to map DNNs trained in software using GPUs

to MCA based platforms for inference. The networks are

trained using Keras combined with TensorFlow. In particular,

we evaluate a four-layer feed-forward network trained on

the MNIST dataset and a seven-layer CNN trained on the

CIFAR-10 dataset. The feed-forward network has dimensions

784x500x300x10 and the properties of the CNN is shown in

Figure 8.

Layers Weight matrix # times

dimensions used

Conv1 27x32 1024

Conv2 288x32 900

Conv3 288x64 900

Conv4 576x64 784

FC1 2304x512 1

FC2 512x10 1

(a) (b)

Fig. 8. (a) Layers of CNN. (b) Weight matrices in convolutional (Conv) and
fully-connected layers (FC).

The feed-forward network is mapped to an MCA based

platform by partitioning each weight matrix onto a grid of

128x128 MCAs. The CNN is mapped to an MCA based

platform using the kernel mapping in [9], where each con-

volutional layer and fully-connected layer is partitioned onto

a grid of 128x128 MCAs. The default settings for the MCA

are used with one memristor per weight. The classification

accuracy is computed using one thousand randomly selected

input images and SPICE level circuit simulation.

(a) (b)

Fig. 9. Classification accuracy for different DAC/ADC bit-accuracies (a)
MNIST (b) CIFAR-10.

In Figure 9, the classification accuracy achieved in MCA

based hardware is shown for DACs and ADCs with various

bit accuracies on the MNIST and CIFAR-10 datasets. We

also plot the upper bound on the classification accuracy that

can be achieved using DACs and ADCs, i.e., errors are only

introduced by the DACs and ADCs. The DACs and ADCs

use a fixed and dynamic reference voltage, respectively. In

Figure 9(a), it can be observed that when no DAC/ADC quan-

tization is performed (indicated with ∞) the classification ac-

curacy on the MNIST dataset using the mapping this work and

in [5] is 98.3% and 96.3%, respectively. The upper bound or

software accuracy is 98.4%. Moreover, the proposed mapping

technique follows the upper bound closely and outperforms

the mapping in [5] when DACs and ADCs with smaller bit-

accuracies are used. In Figure 9(b), it can be observed that the

proposed mapping achieves a classification accuracy of 71.8%,

whereas the mapping in [5] results in an accuracy of 20.5%
on CIFAR-10, which is close to the software classification

accuracy of 75.2%. Moreover, the proposed technique follows

the upper bound on CIFAR-10 closely for DACs and ADCs

with different bit-accuracies. It is easy to understand that the

proposed mapping technique outperforms the method in [4]

because each matrix-vector multiplication is performed with

6X smaller errors.

Work Mapping time
(h)

MNIST CIFAR-10
In [5] 0.28 0.61

This work 6.17 0.93

(a) (b)
Fig. 10. (a) Classification accuracy with RTN. (b) Run-time of mapping
DNNs to MCAs.

When moderate to severe (up to 20%) random telegraph

noise is included [10], the classification accuracy is gracefully

reduced (not impacted) on CIFAR-10 (MNIST), which is

shown in Figure 10(a). In Figure 10(b), we show the run-

time of our framework and the techniques in [5]. To limit the

run-time of mapping the weight matrices in the CNN to state

variables, we used the technique in [5] to map FC1, which is

not sensitive to errors. The run-time reported in the table is

based on our implementation of [5], where performance was

prioritized over run-time in the implementation.

VII. SUMMARY AND FUTURE WORK

In this paper, a technique for mapping arbitrary weight

matrices to MCAs is proposed. The technique improves the

computational accuracy of the state-of-the-art with 4X to 9X
and achieves close to software level accuracy on CIFAR-10

dataset when a CNN trained in software is mapped to an MCA

based platform for inference. We plan to reduce the run-time

of the algorithm in the future.

REFERENCES

[1] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov. High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm. Nanotechnology, 23(7):075201, 2012.

[2] P. Chi et al. PRIME: a novel processing-in-memory architecture for
neural network computation in reram-based main memory. ISCA’16,
pages 27–39, 2016.

[3] M. Hu et al. Memristor crossbar-based neuromorphic computing system:
A case study. IEEE Transactions on Neural Networks and Learning

Systems, 25:1864–1878, 2014.
[4] M. Hu et al. Memristor-based analog computation and neural network

classification with a DPE. Adv. Materials, 30, 2018.
[5] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,

S. Lam, N. Ge, J. J. Yang, and R. S. Williams. Dot-product engine for
neuromorphic computing: Programming 1T1M crossbar to accelerate
matrix-vector multiplication. DAC’16, pages 1–6, 2016.

[6] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. In Nature, pages
436–444, 2015.

[7] B. Liu et al. Reduction and IR-drop compensations techniques for
reliable neuromorphic computing systems. ICCAD’2014, pages 63–70,
2014.

[8] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: a convolutional
neural network accelerator with in-situ analog arithmetic in crossbars.
ISCA’16, pages 14–26, 2016.

[9] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A pipelined reram-
based accelerator for deep learning. HPCA’17, pages 541–552, 2017.

[10] J. P. Strachan. DPE: Exploring high efficiency analog multiplication
with memristor arrays. In Int. Conf.on Rebooting Computing, 2015.

[11] J. P. Strachan, A. C. Torrezan, F. Miao, M. D. Pickett, J. J. Yang, W. Yi,
G. Medeiros-Ribeiro, and R. S. Williams. State dynamics and modeling
of tantalum oxide memristors. IEEE Transactions on Electron Devices,
60(7):2194–2202, 2013.

[12] L. Xia et al. Technological exploration of RRAM crossbar array
for matrix-vector multiplication. Journal of Computer Science and

Technology, 31(1):3–19, 2016.

