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ABSTRACT  

Unlike conventional elastic waveguides, topologically protected wave transmission in topological metamaterials is 
immune to backscattering and localization from lattice imperfections and sharp corners. Topologically protected 
waveguides can be formed by breaking space inversion symmetry within the unit cell of a hexagonal lattice, creating an 
elastic realization of the quantum valley Hall effect. Recent studies have demonstrated the achievement of tunable 
topological edge states through the application of an external bias, such as a mechanical, thermal, or magnetic load. These 
initial studies demonstrate the capability to modify topological edge states through oftentimes complex realizations of 
truss-like lattice structures or external stimuli. However, a comprehensive reconfigurable topological metamaterial that 
enables real-time adaptation of both frequency and spatial characteristics of topological properties in an easily integrable 
manner has yet to be developed. Thus, to advance the state of the art, this research introduces an electromechanical 
metamaterial with the capability to adjust the frequency range for topological edge states and instantaneously create or 
eliminate topological interfaces through the integration of piezoelectric circuitry with a continuous mechanical substrate. 
The metamaterial is comprised of inductor circuitry connected to a thin piezoelectric plate in a periodic manner which 
produces a hexagonal lattice pattern of electromechanical resonators. The plane wave expansion method is used to reveal 
a tunable Dirac cone in the band structure of the lattice unit cell and indicate how perturbations to the circuit inductance 
can open topologically distinct bandgaps. Numerical simulations identify edge modes located at frequencies within the 
topological bandgap and demonstrate adaptive topologically protected elastic wave transmission. 
 
Keywords: topological, quantum valley Hall, piezoelectric, metamaterial, electromechanical, elastic waveguide, edge 
states, adaptive 

1. INTRODUCTION  
Metamaterials are engineered materials that can achieve desirable macroscopic properties and functionalities that are 
difficult or impossible to achieve with conventional materials. Elastic metamaterials have been studied as a method to 
control elastic and acoustic waves. Some specific objectives of elastic metamaterial research include, but are not limited 
to, wave localization, isolation, filtering, sensing, and unidirectional transmission1–10. A particular phenomenon that has 
been investigated is the ability to localize or control elastic wave propagation through the formation of an elastic 
“waveguide.” Confinement of elastic waves within an elastic waveguide enables a variety of applications, such as wave 
filters, switches, and multiplexers, while also enhancing performance for isolation or energy harvesting systems. In 
conventional elastic metamaterials, elastic waveguides are generally created by introducing an inclusion into a periodic 
lattice in the region where you would like to localize the wave11–16. While conventional elastic metamaterials are effective 
at achieving mode localization, performance can be severely degraded by defects or disorder (e.g., sharp corners) in the 
periodic lattice. In an effort to enhance performance and robustness to defects or disorder that are commonly encountered 
practical applications, the principles of topological insulators in quantum mechanics17 have been applied to elastic 
metamaterial research18,19. Topologically protected wave propagation in an elastic waveguide is immune to localization 
and backscattering in the presence of localized defects and sharp corners, enabling lossless transmission in a myriad of 
desired directions. This topological protection is achieved by careful engineering of system properties to achieve a 
topologically non-trivial band structure that is protected by space inversion symmetry (SIS) and time-reversal symmetry 
(TRS)20. The mechanical analogs to topological phenomena found in electronic quantum systems are achievable using 
either active or passive methods. Previous investigations into the mechanical analog of the electronic quantum Hall effect 
(QHE), have shown that topologically protected wave transmission can be achieved by breaking TRS with active 
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spatiotemporal modulation of lattice properties21–26. Passive methods have also been investigated to avoid the external 
power requirements and design challenges associated with the active components (e.g., rotating gyroscopes or electric 
motors) required to break TRS by the QHE. The mechanical analogs to the quantum spin Hall effect (QSHE) and quantum 
valley Hall effect (QVHE) both acquire non-trivial topology passively via the breaking of SIS in the lattice while preserving 
TRS20. For the QSHE, two sets of degenerate modes form a double Dirac cone, which, when lifted by a lattice perturbation 
that breaks SIS, results in two pseudospin modes and topologically protected directional propagation17,27,28. While the 
QSHE does not require active components, the formation of the double Dirac cone can oftentimes require complex 
mechanisms such as a lattice of pendula29 or intricate lattice geometries such as sublattices with spatially distinct hexagonal 
unit cells30–38. An alternative to the QSHE with a simpler physical realization is the QVHE. According to the QVHE, a 
single Dirac cone is formed and protected by TRS, SIS, and 𝐶3 lattice symmetry, and then a bandgap supporting 
topologically protected edge states is opened by breaking SIS39–41. After the demonstration of the acoustic42 and elastic43 
analogs of the QVHE, there were widespread investigations examining how to leverage the QVHE for topologically 
protected waveguides. Topologically protected wave transmission from the QVHE was successfully realized by the 
addition of inclusions or masses to truss-like structures44 or continuous thin plates45–52. While effectively demonstrating 
the advantages of incorporating topological protection into elastic waveguides, the initial studies included fixed or intricate 
mechanical systems that operated in a very specific manner once fabricated. Thus, to account for practical manufacturing 
concerns and variation of external conditions, as well as expand system functionalities, further studies began to explore 
adaptive topological waveguides. The spatial location of the topological waveguide within a lattice was demonstrated to 
be reconfigurable via the application of external mechanical53–58 or magnetic59 bias. The frequency region for the 
propagation of edge states was also demonstrated to be tunable with large scale deformation of inflatable embedded 
structures60 or thermal loading of temperature-sensitive epoxy61. However, a challenge still remains to develop an easily 
integrable and real-time tunable elastic metamaterial that is capable of adaptation in a wide range of system properties 
spanning both the frequency and spatial domains. Thus, to advance the state of the art, this research proposes an 
electromechanical metamaterial with the capability to adjust the frequency, shape, and location of topological edge states. 
The reconfigurable topological metamaterial is comprised of piezoelectric circuitry that is seamlessly integrated with a 
thin composite plate, a commonly utilized geometry for a wide range of structural applications requiring load-bearing 
capability. While the mechanical structure is geometrically homogeneous (thin plate), the circuitry is connected via 
electrodes that are arranged in a honeycomb lattice formation that contains the symmetries required for the system to 
exhibit the QVHE. For this study, the piezoelectric circuitry is comprised of an inductor coupled to the piezoelectric 
capacitor to create a resonant LC circuit. The resonant circuit facilitates the achievement of a Dirac cone at low frequencies 
corresponding to wavelengths that are larger than the system characteristic wavelength and correspond to the fundamental 
mode. This ability to achieve subwavelength control of tunable edge states is in contrast to most adaptive topological 
systems studied to date, which focus only on the short wavelength regime (corresponding to high frequencies), and is an 
advantage in potential applications that require protected wave control at low frequencies in a compact package.  
 
Integrated piezoelectric circuitry similar to the circuitry contained in the proposed metamaterial has previously been 
demonstrated as an effective method to achieve active control of bandgap frequencies and wave localization in 
conventional elastic metamaterials6,15,62–66. Recent studies have realized tunable topological wave propagation using 
piezoelectric circuitry. These studies utilize effective stiffness adaptation of truss-like mechanical lattices to create the 
QVHE and present specific case studies that demonstrate wave path tunability at high frequencies67,68. An additional study 
investigated adaptive topological wave control via periodic electrical boundary conditions applied to a one-dimensional 
system (rod)69. In contrast, the proposed reconfigurable topological metamaterial achieves a fully comprehensive 
adaptivity of edge state frequency, shape, and path at low frequencies near the fundamental mode for a two-dimensional 
system. Protected wave propagation at low frequencies is achieved through resonant circuitry with a tunable inertial term 
(circuit inductance) that is readily integrated into a continuous load-bearing thin plate that has reduced size requirements 
due to the subwavelength system characteristic.  
 
In the following manuscript, the governing equations for the proposed reconfigurable metamaterial are derived using the 
extended Hamilton’s principle, and the plane wave expansion method (PWE) is used to identify a tunable Dirac cone in 
the band structure of the unit cell. Numerical simulations identify edge modes located at frequencies within a topological 
bandgap generated by perturbation of the circuit inductance parameter and demonstrate elastic wave path tunability. 
Finally, overall discussion and conclusion are presented. 
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2. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL 
2.1 Metamaterial description 

The proposed metamaterial (Figure 1) is comprised of an infinite thin composite plate that includes a mechanical substrate 
(shown in gray) and two piezoelectric layers (yellow). The piezoelectric layers are connected via circular conductive 
electrodes (red and green) to external circuitry in the series configuration. A diagram of the top view of the metamaterial 
is shown in Figure 1a, where the honeycomb lattice structure is clearly defined by red and green circles indicating electrode 
pair 1 and electrode pair 2 of the triangular unit cell, which is enclosed in the dashed lines. The unit cell is further depicted 
in Figure 1b (cross-section view) and Figure 1c (top view), and includes the aforementioned two pairs of electrodes which 
enable the formation of two capacitors (capacitor 1 and capacitor 2) with capacitance defined as 𝐶𝑝,1 and 𝐶𝑝,2. The output 
voltages measured across capacitor 1 and capacitor 2 are indicated as 𝑣̅1 and 𝑣̅2, and the series-connected inductances are 
defined as 𝐿1 and 𝐿2, respectively. The resulting series 𝐿𝐶 circuits are resonant with a tuning frequency of 𝜔𝑡,𝑗 = 1

√𝐿𝑗𝐶𝑝,𝑗
   

for the 𝑗th circuit. The thicknesses of the substrate and piezoelectric layers are ℎ𝑠 and ℎ𝑝, respectively, while the thickness 
of the electrodes is assumed to be negligible in this study. The circular electrodes have a radius 𝑟𝑝 and are centered at 𝑅⃑ 1 =
𝑎

2√3
(cos

𝜋

6
𝑖̂ + sin

𝜋

6
𝑗̂) for capacitor 1 and 𝑅⃑ 2 =

−𝑎

2√3
(cos

𝜋

6
𝑖̂ + sin

𝜋

6
𝑗̂) for capacitor 2 within the unit cell. To form the 

metamaterial, the unit cell is periodically repeated in the directions of the basis vectors of the direct lattice 𝑎 1 = 𝑎𝑖̂ and  
𝑎 2 = 𝑎 (cos

𝜋

3
𝑖̂ + sin

𝜋

3
𝑗̂). When the circuit parameters of the unit cell (𝐿1 and 𝐿2) are defined to be identical, the 

orientation, shape, and location of the electrodes grant the metamaterial 𝐶3 symmetry and SIS. These geometric 
symmetries, along with TRS, facilitate the mechanical analog of the QVHE. In summary, the proposed topological 
metamaterial is comprised of a periodic honeycomb lattice with unit cells containing two resonant circuits that are 
electromechanically coupled to a thin composite plate.  

2.2 Governing Equations 

A mathematical model governing the system response is derived using the extended Hamilton’s Principle,70 and small 
deformations are assumed such that classical theory of thin plates71 and theory of linear piezoelectricity72 are applicable. 
The piezoelectric layer and mechanical substrate are assumed to be ideal conductors, and a uniform electric field is assumed 
for all piezoelectric elements. The governing equations are given by Equation 1 as:  

𝐷𝑇𝛻̅
4𝑤̅(𝑟̅, 𝑡) + 𝑚

𝜕2𝑤̅(𝑟̅, 𝑡)

𝜕𝑡2
− 𝜃 ∑𝛻̅2𝑣̅𝑗(𝑡)𝜒̅𝑗(𝑟̅) = 0

𝑁𝑒

𝑗=1

 (1𝑎) 

𝐿𝑗𝐶𝑝,𝑗

𝜕2𝑣̅𝑗(𝑡)

𝜕𝑡2
+ 𝑣̅𝑗(𝑡) + 𝜃 ∬𝐿𝑗

𝜕2

𝜕𝑡2

𝐷̅𝑗

𝛻̅2𝑤̅(𝑟̅, 𝑡)𝑑2𝑟̅ = 0, 𝑗 = 1… .𝑁𝑒  electrode pairs  (1𝑏) 

Figure 1. Top view (a) of the proposed piezoelectric metamaterial lattice structure. Cross-section view (b) and top view (c) 
of the periodic unit cell of the honeycomb lattice. Green indicates electrode geometry related to circuit 1, and red indicates 
geometry related to circuit 2 of the unit cell. In (a) and (c), the circuity has been omitted for clarity in the description of 
lattice geometry.  
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where 𝑟̅ = (𝑥̅, 𝑦̅), 𝑤̅(𝑟̅, 𝑡) is the flexural displacement of the plate, 𝐷𝑇  is the effective flexural rigidity of the composite 
plate at short circuit, 𝑚 is the effective mass per unit area of the plate, 𝜃 is an electromechanical coupling coefficient,  𝑣̅𝑗(𝑡) 
is the output voltage across the 𝑗th electrode pair, 𝐶𝑝,𝑗 and 𝐿𝑗 are the capacitance and series-connected inductance 
corresponding to the 𝑗th electrode pair, respectively, 𝛻̅2 and 𝛻̅4, are the Laplacian and biharmonic operator, respectively 

and 𝑁𝑒 is the total number of electrode pairs. In addition, 𝜒̅𝑗 is a step-function defined as 𝜒̅𝑗(𝑟̅) = {
1, 𝑟̅ ∈ 𝐷̅𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, where 

𝐷̅𝑗 represents the domain containing the 𝑗th electrode pair in the 𝑥̅ − 𝑦̅ plane. To generalize the results, the governing 
equations are non-dimensionalized by defining non-dimensional plate displacement, output voltage, time, and spatial 

length scales (in 𝑖̂, 𝑗̂, 𝑘̂, directions) as 𝑤 =
𝑤̅

𝑎
, 𝑣𝑗 =

1

𝑎

𝐶𝑝,𝑗

𝜃
 𝑣̅𝑗 , 𝜏 = √

1

𝐿𝑗𝐶𝑝,𝑗
𝑡, 𝑥 =

𝑥̅

𝑎
, 𝑦 =

𝑦̅

𝑎
, and 𝑧 =

𝑧̅

𝑎
, respectively. A 

harmonic response at frequency 𝜔 is assumed for the plate displacement and electrode output voltage, and non-dimensional 
variables are substituted as shown in Equation 2: 

𝑤̅(𝑟̅, 𝑡) =  𝑎𝑤(𝑟)𝑒𝑖𝜔√𝐿𝑗𝐶𝑝,𝑗𝜏 (2𝑎) 

𝑣̅𝑗(𝑡) =
𝜃𝑎

𝐶𝑝,𝑗

𝑣𝑗𝑒
𝑖𝜔√𝐿𝑗𝐶𝑝,𝑗𝜏 (2𝑏) 

After substituting results defined in Equation 2 into the governing equations (Equation 1), the resulting non-dimensional 
governing equations are reduced to the form shown in Equation 3:  

(𝛻4 −
𝜔2𝑚𝑎4

𝐷𝑇

)𝑤(𝑟) − ∑
𝜃2𝑎2

𝐶𝑝,𝑗𝐷𝑇

𝛻2𝑣𝑗𝜒𝑗(𝑟) = 0

𝑁𝑒

𝑗=1

(3𝑎) 

(1 − 𝐿𝑗𝐶𝑝,𝑗𝜔
2)𝑣𝑗 − 𝜔2𝐿𝑗𝐶𝑝,𝑗 ∬𝛻2𝑤(𝑟)

𝐷𝑗

𝑑2𝑟 = 0,         𝑗 = 1… .𝑁𝑒  electrode pairs  (3𝑏) 

where 𝑟 = (𝑥, 𝑦), and the step-function 𝜒𝑗(𝑟) = {
1, 𝑟 ∈ 𝐷𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
is defined in terms of the dimensionless domain 𝐷𝑗  of the 

𝑗th electrode pair.  

2.3 Dispersion Relation 

Due to the periodicity of the metamaterial, analysis of a single unit cell (Figure 1b, 1c) containing two resonant circuits 
(𝑁𝑒= 2) is sufficient to evaluate the dispersion relation. The inductance tuning parameter 𝛽 is used to specify the 
inductances for the two circuits in the unit cell as 𝐿1 = 𝐿(1 + 𝛽) and 𝐿2 = 𝐿(1 − 𝛽). When 𝛽 ≠ 0 the inductance 
parameters of the two circuits are different, and when the two circuits are defined as identical (𝛽 = 0) the inductance of 
each circuit is 𝐿. To generate the dispersion relation, the non-dimensional plate flexural displacement 𝑤(𝑟) is defined as a 
superposition of plane waves using the PWE method31,46,73 per Equation 4: 

 𝑤(𝑟) = ∑𝑊(𝐺)𝑒−𝑖𝑎(𝑘+𝐺)∙𝑟

𝐺

𝐺 = 𝑚𝑏⃑ 1 + 𝑛𝑏⃑ 2 𝑚, 𝑛 ∈ [−𝑀,𝑀] 𝑁 = 2𝑀 + 1 𝑘 = (𝑘𝑥, 𝑘𝑦) 

(4) 

where 𝐺 is the reciprocal lattice vector, 𝑏⃑ 1, 𝑏⃑ 2 are the basis vectors of the reciprocal lattice, 𝑚 and 𝑛 are integers, 𝑊(𝐺) is 
the plane wave coefficient, 𝑘 is the Bloch wavevector, and 𝑀 is an integer chosen such that the number of plane waves 
included for band structure evaluation is 𝑁 × 𝑁. For the triangular unit cell considered here, a schematic of the reciprocal 
lattice is shown in the inset for Figure 2a, with basis vectors 𝑏⃑ 1 =

𝜋

𝑎
(2𝑖̂, −

2

√3
𝑗̂) and 𝑏⃑ 2 =

𝜋

𝑎
(0𝑖̂,

4

√3
𝑗̂). Substituting 𝑤(𝑟) 

from Equation 4 into Equation 3, multiplying by the complex conjugate 𝑒𝑖𝑎(𝑘+𝐺)∙𝑟, and integrating over the unit cell, results 
in Equation 5: 

(𝑎4|𝑘 + 𝐺|4 − Ω2)𝑊(𝐺) + ϑ∑
𝑎2

𝐴𝑐

𝑎2

𝐴𝑒,𝑗

𝑎2|𝑘 + 𝐺|2 ∬𝑣𝑗𝑒
𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =

𝐷𝑗

𝑁𝑒

𝑗=1

0 (5𝑎) 
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(
Ω𝑡

2

(1 − (−1)𝑗𝛽)
− Ω2) 𝑣𝑗 + Ω2𝑎2 ∑𝑊(𝐺)|𝑘 + 𝐺|2 ∬𝑒−𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =

𝐷𝑗𝐺

0, 𝑗 = 1… .𝑁𝑒  electrode pairs  (5𝑏) 

where Ω = 𝜔𝑎2√
𝑚

𝐷𝑇
  is non-dimensional frequency, Ω𝑡 = 𝜔𝑡𝑎

2√
𝑚

𝐷𝑇
 is the non-dimensional circuit tuning frequency, ϑ =

𝜃2

𝐶̂𝑝𝐷𝑇
 is a non-dimensional electromechanical coupling coefficient, 𝐴𝑐 is the area of the unit cell, and 𝐴𝑒,𝑗 is the area within 

the unit cell containing the 𝑗𝑡ℎ electrode pair. In this model, the surface area of the electrode and the capacitance related 
to each electrode pair are assumed to be uniform over the unit cell (𝐴𝑒,𝑗 = 𝐴𝑒, 𝐶𝑝,𝑗 = 𝐶𝑝).   

3. DISPERSION ANALYSIS 
3.1 Unit Cell 

For this study, the composite plate is composed of an aluminum substrate with ℎ𝑠= 1 mm and PZT-5H piezoelectric layers 
with ℎ𝑝= 1 mm, resulting in a dimensionless electromechanical coupling coefficient of ϑ= 0.42. Unit cell characteristic 

length is defined as 𝑎= 0.04 m and electrode size as 𝐴𝑒 = 𝜋 (0.92
√3

6
𝑎)

2

 m2. Equations 5a and 5b can be recast in the form 

of the classical eigenvalue problem ([𝐊] − Ω2[𝐌]) [
{𝑊𝑚,𝑛}

𝑣1
𝑣2

] = 0, and the dispersion relation is solved by specifying the 

wavevector 𝑘 along the boundary of the irreducible Brillouin zone (blue triangle in the inset of Figure 2a) and solving for 
non-dimensional frequency Ω. 𝑀= 5 is chosen for computations such that 𝑁 × 𝑁= 121 plane waves are considered. The 
band structure for the unit cell with identically defined inductance parameters for both circuits (𝛽 = 0) and Ω𝑡= 11 is 
shown as the solid colored lines in Figure 2a. The finite element tool COMSOL Multiphysics is used to validate the band 
structure generated by the PWE (open circles in Figure 2a are the COMSOL result). The band structure contains a 
degeneracy at the K-point in reciprocal space between the first (fundamental) and second modes otherwise referred to as 
a Dirac point20 (see dashed box in Figure 2a). The non-dimensional frequency where this Dirac point occurs, or the Dirac 
frequency, is ΩDirac= 9. This Dirac point is the vertex of a Dirac Cone that exists in 𝑘𝑥-𝑘𝑦 space, which is protected by 𝐶3 
lattice symmetry, SIS, and TRS20. While maintaining identical circuit inductance parameters (𝛽= 0), Figure 2b shows how 
the frequency of the Dirac point (ΩDirac) varies as a function of the circuit tuning frequency (Ω𝑡). For a unit cell with 
specified and homogenous mechanical geometry, the Dirac frequency can be varied between ΩDirac= 0 and ΩDirac= 17.5 
using only circuit parameters. By specifying the circuit tuning frequency Ω𝑡, the frequency of the Dirac point can be tuned 
over a wide frequency region corresponding to the two lowest frequency system modes. Thus, the proposed metamaterial 

Figure 2. (a) Band structure for the unit cell with Ωt = 11 and 𝛽 = 0. Bands generated from PWE are marked as solid 
colored lines, while COMSOL Multiphysics results are marked with open circles. A Dirac point is highlighted by the black 
dashed box, and a diagram of the reciprocal space is shown in the inset. (b) Dirac frequency ΩDirac as a function of circuit 
tuning frequency Ωt 
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is capable of continuously tuning ΩDirac in a low-frequency region due to the resonant characteristic of the embedded 
circuits. This continuous frequency tunability of the Dirac point is not a feature of many state of the art adaptive topological 
waveguides, which generally focus on the realization of path tunability using nonresonant geometric features.  

Figure 3 shows a zoomed-in view of the Dirac point for the unit cell with identical circuits (𝛽= 0, solid line Figure 3) and 
Ω𝑡= 11. To break the Dirac cone and achieve the elastic analog to the QVHE, SIS must be broken within the unit 
cell20,39,74,75. To break SIS, the two circuits of the unit cell are defined with different inductance parameters (𝛽 ≠ 0). A 
lattice with 𝛽 > 0 is defined as Type A, while a lattice with 𝛽 < 0 is defined as Type B. For this study, the magnitude of 
the circuit inductance perturbation in the Type A and Type B lattice types is |𝛽| = 0.015. The band structure for a Type A 
lattice with Ω𝑡= 11 is shown in Figure 3 (𝛽= 0.015, dashed line Figure 3). By breaking SIS, the degeneracy is lifted, and a 
full bandgap is created between the first two bands (Ω= 8.90 to Ω= 9.05) (Figure 3)39,75. An equal and opposite set of 
inductance parameters contained by a Type B lattice (𝛽= -0.015) yield an identical band structure (and bandgap frequency 
range) to that of the Type A lattice (𝛽= 0.015). However, a band inversion exists between the Type A and Type B lattices, 
as the eigenvectors (𝑢(𝑘)) associated with band 1 and band 2 for each lattice are interchanged. The topological properties 
of these eigenvectors are characterized by the valley Chern number 𝐶𝑣−𝑝, which is a topological invariant defined as the 
integral of the Berry Curvature 𝐵𝑝(𝑘) = −∇𝑘 × 〈𝑢𝑝(𝑘)|𝑖𝛻𝑘[𝐌]|𝑢𝑝(𝑘)〉 associated with the 𝑝th band near the K-point in 
reciprocal space (𝐶𝑣−𝑝 =

1

2𝜋
∬ 𝐵𝑝(𝑘)𝑑2𝑘

𝑣
)39,55,74,76. The theoretical valley Chern numbers in a Type A lattice are -0.5 and 

0.5 for 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴 and 𝐶𝑣−2

𝑇𝑦𝑝𝑒 𝐴, respectively. For a Type B lattice these values are equal and opposite (𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵= 0.5 and 

𝐶𝑣−2
𝑇𝑦𝑝𝑒 𝐵 = -0.5). The dissimilar 𝐶𝑣−𝑝 values indicate that Type A and Type B lattices are topologically distinct. When these 

two topologically distinct lattices are joined at an interface, a topological transition occurs, and the number of topologically 
protected interface states (edge states located at the interface between lattice types) located within the bandgap is predicted 
as 𝑁𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒−𝑠𝑡𝑎𝑡𝑒𝑠 = |𝐶𝑣−𝑘

𝑇𝑦𝑝𝑒 𝐴
− 𝐶𝑣−𝑘

𝑇𝑦𝑝𝑒 𝐵
| = 155,74. For the circuit perturbation chosen in this study (|𝛽| = 0.015), the 

calculated valley Chern numbers are 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐴= -0.3 and 𝐶𝑣−2

𝑇𝑦𝑝𝑒 𝐴 = 0.3 for the Type A lattice and 𝐶𝑣−1
𝑇𝑦𝑝𝑒 𝐵= 0.3 and 𝐶𝑣−2

𝑇𝑦𝑝𝑒 𝐵 
= -0.3 for the Type B lattice. The magnitude of the calculated valley Chern number is less than the theoretically predicted 
valley Chern number ((|𝐶𝑣−𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|= 0.3 < |𝐶𝑣−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|= 0.5) due to the relatively large symmetry-breaking 
perturbation contained in the lattice45,60. However, the non-trivial value of the calculated 𝐶𝑣−𝑝 indicates non-trivial 
topological characteristics and predicts the emergence of a topologically protected edge state at an interface of adjoined 
Type A and Type B lattices.  

Figure 3. Band diagram containing zoomed-in view of band 1 and band 2 for a unit cell containing SIS 𝛽= 0 (solid line) and 
with broken SIS 𝛽= 0.015 (dashed lines) for Ωt= 11. 
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3.2 Finite Strip 

A dispersion analysis is conducted for a finite width strip to demonstrate the existence of a topologically protected interface 
state. The finite strip is comprised of 18 unit cells (Figure 4a). A periodic boundary condition is applied in the 𝑘// direction 
and fixed boundary conditions are applied to the edges. An interface is created at the domain wall between nine Type B 
unit cells and nine Type A unit cells (dashed box in Figure 4a, circuit parameters defined as 𝐿𝐼 < 𝐿𝐼𝐼). The topologically 
distinct characteristics of Type A and Type B unit cell types (discussed in Section 3.1) create a topological transition at 
the interface. COMSOL Multiphysics is used to generate the band structure for the finite strip with circuit inductance 
perturbation defined as |𝛽| = 0.015 (Figure 4b). A metric is created to evaluate the localization of flexural displacement 𝑤  

Figure 4. (a) Schematic of finite strip with Type B sublattice indicated as light brown (left) and Type A sublattice indicated 
as dark yellow (right). Interface is marked by dashed box. Red circles represent electrode pairs connected to 𝐿𝐼, and green 
circles represent electrode pairs connected to 𝐿𝐼𝐼. (b) Band structure for finite strip with |𝛽| = 0.015. Colormap indicates 
flexural mode displacement localization at interface through localization parameter 𝜆. Dark shaded bands are interface states 
(𝜆 ≅ 1). Top inset is displacement field of interface mode for k// = 0.7𝜋/a and Ω= 9.05. (c) Schematic and interface mode 
shape for a different interface location.  
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at the interface, defined as 𝜆 =
∭ |𝑤|2𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑑𝑉

∭ |𝑤|2𝑉𝑆
𝑑𝑉

, where 𝑉𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  is the volume of the two adjacent unit cells at the 

interface (dashed box in Figure 4a) and 𝑉𝑆 is the volume of the entire finite strip (Figure 4a). The band structure consists 
of a color map, with lighter shaded bands representing bulk modes (𝜆 ≪ 1) and darker shaded bands indicating 𝜆 ≅ 1 and 
strong localization of flexural displacement at the interface (i.e., interface states). An interface state (Figure 4b) is observed 
within the full bandgap that is opened from the Dirac point for the unit cell (Ωbandgap ∈ [8.90, 9.05] for ΩDirac= 9), as seen 
in Section 3.1 (Figure 3). As shown in Section 3.1, the frequency of the Dirac point ΩDirac can be tailored using embedded 
circuit parameters. Thus, the frequency range of the associated bandgap and the interface state contained within it is tunable 
as well. The mode shape for the interface state at 𝑘// = 0.7π/a and Ω= 9.05 is presented in Figure 4b, clearly showing 
localization of flexural displacement at the interface. Due to the topological transition present at the interface, this localized 
interface state is topologically protected (see section 3.1 for explanation). A second localized interface state exists at higher 
frequencies (Ω ≅ 9.4) but is difficult to activate in practice because it is not in the bandgap and easily hybridizes with bulk 
modes.  

In addition to being frequency tunable, the location of the interface state can also be changed using circuit parameters. A 
schematic of a finite strip with 12 Type B unit cells and six Type A unit cells is shown in Figure 4c. The band structure 
for this configuration (not shown) is nearly indistinguishable from the band structure shown in Figure 4b. The flexural 
displacement of the interface mode remains localized at the interface, which has now been moved three cells to the right 
(Figure 4c) when compared to the original position (Figure 4a). Therefore, the proposed piezoelectric metamaterial enables 
reconfiguration of both the location and frequency characteristics of the interface state, which could be used to achieve 
topologically protected wave transmission.  

4. CONCLUSIONS 
In this study, an adjustable piezoelectric topological metamaterial is proposed and investigated. The metamaterial consists 
of a thin composite plate that is electromechanically coupled to piezoelectric resonant circuitry through conductive 
electrodes. While the mechanical structure is geometrically homogeneous and load-bearing, the conductive electrodes are 
placed in a honeycomb lattice arrangement, which enables the realization of the quantum valley Hall effect. A 
subwavelength Dirac point is identified in the band structure of the unit cell using the plane wave expansion method. 
Further investigation of the unit cell band structure indicates that circuit frequency parameters can be used to tune the 
frequency of the Dirac point and break the degeneracy to open a bandgap. Topologically distinct lattice arrangements are 
identified by evaluation of the topological invariant (valley Chern number) and combined into a finite width strip with an 
interface containing a topological transition. A dispersion analysis for the finite width strip reveals a topologically protected 
interface state with highly localized displacement that is both path and frequency tunable. The end result is a topologically 
protected waveguide that can be reconfigured in both the spatial and frequency domains to expand functionalities and 
adjust to changing external conditions. The resonant nature of the circuitry embedded into the metamaterial facilitates 
subwavelength topological wave transmission and real-time reconfiguration through circuit frequency parameters. Thus, 
the proposed approach can be used for wave control in low-frequency applications with size constraints and is easily 
integrated into commonly used load-bearing structures (e.g., thin plate). The comprehensive reconfigurability of the 
metamaterial could be leveraged to improve robustness and performance for applications such as filtering, multiplexing, 
isolation, and energy harvesting while encouraging further expansion of topological metamaterial functionalities.  
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