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Abstract—Image processing is a core operation performed
on billions of sensor-devices in the Internet of Things (IoT).
Emerging memristor crossbar arrays (MCAs) promise to per-
form matrix-vector multiplication (MVM) with extremely small
energy-delay product, which is the dominating computation
within the two-dimensional Discrete Cosine Transform (2D DCT).
Earlier studies have directly mapped the digital implementation
to MCA based hardware. The drawback is that the series com-
putation is vulnerable to errors. Moreover, the implementation
requires the use of large image block sizes, which is known to
degrade the image quality. In this paper, we propose to restruc-
ture the 2D DCT into an equivalent single linear transformation
(or MVM operation). The reconstruction eliminates the series
computation and reduces the processed block sizes from NxN

to
√

Nx
√

N . Consequently, both the robustness to errors and the
image quality is improved. Moreover, the latency, power, and area
is reduced with 2X while eliminating the storage of intermediate
data, and the power and area can be further reduced with up
to 62% and 74% using frequency spectrum optimization.

I. INTRODUCTION

Image and video compression is performed by transforming

an image from the spatial domain into the frequency domain

using the two-dimensional Discrete Cosine Transform (2D

DCT) [7], [16]. Despite noteworthy efforts to accelerate image

compression with algorithm innovations (as the Fast Fourier

Transform [3], [15]) and custom digital hardware implemen-

tations [9], [14], the compression is still the bottleneck for

real-time image and video processing systems [2], [8]. The

2D DCT for an image block involves performing a matrix-

matrix-matrix multiplication. Due to promises of matrix-

vector multiplication (MVM) with significant improvements in

energy-delay product [4], [5], mixed analog-digital computing

using memristor crossbar arrays (MCAs) has emerged as an

appealing solution to accelerate 2D DCT [6], [10], [11].

The images obtained while performing image compression

using digital and MCA based hardware are shown in Figure 1.

In earlier studies [6], [10], [11], the two main explanations

for the degraded image quality are: (i) Small errors in the

output of the first matrix-matrix multiplication are amplified

by the second matrix-matrix multiplication. (ii) Large block

sizes are used to obtain the performance benefits associated

with using MCAs with large dimensions [4]. However, small

block sizes of 8x8 to 16x16 are essential to attaining high

image quality [7]. Consequently, it is difficult (or impossible)

to achieve high image quality when directly mapping the 2D

DCT computation to MCA hardware.
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Fig. 1. Image compression using (a) digital hardware and (b) MCAs. The
MCAs have dimensions 64x128 and parameters as in [6], [10], [11].

In this paper, we propose to restructure the 2D DCT

computation into an equivalent single linear transformation.

The advantages of the reconstruction are, as follows:

• Compared with in [6], [10], [11], the number of MVM

operations is reduced from 2N to N and no intermediate

data is required to be stored.

• The robustness to variations is natively improved by

eliminating the amplification of errors associated with

performing two matrix-matrix multiplications in series.

• The reconstruction allows DCT matrices with dimensions

NxN to process block sizes of
√
Nx

√
N , and the perfor-

mance benefits of using large MCAs are attained while

utilizing traditional (small) block sizes.

• The reconstruction enables frequency spectrum optimiza-

tion, which involves computing only a subset of the

frequency coefficients. The optimization allows MCAs

smaller dimensions to be used, which translates into

power and area improvements.

The remainder of the paper is organized as follows: preliminar-

ies are provided in Section II. The proposed 2D DCT recon-

struction and frequency spectrum optimization is presented in

Section III and Section IV. Experimental results are provided

in Section V. The paper is concluded in Section VI.

II. PRELIMINARIES

In this section, we review JPEG image compression using

2D DCT, how MCAs can accelerate MVM, and summarize

the limitations of the previous work.

A. Image compression using 2D DCT

The fundamental steps of JPEG compression are illustrated

in Figure 2 [13]. The first step is to partition the input image

I into 8x8 image blocks X . Second, each image block X
is converted into the frequency domain by applying the 2D

DCT, i.e., C = DXD′, where C is a matrix of the frequency



coefficients of X . D is the standard 2D DCT matrix. Third, the

frequency coefficients are divided by each corresponding entry

in a quantization table. The quantization is followed by zig-zag

reordering, entropy encoding, and Huffman encoding. Next, a

file is created that contains the compressed image and the

encoding scheme. Uncompression is performed by reversing

the process. The bottleneck of the overall flow is the 2D DCT,

i.e., the computation of DXD′ for each image block.

✁

Fig. 2. Review of JPEG image compression [13].

In this paper, the quality of the compression is measured

using mean squared errors (MSE), as follows:

MSE(I, Î) =
1

PQ

N∑

p=1

M∑

q=1

(Ipq − Îpq), (1)

where Î is the original reference image with dimensions PxQ.

I is the image obtained after Î has been compressed and

uncompressed using the flow in Figure 2.

B. Matrix-vector Multiplication using MCAs

An MCA consists of wordlines and bitlines with a memris-

tor in each cross-point, which is shown in Figure 3(a). Analog

matrix-vector is performed by passing an input vector vin to

the wordlines and recording an output vector vout from the

bitlines. The input and output voltages are converted between

the digital/analog and analog/digital domain using DAC and

ADC, respectively. As conductance values cannot be negative,

the common differential pair approach is used to represent

negative matrix values, i.e., a NxN matrix is represented using

an Nx2N MCA.

(a) (b)
Fig. 3. (a) MCA for MVM. (b) Normalized performance of MCA hardware
vs digital hardware [4].

The advantage of leveraging MCAs is that the computation

is orders of magnitude more efficient than using digital hard-

ware, which is shown in Figure 3(b). The limitation is that the

MVM is vulnerable to errors that are introduced by the array

parasitics, analog variations, and the DACs and ADCs.

C. Previous Work and its Limitations [6], [10], [11]

In [6], [10], [11], 2D DCT was performed directly to the

MCA based hardware, and 2N MVM operations are used to

compute the frequency coefficients C of an image block X ,

which is illustrated in Figure 4.

Fig. 4. Review of direct mapping in [6], [10], [11].

The two main limitations are: (i) The series matrix-matrix

multiplication is inherently sensitive to variations. Small er-

rors introduced in the first matrix-matrix multiplication are

amplified into large errors by the second matrix-matrix multi-

plication. Due to the inherent presence of errors and variations

within analog computing, it is impossible to achieve high

image quality [6], [10], [11]. (ii) Large MCAs have to be

utilized to gain performance advantages (power and latency)

over digital implementations.

III. PROPOSED RECONSTRUCTED 2D DCT

A. Overview

In this paper, we propose to overcome the two afore-

mentioned challenges based on reconstructing the 2D DCT

computation into an equivalent linear transformation, which

can be computed using a single MVM operation. It is easy to

understand that such a transformation exists because two linear

transformations are still a linear transformation. Consequently,

X and C can be decomposed into vector form (x) and (c).
Given the input vector x, the vector c is computed using a

linear transformation as c = D̃x, where D̃ is a reconstructed

2D DCT matrix. The advantages of the reconstruction are:

(i) There is no amplification of errors as the series computa-

tion is circumvented. (ii) Using MCAs with the exact same

dimensions, the processed block size is reduced from NxN
to

√
Nx

√
N . (iii) The number of MVM operations required

to process an image block of size NxN is reduced from 2N
to N . (iv) The reconstruction opens-up new dimensions for

optimization as each frequency coefficient in C is computed

using a single row in D̃.

B. Proposed Reconstruction

The mapping of 2D DCT to MCA hardware using the pro-

posed reconstruction is shown in Figure 5. The figure shows

that the image block X and the corresponding frequency

representation C are divided into subblocks of size
√
Nx

√
N ,

i.e., for a total of N =
√
Nx

√
N subblocks.

Let the image and frequency blocks respectively be denoted

Xij and Cij with 1 ≤ i ≤
√
N and 1 ≤ j ≤

√
N . Next, the

subblocks are processed one-by-one into the corresponding





D̃: 64x64 144x144 256x256 D̃f : 64x39 144x44 256x52

MSE: 10.0 33.6 51.3 7.8 18.2 39.0

(a) Full frequency spectrum (b) Frequency spectrum optimization
Fig. 7. The images on the left (right) are obtained without (with) frequency spectrum optimization. The dimension of the reconstructed 2D DCT matrix and
the MSE are shown below each figure.

errors in the domain interfaces, random telegraph noise (RTN),

etc. The experimental setup has been proven to exhibit ex-

tremely high correlation with results obtained using hardware

prototypes [5], [10]. We evaluate the 2D DCT reconstruction

in Section V-A. The frequency spectrum optimization is eval-

uated in Section V-B.

A. Evaluation of Reconstruction

In Figure 8, we evaluate impact of the reconstruction of

the image quality using MCAs with dimensions 64x128. The

reference image is shown in Figure 8(a). The images obtained

using the direct mapping in [6], [10], [11] and the proposed

reconstruction are shown in (b) and (c) of Figure 8, respec-

tively. The reference image is of high quality. In Figure 8(b),

it can be observed that the image quality is degraded by the

image compression in [6], [10], [11]. The image obtained

after the proposed reconstruction in Figure 8(c) shows that

the image quality is just slightly degraded compared with the

reference image although MCA hardware is used. Moreover,

the reconstruction improves the robustness to quantization er-

rors introduced by the domain interfaces and random telegraph

noise. Furthermore, the reconstruction improves power, area,

and latency by 2X, as the number of MVM operations is

reduced with 2X.

(a) (b) (c)

Fig. 8. (a) Reference image. (b) Image obtained with the image compression
in [6], [10], [11]. (c) Image obtained using the proposed reconstruction.

B. Evaluation of Frequency Optimization

The frequency spectrum optimization is evaluated in terms

of image quality in Figure 7. The figure shows that the image

quality is gracefully degraded when MCAs with larger dimen-

sions are utilized due to the IR-drop over the array parasitics.

For reconstructed 2D DCT matrices D̃ with dimensions 64x64,

144x144, and 256x256, the optimal N̂∗

f /N is determined

to be 0.6, 0.3, and 0.2. The optimal ratios were obtained

by evaluating a collection of 40 images using MCAs with

different dimensions and selecting the ratio that minimized

MSE in Eq (1). It is not surprising that the N∗

f /N ratio

becomes smaller for MCAs with larger dimensions, as larger

MCAs are more severely impacted by IR-drop over the array

parasitics [12]. The figure shows that the frequency spectrum

optimization reduces the MSE for the images in each column.

Moreover, the frequency optimization reduces the power and

area overhead with up to 61.5% and 74.3%, respectively.

In summary, it is highly advantageous to reconstruct the 2D

DCT matrix and apply frequency spectrum optimization. Com-

pared with in [6], [10], [11], the image quality is improved,

the power is improved with 65%, 90%, and 95%, and the area

is improved with 69%, 92%, and 97% for MCAs with 64, 144,

and 256 inputs, respectively.

VI. SUMMARY AND FUTURE WORK

In this paper, a reconstruction of the 2D DCT matrix

is proposed along with a frequency spectrum optimization

technique. The techniques demonstrate (i) significant improve-

ments in image quality, (ii) higher robustness to errors, (iii)

notably smaller power, area, and latency compared with in

previous studies. In our future work, we will investigate

techniques for further improvement in the analog domain.
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