Towards Summarizing Program Statements in
Source Code Search

Victor J. Marin Iti Bansal Carlos R. Rivero
Rochester Institute of Technology Rochester Institute of Technology Rochester Institute of Technology
vxm4964@rit.edu ib6355@rit.edu crr@cs.rit.edu
ABSTRACT understanding on how these searches are usually conducted [7].

A common practice among programmers is to find pieces of source
code using search engines. Programs retrieved by these engines are
typically semantically but not necessarily syntactically similar. As a
result, ranking methods are exploited to present relevant programs
to users. However, due to implementation variability, users need
to understand such programs. In this paper, we propose a method
to group statements into clusters from a set of programs retrieved
by a source code search engine. Each cluster comprises a number
of program statements that have similar but not exact semantics
and are pervasive. Our hypothesis is that such clusters help un-
derstand at a glance a set of semantically-related programs. We
use approximate graph alignment to find correspondences among
statements in two program dependence graphs that are similar
with respect to their control and data flows, as well as operations
they perform. We then build a graph with pairwise comparisons
of program dependence graphs, and cast the problem of clustering
statements as finding communities of statements that consistently
align. Our evaluation using programs collected by BigCloneBench
shows that clusters of statements discovered by our approach help
discern implementation variations.

CCS CONCEPTS

« Software and its engineering — Software libraries and rep-
ositories; Search-based software engineering;

KEYWORDS

Source Code Search, Program Dependence Graph, Approximate
Graph Alignment, Community Detection

ACM Reference Format:

Victor]. Marin, Iti Bansal, and Carlos R. Rivero. 2020. Towards Summarizing
Program Statements in, Source Code Search. In The 35th ACM/SIGAPP
Symposium on Applied Computing (SAC °20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3341105.3374055

1 INTRODUCTION

With the proliferation of web-based source code repositories and
question-and-answer websites, programmers typically search on-
line for source code to perform their daily tasks [9]. Despite of
the fact that this is a very popular practice, we still lack a good

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6866-7/20/03.

https://doi.org/10.1145/3341105.3374055

Programmers tend to search for programs that can be directly in-
corporated into software projects, or for reference implementations
to be consulted for certain information like API calls (7, 9].

Current source code search engines allow users to retrieve rele-
vant programs based on keywords, regular expressions, input/out-
put samples, or code snippets [10]. These engines exploit ranking
algorithms to present relevant results to the user; however, rank-
ing source code is challenging because of the variety of retrieved
programs [6]. Ranking programs that are semantically similar but
syntactically diverse is usually not enough, since users still need to
understand the retrieved programs in order to reutilize them [8].

We observe that there are certain program statements in the
programs retrieved as a result of a given query that have simi-
lar semantics and are pervasive. These individual statements can
be clustered together since they roughly have the same semantic
meaning, for instance, finding a pivot in a binary search, e.g., mid
= (lowthigh)/2 or mid = low+(high-low)/2.

In this paper, we propose an automatic approach to cluster in-
dividual statements of a set of semantically-related programs [5].
We translate programs into program dependence graphs [2]. We
approximately compare program dependence graphs side by side
and find a correspondence between their statements (nodes). We
compose a graph including all pairwise correspondences and find
communities of statements that have been consistently aligned.

Our evaluation results show that clusters of statements are useful
to understand a set of semantically-related programs. We rely on
programs collected from real-world projects by BigCloneBench [11],
which provides pairwise comparisons of programs based on token
similarities. Using such information as ground truth, we show that
our approach achieves high accuracy when discerning implementa-
tion variability using certain user-defined parameters. Furthermore,
manually inspected clusters of statements provide a high-level
overview of a set of programs using a reduced number of clusters.
Finally, we train a model using discovered clusters of statements to
classify other statements belonging to test programs.

Section 2 presents an overview of our approach, Section 3 de-
scribes our evaluation, and Section 4 summarizes our conclusions.

2 OUR APPROACH

Given a set of programs, our goal is the automatic detection of
clusters of individual statements. Each cluster contains a number of
individual program statements that perform similar (but not exact)
semantics and are pervasive. We assume that the set of programs
are semantically related but not necessarily syntactically, which
is the case when performing a source code search. For instance,
BigCloneBench [11] uses regular expressions over programs to
split them into functionalities that range from well (e.g., programs

https://doi.org/10.1145/3341105.3374055
https://doi.org/10.1145/3341105.3374055
https://doi.org/10.1145/3341105.3374055

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

implementing a binary search) to loosely defined (e.g., programs
that connect to a database using the JDBC driver). Instead of regular
expressions, the search can be performed by other methods [10].

Clustering semantically-related statements in a set of programs
is a challenging task since it involves proving semantic properties
of programs, which is undecidable in general [12]. We identify two
major challenges when addressing our goal as follows:

o Context. When determining whether two statements in dif-
ferent programs are performing the same task, we cannot
simply compare them in isolation. For example, an i++ state-
ment in isolation has the meaning of post-incrementing i.
However, we can leverage context to see a bigger picture
of its mission, e.g., updating an index in a loop to access an
array, or updating a counter every time a condition holds.

e Pervasiveness. From the many statements in a set of pro-
grams, we are interested in the prevalent ones. There may
be few statements with exact same semantics that can be
grouped together if their semantics are relaxed, thus increas-
ing their pervasiveness. For example, an array of numbers
can be iterated using nextInt or nextLong depending on
their types, but both statements have similar semantics.

To include contextual information of statements and capture
their scope more faithfully, we exploit graph representations of
programs that are well-suited to capture local relationships among
their entities [2]. We rely on program dependence graphs combining
control and data flows, which have proved to be less sensitive to
program variability and more resilient to statement reordering
or control replacement than tokens or abstract syntax trees [3].
Determining whether two statements in different programs are
performing the same semantic task is an undecidable problem in
general. Consequently, our approximation consists of finding a
correspondence from statements in one program to statements in
another program so as to maximize a similarity function, which
takes into account both operation labels and contextual information.
On one hand, operation labels encode operations a given statement
is performing, such as division, array access or API call, which
are compared using a set similarity function like Jaccard. On the
other hand, contextual information is captured by node embeddings
(vectors) that encode the control and data flows surrounding a given
statement, and are compared by means of a similarity function.

Using the previous similarity function, we find a correspondence
(alignment) between the statements in a given pair of programs.
This correspondence represents the statements that are most similar
to each other with respect to both operation labels and contextual
information. We perform the same operation for every pair of pro-
grams of interest, creating thus an alignment graph that contains all
program statements and their correspondences to other statements.
We cast the problem of finding pervasive statements with simi-
lar semantics as finding communities of program statements that
have been consistently aligned. In the literature, there exist many
graph-based structures with the goal of detecting communities of
nodes in graphs. Such structures include quasi-cliques, n-cliques,
n-clans, k-plexes, k-cores, f-groups, n-clubs and lambda sets; how-
ever, finding such structures in large graphs is still computationally
expensive with the notable exception of k-cores [1]. We thus deem

Victor J. Marin, Iti Bansal, and Carlos R. Rivero

Table 1: Results obtained for the functionalities identified
by BigCloneBench using @« = 0.5, kp =1, p=0.15and t = 0.5

[[IG] [[VnI [IENI [lranc [IS;I]u(Sy) | F1 |
f3 | 1,112 | 30,100 | 9,559,476 19 795 | 0.95 | 0.93
fr 129 3,710 120,732 19 94 0.99 | 0.94
fio | 525 | 29,396 | 4,073,870 25 315 | 1.00 | 0.83
fia | 336 6,791 764,550 20 194 | 0.99 |0.92
fa7 | 345 | 15,519 | 1,309,058 26 61 1.00 | 0.94

k-cores a suitable model for clustering semantically-related pro-
gram statements. A k-core is a maximal subgraph of a graph in
which all nodes have at least k neighbors, i.e., degree of k. While
enforcing nodes in a community to strongly interact, k-cores allow
for a certain relaxation compared to cliques, i.e., subsets of nodes
where every two distinct nodes are adjacent.

Finally, individual statements that consistently appear across
the programs under evaluation fulfilling approximately similar
semantics form a cluster. Individual statements that form part of
the same cluster are labeled with the same cluster number.

3 EVALUATION

We implemented a prototype of our approach using Java 8 and
SourceDG, a publicly-available framework to build program depen-
dence graphs directly from Java source code [4]. We relied on the
programs collected by BigCloneBench from real-world projects [11].
We computed a ground truth as follows: BigCloneBench stores pair-
wise comparisons of Java programs as well as both token and line
similarities between the pairs of programs suspected of being clones,
i.e., copied-and-pasted pieces of source code with some possible
modifications that are the result of reusing code in software projects.
We relied on the information provided by BigCloneBench to group
programs based on their similarities. BigCloneBench splits these
programs into several functionalities using regular expressions,
which we consider as queries to a source code search engine. We
selected the following five functionalities:

e f3: Generate secure hash.

e f7: Sort array using bubble sort.

e fio: Execute database update and (conditionally) roll back.
o fi4: Binary search.

o f>7: Call method using reflection.

Our approach relies on four parameters: a to balance between
contextual information and operation labels, ko to discard node
pairs in alignments that are very dissimilar, p as the minimum sup-
port for forming clusters of statements, and t to discard clusters
with low quality, i.e., clusters that contain many statements from
the same programs, which can detriment our pervasiveness require-
ment. Intuitively, we expect that, to effectively discover clusters of
semantically-related statements, we should have a proper balance
between context and labels, discard node pairs that are not nec-
essarily very dissimilar, allow a relatively high minimum support,
and consider high quality clusters only. We thus use the following
parameter values: &« = 0.5, ko = 1, p = 0.15 and ¢ = 0.5.

Table 1 presents the results for each of the functionalities an-
alyzed, where |G| represents the number of programs in a given

Summarizing Statements in Code Search

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Table 2: Clusters of statements detected for the binary search functionality in BigCloneBench

1d ‘ Cluster semantics H

Sample statements ‘

¢; | Loop while (low <= high)

while (x1 < x2) [while (ret == -1 && 1 <= r)

¢z | Compute pivot mid = (low + high) / 2

i=x1+ x2-x1) /2

c3 | Compare using pivot id = elem(mid).getId()

cmp = j.compareTo(thresh.get(mid))

¢4 | Less than using pivot if (key < almid])

if (current < key) if (cmp < @)

¢s | Greater than using pivot || if (initIndex > endIndex)

if (idx[mid] > virtIndex)

if (cmp > @)

¢ | Equals using pivot if (target == values[mid])

if (cmpValue == 0) if (midValue == key)

c7 | Update low pointer

low = middle + 1

cg | Update high pointer

max = currentIndex - 1

¢9 | Element found return midval

return get(mid)

c10 | Element not found return -1

return -(lowIdx + 1) [return -1 x (i + 1)

functionality, | V| and |En| entail the total number of nodes and
edges in the alignment graph, respectively, |ran c| and |S¢| stand
for the number of statement clusters discovered and clusters in the
ground truth, respectively, and u(Sy) represents the uniqueness
score that evaluates the clusters generated by our approach based
on the ground truth computed from BigCloneBench. A score of 1,
u(Sf) = 1, implies that the cluster numbers found are unique, i.e.,
given two program groups, its cluster numbers differ at least in
one. We wish to compute clusters that are unique for the different
implementations in a given functionality.

We obtain a uniqueness score greater or equal than 0.95 for the
five functionalities under evaluation. We manually inspected fi4
that corresponds to programs performing binary search, and pro-
vided a semantic meaning to some of the clusters of statements
discovered by our approach, which are presented in Table 2. The ta-
ble also provides examples of various program statements grouped
in each of the clusters. As it can be observed, our statement clusters
cover different aspects of a binary search, including computing piv-
ots, comparing with pivots, updating pointer and returning found
(or not) elements. Note that the statements clustered together are
diverse but have similar semantics, which is our main goal.

We investigated whether individual statements of a given input
program can be automatically classified. We trained a classifier
for each functionality that labels each statement in a program as
belonging to a particular cluster or not belonging to any cluster.
Therefore, the possible output classes equal the number of clusters
in a functionality (IS¢|) plus one rejection class accounting for
“uninteresting” statements not belonging to any cluster. Column
F1 in Table 1 reports the average of the F1 scores for each output
class. We observe that, for closed functionalities like sorting an
array using bubble sort (f7), the respective F1 scores are notably
high (0.94). Conversely, for open functionalities that appear in
diverse contexts like executing database updates (fio), the respective
F1 scores drop (0.80). Therefore, our clusters of statements can
be used to automatically classify statements in other programs
implementing variations of the same closed functionality.

4 CONCLUSIONS

We presented an approach to cluster statements in a set of programs
that share similar semantics and are pervasive. Our approach for
automatically discovering statement clusters relies on detecting

communities in the graph resulting from the pairwise alignments of
program dependence graphs. Communities are mined using k-cores
to provide certain guarantees that statements belonging to a cluster
are semantically related, and a minimum support (cluster size) is
required for a cluster to ensure pervasiveness throughout the set
of programs. Our evaluation suggests that statement clusters can
indeed be a useful tool for tasks involving the analysis of implemen-
tation variations, and that clusters of statements discovered in a set
of programs can be successfully extrapolated to other programs, i.e.,
statements in test programs can be categorized as part of discovered
clusters in a training set. Therefore, we argue that statement clus-
ters are valuable for applications like functionality summarization
or promoting diversity in ranking code search results.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1915404.

REFERENCES

[1] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu. 2011. Efficient core
decomposition in massive networks. In ICDE. 51-62.

[2] Susan Horwitz and Thomas W. Reps. 1992. The Use of Program Dependence
Graphs in Software Engineering. In ICSE. 392-411.

[3] Victor J. Marin, Tobin Pereira, Srinivas Sridharan, and Carlos R. Rivero. 2017.
Automated Personalized Feedback in Introductory Java Programming MOOCs.
In ICDE. 1259-1270.

[4] Victor J. Marin and Carlos R. Rivero. 2018. Towards a framework for generating
program dependence graphs from source code. In SWAN. 30-36.

[5] Victor J. Marin and Carlos R. Rivero. 2019. Clustering Recurrent and Semantically
Cohesive Program Statements in Introductory Programming Assignments. In
CIKM. 911-920.

[6] Lee Martie and André van der Hoek. 2015. Sameness: An Experiment in Code
Search. In MSR. 76-87.

[7] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian G. Elbaum. 2015. How devel-
opers search for code: a case study. In ESEC/FSE. 191-201.

[8] Huascar Sanchez, Jim Whitehead, and Martin Schaf. 2016. Multistaging to under-
stand: Distilling the essence of Java code examples. In ICPC. 1-10.

[9] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes.

2011. How Well Do Search Engines Support Code Retrieval on the Web? TOSEM

21,1 (2011), 4:1-4:25.

Kathryn T. Stolee, Sebastian G. Elbaum, and Daniel Dobos. 2014. Solving the

Search for Source Code. TOSEM 23, 3 (2014), 26:1-26:45.

[11] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating clone detection tools

with BigCloneBench. In ICSME. 131-140.
[12] Ahmad Taherkhani. 2010. Recognizing Sorting Algorithms with the C4.5 Decision
Tree Classifier. In ICPC. 72-75.

[10

	Abstract
	1 Introduction
	2 Our approach
	3 Evaluation
	4 Conclusions
	Acknowledgments
	References

