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Developing Transmedia Engineering Curricula using Cognitive Tools to
Impact Learning and the Development of STEM Identity (RTP)

1. Abstract

This paper examines the use of Imaginative Education (IE) to create an NGSS-aligned middle
school engineering curriculum that supports transfer and the development of STEM identity. In
IE, cognitive tools—such as developmentally appropriate narratives, mysteries and fantasies—
are used to design learning environments that both engage learners and help them organize
knowledge productively. We have combined IE with transmedia storytelling to develop two
multi-week engineering units and six shorter engineering lessons. An overview of the
curriculum developed to date and a more detailed description of the engineering design unit is
presented in this paper.

The curriculum is currently being implemented in treatment and non-treatment classrooms in
middle schools throughout the Springfield, MA public school system (SPS). In tandem with
pilot-year implementation of the curriculum, we have developed an assessment instrument to
measure student learning outcomes associated with a transfer variant known as preparation for
future learning (PFL). An analysis of the results from the PFL assessment support the position
that a curriculum employing IE cognitive tools can facilitate both transfer-in thinking and the
capacity of students to “think with” and thereby interpret important engineering concepts.

II. Introduction
Engineering in K-12 Education

The National Research Council (NRC) reports that the U.S. “will need a steady supply of well-
trained engineers, scientists, and other technical workers...to succeed and prosper in the twenty-
first century.” ! Because our society is becoming increasingly dependent on engineering and
technological advances, it is also recognized that all citizens need to have a basic understanding
of engineering processes to make informed choices and understand our world. To address these
needs there has been a growing nationwide interest to include engineering in both formal and
informal pre-college education. In reviewing early attempts at K-12 engineering education, the
NRC found that including engineering in K-12 education has numerous benefits including:
improved learning and achievement in science and mathematics; increased awareness of
engineering and the work of engineers; understanding of and the ability to engage in engineering
design; interest in pursuing engineering as a career; and increased technological literacy. 2

Initially individual states led the effort to include engineering in K-12 education. More recently
attention has shifted to the national level by integrating engineering design into the Next
Generation Science Standards (NGSS) at the same level as scientific inquiry. The NRC notes
that the insight and interest students gain from this integration should “help students see how



science and engineering are instrumental in addressing major challenges that confront society
today...” !

While including engineering design in NGSS can potentially transform K-12 science education,
the resources available to teachers for implementing this approach are still largely undeveloped.
The curriculum presented in this paper goes beyond the current practice by applying research
from the learning sciences to:

e Frame curriculum units and lessons using dynamic narratives and other cognitive tools;

e Deliver these narratives through transmedia storytelling, in which students become
characters in immersive experiences spread over multiple media formats; and

e Integrate science and engineering in a way that is consistent with NGSS.

Engaging Students through Imaginative Education

The engineering education literature has long recognized the need to rethink how students
engage with content.> Many have raised concerns that reductionist engineering courses that omit
intellectual and sociopolitical histories help discourage women from scientific fields.*¢ Others
provide examples of how using storytelling can successfully address these concerns in
engineering education at a variety of grade levels.”!3

The curriculum presented in this paper is based on the theory of Imaginative Education (IE)
developed by Kieran Egan.'*!8 Egan’s approach builds on learners’ characteristic ways of
thinking to structure their engagement with ideas and knowledge. His intent is to engage
learners’ imaginations in their pursuit of understanding and thus engender the kind of caring
about learning necessary for developing learners’ capacities to engage in deep learning.

In the IE approach, instruction is designed to support a developmental sequence of five different
types of understanding that enable learners to make sense of the world in different ways. Each
understanding includes an array of cognitive tools. The most important of these tools is the use
of narrative. Bereiter writes that “narratives...create in the reader the experience of significant
conditions and events. When in the grip of a story, people don’t think, ‘How is this relevant to
me and my problems?’ Instead they experience events through the protagonists...” 1
Researchers in cognitive psychology have learned that stories—both the ones stored in our
memories and those we generate as we interact with the world—are essential to all aspects of
learning and have long been used as a tool for communicating understanding to students.?’ They
are the primary means learners have of relating their existing knowledge to the new ideas they
are learning?! and to express their understanding of the world.?? They ground complicated
concepts in concrete terms and connect abstract ideas with emotions and events.?* According to
IE theory, the narrative structures most appropriate for middle school build on two of the five
types of understanding described by Egan: mythic understanding (including the use of fantasy
and mystery) and romantic understanding (including exploring limits and extremes of reality and
identifying with heroes and heroines).

A Transmedia Approach to IE Narratives

Transmedia storytelling is “a process where integral elements of fiction get dispersed
systematically across multiple delivery channels for the purpose of creating a unified and



coordinated entertainment experience.” 2* Videos; websites; blogs; social media; photos, art, and
diagrams; newspaper/magazine articles; journal entries; transcripts of phone calls or videos;
documents and records; books or stories; and radio/audio clips are all forms of media used by
transmedia storytellers. When using transmedia to create learning environments, research has
shown the importance of learners engaging in transmedia play.?> In transmedia play learners go
beyond being merely consumers of information and instead become participants who create
“new information through connections, explorations, and other forms of imaginative--and
productive—play.” 26

The impact of transmedia is similar to IE: “Transmedia consumers are more involved in the
story...resulting in more engagement, intrinsic motivation, and media enjoyment.” %’
Additionally, “High engagement and media enjoyment result in children’s more elaboratively
processing information and thus encourage self-regulated learning.” 27 The benefits of using
transmedia go beyond increased engagement. One is the variety of literacies transmedia
environments support, “including textual, visual, and media literacies, as well as multiple
intelligences...[it] allows for important social sharing among collaborators.” 28 Additionally,
“children must learn to read both written and multimedia texts broadly (across multiple media)
and deeply (digging into details of the narrative).” 28

I1I. Applying IE to Create a Student Learning Website (goteems.org)

This paper presents a transmedia engineering curriculum called Transforming Engineering
Education for Middle Schools (TEEMS) that is structured around narratives and other IE
cognitive tools. Aligned with NGSS and designed for the sixth-grade, the TEEMS curriculum is
available online through a multimedia, interactive platform in which students become immersed
in the narrative adventures. Half-finished now, it will be completed by summer, 2020. The site
already includes a multi-week unit introducing engineering design and three additional lessons
that apply engineering design in different contexts.

The Survivorama Unit

The Survivorama unit aligns with the Next Generation Science Standards (NGSS) for MS-ETS1
Engineering Design. The unit introduces students to the engineering design cycle through the
story of Monet, an intrepid 17-year-old who takes on a bio-tech company with evil plans: to
generate extreme, un-survivable weather all over the planet. In this two-week unit students:

e Learn about engineering design through engaging with a dystopian narrative that leads to
creating their own engineering design cycle;

e Help Monet fight Collusia by designing bio-armor that can survive any condition;

e Explore the design cycle more deeply by identifying the design failures in a real-life case
study; and

e apply their knowledge by engaging in a design challenge.

The flow of the unit is illustrated in Figure 1.
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Figure 1: Flow of Survivorama Unit

Monet’s Story

Through video and a variety of online resources, students are introduced to the story of the
Survivorama that frames the unit.

Storyline: Monet designs landscapes for the Survivorama, a big dome where the
company creates extreme weather conditions. In the Survivorama, “testers” try
out tough armor — the SuperSuit — to see if it protects them from environmental
disasters. But one day Monet’s access to the dome is cut off without explanation.
Then a co-worker named Hunter appears and shows Monet a hacked email that
reveals a horrible secret: Lisa, the Collusia’s CEO, plans to create extreme
weather all over the planet so that everyone needs her SuperSuit — and she’ll be
rich. When Hunter disappears, Monet discovers a mysterious flash drive in his
empty office. She finally finds Hunter locked in the Survivorama with no
SuperSuit to protect him. She must go on the run ... but she vows to return and
rescue Hunter.

Create a Class Design Cycle

Now immersed in the storyline, students become active participants by working together to build
the engineering design cycle based on pieces of information they discover in Hunter’s logbook.
These include an old video he found showing designers from the past working successfully
through a design cycle and his notes about the video.

Storyline: Monet is ready to return to the Survivorama and rescue Hunter. She
has an idea about how he can survive the tough conditions in the dome: design
bio-armor (something even better than Lisa’s SuperSuit). But she needs help!



Monet believes that there may be key ideas about design in the files Hunter left
behind on his flash drive.

Define

Students apply what they have learned about the define phase of the design cycle to identify the
problem they want to solve and describe the user’s needs. Students explore all the resources to
identify the needs for the bio-armor. Resources include voicemails, hacked emails, and a
Survivorama map showing Hunter’s location and the local terrain.

Storyline: With Hunter in danger, time is running out. It’s time to start designing
bio-armor that will withstand the extreme weather in the Survivorama. Thanks to
Hunter’s notes and your students’ efforts, they now have the engineering design
cycle to get them started. And Monet has more help to offer: secret documents
hacked from Lisa’s database that show what it really takes to survive in the dome
(see Figure 2).

Terrain: Desert Zone

Ground cover:
Sand (depth ranges from 1 inch to 3 feet)
Sparse vegetation (shrubs and tumbleweeds)
Temperature:
100 F (average daytime temperature)
Temperature increases:
1.0 F/day
Water sources:
None
Other hazards:
Predatory desert animals [Do Not Engage]

*Testers are advised to cross the terrain at maximum speed to
outrun predators - so carrying heavy personal water supplies
is forbidden

Figure 2: Terrain Report from the Desert Zone of the Survivorama

Develop

Students next apply what they have learned about the develop phase of the design cycle to
research the problem, design a solution and create a prototype. Resources include a Materials
Toolbox, bio-armor template, and prototype sketching software.

Storyline: With students’ help in the DEFINE phase of the engineering design
cycle, Monet now knows what hazards the bio-armor will have to withstand and



what our design criteria are in each zone. What’s next? Monet found another
classified document that has information students can use to design the bio-armor

(see Figure 3).
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Figure 3: Material Property Document Discovered by Monet

Optimize

Students next apply what they have learned about the optimize phase of the design cycle to test
their design, get feedback, and communicate their solution. Resources include a material cost
table and the bio-armor template.

Storyline: Monet is growing desperate to rescue Hunter, before it’s too late. The
bio-armor designs for each zone are ready. But before building the bio-armor,
Monet discovers that she has another constraint — she won’t be able to access all
the materials because some are too expensive for her to get. With new information
about material costs, she’ll need students to update and OPTIMIZE their designs
to lower the bio-armor cost as much as possible.

Monet’s Story Ends
A video wraps up Monet’s story and provides a transition out of the world of the Survivorama.

Storyline: Using students’ designs, Monet has built the bio-armor that can
navigate the three zones in the Survivorama — and she’s ready to rescue Hunter.



The Boston Molasses Disaster

In this section students take a deeper look at the engineering design cycle by investigating an
engineering failure. Students solve the mystery of what went wrong—and why—by hunting
through videos, animations, diagrams, real-life accounts, and historical photos and court
transcripts (see Figure 4).

Storyline: Students experience the strange-but-true story of the 1919 Boston
Molasses Disaster through the eyes of real-life hero Isaac Gonzales, an immigrant
who worked for USIA, the company in charge of the tank. Isaac risked being fired
and even jailed as he repeatedly warned the company about the tank’s imminent
collapse. In this story a gigantic tank holding over two million gallons of molasses
burst and flooded the streets of Boston’s North End — with disastrous
consequences. An entire neighborhood was destroyed and 21 people died. The
collapse was the result of a series of failures in the engineering design cycle: the
construction was rushed, the materials used to build the tank weren’t strong
enough, the tank was never tested, and warnings about leaks were ignored.
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Figure 4: Control Panel for the Boston Molasses Disaster

Cellphone Holder Design Challenge

This challenge pulls together everything students have learned as they define, develop and
optimize their own cellphone holder design.

Storyline: Teachers and students in our state are worried about how kids use
cellphones instead of paying attention in class. They’ve tried everything they can
think of to stop the problem, and nothing is working. But they heard about a new
idea: instead of trying to keep cellphones out of the classroom, use them to help
learning. It turns out that in almost every subject, there’s a good way to use
cellphones for learning. Our school is going to be the first to use cellphones this
way in sixth-grade classrooms. The cellphones on your desks have to be easy to



read and have to stay in place. There’s one problem: our design also has to be low
cost. One teacher suggested making cellphone holders out of cardboard. So this is
our design challenge: can we design a cellphone holder that’s made from
cardboard?

Return to Earth Lesson

Return to Earth accompanies the "Earth's Place in the Universe" science unit. This two-day
lesson introduces students to concepts of engineering design through the story of the disastrous
Apollo 13 mission of 1972. It was created in collaboration with real-life hero, Francis (Poppy)
Northcutt—the first female engineer to work in NASA’s mission control. Return to Earth
aligns with the Next Generation Science Standards (NGSS) for MS-ETS1 Engineering Design.

Storyline: The lesson opens with a first-person account from Northcutt, recalling her
work at NASA’s Mission Control. Students delve into the astronauts’ plight when an
oxygen tank on the Apollo 13 spacecraft explodes. With days to go before Apollo 13 can
get back to Earth, carbon dioxide from the astronaut’s own breath builds to nearly fatal
levels. Like the NASA engineers of 1972, students gather supplies to design a filter fix
that will lower the carbon dioxide levels and keep the astronauts alive.

“HOUSTON, WE'UE (SR R s il S e o
HAD A PROBLEM.”

Apolle 13 d t h 7h
polls 13 was cuppoced to reach The Gravity

moon...but never got there. ) S . J Explosion Assist

~ UNITED BYAYER

Astronaut
Lovell

Tl
o
h.. /

Astronaut Astronaut
Haise Swigert

Figure 5: First Control Panel for the Return to Earth Lesson

Tragedy in Haiti Lesson

Tragedy in Haiti accompanies the "Earth's Systems" science unit. This one-day lesson reinforces
the Define phase of the engineering design cycle through the story of the 2010 Haiti earthquake.
Tragedy in Haiti aligns with the Next Generation Science Standards (NGSS) for MS-ETS1
Engineering Design.

Storyline: The lesson opens with a video account from 17-year-old Rachel Lunique, a
real-life survivor of the quake. After hearing her story, students dig deeper into what



happened on the day of the earthquake and its disastrous consequences: 300,000 people
lost their lives and over a million were left homeless. Fictionalized case studies of four
quake survivors highlight the desperate situation of the Haitian people. In the Design
Challenge, students take on the role of engineers to identify the survivors’ needs (criteria)
and what stands in the way of getting aid to them (constraints).
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Figure 6: First Control Panel for the Tragedy in Haiti Lesson

From the Future Lesson

From the Future accompanies the “Biological Evolution” science unit. It aligns with the Next
Generation Science Standards (NGSS) for MS-ETS1 Engineering Design.

Storyline: This one-day lesson reinforces the engineering design cycle — Define,
Develop, Optimize — through the story of Alejandra, a 14-year-old from far in the
future. During a class field trip, Alejandra discovers “fossils” that are actually
phones from different times in history, up to the smartphone of our day. With
Alejandra, students see how phone designs have evolved, or improved, over time
— and how technological evolution is the same and different from biological
evolution. In the design challenge, students take the next step in the evolution of
phone design: designing an app to help fifth-graders making the transition to sixth
grade.
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Figure 7: First Control Panel for the From the Future Lesson

IV. Teacher Website (http://teemsproject.com)

A teacher website supports teachers and schools implementing the TEEMS curriculum. The
most important resources on the site are guides for each unit and lesson. Each guide includes:

e A description telling the story of the unit or lesson, the time needed to complete it and the
NGSS standards addressed;

A list of materials needed for classroom implementation;

Documents to be printed out for students;

Diagrams showing the flow of the lesson (for example, see Figure 1);

Step-by-step instructions for implementing each unit or lesson with discussion prompts,
guidance for using resources on the student learning website, links to additional resources
and tips for teachers.

Another import resource on the site is a set of instructional videos for teachers. Example topics
include insights on the engineering design cycle and why students should learn about the design
cycle.

V. Context of Pilot-Year Implementation and Outcome Assessments

The TEEMS curriculum is currently being piloted in the Springfield Public School (SPS) system,
an urban public K-12 school district in a northeastern state. The district serves more than 25,000
students from preschool to grade twelve in 32 elementary schools, 12 middle schools, 3 schools
serving grades 6 to 12, and 8 alternative schools. The district also includes magnet schools,
vocational schools, and a variety of other specialized educational settings. Most students in the
district are Hispanic (67%) or African American (19%). A vast majority (83%) of the district’s
students are considered “high needs,” which is a designation that includes factors related to
language needs, economic disadvantages, and/or disability status.

Six of the district’s 12 middle schools have agreed to participate in the TEEMS pilot; 4 are being
used as treatment schools and 2 as comparison (non-treatment) schools. Each of the schools has a



single 6th grade science teacher. There are 724 students participating in the pilot year, 410 in
treatment classrooms and 314 in comparison classrooms.

Following the pilot year, the TEEMS curriculum will be revised based on formative assessment
data collected in the pilot year. Then the full TEEMS curriculum (two units and six lessons) will
be tested for two years throughout participating SPS schools. Data will be collected using a
mixed methods approach to measure both learning and the development of STEM identity.

VI. Assessing the Effectiveness of Cognitive Tools via Preparation for Future Learning

A significant goal of exploring the effectiveness of a curriculum based on IE theory is to gather
evidence concerning the efficacy of employing IE cognitive tools as a means of facilitating
student learning. This was expressed most clearly in a recent round-table webinar*® wherein
researchers at the Center for Imagination in Research, Culture, and Education (CIRCE),
including Kieran Egan and Gillian Judson, highlighted that assessment of IE-embedded student
learning should depend on the effect of cognitive tools as a central construct of investigation.

Our present efforts at capturing indicators of the effectiveness of cognitive tools were primarily
informed by our understanding of the capacity of cognitive tools to serve as exemplars of
strategic mediation of student learning®® and an understanding based on Egan’s own articulation
of the role of cognitive tools as mediators.’! Also informing our efforts are associated theoretical
works in the field of IE development like those of Fettes*? which draw a parallel between IE
cognitive tools and the “psychological tools” expressed in sociocultural theory, the role of which
was to serve as support for mediation.

Seeking to carry out a fine-grained assessment of the effect of cognitive tools as mediators, we
made use of a variant model of transfer of learning®? known as preparation for future learning
(PFL). In this model transfer is re-contextualized and bifurcated into the constructs of transfer-
in learning, describing innovation-oriented learning that emphasizes interpretive knowledge, and
transfer-out learning, characterized by efficiency-oriented learning and a dependence on
replicative and applicative knowledge.>*3> In later work applying the PFL assessment model to
sociocultural theory, Bransford, Sears, and Chang®® demonstrated a method by which PFL could
account for incremental elements of successful mediation, identifying the characteristics of
transfer-in learning as indicators of proximal navigation along the trajectory of learning
development and the characteristics of transfer-out learning constituting indicators of distil
development through which learning is crystallized into independent performance.

Because transfer-in learning is not commonly assessed as a traditional outcome of instruction,**
our early, pilot year efforts to assess student learning have centered on creating an assessment
instrument that could—at sufficient levels of reliability, credibility, and rigor—capture indicators
of transfer-in learning. The structure of our pilot assessment items were, in part, derived from
exemplar categories of PFL student behavior and expressions of transfer-in thinking,*¢ as well as
those represented in established assessment strategies reflected in extant PFL assessment
instruments, especially in prior research projects like those of Arena®’ and Grover, Pea, and
Cooper.*® However, when appropriate, we also remained open to incorporating new categories
of interpretation grounded in evidence based on student response patterns to PFL prompts.



VII. Development and Implementation of a PFL Assessment Instrument

Our initial effort at designing a PFL assessment produced an instrument focusing in a broad,
exploratory manner on capturing both direct and indirect indicators of transfer-in learning.
Questions 1A and 1B were organized as constructed response questions referencing a
narratively-framed, multi-stage problem-solving scenario (question 1A is illustrated in Figure 8).
Questions 2 and 3 were intended to gather evidence of students’ ability to reflect on their
experiences learning engineering concepts. Finally, questions 4 and 5 targeted specific levels of
students’ engineering knowledge (following Broudy?®): question 5 was a scenario-based selected
response item intended to measure students’ replicative knowledge of engineering concepts and
the question 6 was an interpretive drawing task.

Stakeholder participation in the development of the student learning outcome assessment was a
high priority in this project. As such, several rounds of expert revision—provided by professionals
both internal and external to the project—guided the creation of this instrument. The earliest draft,
based on ideas for a dynamic assessment of PFL was composed in February of 2019. This was
modified for conceptual clarity and was expanded in scope as a result of collaboration with
partners at STCC and CIRCE. A draft was then submitted to the SPS Design Team — a focus
group of middle school teacher-leaders from the participating school district — who suggested
improvements to language use and accessibility. A fourth round of revisions was implemented,
following the advice of collaborators specializing in assessment and evaluation, focusing on the
structure of the prompts. Finally, after compiling this feedback from multiple sources, a working
draft of the six-item pilot instrument was composed for use in September of 2019.

1a. Some of your neighbors {people who live near you) have worked hard to raise money and buy some
empty land on Springfield Avenue. Now they want to make it into something better. How can you help?
You're a middle-school student who knows about engineering design — so you can give your neighbors
ideas about how to solve their problem.

Thinking like an engineer, what would you say to your neighbors about their first step in figuring out
how to use the land?

Figure 8: PFL assessment question 1A



VIII. Key Findings from Early Analysis of Student Learning Outcome Data

As of January 2020, the first 243 student responses, roughly 33% of the expected total, have
been collected and analyzed, representing assessment results from two treatment condition
classrooms and one comparison class. These pilot data have been sufficient to inform useful
interpretations, providing a basis for drawing conclusions about the effectiveness of our
assessment items and framing tentative propositions about the potential role of a curriculum
based on cognitive tools in facilitating preparation for student learning.

Based on the quality of responses to items in the assessment instrument, we decided during the
earliest phase of analysis to exclude questions 1B, 2, 3 and 4 and retain questions 1A and 5 for
further evaluation. In some cases, this decision owed to recognizing the highly experimental
nature of the question (as with 1B and 4) which appears to have created unclear establishing
conditions for students, resulting in little variability in student responses. In other cases, as with
questions 2 and 3, the reflective quality of the prompt seemed to have proved too variable,
resulting in a dispersive overabundance of response categories that could not be further
reconciled.

Evaluation of responses to questions 1A and 5 each then proceeded from the generation of a
rubric by which scores could be assigned. For question 1A, rubric categories were largely a
priori adaptations of PFL behaviors exemplified in the literature,*-7 these being categories
structured primarily to reference indicators of (1) strategizing, (2) collaboration and (3) resource-
seeking, and indications of partial orientation to those behaviors in the engineering context—
such as (4) measuring, (5) modelling, and (6) considering impacts; these were organized into a
four-point ordinal scale ranging from negligible to advanced transfer-in thinking (see Figure 9).

For question 5, rubric categories were partially based on PFL behaviors, most especially those
related to displays of interpretive knowledge,*=° but were also informed by patterns of student
responses identified in comparisons of student work; in this way, five nominal categories were
established, grouping student’s responses as demonstrating: (1) poor orientation, (2) an
unelaborated schematic, (3) an elaborated schematic, (4) a rote engineering design process, or (5)
an interpreted engineering design process.

Comparative statistical analysis of student responses to questions 1A and 5 has provided
promising evidence of the effectiveness of instruction guided by cognitive tools to positively
influence preparation for future learning. For question 1A, a non-parametric analysis was
conducted on early by-group data. An independent two-group Mann-Whitney test was conducted
to investigate differences among the treatment (n = 157) and comparison (n = 88) conditions.
This analysis indicated that the PFL thinking variable was significantly greater, in the statistical
sense, for the treatment group (Mdn = 3) than for the comparison group (Mdn = 2), U= 5051.5,p
=.0002941. This analysis supported the inference that there was a significantly greater tendency
to engage in PFL thinking among students in the treatment group. One clear corollary of this
inference could be found in the percentage of students in each condition who could produce at
least one indicator of PFL thinking in their response: In the treatment condition, 59.9% of
students responded with at least one statement indicating PFL thinking, whereas in the
comparison group only 37.4% of students responded in this manner.



Question 1A Rubric

1
(Negligible Thinking)

2
(Emerging Thinking)

3
(Basic Thinking)

4
(Advanced Thinking)

Student’s response contains no
items from the basic/advanced
design thinking or the emerging
design thinking lists, instead
exemplifying taking immediate
action, resisting collaboration or
disengagement.

Examples from Student Responses:

e Taking immediate action:
“build a park”, “build a house”,

“fix the land up”, “plant some
new trees”, “cut the grass”

e Resisting collaboration: “tell
them to do”, “give them ideas”,
“tell them what | want”

e Disengagement: “| don't care”,
“I don’t know this”

Student’s response contains no
items from the basic/advanced
thinking list, and contains one
example of measuring, modelling,
or considering impacts.

Examples from Student Responses:

e Measuring: “find the area of
the land”, “measure the land”,
“figure out the budget”, “get
your materials”

e Modelling: “make a
prototype”, “draw a blueprint”,
“make a sketch”, “come up

with a model

e Considering impacts: “think of
the benefits”, “think of
impacts”, “ask about side-
effects”

Student’s response contains one
example of strategizing,
collaborating, or seeking advice:

Examples from Student Responses:

e Strategizing: “find the
problem”, “define the
problem”, “make a plan”,
“think a solution”, “set a goal”

e Collaborating: “ask for my
neighbors for ideas”, “see what
problems they have with this
land”, “ask ‘what do want to
do?"”, “share ideas with

neighbors”, “vote on an idea”

e  Seeking advice: “talk with
experts”, “talk with people who
know”, “do research”, “gather
info from others”, “buy a

book”, “study the problem”

Student’s response states and then
elaborates or restates their
thinking, containing two or more
examples, in any combination, of
strategizing, collaborating, or
seeking advice:

Examples from Student Responses:

e Strategizing: “find the
problem”, “define the
problem”, “make a plan”,

" o,

“think a solution”, “set a goal”

e Collaborating: “ask for my
neighbors for ideas”, “see what
problems they have with this
land”, “ask ‘what do want to
do?"”, “share ideas with

neighbors”, “vote on an idea”

e Seeking advice: “talk with
experts”, “talk with people who
know”, “do research”, “gather
info from others”, “buy a
book”, “study the problem”

Figure 9 Question 1A scoring rubric

For Question 5 a chi-square test of independence was carried out to examine the relationship
between condition (treatment vs comparison, with the same sample sizes as above) and category
of responses based on the rubric, which provided a proxy indicator of students’ interpretive
knowledge of the engineering design process. The relationship between these variables was
found to be significant, X? (4, N = 245) = 36.33, p < .001. This finding supported the inference
that student responses incorporating the production of a certain type of diagram displayed a
statistically significant tendency to depend on whether the student was in the treatment group or
the comparison group. In context, it is worth noting that the most theoretically “correct”
response, producing a highly-interpreted and sophisticated diagram, was demonstrated in the
treatment group far more often — at a ratio of more than 4:1 against the comparison group.

IX. Discussion

Formative assessment has been critical in providing direction for developing the TEEMS
learning environment in a way that best meets the needs of teachers. For example, in developing
IE-based learning environments over the past five years we have noted the need for software that
is robust on a wide variety of platforms (including those that may be outdated or that have only
minimal support); that requires little engineering expertise in supervising and supporting its use;
and that is adaptable to a variety of teacher needs and time schedules.*

In developing the TEEMS curriculum, we are continuing to listen to teacher concerns and adjust
the curriculum accordingly. In focus groups with teachers conducted by an external evaluator,



the evaluator reported that “The TEEMS curriculum is well-received by teachers, engaging for
students, and may influence teaching of other units.” She also noted the following:

e Treatment teachers were overwhelmingly positive about and appreciative of the
curriculum, which, with the exception of some moments of confusion, was reported to be
easy to follow and use.

e Teachers used words like hands-on, problem solving, creativity, and active engagement
to describe how the curriculum was different from other science units.

e They broadly agreed that their students displayed higher-than-usual enthusiasm for the
TEEMS units and lessons, with one teacher noting, “Students were so engaged; it was
exciting to see students that would say, ‘this is so boring’ be totally engaged.

In addition, the evaluator reported three key ways that the curriculum had felt like a valuable
experience for them and/or their students:

e Appreciation of the value of story in teaching science content.
Key quote: “[In another unit] there is an end-product about discovering a new planet, but
there is no story behind it. [In the future I might] try to create a story and add videos of
real-life work on other planets.”

e A new understanding of how to teach the skills of collaboration/teamwork (especially
through the use of the videos and watching real teams work).
Key quote: “[ A student presented his cell phone idea to the class] and he credited another
student; it led to discussion of sharing ideas and crediting.”

e Realization of the importance of the teacher’s role in helping students think divergently,
rather than immediately narrowing to a right answer.
Key quote: “I learned that I have to be more open-minded about how I respond to
students so that I’'m not stifling their thinking...[so they see] there is not one right way.”

Pilot-year results from the preparation for future learning (PFL) assessment instrument have
provided encouraging early evidence to support the assertion that IE cognitive tools, in their role
as mediators,'®2132 can facilitate student learning by providing a scaffold for immature
conceptual knowledge in such a way as to allow students to more successfully orient themselves
to new learning contexts*>=3’. When posed a novel problem-solving scenario task, as in question
1A of the PFL assessment, students in the treatment group responded, to a degree greater than
those in our non-treatment classrooms, with statements that showed their capacity to orient to the
problem through transfer-in thinking. Similarly, as was indicated in the pattern of early
responses to question 5 of the PFL assessment, when called-upon to create a pictorial
representation of their understanding of the engineering design process — the conceptual focus of
the engineering unit — students in treatment classrooms were able to demonstrate a greater
capacity to “think with” the concept in an interpretive manner, producing a greater number of
sophisticated examples of the engineering design process.

In the years to come, our intention is to expand our repertoire of approaches to PFL assessment
in the context of measuring the effectiveness of a curriculum based on transnarratively-guided
Imaginative Education, creating conditions to elicit measures of transfer of learning that integrate



more fully into the transmedia framework by which the curriculum as a whole is composed. The
discrete nature of PFL assessment as it has occurred in the pilot year has proved to be a
limitation to articulating an ideal, dynamic assessment scenario for measuring PFL — whereby
students are offered incremental opportunities to demonstrate their ability to learn from new
materials as they are presented®* *> — and, going forward, we would like to ameliorate the
circumstance by incorporating assessment items into classroom activities.

X. Conclusions

We have applied the theory of Imaginative Education to develop an engineering learning
environment that is based on the Next Generation Science Standards. While currently half
finished, when completed it will consist of two multi-week engineering design units and six
shorter lessons that apply engineering design to various science topics taught in the sixth grade.
The curricula is currently being piloted in sixth-grade classrooms to research its impact for
increasing (1) learners’ capacities to engage in both innovative and direct application of
engineering concepts, and (2) the formation of STEM identity.

Early results from the PFL assessment have provided data to support that students in treatment
classrooms can display greater indication, both indirect and direct, of PFL. Our item by which
we evaluated indirect indication of PFL, students’ ability to display transfer-in thinking
demonstrated a pattern of response which contained a greater degree of PFL thinking behaviors
as a result of IE-based instruction. A similar pattern favoring a tendency for greater PFL thinking
among students in treatment classrooms was determined with respect to responses to our direct
PFL assessment item — through which we attempted to measure students’ interpretive
knowledge. On the whole, these early data have helped to advance the notion that IE cognitive
tools can successfully serve as mediators of student learning by providing a framework by which
students can orient themselves to take advantage of new learning.
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