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Abstract

Organoid developmental processes encompass the coordina-
tion of multicellular communication to achieve physiological
functionality. Questions regarding the hierarchy of communi-
cation mechanisms and unknown contributions to variability in
successful growth and maturation makes the organoid sys-
tems ideal for computational analysis and optimization. Until
recently, progress has been hampered by the limitations of
computational tools to handle highly complex networks. Ad-
vances in experimental tools for characterization, live-cell
monitoring, and environmental manipulation are timely for
enhancing spatiotemporal predictions of organoid properties.
We discuss recent approaches to address these challenges
with novel computational methods and biophysical principles
that have yielded insights into the emergence of structure and
spatial organization. Computational organoid modeling across
multiple levels of emergence offers promising potential for
understanding, improving, and designing ab initio multicellular
engineered systems.
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Introduction

Recent developments in tissue engineering through
control and manipulation of the extracellular environ-
ment and/or cell—cell communication have yielded
success in producing organoids. These functional
microtissues provide attractive platforms for iPSC-
derived organ-on-chip screening, interrogation of
developmental principles of organization and lineage
specification, and may provide a springboard for future
engineering of at-scale organs from modular compo-
nents. To date, the strategies for yielding self-assembled

organoids from pluripotent precursors have not been
guided by computational prediction or design. Simula-
tion of complex behavior arising in multicellular con-
structs could provide critical insight in improving
reproducibility [1] or guidance toward desired form and
function [2] within an experimentally insurmountable
search space. Engineering of inducible transcription
factors, precise morphogen presentation, and novel
biomaterial surfaces provide examples of the numerous
potential experimental factors available for deriving
organoid systems (see Figure 1).

Modeling two-dimensional cultures vs.
three-dimensional organoids

Multiple cell types undergo proximal (direct neighbor)
and distal interactions from the diffusion of morphogens
across tissue scales that affect cell fate decisions. While
morphogen reaction-diffusion has long attracted math-
ematical analysis, other drivers of differentiation, such as
mechanosensing, membrane voltage, or gap junction
communication, can be interrogated through simula-
tions that uncouple these mechanisms from other
environmental cues. Bioelectric gradients can pre-
dispose the development of multicellular oscillations
or ensemble level behavior within non-excitable tissues
[3]. Dynamic gap junction-based transport networks as a
function of asynchronous cell cycling have been attrib-
uted to multcellular patterning by creating an inter-
cellular flow of small molecules [4]. Each of these
modeling examples explored fundamental mechanisms
of cell—cell communication by limiting the scope of the
simulations to a single mode of signaling.

While the above examples are useful for computational
modeling and testing properties of spatial organization
or symmetry breaking within a population, a challenge to
computationally addressing organoid development lies
in its intrinsic complexity, which 2-dimensional systems
lack. Furthermore, organoid development naturally is a
3-dimensional process. Organoid cultures have been
enabled by the use of a variety of methods to leverage
surface tension and adhesive forces (or lack thereof) to
encourage cell—cell interactions. Consequently, the
appropriate computational modeling description must
reflect these changes in biophysical forces.

Agent-based modeling (ABM) uses autonomous agents
to represent cells capable of making independent,
context-dependent decisions with respect to their po-
sition and state [5]. In agent-based modeling (ABM) of
cells attached to a planar surface, a descriptor for colony
growth dictates the choice of dividing cells to seek out
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From top left to bottom right, the figure is depicting a series of magnifications of a multicellular system, intercellular and intracellular levels. Left:
Organoid representation can take many forms with computational multicellular modeling. Agent-based, vertex based, or a semi-flexible polymer network
description has utility depending on biological questions addressed. Middle: The large-scale emergent patterns of the multicellular system (hundreds of
microns) are critically dependent on the successful completion of cell-level processes and cell—cell interactions (tens of microns). As an example, the
cell-cell interaction is depicted to represent the gap—junction communication. Right: Embedding of molecular networks allow feedback into higher
macro-level behavior. The scales of consideration and system inter-dependence create unique challenges for computational modeling efforts.

open surface versus piling up on top of each other.
These features are observed to different degrees in
various phenotypes and are generated by physical
confinement (such as micropatterned areas). In
contrast, computational models of 3D organoids require
that the spheroid volume expands upon cell divisions
[6,7], as the addition of new agents dictates a “jostling”
effect outward to maintain the neighbor-to-neighbor
distances that are a consequence of Hookean forces
between cells. Changes in a spring constant parameter
can result in the degree of cellular packing that occurs in
simulating organoid growth.

An additional feature of 3D computational modeling of
organoids—both experimentally and i sifico—is the
introduction of limited of nutrient availability. Glucose,
oxygen and other metabolic precursors necessary for
anabolism are subjected to reaction-diffusion bio-
transport across a multicellular construct. Organoid re-
searchers refer to necrotic cores as evidence of these
limitations. Simulations with partial differential equa-
tions are often appropriate for describing these proper-
ties [8]. Future enhancement of computational models
will require features that result from the engineering of
vascularized organoids. Prior computational methods
developed in the cancer biology field for recapitulating
tumor angiogenesis [9,10] provide guidance in how
these features may be implemented.

Likewise, the accumulation and diffusivity of secreted
molecules such as growth factors or chemokines differ
in 2D culture versus 3D. For example, reaction-
diffusion modeling of BMP4 in 2D culture suggests
that hPSC colony organization under micro-patterned
geometric constraints perform intrinsic scaling (i.e.
holds true across dimensions) and is not specific to the
morphogen concentration [11]. This computational
model assumes that a fixed concentration of BMP4 is
maintained at the periphery of the colony and equiva-
lent to the concentration in the bulk medium. Under
3D conditions, however, internal pockets of high con-
centrations in intercellular regions/extracellular matrix
deposited within an organoid could provide a stable
source of localized influence on cell fate decisions. The
omission in the model description of ECM and/or the
resultant hindered diffusivity in the extracellular
spaces could lead to deviation in behavior from exper-
imentally observed properties of organoids. Immersed
boundary methods, such as described for interstitial
flow and transport, eliminate the description of cells
and fluid as a continuum, allowing for locally discon-
tinuous and inhomogenous regimes of concentration
[12]. While not yet applied to organoid computational
models, this may be a future strategy for evaluating
localized accumulation of morphogens, especially in
regimes of high convection such as culture under
agitation/rotation.
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Using computational models to study
organoid formation

Unlike the modeling of an early-stage blastocyst, in
which each cell division results in daughter cells with
prior memory of the parent cell and their position, the
seeding of organoids is initialized as a seemingly disor-
ganized group of cells. The delay in differentiation
events compared to embryogenesis stages reflects the
time required to dynamically coordinate downstream
morphogenic fates amongst themselves and the envi-
ronment. Several studies highlighted here have focused
on specific points in the embryonic and organoid
development process to computationally model, illu-
minating the numerous emergent processes that faith-
fully produce specific cell and organ fates.

After cells form into an aggregate, shape deformations
are critical for organoid morphogenesis to yield struc-
tures that resemble the organ system of interest. Vertex
models have successfully described how spatial patterns
of apical cell contractility induce deformations of
epithelial shells mathematically and computationally at
three dimensions and two dimensions. Hexagonal prism-
like cells formed together to simulate epithelial shells,
with each cell having a fluid-filled cavity and a solid
membrane. Both 3D and 2D vertex models have
demonstrated principles of evagination or invagination -
either the apical side comprising the inner shell surface
or the apical side comprising the outer shell surface [13].
In contrast, agent-based models considering the in-
teractions between different cell types, and their be-
haviors reflect a variety of phenotypes together in a
tissue. Germann et al. developed yalla (yet another
parallel agent-based model) and used concepts of tissue
polarity for mesenchymal cells and apical-basal polarity
for epithelial cells to describe interactions between
epithelial cells and mesenchymal cells and their behav-
iors [14]. Moreover, to reduce computational costs, the
model was developed for operating on graphics process-
ing units (GPUs), which enabled faster large-scaled
simulations of morphogenesis. To combine the me-
chanical properties of each cell and chemical interactions
between the cells during morphogenesis, Okuda et al.
proposed a 3D vertex model with expressions of inter-
cellular signaling molecules for growth. Upon simulating
signal-dependent epithelial morphogenesis, multicel-
lular deformations, and biochemical patterns resulted in
four types of 3D morphogenesis—arrest, expansion,
invagination, and evagination [15]. In later work, the
approach was changed to incorporate a 3D vertex model
with a mathematical model of Turing reaction-diffusion
dynamics [16]. With a 3D monolayer cellular sheet, the
model yielded various morphogenesis, including tubu-
lation, branching, and undulation, and showed diverse
morphologies within the same type of tissue depended
on different time scales. An unconventional multicellular
computational modeling approach is to consider the
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organoid structure as a semi-flexible polymer network
[17]. Simple rules, such as the differentiation of intes-
tinal stem cells into Paneth cells as a function of the local
mean curvature, yielded realistic outcomes in intestinal
organoid structure and highlighted the role of Wnt/
Notch activation in regulating elasticity of cell—cell in-
teractions. The formation of branched versus cyst forms
during intestinal organoid development was discovered
to be sensitive to a Wnt-dependent elastic modulus
parameter. Importantly, identification of differentiation
drivers that map to biomechanical outcomes alone was
insufficient for capturing complexity in form. Knowledge
of an intermediary cell type and spatially constrained
clonal expansion of the subpopulation was instrumental
in the success of the model predictions.

Understanding developmental processes
Several efforts focusing on cell—cell and cell—
environment interaction in the context of organoid
development elucidated how molecular regulators of
emergence can positively or negatively affect cell fate
outcomes, principles that inform fundamentals of
developmental biology. We refer the reader to compre-
hensive reviews [5,18] that cover a variety of develop-
mental systems modeled through agent-based
simulations and the utility of this modeling approach for
integrating the Turing reaction-diffusion phenomenon
with positional information. A multipurpose biome-
chanical modeling platform to study optic cup
morphogenesis relied on biophysical laws of mechanical
interactions between cells in geometrically-confined
conditions [19]. This computational modeling
approach used experimentally derived physical param-
eter metrics, such as height, volume, curvature, prolif-
eration/apoptosis rate, to parameterize their model,
specifically to replicate a self-invagination morphogenic
process and subsequent boundary formation between
regions of organizing clusters. The authors successfully
simulated the dynamic mechanical bending process
that dynamically modulates shape outcomes based on
individual cell—cell interactions at the regional inter-
face and the robustness of the spatiotemporal outcomes
in vitro. Other groups have also attempted to create
synthetic emergent multicellular structures or organo-
ids, to functionally improve existing methods and pre-
dictively control emergent patterning. Structurally, the
formation of sheets, tubes, rings, and other macroscopic
forms can be guided by modular building with organoid
subunits. For example, kinetic Monte Carlo, lattice-
based simulations of multiaggregate fusion predicted
time-evolved configurations that could arise with cell
migration and lumen polarization [20]. The use of this
stochastic modeling method could provide distributions
of collective spatiotemporal behavior from many simu-
lations; however, this study did not evaluate questions
of reproducibility or vyield from their initialized
structures.
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Modeling to inform robust

biomanufacturing

The conceptual next step following successful emergent
systems control is addressing shortcomings in current
biomanufacturing and biotechnological processes, where
robust, high yield/high throughput protocols for orga-
noids are needed. Finite element modeling (FEM) is a
top-down engineering approach and has been used to
model i vive mesenchymal condensation as a multi-
compartment mesoscale mechanical interaction be-
tween components [21]. In this example, the
computational model focused on the strain/tensile
forces generated by a “single material” mesenchyme and
its dynamic effects on ECM biophysical parameters.
Despite the usage of minimal parameters to define the
behavior of coordinated cell groups, the FEM could still
successfully replicate cell interaction and collagen-
dependent tensile forces on multiple micro-patterned
surfaces. This platform is promising for regenerative
medicine manufacturing technologies for predicting
which cellular interactions govern invagination upon
exposure to different surfaces, as 3D topographies could
be used to guide cell growth and mesenchymal self-
organization with minimal external guidance. Recently,
a Cellular Potts Model (CPM), combined with machine
learning and optimization procedures predicted that
hiPSCs, engineered with specific genetic perturbations
with known biomechanical consequences, follows pre-
dictable self-organizational trajectories [22]. Manipula-
tion of CDH1 and ROCKI1 led to cell sorting and
distinct multicellular organizational features. The data-
driven approach mapped specific time-lapsed immuno-
fluorescent images as a training set to determine cell—
cell biomechanical interactions and individual cell
type-specific parameters in the CPM. Simulations iter-
ated over thousands of solution sets, and an optimization
algorithm searched the parameter space for design
conditions leading to patterning trajectories. The su-
pervised image classifiers and machine learning rule-
based algorithms informed the experimental design
process.

Synthetic, novel functionalities

Future organoid synthesis is anticipated to leverage
synthetic biology tools that are becoming more widely
adopted in human cell biology. Weiss and colleagues
reported that synthetic induction of a master differen-
tiation driver resulted in the organization of complex
organoid tissues [23]. To achieve the ectopic expression
of the transcription factor, GATA-binding protein 6
(GATAG6), lentiviral vectors were used to deliver a small
gene circuit. Upon doxycycline treatment, variance in
transgene expression occurred, resulting in a spectrum
of GATA6' progenitors inducing differentiation via
complex patterning, ultimately morphing into a liver
hindgut organoid. While modeling was not a component
of this study, from a computational perspective, this

induction strategy provides tight temporal control over
state changes, a critical assumption made in many agent-
based modeling descriptions.

The Lim lab engineered a novel synthetic gene circuit,
capable of eliciting cell—cell communication based on
extracellular ligand—ligand interactions and downstream
transcription of targeted genes [24]. Programmed syn-
thetic notch signaling and E-cadherin expression within
spheroids initiated a multistep reciprocal intercellular
communication cascade and resulted in uniform self-
organization and cell sorting into geometrically distinct
phenotypic subpopulations. Patterning outcomes were
completely dependent on the logical design of the ge-
netic components. Again, computational modeling was
not a component in the circuit design of this multicellular
system, but future simulations of such systems could
point to the optimization of the circuit regulation for
yielding specific 3D organoids with designed geometries.

Model validation

The utility of computational models is ultimately
defined by the extent to which they satisfy initial
questions of critical interacting roles of determining
morphogenic and functional emergent fates. A number
of methods for generating time-resolved experimental
datasets and custom image processing algorithms are
defining emergent dynamics and confirming simulation
outcomes. Time-lapse microscopy of mixed cell popu-
lations with fluorescent reporters of the phenotype is
non-invasive and ideal for monitoring the evolution of
patterns [22,24]. Other validation methods characterize
organoids with assays at multiple spatial levels. For
example, single-cell biomechanical metrics, such as cell-
type dependent strain and matrix curvature induction,
were determined using particle image velocimetry and
droplet contraction assays for parameterization of FEMs
[21]. In bioelectric studies, e.g., Ref. [25], fluorescent
confocal microscopy in parallel with whole-cell patch-
clamp quantified membrane potential and spatiotem-
poral spread across multicellular clusters, validated
predicted functional features of bioelectric gradients
that preceded neural morphogenesis. Furthermore, ca-
nonical variate analysis enabled the authors to incorpo-
rate unbiased statistical metrics to study differences
between control and pathological conditions. Multiple
images were selected for biologically relevant morpho-
logic features; the distances between “landmarks” of
organ features in tadpoles were quantified by a statis-
tical metric that relates shape differences, Procrustes
distances. The resulting scores yielded information on
spatial variation across image sets and showed how much
a given perturbation changed emergent patterns.

Machine learning approaches are rapidly being adopted
to facilitate more challenging validation efforts in
models of multicellular systems. In Villoutreix et al.
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[22], the authors created a platform that can handle
heterogeneous datasets, meaning that multiple target
developmental targets (i.e., gene expression, protein
localization, and phosphorylation, and tissue morpho-
genesis) can be defined as state variables assessed in
parallel. Merging state variables in a completion matrix
allowed Drosgphila embryo measurements at distinct
timepoints helped to test mechanistic models. Machine
learning algorithms were used to fill the missing spaces
of the matrix and fully define the multivariate trajec-
tories present within that system. Sparse data matrices
are a critical problem in multicellular model validation.
Data learning techniques can help to address this
problem, improving predictive accuracy. Oyetunde et al.
[23] used data learning to improve the predictive power
of an underdefined mechanistic genome-scale metabolic
model. The large solution space satisfying their physi-
ological constraints did not provide enough insight into
optimal bioproduction conditions, so the authors uti-
lized data augmentation and stacked regression tech-
niques to artificially expand their dataset amount and
variability. This expanded set was used with ensemble
learning techniques to determine the best machine
learning approach and critical factors influencing bio-
production. The utility of machine learning techniques
is not limited to mechanistic models but also can be
incorporated to handle stochasticity. For fitting multi-
cellular patterning outcomes from an ABM of mixed
iPSC populations [18], machine learning algorithms
were employed in image classification efforts and
exploration of the possible parameter solution space.
Particle swarm optimization helped pinpoint optimal
parameter combinations within a defined experimental
design space that produced desired patterns. To match
desired i silico patterns to experimental data, the au-
thors used Tree Spatial Superposition Logic, a quadtree
data structure, to capture detailed local and global
spatial relationships in an image. Quantitative mea-
surements of image—image similarity were accom-
plished by employing a rule-based machine learning
algorithm (RIPPER) to give similarity scores to image
sets, indicating how strongly simulation patterns corre-
spond to experimentally-produced patterns.

Future directions

Simulating and predicting PSC-derived organoids from
initial seeding to maturation and organization is still in
its infancy. We are witnessing a parallel growth in the
sophistication of experimental tools and perturbations
that complement the increasingly complex modeling
platforms of multicellular systems. Future integration
of multiple modes of communication (e.g., biome-
chanical, biochemical, bioelectrical) are on the horizon
and will inform protocols for an organoid generation
that mimic normal physiology or engineered systems
with synthetic capabilities. Considerations of bio-
physical forces that control whole-organoid morphology
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and integration of nutrient transport limitations will
likely be necessary to simulate self-assembly and dif-
ferentiation from a fully pluripotent aggregate to a
mature, functional organoid.
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