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Are Crossbar Memories Secure?
New Security Vulnerabilities in Crossbar Memories

Vamsee Reddy Kommareddy, Baogang Zhang, Fan Yao, Rickard Ewetz and Amro Awad

Abstract—Memristors are emerging Non-Volatile Memories (NVMs) that are promising for building future memory systems. Unlike
DRAM, memristors are non-volatile, i.e., they can retain data after power loss. In contrast to DRAM where each cell is associated with
a pass transistor, memristor cells can be implemented without such transistor, and hence enable high density ReRAM systems.
Moreover, memristors leverage a unique crossbar architecture to improve the density of memory modules. Memristors have been
considered to build future data centers with both energy-efficiency and high memory capacity goals. Surprisingly, we observe that using
memristors in multi-tenant environments, e.g., cloud systems, entails new security vulnerabilities. In particular, the crossbar contents
can severely affect the write latency of any data cells within the same crossbar. With various memory interleaving options (to optimize
performance), a single crossbar might be shared among several applications/users from different security domains. Therefore, such
content-dependent latency can open new source of information leakage. In this article, we describe the information leakage problem in
memristor crossbar arrays (MCAs), discuss how they can be potentially exploited from application level. Our work highlights the need
for future research to mitigate (and potentially eliminate) information leakage in crossbar memories in future computing systems.

Index Terms—Crossbar memory, ReRAM, security.

1 INTRODUCTION

ITH poor scalability and energy inefficiency of

DRAM devices, the search for alternative memory
technologies has been a major research interest in the
past decade. Fortunately, emerging Non-Volatile Memories
(NVMs) promise a new set of memory architectures that can
potentially replace/augment DRAM in future computing
systems. Several emerging NVMs, such as Phase-Change
Memories (PCM) and Memristors, offer very high densities
and better power efficiency. Moreover, such technologies
can potentially retain data after power loss, and hence
enable persistent applications, e.g., file-system hosting and
data check-pointing. Among different classes of NVMs,
memristor-based memories are particularly promising due
to their low latency, high write-endurance, density, and
low idle power. Many system vendors envision future data
centers with memristors as the main memory (and storage).
For instance, HPE Labs” The Machine project has its system
architected with memristor-based memory as it’s shared
global memory [1].

As memristor-based memories are expected to build the
memory systems of future computing systems, understand-
ing its potential security vulnerabilities is of utmost impor-
tance. Common across all NVMs, data remanence has been
considered traditionally as the major security challenge [4].
However, the inherent design-based characteristics of NVM
devices can open new security vulnerabilities. The lesson
we learned from the recent rowhammer attacks [6] in DRAM
memories is the importance of understanding the potential
implications of hardware design choices on security. For
rowhammer attacks, the potential cross-talk effect between
physically adjacent DRAM rows has been overlooked at
the design stage. The findings of the rowhammer vulner-
abilities and its burgeoning system exploitation (e.g., [8])
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are alerting computer architects to consider the security
of emerging memory technologies as the first-order design
constraint. Unfortunately, there are very limited studies that
explore potential vulnerabilities in NVMs and in particular
memristor-based memories.

In this article, we identify a major vulnerability in
memristor-based memory which can be potentially ex-
ploited to construct information leakage attacks. Our key
observation is that the write latency of a memory cell in a
crossbar memory is highly dependent on the state of their
neighbouring memory cells in the same crossbar, due to
sneak currents in ReRAM [11]. Consequently, the timing
differences in write operations in crossbar memories can be
exploited by adversaries to exfiltrate sensitive information
that belongs to other security domains. To the best of our
knowledge, this is the first work that presents a major
source of information leakage in memristor-based crossbar
architectures. To validate our observation and understand
the extent of write latency difference associated with dif-
ferent content in crossbar memories, we build a detailed
memristor-based memory model and integrate it into a
cycle-accurate architectural simulator to measure the ob-
served latencies from user space. Surprisingly, the latencies
observed at the application level can reflect the state of other
cells in the same crossbar, which can be possibly exploited
to construct either covert or side channels. With such a new
vulnerability, we urge the research community to carefully
study both hardware and system security solutions in order
to mitigate and hopefully disable such information leakage
channels for future computing systems. In summary, major

contributions of this article are:
« We make the key observation about the deterministic rela-

tionship between the write latency of a ReRAM memory
cell and the content of its neighboring cells in the same
crossbar. We focus on security implications of such timing
property for future ReRAM-based computing systems.

o We explore and illustrate how attackers could leverage the
content-based access timing characteristics to construct a
new class of timing channel technique—WRITE+TIME.

o We build a memristor-based memory model using circuit-
level simulations and incorporate it into the cycle-accurate



gemb5 simulator. Our evaluation shows that adversaries
can successfully observe distinguishable latency patterns
from user space, which can be leveraged to carry out
information leakage attacks.

2 THREAT MODEL

In this article, we study information leakage threats in
resource-sharing environments (e.g., the cloud) that are
equipped with memristor-based memory devices. Our at-
tack model assumes that there is a benign victim or a
malicious trojan process with access to sensitive informa-
tion. At the same time, there exists a spy who is trying
to steal or infer the secrets. Both parties run unprivileged
processes. The trojan/victim and the spy processes belong to
different security domains, and thus they are not supposed
to communicate with each other directly. We further assume
that the operating system is trusted and secure.

Shared Memory (e.g., Memristor based)

Spy/User S data Trojan/User T data

f f

Trojan/User T Spy/User S

Fig. 1: Threat model of memristor-based memory systems

To better understand the attack model, we demonstrate
an adversary scenario as depicted in Figure 1. We assume
User T (trojan) is malicious and trying to send out certain
restricted information, e.g., a cryptographic key, to User S
(spy), however, without leaving any trace. Note that User T
would not be able to do this through the legitimate system
interfaces as it is not allowed to send restricted data outside
the red network per the security policy. If User T can some-
how send information to User S within the server, then User
S can read it directly and push it through the blue network.
Particularly, since all users share the memory modules in the
cloud server, if User T and User S can communicate through
exploiting the value dependent ReRAM access latency, then
eventually User T can get the data and send it out. Moreover,
even if User T is not malicious, if there is a way that User S
can read User T’s data indirectly, e.g., side-channel attacks,
then the data can be sent through the unrestricted network.

3 BACKGROUND

Resistive RAM Architecture. Resistive RAM (ReRAM)
refers to the concept of using resistance to store information.
ReRAM cells have a low resistance state (LRS) and a high re-
sistance state (HRS), which are used to represent the logical
bit ‘1" and ‘0’, respectively. ReRAM memory cells are read by
applying a small voltage across the devices and measuring
the output current. The state of a ReRAM cell is switched by
applying a write voltage with a specific polarity, magnitude,
and duration. The switching of a ReRAM cell from HRS to
LRS is called SET and the switching of a ReRAM cell from
LRS to HRS is called RESET.

ReRAM cells are integrated into dense memory struc-
tures to build denser memory. The most common memory
structure is the crossbar architecture with selector accesses
devices, i.e., there is selector device connected in series
with each ReRAM cell. Compared with crossbar architec-
tures with access transistors, each selector based accessed
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memory cell can fabricate the theoretical minimum area of
4F?, ie., where F is the minimum feature size of the tech-
nology. Different from crossbar architectures without access
devices, the selector devices enable the crossbar structures
to be scaled to larger dimensions, which reduces overhead
(current leakage) and cost.

Hardware-based Information Leakage Attacks. Covert and
side channel are a form of information leakage attack where
illicit communication is constructed between two parties
via system resources that are not intended for transmit-
ting information [3]. In side channel attacks, a benign
application (victim) unknowingly leaks sensitive data to
a malicious spy. In the scenario of covert channels, there
exists a malicious insider trojan process who collude with
a spy process to reveal secrets illegitimately. Both covert
channel and side channel can manifest as timing channel
where the timing of accesses to certain shared hardware
resources are manipulated to exfiltrate secrets [9]. Besides
timing, location in the storage devices can also be utilized
to build illegal communications through writing of bits by
one program and reading of those bits by another using a
stealthy encoding scheme.

4 RERAM ACCESS LATENCY TRAITS

A ReRAM memory cell can be activated for a read or
write operation by selecting the corresponding wordline
and bitlines. In ReRAM crossbar architectures, when a cell
is activated, the current will not only flow through the
activated cells (called fully-selected) but also through all the
other cells along the selected wordline and bitline(s), which
are called half-selected. The currents through the half-selected
cells are called sneak currents. The currents introduced dur-
ing a RESET operation are illustrated in Figure 2(a). The
fully-selected cell in the figure is RESET by setting the cor-
responding wordline and bitlines to 0 and V/, respectively.
All other wordlines and bitlines are set to /2 to minimize
the sneak currents. When voltages are applied to wordlines
and bitlines of a crossbar, a voltage drop will occur across
the memristor at each intersection, which can be converted
to latency by Equation 1, where ¢ is the switching time, V;
is the voltage drop, k and C are constants [11].

tx Ve = (1)

In a prior work [10], it was observed that the latency of
the RESET operation was dependent on the number of LRS
cells along the selected wordline. To fully understand the
latency profiles for RESET (write) operation, We performed
a characterization study using circuit-level simulations (See
Section 7 for more details). Figure 2(b) shows how the
RESET latency and voltage drop vary as the percentage of
bit “1’s (i.e., LRS) is set from 0% to 100% at row 0. From the
figure, it is observed that as the number of cells increases,
the RESET latency varies from 46ns to 224ns, and the IR
drop varies from 2.96V to 2.73V. Clearly, the required latency
for the RESET operation is variable and dependent on the lo-
cation and content of neighbouring memory cells. By storing
the number of LRS cells on each wordline using a counter,
the latency of the RESET operation can be reduced with up
to 4.8 x. Without the use of the LRS counter, the worst case
latency is required to be used for every RESET operation,
which will detrimentally degrade the performance in both
latency and power. Note that such latency variations are
specifically observed for RESET operations, since switching
time for memristors to SET a cell is typically very short.
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Fig. 2: (a) ReRAM 4x4 crossbar architecture with sneak paths
due to half selected cells. (b) RESET latency and Voltage
drop variation at Row 0 with different LRS percentage (%)
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5 VULNERABILITY TO INFORMATION LEAKAGE

In this section, we demonstrate how the variable write
latency can be used to perform a covert channel attack. We
continue the motivational example in Figure 1, where Users
T and S have access to parts of a shared ReRAM based
memory. Figure 3 shows how User T and User S manage
to manipulate the timings of write access to ReRAM cells to
build a stealthy communication channel.

In order to carry out a covert channel attack, User S and
User T first attempt to map memory space such that their
memory allocations achieve the setup as shown in Figure 3a.
That is, User S and User T co-locate their data on several
ReRAM rows in the same crossbar. Meanwhile, in order for
User T to manipulate the observed access latency for User S,
User S and User T place their data on the right half and left
half of the crossbar, respectively. It is worth noting that such
memory setup can be easily realized using memory massag-
ing techniques that have been demonstrated in DRAMs [7].
Once the memory setup is completed, User T can pass data
to User S by exploiting the latency of the RESET operation.
We call this technique WRITE+TIME, which includes the
following two major steps:

1) For a co-located row in certain crossbar, the trojan first
writes a specific data pattern to the ReRAM cells in its
assigned half of the row (left). For example, to send bit
“1’, the trojan can set its memory cells to all “1’s”, and to
transmit bit ‘0’, it sets all “0’s” to the left side of the row.

2) The spy then issues write operations to one memory cell
in the right half of the row, and times the latency of the
write operation. Based on the communication protocol,
the spy learns a bit ‘1" if it sees a longer latency and bit
‘0 if the latency is short. The spy then keeps idle for a
short period of time for the trojan to prepare the next bit.

Note that it is possible to leverage multiple rows for the
covert communication. For example, User T can write “0’s”
and “1’s” to the ReRAM cells on wordline W L and W L,.
To receive secrets from User T, User S writes (or RESET) data
to WL; and WLy and times this operation. Obviously, the
latency of the write operation to WL, will be significantly
shorter than the latency of the write operation to WLg
because there are more cells in LRS along W Ly than WL,
as illustrated in Figure 3(b). Therefore, with WRITE+TIME,
User S can determine that User T has written “0’s” or “1’s”.
For instance, using the same communication protocol as
described above, User T could pass a three-bit secret (“010”)
to User S using wordlines WL, WLy, WL3 (Figure 3c).
While this example shows a scenario for covert channel,
we note that it is straight forward to perform side-channels
where a spy infers the contents of a victim’s data by using
the same memory setup.
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Fig. 3: (a) shared ReRAM based memory for users. (b) the
write latency for user S is dependent on the content of user
T’s memory. (c) User T passing a message “010”.

6 EXPERIMENTAL SETUP

We used HSPICE [5] to simulate ReRAM model and the
Gemb5 architecture simulator [2] to evaluate a system with
ReRAM latencies.

TABLE 1. Simulated ReRAM Parameters

Metric Description Specification
M input dimension 512
N output dimension 512
n number of bits to write simultaneously 8
Ry wire resistance 250
K, Nonlinearity of the selector 200
Vv Full selected voltage 3.2V

Crossbar Configuration. The parameters used for the cross-
bar configuration are listed in Table 1. In our design, the
worst-case data pattern is assumed to evaluate the time
latency, i.e. we always assume all n-bits need to be RESET in
an M X N crossbar since the RESET latency is determined
by the number of bits that transforms from “1” to “0”, and
compared to which the SET latency is negligible [11].

ReRAM Organization. We assume that the future ReRAM
DIMMs are organized similar to DRAM organization. Each
DIMM has 2 ranks and each rank contains multiple banks.
Multiple ranks and banks can be accessed simultaneously.
Within a bank, data is stored in multiple ReRAM cross-
bars, [10] which can also be accessed in parallel. Each
crossbar has a dedicated write driver, wordline and bitline
selectors. We modeled a 512x512 crossbar organization and
calculated latency in writing to the farthest cell from write
driver, 512" cell of the 15! row, by varying the half selected
cell states from 0% cell with LRS to 100% cells with LRS.

ReRAM Crossbar Simulation. A summary of the param-
eters used in a single ReRAM crossbar simulation are pro-
vided in Table 1. The latency of the write operation is a
function of the voltage drop over the fully-selected devices.
Consequently, the node voltages in the crossbar must be
determined given the state of all the ReRAM cells. The
voltage at each node on the crossbar can be obtained by
formulating a system on linear equations using Modified
Nodal Analysis (MNA), as follows:

Uzbar 0
Y(gap) Vwi = |Vwl,w| (2)
Upl Upl,w

where Y (g,p) is a matrix with dimensions (2 - N - M +
M+ N)x(2-N-M+ M + N) that is a function of g and
p. g contains the state of all the ReRAM cells (LRS/HRS);
p captures the parasitic parameters of the crossbar. The
selector devices are modeled by scaling the resistance values
of the non-selected and half-selected cells with K,. M
and NN are the number of inputs and outputs, respectively.
Uzbar, Vwi, and vy are the node voltages in the crossbar,
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wordlines, and bitlines, respectively. vy, and vy . are the
voltages applies to the wordlines and bitlines, respectively.
The node voltages vzpqr are obtained by solving the system
in Equation 2. Next, it is straightforward to calculate the
write latency using Equation 1.

Gem5 Simulation. We build a ReRAM memory access la-
tency model based on our HSPICE simulations and integrate
it with gem5. The memory access timing model is imple-
mented as a lookup table that details expected latency for
write operation given the data pattern of the corresponding
crossbar row. We evaluated the WRITE+TIME strategy by
simulating a single out-of-order X86 core in system-call
emulation (SE) mode. We set up the memory mapping as
described in Section 5, and configure the data pattern (first
half of the rows in a crossbar) before simulating the spy.

7 EVALUATION

In this section, we study the timing of write latency for a
malicious spy process running in the system with ReRAM
memories. To validate our observation, it is necessary
to show that the content-based variable write latency in
ReRAM cells can be actually observed from user space.

We implement a set of micro-benchmarks to evaluate
the timings of write operation corresponding to different
data patterns. Specifically, to collect latency of write oper-
ation, we launch a latency-profiling thread that executes a
load instruction immediately after the target store (write)
instruction to the same memory address. Due to the read-
after-write data dependency, the read operation has to stall
before the write request is completed. We, therefore, mea-
sure the time (in cycles) it takes to execute write and read
code sequence using the rdtsc instruction, indicated as
WRITE+TIME strategy. To make sure that the data is not
present in all levels of caches, before the write operation, the
target cache line is flushed using the c1flush instruction
that is available in x86 architecture. In our simulations, we
indicate memory access delay as the delay observed by the
application before flushing the data from the caches till the
read request responses back.

We achieve the memory layout as depicted in Figure 3 by
allocating a large chunk of memory in user space. By check-
ing the physical page number together with the memory
addressing scheme, the program is able to locate memory
addresses that map to the left and right side of certain
crossbar rows. We use the right-side memory in the latency-
profiling thread (i.e., the spy) for latency sensing and the
left-side memory to set the data patterns. To avoid factors
like noises from other sources, read and write queues which
alter crossbar memory access delay for the users, we perform
write-and-read operations iteratively, from 1 to 100.

Figure 4 demonstrates the latency profiles observed
when the percentage of cells with LRS states in the left
half of the crossbar row vary from 0 to 100%. As we can
see, the latency-profiling thread does not observe much
variation in the memory access delay when there are only
a few iterations of operations (e.g., < 5). This is because
with short memory access sequences, the read and write
queues can hold all the pending requests. As the number
of such iterations increases, we can observe that the memory
access delay is directly proportional to the data patterns at
the half selected cells (e.g., 100 iterations). Due to multiple
iterations and persistent domain off the processor chip,
which persists writes to the memory, the channel capacity
can be maintained high and the user observed memory
latency is not affected by NVM write and row buffers.
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Fig. 4: Memory access latency observed by the application.

8 CONCLUSION

In this article, we define an emerging security threat to the
data stored in the ReRAM when multiple user applications
are sharing one ReRAM device. A latency tool is developed
to obtain the latency map of the ReRAM crossbar for the
write operation. We study the delay in accessing the mem-
ory locations based on the data patterns of half selected
cells using the developed latency tool. For a simple case
wherein the row of a crossbar is shared by 2 applications
we show the memory access latency from the application
side. This can lead to timing-based information leakage
attack where an adversary manages to exfiltrate secrets of
a memory-colocating process via write operation latencies.
We validate the observable latency by running compre-
hensive simulation on gem5 and our results show that
user space application can successfully both distinguishable
latency corresponding to the content of memory cells in the
same row.
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