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Reconfigurable elastic quantum valley Hall edge states in a
piezoelectric topological metamaterial

Patrick Dorin*?, K. W. Wang?®
“Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA 48109-2125

ABSTRACT

Unlike conventional elastic waveguides, topologically protected wave transmission in topological metamaterials is
immune to backscattering and localization from lattice imperfections and sharp corners. Topologically protected
waveguides can be formed by breaking space inversion symmetry within the unit cell of a hexagonal lattice, creating an
elastic realization of the quantum valley Hall effect. Recent studies have demonstrated the achievement of tunable
topological edge states through the application of an external bias, such as a mechanical, thermal, or magnetic load. These
initial studies demonstrate the capability to modify topological edge states through oftentimes complex realizations of
truss-like lattice structures or external stimuli. However, a comprehensive reconfigurable topological metamaterial that
enables real-time adaptation of both frequency and spatial characteristics of topological properties in an easily integrable
manner has yet to be developed. Thus, to advance the state of the art, this research introduces an electromechanical
metamaterial with the capability to adjust the frequency range for topological edge states and instantaneously create or
eliminate topological interfaces through the integration of piezoelectric circuitry with a continuous mechanical substrate.
The metamaterial is comprised of inductor circuitry connected to a thin piezoelectric plate in a periodic manner which
produces a hexagonal lattice pattern of electromechanical resonators. The plane wave expansion method is used to reveal
a tunable Dirac cone in the band structure of the lattice unit cell and indicate how perturbations to the circuit inductance
can open topologically distinct bandgaps. Numerical simulations identify edge modes located at frequencies within the
topological bandgap and demonstrate adaptive topologically protected elastic wave transmission.

Keywords: topological, quantum valley Hall, piezoelectric, metamaterial, electromechanical, elastic waveguide, edge
states, adaptive

1. INTRODUCTION

Metamaterials are engineered materials that can achieve desirable macroscopic properties and functionalities that are
difficult or impossible to achieve with conventional materials. Elastic metamaterials have been studied as a method to
control elastic and acoustic waves. Some specific objectives of elastic metamaterial research include, but are not limited
to, wave localization, isolation, filtering, sensing, and unidirectional transmission'~'?. A particular phenomenon that has
been investigated is the ability to localize or control elastic wave propagation through the formation of an elastic
“waveguide.” Confinement of elastic waves within an elastic waveguide enables a variety of applications, such as wave
filters, switches, and multiplexers, while also enhancing performance for isolation or energy harvesting systems. In
conventional elastic metamaterials, elastic waveguides are generally created by introducing an inclusion into a periodic
lattice in the region where you would like to localize the wave!'~'®. While conventional elastic metamaterials are effective
at achieving mode localization, performance can be severely degraded by defects or disorder (e.g., sharp corners) in the
periodic lattice. In an effort to enhance performance and robustness to defects or disorder that are commonly encountered
practical applications, the principles of topological insulators in quantum mechanics!” have been applied to elastic
metamaterial research'®!°, Topologically protected wave propagation in an elastic waveguide is immune to localization
and backscattering in the presence of localized defects and sharp corners, enabling lossless transmission in a myriad of
desired directions. This topological protection is achieved by careful engineering of system properties to achieve a
topologically non-trivial band structure that is protected by space inversion symmetry (SIS) and time-reversal symmetry
(TRS)?. The mechanical analogs to topological phenomena found in electronic quantum systems are achievable using
either active or passive methods. Previous investigations into the mechanical analog of the electronic quantum Hall effect
(QHE), have shown that topologically protected wave transmission can be achieved by breaking TRS with active
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spatiotemporal modulation of lattice properties?'~2%. Passive methods have also been investigated to avoid the external
power requirements and design challenges associated with the active components (e.g., rotating gyroscopes or electric
motors) required to break TRS by the QHE. The mechanical analogs to the quantum spin Hall effect (QSHE) and quantum
valley Hall effect (QVHE) both acquire non-trivial topology passively via the breaking of SIS in the lattice while preserving
TRS?. For the QSHE, two sets of degenerate modes form a double Dirac cone, which, when lifted by a lattice perturbation
that breaks SIS, results in two pseudospin modes and topologically protected directional propagation!”?-8, While the
QSHE does not require active components, the formation of the double Dirac cone can oftentimes require complex
mechanisms such as a lattice of pendula® or intricate lattice geometries such as sublattices with spatially distinct hexagonal
unit cells**38, An alternative to the QSHE with a simpler physical realization is the QVHE. According to the QVHE, a
single Dirac cone is formed and protected by TRS, SIS, and C; lattice symmetry, and then a bandgap supporting
topologically protected edge states is opened by breaking SIS3*#!. After the demonstration of the acoustic*? and elastic*?
analogs of the QVHE, there were widespread investigations examining how to leverage the QVHE for topologically
protected waveguides. Topologically protected wave transmission from the QVHE was successfully realized by the
addition of inclusions or masses to truss-like structures* or continuous thin plates*2. While effectively demonstrating
the advantages of incorporating topological protection into elastic waveguides, the initial studies included fixed or intricate
mechanical systems that operated in a very specific manner once fabricated. Thus, to account for practical manufacturing
concerns and variation of external conditions, as well as expand system functionalities, further studies began to explore
adaptive topological waveguides. The spatial location of the topological waveguide within a lattice was demonstrated to
be reconfigurable via the application of external mechanical’*=® or magnetic®® bias. The frequency region for the
propagation of edge states was also demonstrated to be tunable with large scale deformation of inflatable embedded
structures® or thermal loading of temperature-sensitive epoxy®'. However, a challenge still remains to develop an easily
integrable and real-time tunable elastic metamaterial that is capable of adaptation in a wide range of system properties
spanning both the frequency and spatial domains. Thus, to advance the state of the art, this research proposes an
electromechanical metamaterial with the capability to adjust the frequency, shape, and location of topological edge states.
The reconfigurable topological metamaterial is comprised of piezoelectric circuitry that is seamlessly integrated with a
thin composite plate, a commonly utilized geometry for a wide range of structural applications requiring load-bearing
capability. While the mechanical structure is geometrically homogeneous (thin plate), the circuitry is connected via
electrodes that are arranged in a honeycomb lattice formation that contains the symmetries required for the system to
exhibit the QVHE. For this study, the piezoelectric circuitry is comprised of an inductor coupled to the piezoelectric
capacitor to create a resonant LC circuit. The resonant circuit facilitates the achievement of a Dirac cone at low frequencies
corresponding to wavelengths that are larger than the system characteristic wavelength and correspond to the fundamental
mode. This ability to achieve subwavelength control of tunable edge states is in contrast to most adaptive topological
systems studied to date, which focus only on the short wavelength regime (corresponding to high frequencies), and is an
advantage in potential applications that require protected wave control at low frequencies in a compact package.

Integrated piezoelectric circuitry similar to the circuitry contained in the proposed metamaterial has previously been
demonstrated as an effective method to achieve active control of bandgap frequencies and wave localization in
conventional elastic metamaterials®!'>%2%, Recent studies have realized tunable topological wave propagation using
piezoelectric circuitry. These studies utilize effective stiffness adaptation of truss-like mechanical lattices to create the
QVHE and present specific case studies that demonstrate wave path tunability at high frequencies®’-%. An additional study
investigated adaptive topological wave control via periodic electrical boundary conditions applied to a one-dimensional
system (rod)®. In contrast, the proposed reconfigurable topological metamaterial achieves a fully comprehensive
adaptivity of edge state frequency, shape, and path at low frequencies near the fundamental mode for a two-dimensional
system. Protected wave propagation at low frequencies is achieved through resonant circuitry with a tunable inertial term
(circuit inductance) that is readily integrated into a continuous load-bearing thin plate that has reduced size requirements
due to the subwavelength system characteristic.

In the following manuscript, the governing equations for the proposed reconfigurable metamaterial are derived using the
extended Hamilton’s principle, and the plane wave expansion method (PWE) is used to identify a tunable Dirac cone in
the band structure of the unit cell. Numerical simulations identify edge modes located at frequencies within a topological
bandgap generated by perturbation of the circuit inductance parameter and demonstrate elastic wave path tunability.
Finally, overall discussion and conclusion are presented.
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Figure 1. Top view (a) of the proposed piezoelectric metamaterial lattice structure. Cross-section view (b) and top view (c)
of the periodic unit cell of the honeycomb lattice. Green indicates electrode geometry related to circuit 1, and red indicates

geometry related to circuit 2 of the unit cell. In (a) and (c), the circuity has been omitted for clarity in the description of
lattice geometry.

2. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL
2.1 Metamaterial description

The proposed metamaterial (Figure 1) is comprised of an infinite thin composite plate that includes a mechanical substrate
(shown in gray) and two piezoelectric layers (yellow). The piezoelectric layers are connected via circular conductive
electrodes (red and green) to external circuitry in the series configuration. A diagram of the top view of the metamaterial
is shown in Figure 1a, where the honeycomb lattice structure is clearly defined by red and green circles indicating electrode
pair 1 and electrode pair 2 of the triangular unit cell, which is enclosed in the dashed lines. The unit cell is further depicted
in Figure 1b (cross-section view) and Figure 1c (top view), and includes the aforementioned two pairs of electrodes which
enable the formation of two capacitors (capacitor 1 and capacitor 2) with capacitance defined as C,, ; and C, ;. The output

voltages measured across capacitor 1 and capacitor 2 are indicated as ; and 7,, and the series-connected inductances are

1
VLiCp,j

for the jth circuit. The thicknesses of the substrate and piezoelectric layers are hs and h,,, respectively, while the thickness

defined as L; and L,, respectively. The resulting series LC circuits are resonant with a tuning frequency of Wt,j =

of the electrodes is assumed to be negligible in this study. The circular electrodes have a radius 7, and are centered at ﬁl =

—(cos%i + sin % j) for capacitor 1 and ﬁz = _—a(cos%i + sin %j) for capacitor 2 within the unit cell. To form the

a
2v3 2v3 .
metamaterial, the unit cell is periodically repeated in the directions of the basis vectors of the direct lattice a; = ai and

a,=a cos=i + sinEj . When the circuit parameters of the unit cell (L; and L,) are defined to be identical, the
3 3

orientation, shape, and location of the electrodes grant the metamaterial C; symmetry and SIS. These geometric
symmetries, along with TRS, facilitate the mechanical analog of the QVHE. In summary, the proposed topological
metamaterial is comprised of a periodic honeycomb lattice with unit cells containing two resonant circuits that are
electromechanically coupled to a thin composite plate.

2.2 Governing Equations

A mathematical model governing the system response is derived using the extended Hamilton’s Principle,” and small
deformations are assumed such that classical theory of thin plates’' and theory of linear piezoelectricity’? are applicable.
The piezoelectric layer and mechanical substrate are assumed to be ideal conductors, and a uniform electric field is assumed
for all piezoelectric elements. The governing equations are given by Equation 1 as:

N
- 02W(F, ) o
D;V*w(r,t) + m—— 92 Vev;()x;(7) =0 (1a)
j=1
*v;(t) | 0% _, . .
Lij’jW_i— v;(t) + 6 Jf LjWV w(r, t)d*r =0, j =1...N, electrode pairs (1b)
Dj
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where 7 = (X,y), w(r, t) is the flexural displacement of the plate, D is the effective flexural rigidity of the composite
plate at short circuit, m is the effective mass per unit area of the plate, 6 is an electromechanical coupling coefficient, 7;(t)
is the output voltage across the jth electrode pair, C,; and L; are the capacitance and series-connected inductance
corresponding to the jth electrode pair, respectively, 72 and V*, are the Laplacian and biharmonic operator, respectively
1, T€D;

_ 0, otherwise
D; represents the domain containing the jth electrode pair in the X — ¥ plane. To generalize the results, the governing
equations are non-dimensionalized by defining non-dimensional plate displacement, output voltage, time, and spatial

and N, is the total number of electrode pairs. In addition, ¥; is a step-function defined as j;(7) = { , Where

a 6 a’ a

e w 1Cpi _ 1 z y z .
length scales (in i,7,k, directions) as w=—,v; ==& . 1= |—¢t,x == =X, and z = =, respectively. A
a’’l J LiCp i a
)

harmonic response at frequency w is assumed for the plate displacement and electrode output voltage, and non-dimensional
variables are substituted as shown in Equation 2:

w7 t) = aw(r)e VLiei® (2a)
fa )
ﬁ](t) = rvje"" chp’jr (Zb)
(]

After substituting results defined in Equation 2 into the governing equations (Equation 1), the resulting non-dimensional
governing equations are reduced to the form shown in Equation 3:

Ne
w?ma* 6%a?
v — w(r) — Z V2vix;j(r) =0 (Ba)
Dr L Cp, iDr
Jj=1
(1-LiC, 0?)v; — wL;C, J-f Vw(r)d*r=0, j=1...N, electrode pairs (3b)
bj

1,7'ED]'

. 1s defined in terms of the dimensionless domain D; of the
0, otherwise

where r = (x,y), and the step-function y;(r) = {
jth electrode pair.
2.3 Dispersion Relation

Due to the periodicity of the metamaterial, analysis of a single unit cell (Figure 1b, 1c) containing two resonant circuits
(N.= 2) is sufficient to evaluate the dispersion relation. The inductance tuning parameter [ is used to specify the
inductances for the two circuits in the unit cell as Ly = L(1+ f) and L, = L(1 — ). When B # 0 the inductance
parameters of the two circuits are different, and when the two circuits are defined as identical (f = 0) the inductance of
each circuit is L. To generate the dispersion relation, the non-dimensional plate flexural displacement w(r) is defined as a
superposition of plane waves using the PWE method*"*%73 per Equation 4:

W(T) — Z W(G)e—ia(k+G)-r
G 4)
G=m_51+n_52 mne€[-M,M] N=2M+1 k=(kx,ky)

where G is the reciprocal lattice vector, Bl, BZ are the basis vectors of the reciprocal lattice, m and n are integers, W (G) is
the plane wave coefficient, k is the Bloch wavevector, and M is an integer chosen such that the number of plane waves
included for band structure evaluation is N X N. For the triangular unit cell considered here, a schematic of the reciprocal
lattice is shown in the inset for Figure 2a, with basis vectors 1_51 = %(Zi, - \/Z—E j) and Bz = Z(Oi, % j) Substituting w(r)

from Equation 4 into Equation 3, multiplying by the complex conjugate e‘**+@

in Equation 5:

, and integrating over the unit cell, results

Ne
a? a? )
(a*|k + G|* — QW (G) + BZA—A—aZIk +G|? ﬂ vje!dk+O) g2y =0 (5a)
Jj=1 ce) Di
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0? )
((1 — (_tl)j’[,’) - Qz) v + Q%a? Z W(G) |k + G| ff e ak+6)Tq2y =0,  j=1...N, electrode pairs  (5b)

m . . . m . . . . . .
where Q = wa? ’D— is non-dimensional frequency, Q; = w,a? ’D— is the non-dimensional circuit tuning frequency, 9 =
T T

2

6% . . . . . . . . . e
Z o isa non-dimensional electromechanical coupling coefficient, A, is the area of the unit cell, and 4, ; is the area within
pPT

the unit cell containing the jth electrode pair. In this model, the surface area of the electrode and the capacitance related
to each electrode pair are assumed to be uniform over the unit cell (4, ; = 4., C,j = Cp).

3. DISPERSION ANALYSIS
3.1 Unit Cell

For this study, the composite plate is composed of an aluminum substrate with h;= 1 mm and PZT-5H piezoelectric layers
with h,= 1 mm, resulting in a dimensionless electromechanical coupling coefficient of 9= 0.42. Unit cell characteristic

2
length is defined as a= 0.04 m and electrode sizeas A, = 1 (0.92 g a) m?. Equations 5a and 5b can be recast in the form

of the classical eigenvalue problem ([K] — Q?[M])

W} o .
v, | =0, and the dispersion relation is solved by specifying the
)

wavevector k along the boundary of the irreducible Brillouin zone (blue triangle in the inset of Figure 2a) and solving for
non-dimensional frequency Q. M= 5 is chosen for computations such that N X N= 121 plane waves are considered. The
band structure for the unit cell with identically defined inductance parameters for both circuits (f = 0) and Q,= 11 is
shown as the solid colored lines in Figure 2a. The finite element tool COMSOL Multiphysics is used to validate the band
structure generated by the PWE (open circles in Figure 2a are the COMSOL result). The band structure contains a
degeneracy at the K-point in reciprocal space between the first (fundamental) and second modes otherwise referred to as
a Dirac point® (see dashed box in Figure 2a). The non-dimensional frequency where this Dirac point occurs, or the Dirac
frequency, is Qpjrac= 9. This Dirac point is the vertex of a Dirac Cone that exists in k,-k,, space, which is protected by C5
lattice symmetry, SIS, and TRS?°. While maintaining identical circuit inductance parameters (8= 0), Figure 2b shows how
the frequency of the Dirac point (Qp;r4c) Varies as a function of the circuit tuning frequency (€,). For a unit cell with
specified and homogenous mechanical geometry, the Dirac frequency can be varied between Qp;irac= 0 and Qpjpac= 17.5
using only circuit parameters. By specifying the circuit tuning frequency (1, the frequency of the Dirac point can be tuned
over a wide frequency region corresponding to the two lowest frequency system modes. Thus, the proposed metamaterial

(a) (b)

151 — - 20
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Figure 2. (a) Band structure for the unit cell with Oy = 11 and f = 0. Bands generated from PWE are marked as solid
colored lines, while COMSOL Multiphysics results are marked with open circles. A Dirac point is highlighted by the black
dashed box, and a diagram of the reciprocal space is shown in the inset. (b) Dirac frequency Qpjpac as a function of circuit
tuning frequency Q¢
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Figure 3. Band diagram containing zoomed-in view of band 1 and band 2 for a unit cell containing SIS = 0 (solid line) and
with broken SIS = 0.015 (dashed lines) for Q= 11.

is capable of continuously tuning Qp;.,c in a low-frequency region due to the resonant characteristic of the embedded
circuits. This continuous frequency tunability of the Dirac point is not a feature of many state of the art adaptive topological
waveguides, which generally focus on the realization of path tunability using nonresonant geometric features.

Figure 3 shows a zoomed-in view of the Dirac point for the unit cell with identical circuits (5= 0, solid line Figure 3) and
Q.= 11. To break the Dirac cone and achieve the elastic analog to the QVHE, SIS must be broken within the unit
cell?%3%7475 To break SIS, the two circuits of the unit cell are defined with different inductance parameters (8 # 0). A
lattice with § > 0 is defined as Type A, while a lattice with f < 0 is defined as Type B. For this study, the magnitude of
the circuit inductance perturbation in the Type A and Type B lattice types is || = 0.015. The band structure for a Type A
lattice with Q.= 11 is shown in Figure 3 (8= 0.015, dashed line Figure 3). By breaking SIS, the degeneracy is lifted, and a
full bandgap is created between the first two bands (Q= 8.90 to Q= 9.05) (Figure 3)**7°. An equal and opposite set of
inductance parameters contained by a Type B lattice (= -0.015) yield an identical band structure (and bandgap frequency
range) to that of the Type A lattice (f= 0.015). However, a band inversion exists between the Type A and Type B lattices,
as the eigenvectors (u(k)) associated with band 1 and band 2 for each lattice are interchanged. The topological properties
of these eigenvectors are characterized by the valley Chern number C,_,, which is a topological invariant defined as the
integral of the Berry Curvature B, (k) = =V, X (u,(k)|iV} [M]|u, (k)) associated with the pth band near the K-point in

reciprocal space (C,—p = i JI, B, (k)d?k)**>>747¢. The theoretical valley Chern numbers in a Type A lattice are -0.5 and

0.5 for C.7P°* and C[?2°*, respectively. For a Type B lattice these values are equal and opposite (C,>"°®= 0.5 and
Cvag eB = -0.5). The dissimilar C,_,, values indicate that Type A and Type B lattices are topologically distinct. When these
two topologically distinct lattices are joined at an interface, a topological transition occurs, and the number of topologically
protected interface states (edge states located at the interface between lattice types) located within the bandgap is predicted
aS Ninverface—states = |Cospe " — Cy2P¢P| = 15574, For the circuit perturbation chosen in this study (|| = 0.015), the

calculated valley Chern numbers are C.2P¢“=-0.3 and C*%** = 0.3 for the Type A lattice and C*7*®=0.3 and C[*2°®
=-0.3 for the Type B lattice. The magnitude of the calculated valley Chern number is less than the theoretically predicted
valley Chern number ((|Cy—caicuiated|™ 0-3 < |Cp—theoreticarl= 0.5) due to the relatively large symmetry-breaking
perturbation contained in the lattice*>. However, the non-trivial value of the calculated C,_, indicates non-trivial
topological characteristics and predicts the emergence of a topologically protected edge state at an interface of adjoined
Type A and Type B lattices.
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3.2 Finite Strip

A dispersion analysis is conducted for a finite width strip to demonstrate the existence of a topologically protected interface
state. The finite strip is comprised of 18 unit cells (Figure 4a). A periodic boundary condition is applied in the k,, direction
and fixed boundary conditions are applied to the edges. An interface is created at the domain wall between nine Type B
unit cells and nine Type A unit cells (dashed box in Figure 4a, circuit parameters defined as L; < L;;). The topologically
distinct characteristics of Type A and Type B unit cell types (discussed in Section 3.1) create a topological transition at
the interface. COMSOL Multiphysics is used to generate the band structure for the finite strip with circuit inductance
perturbation defined as |8| = 0.015 (Figure 4b). A metric is created to evaluate the localization of flexural displacement w

2) Ak
0%0%%0%0%6%0%0% % %99 %% % %% %"

b)

8.5
8 S o
0 1 2
k://a/w

c)
5~ w x4
0%0%0%%6%0%0%0 % %% % %0 %:%:%:%%*
Yo Y Vo SRV
9. 3%

i

Figure 4. (a) Schematic of finite strip with Type B sublattice indicated as light brown (left) and Type A sublattice indicated
as dark yellow (right). Interface is marked by dashed box. Red circles represent electrode pairs connected to L;, and green
circles represent electrode pairs connected to Lj;. (b) Band structure for finite strip with |8| = 0.015. Colormap indicates
flexural mode displacement localization at interface through localization parameter A. Dark shaded bands are interface states
(4 = 1). Top inset is displacement field of interface mode for k,, = 0.7m/a and Q= 9.05. (c) Schematic and interface mode
shape for a different interface location.
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ﬂfvinterface wi*av

Wy ¢ Iwizav
interface (dashed box in Figure 4a) and Vs is the volume of the entire finite strip (Figure 4a). The band structure consists
of a color map, with lighter shaded bands representing bulk modes (4 « 1) and darker shaded bands indicating A = 1 and
strong localization of flexural displacement at the interface (i.e., interface states). An interface state (Figure 4b) is observed
within the full bandgap that is opened from the Dirac point for the unit cell (Qpanggap € [8.90, 9.05] for Qpjrac=9), as seen
in Section 3.1 (Figure 3). As shown in Section 3.1, the frequency of the Dirac point Qpj;.. can be tailored using embedded
circuit parameters. Thus, the frequency range of the associated bandgap and the interface state contained within it is tunable
as well. The mode shape for the interface state at k,, = 0.71/a and Q= 9.05 is presented in Figure 4b, clearly showing
localization of flexural displacement at the interface. Due to the topological transition present at the interface, this localized
interface state is topologically protected (see section 3.1 for explanation). A second localized interface state exists at higher
frequencies (0 = 9.4) but is difficult to activate in practice because it is not in the bandgap and easily hybridizes with bulk
modes.

at the interface, defined as 1 = , Where Vinterface is the volume of the two adjacent unit cells at the

In addition to being frequency tunable, the location of the interface state can also be changed using circuit parameters. A
schematic of a finite strip with 12 Type B unit cells and six Type A unit cells is shown in Figure 4c. The band structure
for this configuration (not shown) is nearly indistinguishable from the band structure shown in Figure 4b. The flexural
displacement of the interface mode remains localized at the interface, which has now been moved three cells to the right
(Figure 4c) when compared to the original position (Figure 4a). Therefore, the proposed piezoelectric metamaterial enables
reconfiguration of both the location and frequency characteristics of the interface state, which could be used to achieve
topologically protected wave transmission.

4. CONCLUSIONS

In this study, an adjustable piezoelectric topological metamaterial is proposed and investigated. The metamaterial consists
of a thin composite plate that is electromechanically coupled to piezoelectric resonant circuitry through conductive
electrodes. While the mechanical structure is geometrically homogeneous and load-bearing, the conductive electrodes are
placed in a honeycomb lattice arrangement, which enables the realization of the quantum valley Hall effect. A
subwavelength Dirac point is identified in the band structure of the unit cell using the plane wave expansion method.
Further investigation of the unit cell band structure indicates that circuit frequency parameters can be used to tune the
frequency of the Dirac point and break the degeneracy to open a bandgap. Topologically distinct lattice arrangements are
identified by evaluation of the topological invariant (valley Chern number) and combined into a finite width strip with an
interface containing a topological transition. A dispersion analysis for the finite width strip reveals a topologically protected
interface state with highly localized displacement that is both path and frequency tunable. The end result is a topologically
protected waveguide that can be reconfigured in both the spatial and frequency domains to expand functionalities and
adjust to changing external conditions. The resonant nature of the circuitry embedded into the metamaterial facilitates
subwavelength topological wave transmission and real-time reconfiguration through circuit frequency parameters. Thus,
the proposed approach can be used for wave control in low-frequency applications with size constraints and is easily
integrated into commonly used load-bearing structures (e.g., thin plate). The comprehensive reconfigurability of the
metamaterial could be leveraged to improve robustness and performance for applications such as filtering, multiplexing,
isolation, and energy harvesting while encouraging further expansion of topological metamaterial functionalities.
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