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Abstract—Image processing is a core operation performed
on billions of sensor-devices in the Internet of Things (IoT).
Emerging memristor crossbar arrays (MCAs) promise to per-
form matrix-vector multiplication (MVM) with extremely small
energy-delay product, which is the dominating computation
within the two-dimensional Discrete Cosine Transform (2D DCT).
Earlier studies have directly mapped the digital implementation
to MCA based hardware. The drawback is that the series com-
putation is vulnerable to errors. Moreover, the implementation
requires the use of large image block sizes, which is known to
degrade the image quality. In this paper, we propose to restruc-
ture the 2D DCT into an equivalent single linear transformation
(or MVM operation). The reconstruction eliminates the series
computation and reduces the processed block sizes from Nx/N
to v/ Nxv/N. Consequently, both the robustness to errors and the
image quality is improved. Moreover, the latency, power, and area
is reduced with 2X while eliminating the storage of intermediate
data, and the power and area can be further reduced with up
to 62% and 74% using frequency spectrum optimization.

I. INTRODUCTION

Image and video compression is performed by transforming
an image from the spatial domain into the frequency domain
using the two-dimensional Discrete Cosine Transform (2D
DCT) [7], [16]. Despite noteworthy efforts to accelerate image
compression with algorithm innovations (as the Fast Fourier
Transform [3], [15]) and custom digital hardware implemen-
tations [9], [14], the compression is still the bottleneck for
real-time image and video processing systems [2], [8]. The
2D DCT for an image block involves performing a matrix-
matrix-matrix multiplication. Due to promises of matrix-
vector multiplication (MVM) with significant improvements in
energy-delay product [4], [5], mixed analog-digital computing
using memristor crossbar arrays (MCAs) has emerged as an
appealing solution to accelerate 2D DCT [6], [10], [11].

The images obtained while performing image compression
using digital and MCA based hardware are shown in Figure 1.
In earlier studies [6], [10], [11], the two main explanations
for the degraded image quality are: (i) Small errors in the
output of the first matrix-matrix multiplication are amplified
by the second matrix-matrix multiplication. (ii) Large block
sizes are used to obtain the performance benefits associated
with using MCAs with large dimensions [4]. However, small
block sizes of 8x8 to 16x16 are essential to attaining high
image quality [7]. Consequently, it is difficult (or impossible)
to achieve high image quality when directly mapping the 2D
DCT computation to MCA hardware.
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Fig. 1. Image compression using (a) digital hardware and (b) MCAs. The
MCAs have dimensions 64x128 and parameters as in [6], [10], [11].

In this paper, we propose to restructure the 2D DCT
computation into an equivalent single linear transformation.
The advantages of the reconstruction are, as follows:

e Compared with in [6], [10], [11], the number of MVM
operations is reduced from 2N to N and no intermediate
data is required to be stored.

o The robustness to variations is natively improved by
eliminating the amplification of errors associated with
performing two matrix-matrix multiplications in series.

o The reconstruction allows DCT matrices with dimensions
NxN to process block sizes of VNxv/N , and the perfor-
mance benefits of using large MCAs are attained while
utilizing traditional (small) block sizes.

o The reconstruction enables frequency spectrum optimiza-
tion, which involves computing only a subset of the
frequency coefficients. The optimization allows MCAs
smaller dimensions to be used, which translates into
power and area improvements.

The remainder of the paper is organized as follows: preliminar-
ies are provided in Section II. The proposed 2D DCT recon-
struction and frequency spectrum optimization is presented in
Section III and Section IV. Experimental results are provided
in Section V. The paper is concluded in Section VI

II. PRELIMINARIES

In this section, we review JPEG image compression using
2D DCT, how MCAs can accelerate MVM, and summarize
the limitations of the previous work.

A. Image compression using 2D DCT

The fundamental steps of JPEG compression are illustrated
in Figure 2 [13]. The first step is to partition the input image
I into 8x8 image blocks X. Second, each image block X
is converted into the frequency domain by applying the 2D
DCT, i.e., C = DX D', where C' is a matrix of the frequency



coefficients of X . D is the standard 2D DCT matrix. Third, the
frequency coefficients are divided by each corresponding entry
in a quantization table. The quantization is followed by zig-zag
reordering, entropy encoding, and Huffman encoding. Next, a
file is created that contains the compressed image and the
encoding scheme. Uncompression is performed by reversing
the process. The bottleneck of the overall flow is the 2D DCT,
i.e., the computation of DX D’ for each image block.
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Fig. 2. Review of JPEG image compression [13].

In this paper, the quality of the compression is measured
using mean squared errors (MSE), as follows:
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where I is the original reference image with dimensions PxQ).
I is the image obtained after I has been compressed and
uncompressed using the flow in Figure 2.

B. Matrix-vector Multiplication using MCAs

An MCA consists of wordlines and bitlines with a memris-
tor in each cross-point, which is shown in Figure 3(a). Analog
matrix-vector is performed by passing an input vector v;, to
the wordlines and recording an output vector v,,; from the
bitlines. The input and output voltages are converted between
the digital/analog and analog/digital domain using DAC and
ADC, respectively. As conductance values cannot be negative,
the common differential pair approach is used to represent
negative matrix values, i.e., a Nx/V matrix is represented using
an Nx2N MCA.
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Fig. 3. (a) MCA for MVM. (b) Normalized performance of MCA hardware
vs digital hardware [4].

The advantage of leveraging MCAs is that the computation
is orders of magnitude more efficient than using digital hard-
ware, which is shown in Figure 3(b). The limitation is that the
MVM is vulnerable to errors that are introduced by the array
parasitics, analog variations, and the DACs and ADCs.

C. Previous Work and its Limitations [6], [10], [11]

In [6], [10], [11], 2D DCT was performed directly to the
MCA based hardware, and 2N MVM operations are used to
compute the frequency coefficients C' of an image block X,
which is illustrated in Figure 4.
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Fig. 4. Review of direct mapping in [6], [10], [11].

The two main limitations are: (i) The series matrix-matrix
multiplication is inherently sensitive to variations. Small er-
rors introduced in the first matrix-matrix multiplication are
amplified into large errors by the second matrix-matrix multi-
plication. Due to the inherent presence of errors and variations
within analog computing, it is impossible to achieve high
image quality [6], [10], [11]. (ii) Large MCAs have to be
utilized to gain performance advantages (power and latency)
over digital implementations.

III. PROPOSED RECONSTRUCTED 2D DCT
A. Overview

In this paper, we propose to overcome the two afore-
mentioned challenges based on reconstructing the 2D DCT
computation into an equivalent linear transformation, which
can be computed using a single MVM operation. It is easy to
understand that such a transformation exists because two linear
transformations are still a linear transformation. Consequently,
X and C can be decomposed into vector form (x) and (c).
Given the input vector x, the vector ¢ is computed using a
linear transformation as ¢ = Dx, where D is a reconstructed
2D DCT matrix. The advantages of the reconstruction are:
(i) There is no amplification of errors as the series computa-
tion is circumvented. (ii) Using MCAs with the exact same
dimensions, the processed block size is reduced from NxN
to v/ Nxv/N. (iii) The number of MVM operations required
to process an image block of size NxN is reduced from 2N
to N. (iv) The reconstruction opens-up new dimensions for
optimization as each frequency coefficient in C' is computed
using a single row in D.

B. Proposed Reconstruction

The mapping of 2D DCT to MCA hardware using the pro-
posed reconstruction is shown in Figure 5. The figure shows
that the image block X and the corresponding frequency
representation C' are divided into subblocks of size v/ Nxv/N,
i.e., for a total of N = \/NX\/N subblocks.

Let the image and frequency blocks respectively be denoted
Xij and Cy; with 1 <4 < V/N and 1 < j < +/N. Next, the
subblocks are processed one-by-one into the corresponding
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Fig. 5. Proposed 2D DCT computation using reconstructed DCT matrix.

frequency subblock, i.e., X;; is processed into C;;. Specifi-
cally, C;; is obtained from X;; by decomposing X;; into a
vector x row-wise (or column-wise). Next, the vector is passed
to an MCA programmed with the matrix D to perform the
computation ¢ = Dz efficiently in the analog domain, which
is shown in the middle of Figure 5. The frequency block C;;
can be obtained from the output vector ¢ by organizing the
elements in ¢ into a block format using the zig-zag pattern
in Figure 2. In reality, there is no need to reorganize the
vector c into the corresponding frequency subblock C;. The
quantization table can instead be fused with D and run-
length encoding can directly be applied to c. Consequently,
the reconstruction can optionally eliminate step 3 and step 4
of the flow in Figure 2.

C. The reconstructed DCT matrix D

The reconstructed 2D DCT matrix D is defined using a
matrix D with the same dimensions. The matrices D and D
are equivalent with respect to the ordering of the rows. D
is defined with respect to a column decomposition of c into
C whereas D is defined with respect to a zig-zag ordering.
However, there is no simple closed-form expression for each
element in D. Therefore, we define an expression for D in
Eq (2) and obtain D through reordering of the rows in D. Let
the element on row 4 and column j in D be denoted ﬁij, as
follows:

Dij =ap-aq- 005[%] : COS[%L 2
where 1 <i < N,1<j<N.g=1i/Nandr = j/N where /
is integer division. p = mod(i, N) and t = mod(j, N) where
mod is the modulus operator. The constant ay is defined, as
follows:
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Next, the rows in D are reordered to obtain D. As mentioned
earlier, the advantage of reordering the rows is that the
subsequent zig-zag reordering step is automatically performed.

IV. FREQUENCY SPECTRUM OPTIMIZATION

In this section, we propose a frequency spectrum opti-
mization technique. The technique involves computing only a
subset Ny of the NV and the frequency coefficients with respect
to an image subblock X;; with dimension \/N X\/N . Each
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Fig. 6. (a) Reduction of D into Dy using by selecting N of the N frequency
coefficients. (b) Trade-off between errors based on Ny /I for a reconstructed
DCT matrix with dimensions 144x144. The figure shows that the smallest
MSE is obtained when only a subset of the frequency spectrum is used.

row in the reconstructed DCT matrix D is used to compute
a frequency coefficient in C'. Consequently, the frequency
spectrum_optimization involves transforming D into a new
matrix Dy with dimensions NyxN, which is illustrated in
Figure 6(a). Therefore, the dimension of the MCA used to
perform the MVM operation can be correspondingly reduced,
which translates into power and area savings.

In terms of image quality, frequency errors are introduced
when only a subset of the frequency coefficients are com-
puted. The frequency errors grow larger when the number of
frequency coefficients (or basis functions) are reduced. Never-
theless, the image quality is gracefully degraded by ordering
the frequency coefficients with respect to the zig-zag pattern
and removing frequency terms starting from the tail-end. In
contrast, the impact of analog errors is reduced when fewer
frequency coefficients are computed. The explanation is that
MCAs with smaller dimension introduce smaller analog errors
because there is less IR-drop over the array parasitics [12].

The trade-off between frequency errors, analog errors, and
total errors is shown as a function of N;/N in Figure 6(b).
The errors are measured in terms of MSE in Eq (1). The total
errors are correlated with the image quality and are equal to
the sum of the frequency errors and the analog errors. When
the ratio Ny /N is reduced, the frequency errors are increased,
which is illustrated with a red line in Figure 6(b). On the other
hand, the analog errors are correlated with Ny /N, which is
shown with a yellow line in Figure 6(b). Consequently, when
Ny /N is increased, the total errors (blue line) are reduced until
a turning point from were the errors start to increase rapidly.
The turning point represents the optimal Ny that maximizes
the image quality.

V. EXPERIMENTAL RESULTS

The experimental results are obtained using a quad core
3.4 GHz Linux machine with 32GB of memory. The images
in the evaluation are obtained from the Berkeley Segmenta-
tion Dataset and Benchmark Suite [1]. The images in the
experimental results section are obtained by performing the
compression using MCA hardware using the flow in Figure 2.
The uncompression is performed by reversing the flow using
digital hardware. The 2D DCT in MCA hardware is evaluated
using circuit simulation with SPICE level accuracy while
capturing array parasitics, programming accuracy, quantization
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Fig. 7. The images on the left (right) are obtained without (with) frequency spectrum optimization. The dimension of the reconstructed 2D DCT matrix and

the M SE are shown below each figure.

errors in the domain interfaces, random telegraph noise (RTN),
etc. The experimental setup has been proven to exhibit ex-
tremely high correlation with results obtained using hardware
prototypes [5], [10]. We evaluate the 2D DCT reconstruction
in Section V-A. The frequency spectrum optimization is eval-
uated in Section V-B.

A. Evaluation of Reconstruction

In Figure 8, we evaluate impact of the reconstruction of
the image quality using MCAs with dimensions 64x128. The
reference image is shown in Figure 8(a). The images obtained
using the direct mapping in [6], [10], [11] and the proposed
reconstruction are shown in (b) and (c) of Figure 8, respec-
tively. The reference image is of high quality. In Figure 8(b),
it can be observed that the image quality is degraded by the
image compression in [6], [10], [11]. The image obtained
after the proposed reconstruction in Figure 8(c) shows that
the image quality is just slightly degraded compared with the
reference image although MCA hardware is used. Moreover,
the reconstruction improves the robustness to quantization er-
rors introduced by the domain interfaces and random telegraph
noise. Furthermore, the reconstruction improves power, area,
and latency by 2X, as the number of MVM operations is
reduced with 2X.

(a) (b)

Fig. 8. (a) Reference image. (b) Image obtained with the image compression
in [6], [10], [11]. (c) Image obtained using the proposed reconstruction.

B. Evaluation of Frequency Optimization

The frequency spectrum optimization is evaluated in terms
of image quality in Figure 7. The figure shows that the image
quality is gracefully degraded when MCAs with larger dimen-
sions are utilized due to the IR-drop over the array parasitics.
For reconstructed 2D DCT matrices D with dimensions 64x64,
144x144, and 256x256, the optimal ]\7}k /N is determined
to be 0.6, 0.3, and 0.2. The optimal ratios were obtained
by evaluating a collection of 40 images using MCAs with
different dimensions and selecting the ratio that minimized
MSE in Eq (D). It is not surprising that the Ny /N ratio
becomes smaller for MCAs with larger dimensions, as larger
MCAs are more severely impacted by IR-drop over the array

parasitics [12]. The figure shows that the frequency spectrum
optimization reduces the MSE for the images in each column.
Moreover, the frequency optimization reduces the power and
area overhead with up to 61.5% and 74.3%, respectively.

In summary, it is highly advantageous to reconstruct the 2D
DCT matrix and apply frequency spectrum optimization. Com-
pared with in [6], [10], [11], the image quality is improved,
the power is improved with 65%, 90%, and 95%, and the area
is improved with 69%, 92%, and 97% for MCAs with 64, 144,
and 256 inputs, respectively.

VI. SUMMARY AND FUTURE WORK

In this paper, a reconstruction of the 2D DCT matrix
is proposed along with a frequency spectrum optimization
technique. The techniques demonstrate (i) significant improve-
ments in image quality, (ii) higher robustness to errors, (iii)
notably smaller power, area, and latency compared with in
previous studies. In our future work, we will investigate
techniques for further improvement in the analog domain.
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