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Residential energy consumption has been rising rapidly during the last few decades. Several research efforts

have been made to reduce residential energy consumption, including demand response and smart residential

environments. However, recent research has shown that these approaches may actually cause an increase in

the overall consumption, due to the complex psychological processes that occur when human users interact

with these energy management systems. In this article, using an interdisciplinary approach, we introduce a

perceived-value driven framework for energy management in smart residential environments that considers

how users perceive values of different appliances and how the use of some appliances are contingent on the

use of others. We define a perceived-value user utility used as an Integer Linear Programming (ILP) problem.

We show that the problem is NP-Hard and provide a heuristicmethod called COndensedDependencY (CODY).

We validate our results using synthetic and real datasets, large-scale online experiments, and a real-field

experiment at the Missouri University of Science and Technology Solar Village. Simulation results show

that our approach achieves near optimal performance and significantly outperforms previously proposed

solutions. Results from our online and real-field experiments also show that users largely prefer our solution

compared to a previous approach.
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1 INTRODUCTION

Residential energy consumption constitutes a significant fraction of the total usage. As an exam-
ple, in the U.S. in 2014, residential users consumed 1.4 trillion kilowatt-hours of electricity, which
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amounts to 38% of the net consumption by all sectors including commercial (36%) and industrial
(26%) [2]. Moreover, according to the U.S. Department of Energy, electricity consumption in the
residential sector is expected to increase by 13.5%, by 2040 [1].
Numerous efforts have been made to reduce residential energy consumption. Demand response

has been proposed in the context of power management systems, where the price of electricity
is changed over time to alter user behavior and ultimately reduce the occurrence of high con-
sumption peaks [10]. Although relatively easy to implement, thanks to the diffusion of advanced
metering infrastructure (AMI) [7], the effectiveness of demand response methods is not clear [16,
17, 21], and it can even lead to an increase of energy consumption [16]. Another drawback is
that this strategy treats uniformly across users inattentive to their special needs and psycholog-
ical, behavioral, and ritual aspects. For example, it puts some users at a greater risk than others,
such as low-information users, individuals with medical or cognitive impairments, or those with
overburdened time demands.
A recent alternative to achieve user-side smart energy management is based on exploiting novel

technologies, such as the paradigm of the Internet of Things (IoT) [9, 43, 54]. According to this par-
adigm, smart appliances of our everyday life are equipped with micro-controllers, transceivers,
and suitable protocols to become part of the Internet and will ubiquitously proliferate in homes,
realizing the so-called smart homes. Such smart environments will allow fine-grained energy mon-
itoring and control, thus enabling advanced methods to save energy [12–15]. One basic approach
is to increase user awareness by providing feedback about energy consumption, e.g., Berkeley
Energy Dashboard [38], AlertMe [4], and HeatDial system [23]. However, it has been shown
through experimental studies that in the long term, these approaches provide only limited benefits
[23, 25] and may penalize users with limited technological capabilities or resources. Recently, sev-
eral researchers investigated the use of smart appliances to perform user activity recognition and
prediction and consequently optimizing the energy consumption [8, 12, 32, 35, 49, 51–53].
Although smart environments have the potential to reduce and optimize residential energy con-

sumption, previous approaches have largely neglected the psychological and behavioral factors that
influence the energy consumption in these environments. As an example, the utility perceived by
the user is often based on engineering-defined metrics that are uniform across users and are based
on oversimplified assumptions that ignore the complexity of human behavior. In fact, users can
be highly heterogeneous, and the usage and availability of different appliances may have various,
non-uniform impacts on the users’ psychological well-being. Supported by recent research in the
social behavioral science domain [16, 17, 21, 24], in this article we claim that:

The success of smart residential environments in improving our everyday life,
while achieving desirable goals such as reducing energy consumption, can be
achieved only by interdisciplinary approaches that merge psychological models,
to capture the complexity of human nature, with computationally efficient opti-
mization techniques.

Following our claim, in this article we propose an energy management system for smart resi-
dential environments realized through the IoT paradigm that specifically takes into account psy-
chological dimension of the user. In particular, we define a psychological model that considers five
dimensions of user well-being, as well as dependency between appliances resulting from user rou-
tines, habits, or desires to use some appliances together. We use behavioral science methodologies,
including large-scale online experimental surveys, to which we refer as online experiments in the rest
of the article. We conduct a series of online experiments, with representative sample populations
recruited through Amazon Mechanical Turk [5], to quantify generic perceptions of appliances in
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terms of the above model under different energy shortage contexts (e.g., when operating on a
power generator or shared renewable sources) and to identify sample appliance dependencies.
Given such psychological model, we consider an energy constrained smart environment in which

user has a maximum energy budget that can be consumed by active appliances. This represents
several scenarios, for example, where the user has set a maximum limit on the monthly energy
expenditures or where the smart home belongs to amicro-grid operating in islandingmode.We de-
fine a perceived-value user utility based on the psychological model and formulate an optimization
problem that maximizes such utility given constraints on the energy budget and appliance de-
pendencies. We show that this problem is NP-Hard and propose an algorithm named, COndensed
DependencY (CODY), based on the graph condensation theory.
We tested our approach with synthetic and real graphs representing the appliance dependen-

cies. CODY shows superior performance in both cases, providing performance close to the op-
timum. Additionally, this approach considerably outperforms a recently proposed method that
does not address psychological dimension, referred to as knapsack-based solution [9], as well as a
baseline Greedy approach. We further validate CODY versus the knapsack approach through two
experiments, one online and one in-person experiment at the Missouri University of Science and
Technology Solar Village. The goal of these validations is to compare human perceptions of the
optimization algorithms’ output. Moreover, the in-person experiment enables a personalized solu-
tion tailored for the participant’s own appliances, utility values, and dependencies. Results show
that by including our psychological modeling in the optimization process, users overwhelmingly
prefer our solution.

2 USER PSYCHOLOGICAL MODEL

In this section, we describe the user psychological model on the basis of our perceived-value driven
energy optimization framework.

2.1 Importance of Appliances

The first goal in developing the psychological model is to identify the perceived importance of
electric home appliances (e.g., coffee makers, home security systems, home medical devices, home
electronics, etc.). Previous works synthesize the importance as a single numerical value, for ex-
ample, proportional to the energy consumed by an appliance [41], or proportional to the length
of time an appliance is used [9]. However, such modeling choice necessarily oversimplifies the
complexity of human behavior.
An important construct influencing human behaviors and interactions with the world is the

pursuit or maximization of “well-being.” Philosophers argue that well-being is a state that humans
generally tend toward [19], and arguably most of the purposeful activities humans engage in are in
some sense meant to promote well-being to varying degrees. Griffin argues further that well-being
is less an objective static quantity and more an ongoing process of maximization, with the tools,
objects, and activities that lead to well-being having different values at different times relative to
other tools, objects, and activities [19]. He refers to it as “fulfillment of informed desire,” and as
those desiresmay change, somay the degree ofwell-being they elicit when fulfilled.While research
has certainly investigated the impact of a great many end-user technologies on well-being, these
are generally considered on an individual technology level and within the context of the design
and use of that particular object. Research has not looked directly at something we might consider
a mundane aspect of human life and that is how we perceive the collection of appliances in a home
as contributing to well-being relative to one another. In other words, how are appliances ranked
or prioritize in terms of their importance in contributing to our well-being, especially when access
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to those appliances might be temporarily limited by energy constraints either within or beyond
our control.
In determining how to measuring the contribution of appliances to some notion of “well-being”

it is important to acknowledge that there are two broad aspects of well-being, namely state of mind

and state of the world [19], and thatwithin these two aspect there are further subtypes ofwell-being,
such as physical well-being and psychological well-being. Because of the diverse functionality and
purpose of home appliances, it is possible that users will perceive some appliances as contributing
to one aspect of well-being more than another. Further complicating this matter is that users might
hold some subtypes of well-being as more important than others. To better capture some of these
nuances, rather than measuring well-being as a single question or dimension, we first measure
the contribution of appliances toward five subtypes of well-being that have been discussed in
scholarly literature as unique contributors to overall well-being and were also likely to be easily
understood and contemplated by a broad audience. We then create a weighted composite score
across these multiple dimension to arrive back at a single score for overall well-being for each
appliance. Specifically, for state of mind, we include psychological well-being [40] and moral well-
being [19]; for state of the world, we include physical well-being and economic well-being [20];
and, finally, we include social well-being that intersect both aspects [27]. This is not to imply that
these are the only forms of well-being or that each are uniquely distinct and mutually exclusive to
one state or the other; instead, they are included to create a more nuanced measure that will add
refinement to our utility measurement for overall well-being.
Acknowledging that participants might have slightly different interpretations of the five aspects

of well-being described in the previous paragraph, we also provided a basic definition for each
term. To increase the likelihood that the definitions were accessible to a broad adult population,
we conducted an informal polling1 to assess readability of the definitions. Based on the literature
we collected 25 of short, plain English phrases that had been associated with defining each type
of well-being (5 for each) and subsequently asked college students to rank the phrases in terms of
ease of understanding and readability. The top three phrase choices for each well-being type were
then selected and combined into a single sentence as shown below.
• Physical well-being: The appliance contributes to feelings of being safe from harm, having a
healthy body, and taking care of one’s body.
• Psychological well-being: The appliance contributes to personal happiness, acceptance, and
the pursuit of goals.
• Economic well-being: The appliance helps control financial status and standard of living and
supports financial independence.
•Moral well-being: The appliance helps the user choose right from wrong, exercise good char-
acter, and to do what the user perceives to be the right thing.
• Social well-being: The appliance helps form relationships with others, contributes to support-
ing and being supported by others, and contributes to a sense of belonging.
To mathematically represent this information, let us consider a set of n appliancesA for a given

user u. We denote by ai an appliance in A, for i = 1, . . . ,n. The importance of ai for u is defined
in terms of the following five dimensions of user well-being.

According to our model, appliances are ranked with respect to each dimension of well-being.
Specifically, for an appliance ai , we define the value di

k
as its ranking in the kth dimension,

1Informal polling was conducted on a college campus as part of a course requirement and included approximately 200

students. The IRB Chair was consulted, and this task was not reviewed as it was deemed pilot research aimed at refining

study materials for future research and not at formulating new knowledge or generalizable findings.
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Fig. 1. Example of dependency graph between electric appliances.

k = 1, . . . , 5. Dimensions are also weighted to identify the most relevant well-being factors for
that user. The weights of the kth dimension is defined by rk ∈ [1, 100].

We consider five different energy availability contexts to identify potential changes in the per-
ceived importance of appliances. Specifically, the contexts are a standard condition with no men-
tion of energy conservation and four contexts in which they were trying to limit their energy use,
namely use of a power generator, reduction of energy bill, concerns with how human-made en-
ergy is impacting the environment, and where the smart house is one among several other houses
sharing energy from a local solar or wind powered generator.
We conducted a large-scale online experiment, involving 1,500 subjects through the online par-

ticipant recruitment service provided by Amazon Mechanical Turk to quantify the perception of
several appliances in terms of the above model. Results are described in Section 6.1.

2.2 Dependency between Appliances

The contribution of an appliance to the psychological well-being of a user may not be fully inde-
pendent from other appliances. Specifically, we identify dependency as described in the following.
We make use of an example of a typical home office setting with appliances such as a computer,
a monitor, an internet router, a wireless printer, and a tablet. Figure 1 shows the appliances in our
example.
An appliance may need other appliances to work or to be able to provide any benefit for the user.

In our example, the router and the tablet can work independently. Conversely, the computer and
the monitor are mutually dependent, while the wireless printer needs both the computer and the
router to work. Moreover, the user may have routines, habits, or desires to use some appliances
together. Consider our example where the user accesses the Internet through the tablet and the
computer. Even though the tablet and computer can independently contribute partially to user
well-being, if the wireless router is not available, then their contribution may be significantly
impaired. In this case, we say that as a consequence of these user factors both the computer and
the tablet have a dependency with the router.
We formalize the concept of dependency through a directed graph. In particular, given the set
A of appliances for a user u, we define the dependency graph G = (A,E). Intuitively, there is an
edge (ai ,aj ) ∈ E if appliance ai has dependency with aj .

Due to the transitive nature of dependency, if an appliance ai depends on an appliance aj , which
in turn depends on another appliance al , then ai also needs al to function, although indirectly. In
our example, the printer needs the computer, which in turn needs the screen. As a result, the
printer can provide full utility to the user only if both the computer and the monitor are available.
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2.3 Perceived-Value User Utility

We now define a Perceived-Value user utility that considers the model for appliance importance
and dependency. Specifically, given a set of appliances S ⊆ A, we want to quantify user perceived
utility USB (S ) taking into account the five psychological dimensions, as well as the dependency
between the appliances in S .
In this article, we assume that the utility USB (S ) is a scalar, and therefore for each appliance ai

we define an individual appliance utility ui that combines the ranking in each dimension of well-
being for ai , as well as the weight of the dimensions for that user. The formula adopted is given
by

ui =
5∑

k=1

e1−d
i
k

rk∑5
j=1 r j

, (1)

where, dki represents the ranking of the appliance ai in the kth dimension, k = 1, . . . , 5. Also, rk
denotes the weights of the kth well-being dimension. Research related to ranking data suggests
that transformation of ranked values is often needed [28, 45]. In fact, the distance between higher
ranked items may be greater than lower rank items, meaning that in a ranked set of 21 items,
while a difference between items ranked 1st and 2nd may be close to one, the distance between
items ranked say 20th and 21st may be closer to zero. Because we have a large number of ranked
items, we applied a transformation using a negative exponential function to minimize the distance
between items ranked highest (i.e., closer to 21).
It is worth mentioning that we investigated the sensitivity of the results to the choice of the

utility function. To this aim, we examined our proposed algorithm with different types of utility
functions, namely linear, quadratic, and exponential. The results were exactly the same for all
functions. It shows that the outcomes are independent of the utility absolute values while they
merely depend on the ranking of the appliances from user’s point of view.
If the applianceai is in the set S , then the utilityui represents themaximum utility it can provide.

However, this occurs only if all its dependency are satisfied, i.e., if all the appliances from which ai
depends inG are also in S . To model this aspect, we introduce a variable zi ∈ {0, 1}, which is equal
to 1 only if all dependencies of ai are satisfied in S . The calculation of zi is described in Section 3.

Summarizing the above discussion, given a set S ⊆ A of appliances, the Perceived-Value User
Utility USB (S ) is defined as follows:

USB (S ) =
∑
ai ∈S

uizi . (2)

It is worth noting that the user utility may vary over time. This can easily be handled by our
model by introducing time slots (e.g., an hour). However, for ease of presentation, we omit the
time dimension in this article.

3 PROBLEM FORMULATION

In this article, we consider an energy constrained scenario. Examples of this scenario include a user
who wants to reduce his or her energy bill, a smart home during a blackout operating with energy
from a local generator, and a smart house that is part of a micro-grid working in islanding mode,
i.e., running only on batteries or renewable sources.
We formalize the energy constraint with a maximum power allowance B (measured in watts)

that cannot be exceeded. Each appliance ai has a maximum power rating ei that represents the
energy consumption of that appliance when in use. Note that the assumption of such fixed con-
sumption is realistic, as the energy consumption of an appliance tends to plateau around a constant
value over time, as shown by several load disaggregation papers [30, 55].
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Our problem consists of finding the best set of appliances S∗ that provides the maximum
perceived-value user utility, given the energy budget B and the appliances’ dependencies. We for-
mulate the problem as a Mixed Integer Linear Program in the following:

maximize
xi

n∑
i=1

uizi , (3)

subject to : zi ≤ xi , (4)

zi ≤
{∑n

j=1
zjyi j
Yi

if Yi > 0,

1 otherwise,
(5)

n∑
i=1

xiei ≤ B, (6)

xi ∈ {0, 1}, zi ∈ {0, 1}. (7)

The problem takes as input the dependency in the form of binary constants yi j . The constant
yi j equals 1 if appliance ai has dependency with appliance aj . We define Yi as the total number of
dependencies of ai , that is, Yi =

∑n
j=1 yi j .

The objective function is the Perceived-Value User Utility discussed in Section 2.3. The binary
decision variables of the problem are xi ∈ {0, 1}, for i = 1, . . . ,n, where xi equals 1 if it is selected,
and 0 otherwise. We recall that zi is equal to 1 if appliance ai has all the dependencies satisfied. To
ensure this, the constraint in Equation (4) forces ai to provide utility only if all the dependencies
are selected. Besides, the constraint in Equation (6) ensures that the power budget is not violated,
while the constraint in Equation (7) defines the variables’ domains.
The following theorem shows that our problem is NP-Hard, motivating the need for an efficient

heuristic.

Theorem 3.1. The optimization problem is NP-Hard.

Proof. We provide a reduction from the NP-Complete 0-1 knapsack problem [11]. Let us con-
sider a general instance of knapsack: a set of elements A, each element ai ∈ A has a value vi ,
a cost ci , and a budget B. The goal is to find a set of elements S∗ ⊆ A such that the elements in
S∗ provide maximum value and incur a cost within the budget B. Given the general knapsack in-
stance, we can create an instance of our problem as follows. We create an appliance ai for each
element in A. We set the utility as ui = vi and the power consumption ei = ci .

We consider dependency. Therefore, since there are no dependencies Yi = 0, the constraint in
(5) reduces to zi ≤ 1, and the only active constraint on zi is Equation (4), zi ≤ xi . As a result, the
utilityui is provided entirely if and only if the appliance ai is selected (xi = 1), independently from
other appliances.
In this setting, since dependencies are not present, our problem looks for the best set of appli-

ances S∗ such that the sum of their utility is maximum, and their cumulative power consumption
is within the budget B. As a result, the elements of the knapsack corresponding to the appliances
in S∗, also represent the optimal solution to the knapsack problem. Therefore, our problem is at
least as difficult as knapsack, and it is therefore NP-Hard. �

Note that, in our current model, the user cannot override the system decisions, and thus it is
extremely important to optimize the selection of appliances according to the user needs. As a
consequence, the energy budget constraint guarantees that such budget is not exceeded. In our
future work, we will consider the possibility of overriding the system’s decisions, thus potentially
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exceeding the energy budget. Furthermore, we would like to point out that in a real context, where
a specific smart home and user is considered, the problem described in this section, including the
user psychological model, the dependencies, and the set of appliances should be tailored to that
specific home and user. In this article, we used large-scale surveys to show that our psychological
model is meaningful; that is, there exist statistically significant difference in how users perceive
different appliances. We also included a real-field experiment at the Missouri S&T Solar Village
to evaluate our approach and to show how it works in practice. Finally, the problem discussed
in this section may arise in different scenarios, which are mostly characterized by the entity that
sets the energy budget. As an example, in our previous work we consider the budget be set by
the load serving entity (i.e., the utility company), to prevent cascading failures in smart grids [9].
Nevertheless, such budget could also be set by the user to reduce his/her energy bills.
An average home generally contains several tens of appliances. Nevertheless, our method can

be also applied to community complexes or office buildings, where the number of appliances is
much higher than a single home (note that lighting in different rooms should be counted as differ-
ent appliances). In the following, we propose a polynomial heuristic to find a suboptimal solution
efficiently. Depending on the specific context and number of appliances, we may use the ILP for-
mulation or the heuristic.

4 THE CODY ALGORITHM

In this section, we propose the CODY algorithm to solve the optimization problem described in
Section 3. The algorithm is based on the theory of graph condensation [22, 42, 46]. Specifically,
given the dependency graph, CODY performs graphs operations to obtain an equivalent condensed
graph. The selection of appliances is performed on the reduced graph, making it more effective
and efficient. In the following, we first provide some background on graph condensation and then
introduce the algorithm.

4.1 Graph Condensations

As mentioned in Subsection 2.2, we model dependencies between appliances through a directed
graphG = (A,E). In this graph, nodes are appliances and there is an edge (ai ,aj ) if ai needs aj to
work or the user has a strong preference towards using them together. According to our perceived-
value user utility functionUSB (), given a set of appliances S ⊆ A, an appliance provides utility only
if all its dependencies are satisfied by the appliances in S . As a result, for example, a cycle in this
graph identifies a set of appliances that should be selected all together; otherwise, their individual
utility would be zero. Therefore, we can merge such appliances in one single super-appliance, i.e.,
one single node in the graph representing all of them. This basic idea is developed in the following
by using the concept of Strongly Connected Component and is at the basis of the graph reduction.

Definition 4.1 (Strongly Connected Component (SCC) [11]). Given a directed graph G = (V ,E), a
strongly connected component (SCC) is a maximal subgraph Ĝ = (V̂ , Ê) such that for eachu,v ∈ V̂
there exists a path from u to v , and from v to u, in Ĝ. In other words, any two vertices in an SCC
are mutually reachable.

It is well known that any directed graph can be decomposed into a set of disjoint SCCs Ĝ1, . . . , Ĝk

[22, 46]. This set can be computed efficiently by using Tarjan’s algorithm, which is based on depth-
first search (DFS) traversal of the graph [46].
In the context of this article, an SCC in the dependency graph G identifies a set of appliances

that mutually rely on each other. As a result, selecting any subset of them does not increase the
perceived-value user utility. For this reason, we reduce the dependency graph by condensation
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into a single super appliance node si all appliances belonging to the SCC Ĝi of G, that is:

si = {aj : aj belongs to the ith SCC Ĝi of the graph G = (A,E)}.

By using such super appliances, we can shrink the dependency graph by generating the conden-
sation graph as follows.

Definition 4.2 (Condensation graph [42]). The Condensation of a directed graph G = (A,E) is a
Directed Acyclic Graph (DAG) G ′ = (A′,E ′), where:

• A′ = {si : si is a SCC of the G};
• E ′ = {(si , sj ) : ∃(u,v ) ∈ E such that u ∈ si ,v ∈ sj }.

In fact, vertices in Condensation graph are super appliances. Note that a super appliance, si , has
dependency to sj if and only if si contains at least one appliance that is dependent to any appliance
in sj . However, there is no appliance in sj that depends on an appliance in si , since both si and sj
are maximal by definition of SCC. It is possible to prove that the condensation graphG ′ is unique.

Theorem 4.3. Given a directed graph, G = (A,E), the reduced version of this graph obtained by

taking condensation is unique.

Proof. The SCCs of a directed graph are unique [46]. Therefore the condensation graph is
uniquely defined following the steps in Definition 4.2. �

The CODY algorithm performs the selection of appliances on the condensed graphG ′, therefore
working at the granularity of the super appliances. Potentially, this may reduce the solution space
and result in sub-optimal solutions, since the algorithm looses the ability of selecting appliances
individually. In the following theorem, we prove that the optimal set of appliances that maximizes
the utility function in the original graphG corresponds to the same optimal solution calculated in
the condensed graph G ′ at the granularity of super appliances.

Theorem 4.4. The set of appliances S∗, optimal solution of the optimization problem in Equation (3)

calculated on the dependency graph G = (A,E) is also the optimal solution of the same problem

calculated on the condensed graph G ′ = (A′,E ′).

Proof. According to the optimization problem in Equation (3), an appliance ai can contribute
with its utility to the solution only if all its dependencies are satisfied, i.e., if zi = 1. This occurs
only if, in turn, also the dependencies of ai ’s dependencies are satisfied, and so on, recursively. Let
Y : n × n be the matrix containing the dependency information, i.e., the elements yi, j defined for

the optimization problem. We can calculate the transitive closure ofY asYn =

n︷�������������︸︸�������������︷
Y × Y × · · · × Y . The

matrix Yn contains 1 in position i, j only if it is possible to reach aj from ai in G, i.e., ai depends
on aj , either directly or indirectly.

Now, given a solution S ⊆ A, an appliance ai ∈ S can contribute to the utilityUSB (S ) calculated
on the dependency graph G only if all the appliances in Di = {aj | Yn[i, j] = 1} are in S . Let us
now consider the condensation graph G ′ and the super appliance sk containing ai . Clearly, Di

contains all the appliances in sk , plus some additional dependencies that are not part of the strongly
connected component sk . Nevertheless, such additional dependencies are kept in the condensation
graphG ′ as edges between super appliances. As a result, the value of the utilityUSB (S ) is the same
when calculated for the original dependency graph G and for the condensed graph G ′. Since this
applies to any set S ⊆ A, it is also true for the optimal solution to the problem. �
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ALGORITHM 1: Condensed Dependency (CODY)

Input: Dependency graph, Sets of appliances’ utility, ui , and power consumption, ei , for each ai ∈ A, budget B .

Output: Set of selected appliances SC .

Generate the condensed graph G′ = (A′, E′);
SC = ∅;
R = A′;
while R � ∅; do

Let A′0 be the set of nodes in A with zero outdegree;

s∗i = argmax
si ∈A′0

USB (SC∪{si })−USB (SC )
C ({si }) ;

if C
(
SC ∪ {s∗i }

)
≤ B then

SC = SC ∪ {s∗i };
Remove s∗i from the reduced graph;

R = R\
{
{s∗i }

}
;

end

else

R = R\{s∗i };
end

end

Return SC

4.2 Appliance Selection

CODY selects the appliances iteratively, given the condensed graphG ′. This phase of the algorithm
exploits the fact that the graphG ′ is a DAG, and in a DAG there is always at least a node with zero
outdegree [11]. These super nodes2 have no dependencies, and thus they can directly contribute to
the utility. Let A′0 be the set of super appliances with zero outdegree at the current iteration. The
algorithm selects the super node s∗ that maximizes the increase in the objective function divided
by the cost of adding all appliances in s∗. These appliances are added to the solution SC only if the
budget is not exceeded. Subsequently, all appliances in s∗ are removed fromG ′. As a result, at the
next iteration there will be new super nodes with zero outdegree inA′0. The algorithm terminates
as soon as there are no more nodes that can be selected. The pseudo code for the CODY algorithm
is provided in Algorithm 1.

4.3 Algorithm Complexity

The complexity of CODY is dominated by two consecutive steps, first calculating the condensed
graph and then the selection of appliances. We recall that |A| and |E | represent the number of
appliances and the number of edges in the original dependency graph, respectively. To obtain the
condensed graph G ′, we first need to find all the strongly connected components in the original
graphG. This can be done using the Tarjan algorithm, with complexity ofO ( |A| + |E |) [46]. Subse-
quently, we need to merge all nodes of a SCC into a single super node. The complexity of this step
depends on the data structure used to represent the dependency graph. As an example, with an
adjacency matrix it can be done in O ( |A|2). The while loop for selecting appliances removes one
appliance from the set R at each iteration. Therefore, the loop executes at most O ( |A|) iterations.
At each iteration, finding the best appliance requires to calculate the functionUSB () for each appli-
ance inA′0. Given a set SC ⊆ A′, calculatingUSB (SC ) requires to verify for every super appliance
in SC if all the dependency are satisfied within SC . By keeping a simple data structure that stores
the direct and indirect dependencies of every appliance, such as the transitive closure Yn described

2Super node and super appliance are used interchangeably in this article.
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in Theorem 4.4, this can be done in O ( |SC |2). Therefore, finding the best appliance s∗i requires

overall O ( |A|3), since |SC | ≤ |A′0 | ≤ |A|. The overall complexity of the while loop is then O (A4).
As a result, the complexity of the CODY algorithm is O ( |A| + |E | + |A|2 + |A|4) = O ( |A|4).

5 COMPARISON ALGORITHMS

In this section, we describe two approaches that we use for comparison with the CODY algorithm.
The first approach has been recently proposed in Reference [9], while the second one is a baseline
Greedy approach, which we introduce here, that does not exploit graph reductions.

5.1 A Recently Proposed Knapsack-based Solution

Similarly to the problem studied in this article, the authors of Reference [9] considered the problem
of maximizing user satisfaction in an energy constrained scenario. However, this work has a sim-
plified model to define such satisfaction, based on the concept of importance factor of appliances.
Specifically, the authors define λi ∈ [0, 1] as the fraction of time that a user uses the appliance ai .
The importance factor γi of appliance i is defined as:

γi =
λi∑n

h=1 λh
. (8)

Therefore,γi represents the relative usage time of appliance ai with respect to the other appliances.
The approach assumes that the importance factor γi measures the contribution of appliance ai to
the utility of the user. Therefore, given a set of appliances S , the utility that results from using such
appliances

∑
ai ∈S γi .

Given the importance factors and an energy budget B, the approach solves the knapsack-based
problem in Equation (9), where the xi and ei have the same meaning as the formulation of our
problem in Section 3,

maximize
xi

n∑
i=1

γixi , (9)

subject to

n∑
i=1

xiei ≤ B. (10)

This approach has two main limitations: It largely oversimplify the concept of user utility, and it
overlooks the existence of dependencies between appliances. For these reasons, it achieves lower
performance as described in Section 6. Note that even if solving the problem in Equation (9) is
NP-Hard, we solved it optimally in the experiments for fair comparison.

5.2 Greedy Approach

In this subsection, we describe a baseline Greedy algorithm that we use for comparisonwith CODY.
The algorithm follows the standard heuristic approach to solve of the knapsack problem [11].
Nevertheless, we use the function USB (), defined in Equation (2), to calculate the utility of the
appliances to take into account the perceived value factors as well as the dependencies.
The algorithm works in iterations and starts from an initial empty solution SG = ∅. At each iter-

ation it chooses an appliance, among those not already in SG , which maximizes the ratio between
the perceived-value user utility over the appliance’s power rating. In other words, it chooses the

appliance ai ∈ A \ SG that maximizes
USB (SG∪{ai })

ei
. Such appliance is chosen if the energy budget

is not exceeded by adding it to SG . The pseudo-code of the algorithm is shown in Algorithm 2.
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ALGORITHM 2: Greedy Approach

Input: Dependency graph, Sets of appliances’ utility, ui , and power consumption, ei , for each ai ∈ A, budget B .

Output: Set of selected appliances SG .

SG = ∅;
R = A;

while R � ∅; do
a∗i = argmax

ai ∈A\SG

USB (SG∪{ai })
ei

;

if C(SG ∪ {a∗i }) ≤ B then

SG = SG ∪ {a∗i };
end

R = R\{a∗i };
end

Return SG

6 EXPERIMENTAL RESULTS

In this section, we describe the results of our perceived-value driven framework for energy man-
agement. We first discuss the large-scale online experiment used to quantify our perceived-value
model presented in Section 2. Then, we compare the performance of the CODY algorithm with
the approaches described in Section 5 as well as with the optimal solution, using synthetic and
realistic dependency graphs. Furthermore, we use online surveys to validate the benefits of our
approach as perceived by human subjects. Finally, we evaluate the performance of the proposed
algorithm through an in-person experiment realized at the Missouri University of Science & Tech-
nology Solar Village. In this in-person experiment, a personalized list of appliances, dependency
graph, and the utility values are derived for each considered smart home and user. All human sub-
jects experiments described in this section were approved through Missouri University of Science
& Technology’s Institutional Review Board (IRB). The codes and data regarding the experiments
in this article are available at https://github.com/khamesi/Perceived-Value-User-Utility.git.

6.1 Large-scale Online Experiment

To investigate user perceptions and behaviors as they relate to the use of electric appliances, we
conducted a large-scale online experiment with the goal of investigating whether users generally
find certain appliances more important than others and whether these perceptions change under
different energy contexts.

6.1.1 Experimental Design. Participants first read an informed consent letter advising them on
their rights, expectations, and compensations. Participants were then randomly assigned to one
of the energy availability contexts described in Section 2. They were presented with a description
of the energy scenario and a single definition of one of the five aspects of well-being. They were
instructed to inspect a list of appliances on the left side of the screen and to indicate their perceived
value and importance of these appliances in achieving those aspects of well-being. They made
this indication by dragging and dropping items from the appliance list into an empty box on the
right in ranked order of how important each was to that particular aspect of well-being described.
Participants were encouraged to rank at least five items (with a pop-up message appearing if they
ranked fewer than five) but were told they could rank as many appliances as they liked. This
was repeated for the remaining four aspects of well-being (presented in random order) while the
energy context always remained the same for the participant. Critically, we also asked participants
to indicate how important each of the five aspects of well-being were to their overall well-being
so that their responses could be combined in Equation (1).
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Note that in developing the survey materials for this large-scale online experiment in which
participants would indicate the perceived value of home electrical appliances in contributing to
well-being, we recognized it was not possible to predict precisely which appliances each individual
participant would have in their current home; at the same time, providing an exhaustive list of all
possible appliances would be cumbersome for participants to go through. As such, a generic subset
of appliances were presented. To help determine which appliances to include in the generic subset,
we conducted an informal poll of college students3 in which they listed all of the appliances they
would expect to see in various rooms of a typical home in the U.S. (e.g., kitchen, living room,
bedroom, and so on). Of over 200 separate responses, 99 unique electrical appliances were listed
by respondents. A subset of 21 appliances were selected, accounting to 98.7% of total variance in
responses. The subset was double-checked against industry and market data on home appliance
retailers to confirm that the highest selling household appliances in the U.S. were included in the
list [33].
Finally, participants were asked a set of manipulation check questions to ensure that they paid

attention during the study (participants who received 50% or less on the manipulation check were
not included in the final analysis).

6.1.2 Participants. Participants were recruited using Amazon Mechanical Turk [5]. A power
analysis using G*power [18], assuming a moderate effect size and alpha error probability of .05
indicated a sample size of approximately 1,400. Nearly 1,600 participants responded to the survey
request; after participants who scored less than 50% on the attention check questions were elimi-
nated from the dataset, our total sample size was 1,457. The mean age was 35.74, with a standard
deviation of 11.3. and 52.3% of the subjects were male, while 47.7% were female. The ethnicity dis-
tribution was as follows: 75.4%White, 13.5% Asian, 8.5% African American, 1.4% American Indian
or Alaskan, and 1.1% Other. The education distribution was: 10% High School or Less, 34% Some
College, 56% Bachelor’s or Higher. The employment status distribution was 65% paid employees,
17% self-employed, 6% unemployed looking, 8% unemployed not looking, and 4% students. Finally,
the income distribution was 29% under $29,999, 60% between $30,000 and $99,999, and 11% over
$100,000.

6.1.3 Summary of Results. An aggregated overall well-being score was calculated for each user
appliance as described in Section 2.3. We then conducted a series of Analysis of Variance (ANOVA)
tests to identify differences in how appliances were perceived as contributing to overall well-being
across our five energy availability contexts. We were most interested in determining whether ap-
pliances in the standard energy availability context were ranked systematically (as opposed to
randomly), and if so, whether there were departures from that rank order in any of the other four
energy availability conditions.We observed a statistical significant difference in terms ofmean util-
ity value for the higher ranked appliances in the standard condition (see Table 1), and we found the
rank order of these appliances (for example, Computer, Cell phone, Television, Refrigerator, and
Air Conditioner) remained generally the same across the different energy contexts. This suggests
that perceptions about these appliances remains stable even in the times of energy shortage. Fur-
ther analysis of these behavioral findings and their psychological implications are forthcoming but
are beyond the scope of this article. Here, we do not attempt to generalize about particular rank
order changes across the conditions or about the objective utility values of each appliance. Instead,
we demonstrate the value participants perceive in appliances, in terms of how they contribute to
overall well-being, is not random, and instead, participants perceived some appliances as being
significantly more valuable than others. We were able to assign a generic relative utility value for

3Described in footnote 1.
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Table 1. Summary of Survey Results for Highest-ranked Appliances

ANOVA

Appliance Rank USB ()
F

p
Effect

(4,1452) size (η2p )

Computer 1 4.260 3.003 .018 .008
Phone/CellPhone 2 4.260 3.778 .005 .010
Television 3 2.138 5.390 .000 .015
Refrigerator 4 2.060 4.230 .002 .012
Air/Conditioner 5 1.618 2.646 .032 .007

each appliance that quantifies users’ overall perceptions about these appliances in relation to each
other across multiple dimensions of well-being and energy contexts.

6.2 User Utility Maximization

We now study the performance of CODY using both synthetic and realistic appliance dependency
graphs. To this purpose, we compare through simulations the performance of CODY with the
approaches described in Section 5, as well as to the optimal solution of the optimization problem in
Section 3, denoted by OPT in the figures. Then, we conducted an online experiment to compare the
perception of the solutions found by CODY and the knapsack approach across different contexts.

6.2.1 Synthetic Dependency Graphs. We use synthetic graphs to investigate the performance
of the considered approaches under different dependency graphs structures, e.g., number of nodes
and edge density. To this purpose, we adopt the Erdős–Rényi (ER) model [34] and the Barabási-
Albert (BA) model [3]. These models generate graphs with completely different characteristics.
Specifically, ER generates a graph with a binomial degree distribution, while BA returns a scale-
free graph with power-law degree distribution. To generate the dependency graph based on the ER
model, we first create a graph with the number of nodes equal to the number of desired appliances,
denoted byn. Hence, for each ordered pair of nodes (u,v ), we use the edge probability to determine
if u depends on v and create an edge in the graph accordingly. Differently, in the BA model, we
start with an initial empty graphwithm0 = 
n2 � nodes. The rest of the nodes are added to the graph
one at a time. Each new node is connected tom existing nodes with a probability proportional to
their current degree. The edge probability value in the ER model can vary between 0 and 1, while
the value of m in the BA model can vary between 0 and � n2 
. An increase of these parameters
results in an increased density of the dependency graph. The appliances’ individual utility is picked
at random in the interval [10, 100]. Note that since in the synthetic dependency graphs nodes
do not correspond to actual real appliances, we use the same utility value for appliances for all
approaches, including the knapsack-based approach proposed in Reference [9]. In the experiments
with realistic dependency graphs detailed in Subsection 6.2.2, we instead use the utility values
derived by our perceived-value driven models. Finally, the power rating values for each appliances
are chosen randomly in an interval [20, 3000]. Note that this represents a realistic interval for
power ratings according to the experiments in Reference [39].

Figures 2 and 3 illustrate the results under different values of available energy budget for ER and
BA model, respectively. For the ER graphs, we use 25 appliances and an edge probability of 0.1,
while for the BA model, we adopt 30 appliances andm = 5. As observed, our proposed algorithm,
CODY, achieves a utility close to the optimal, OPT, under all budget settings. All algorithms provide
similar user utility in case of very low or very high energy budgets. This happens because when the
budget is low, very few appliances can be selected, while when the budget is high, all appliances
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Fig. 2. ER model: Num. of appliances = 25, Edge Probability = 0.1.

Fig. 3. BA model: Num. of appliances = 30,m = 5.

Fig. 4. ER model: Edge Probability = 0.1, Budget = 35000.

can be selected, regardless of the selection algorithm. The knapsack approach does not consider
appliance dependencies; as a result, even though it optimally solves an NP-Hard problem, the lack
of dependency consideration results in a low user utility. However, the Greedy takes into account
the dependencies in the calculation of the objective function; however, by neglecting the fact that
all appliances belonging to one super appliance should be picked together to contribute to the user
utility, Greedy results in a poor performance.
Figures 4 and 5 show the results by increasing the number of available appliances. Here, we set

the budget to 35000 and the edge probability to 0.1 for ER model and budget of 30000 andm equal
to 5 for the BA model. Similarly to the previous scenario, all the approaches perform similarly
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Fig. 5. BA model:m = 5, Budget = 30000.

Fig. 6. ER model: Num. of appliances = 25, Budget = 35000.

Fig. 7. BA model: Num. of appliances = 30, Budget = 30000.

when the number of appliances is very low or too high with respect to the budget. However,
as the number of appliances increases, CODY demonstrates its superiority compared to the other
approaches. Specifically, CODY achieves near optimal utility under the ERmodel, while it is within
16% of the optimal value under the BA model. This is due to the relatively reduced number of
strongly connected components that occur under the BA model with respect to the ER model for
a given number of appliances in the graph.
Figures 6 and 7 illustrate user utility under different edge densities in synthetic dependency

graphs. The edge density is varied by increasing the probabilityp in the ERmodel and by increasing
m in the BA model. Note that in the case of edge density equal to zero, there is no dependency,
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and therefore the problem reduces to a standard knapsack problem. Hence, the knapsack approach
achieves optimal solution in such cases. Nevertheless, once the edge density increases, knapsack
performance drastically degrades. It is worth mentioning that in a very dense dependency graph,
each appliance depends on most of the others, making the budget insufficient to pick all of them
and thus it provides a low utility. Therefore, increasing the edge density degrades the performance
of all the approaches in general. Hence, for a similar reason as before, the CODY approach provides
superior performance compared to the other algorithms and converges to the optimal solution as
the edge density grows. As a matter of fact, Figure 7 clearly highlights the superiority of the CODY
algorithm in relatively dense dependency graphs.
To summarize, the simulations results show that the CODY algorithm attains the highest user

utility close to the optimal value (OPT), achieved by solving the optimization problem in Section 3.
Such notable results are obtained due to the fact that the CODY approach considers dependencies
between appliances and makes decision in a way that all appliances in the solution contribute to
the final utility. Additionally, it gives preference to appliances that provide high utility compared
to their power rating requirements.

6.2.2 Real Dependency Graphs. To validate our approach in a more realistic setting, we de-
signed a survey to identify a realistic dependency graph that better reflects actual home appliance
dependencies. It may be tempting to derive a set of “real-world” dependencies intuitively, without
asking actual users. For example, the utility or value of a WiFi router is most likely dependent on
the availability of the device that needs internet connectivity such as a computer. However, some
dependencies will undoubtedly be highly specific to individual users and other dependencies may
be less black and white. For example, one users may perceive a clothes washer to be useless if
the hot water heater is not also available, while another user, who only does cold-water washes,
may not share this perception. We examine these types of personalized dependencies in our final
experiment, but as an interim step to validate our general approach in handling dependencies in-
formation, we conducted an online survey to gather a variety of opinions about critical or strongly
preferred dependencies for a subset of 21 appliances.

Experimental design. Participants first read an informed consent letter advising of their rights,
expectations, and compensations. Participants were then presented with a randomly assigned ap-
pliance from the predefined list set and asked to consider whether they would normally use that
appliance in concert with other appliances. Responses were captured using a drag-and-drop for-
mat with the complete list of appliances on the left side of the screen (minus the randomly assigned
appliance) and two empty boxes on the right side of the screen. Participants were asked to con-
sider whether they felt any items from the left were critical or strongly preferred to be used at
the same time as the assigned appliance. Participants were provided definitions of these two terms
where a critical appliances was characterized as one that, without such the assigned appliance
“would not work as intended, or would be useless to you,” and a strongly preferred appliances
was characterized as one that, without such the assigned appliance “would be less enjoyable, less
useful, or otherwise unsatisfying.” If any item(s) from the list on the left was perceived as one of
these two, then participants were asked to drag that item into either the box labelled “critical” or
the box labelled “strongly preferred.” Participants could drag and drop as many appliances as they
liked. This was repeated for an additional four randomly assigned appliances for a total of five
appliances per participant.

Participants. Participantswho had previously taken part in experiment 6.1.1were invited through
Amazon Mechanical Turk to complete this survey. The survey was opened up to the first 100
respondents. Because the task was somewhat repetitive and arduous, we only asked participants
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Fig. 8. Dependency graph based on real data. The super appliances are indicated by dash lines.

to consider five randomly assigned appliances out of the set of 21. This sample size was chosen
to ensure that each appliance was considered by at least 10 participants. No participants were
eliminated from the dataset. The mean age was 38.78, 40% of the subjects were female, and the
ethnicity distribution was 89% white, 14% Black or African American, and 2% Asian; income and
education demographics were not collected for this survey.

Summary of Results. We aggregated the results and generated a dependency between two ap-
pliances using a threshold of 15%, defining the minimum percentage of users that identified such
dependency as critical or strongly preferred. This results in a dependency graphwith 21 appliances
and 26 edges, as depicted in Figure 8. The figure also shows the strongly connected components
identified by our algorithm. This clearly refers to the activity of washing and drying clothes using
warm water. We tried different settings of the thresholds and obtained similar results. For OPT,
CODY, and Greedy, we adopted the utility values from the first online experiment described in
Section 6.1. Conversely, for knapsack, we used the length of time an appliance is used on aver-
age to determine its utility [29, 48], as assumed by this approach [9]. Finally, we use realistic data
for power consumption from the datasets of Home Energy Saver by Lawrence Berkeley National
Laboratory and Tracebase [29, 39].
Figure 9(a) and (b) presents the performance comparison under different budget scenarios. In

Figure 9(a), we envision a home running on a generator during a blackout and therefore with
very limited energy availability. As illustrated, similarly to synthetic graphs, the CODY algorithm
outperforms other approaches also under real dependency graphs and utility values. Compared
to the knapsack approach, which does not consider perceived-value, the user utility achieved by
CODY is significantly higher. This shows the importance of considering our perceived-value to
quantify the utility rather than the amount of time an appliance is used, as well as the dependencies
between appliances.
In addition, Figure 9(b) presents the performance of different algorithms for higher budget

regime. This scenario may refer to a smart home running on renewable energy stored in batteries.
Also in this case, CODY shows superiority over other algorithms. However, in this case, knapsack
is less penalized as the budget allows to pick more appliances and therefore achieves higher utility.
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Fig. 9. Performance comparison of different algorithms under different budget scenarios.

6.2.3 User Perception—Online Experiment. Using the generic appliance utility values and de-
pendencies derived previously, we conducted a second online experiment with a new set of partic-
ipants to investigate broad user perceptions of the solutions provided by CODY relative to those
provided by knapsack. This approach not only informs perceived performance of CODY but also
aids in understanding whether the generic utility values and dependencies are generalizable to
some degree, which in turn, informs whether default settings for such a system would be mean-
ingful in future scenarios when customized utility values are not immediately available. Fully per-
sonalized appliance lists, utility values, and dependencies are used in our third and final experiment
described in Section 6.2.4.
Experimental design. Participants first read an informed consent letter advising of their rights,

expectations, and compensations. Participants were randomly assigned to an experimental condi-
tion in which they read one of three possible scenario’s manipulating the Duration of the power
shortage as either 1 hour, 4 hours, or 12 hours. The following is an example of the experimental
condition:

Imagine you are at home, early in the morning on a mild day when a power outage
in your area occurs. This shortage is expected to last for about (Duration). How-
ever, rather than having no power in the house at all, the home you are living in
is equipped with a smart energy management system and smart appliances that
allow the power company to supply power to a few specific appliances.

Participants were then advised they would be presented with sets of appliances to review and
that they should indicate which of the two sets they would most prefer if they were the only ap-
pliances that could be powered for during the next hour (or 4 hours or 12 hours). Nine sets of
appliances were derived using either the CODY or knapsack. For CODY, we used the real depen-
dency graphs discussed in Section 6.2.2.
These appliance sets were rendered to the participants in both text form and as icons (see

Figure 10). Two sets were shown at a time, a CODY solution and a knapsack for a given bud-
get amount, and only one budget was shown per page. To make the comparison between the two
as simple as possible, the appliances in each set were in the same order with new or unique ap-
pliances always at the end of the set. After indicating their preferred appliance sets, participants
answered three manipulation and attention check questions as well as demographic questions.

Participants. Once again, participants were recruited using Amazon Mechanical Turk [5] from
the pool of volunteers who had previously completed Experiment 6.1.1. A power analysis using
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Fig. 10. A snapshot from the online experiment for the energy budget of 850.

Fig. 11. User satisfaction under different budget constraint and different time durations.

G*power [18], assuming a small effect size and alpha error probability of .05 indicated a sample size
of approximately 110. Approximately 120 participants responded to the survey request, after four
participants who scored less than 50% on the attention check questions were eliminated from the
dataset, our total sample size was 114. The sample was 66% male, Mean age 34 years (SD 9.87), 86%
White, 6% Black or African American, 3.6% Hispanic, 3.4% Asian, 1% Other. In terms of education
and income, 92.8% reported having a Bachelor’s or Higher and 53.4% reported making less than
$49,999, 33.6% reported $50,000–$99,000, and 12.9% reported making more than $100,000.

Summary of Results. Figure 11(a), (b), and (c) shows user responses under different energy bud-
gets for 1, 4, and 12 hours scenarios, respectively. As observed, CODY largely outperforms the
knapsack algorithm in the majority of scenarios. Both methods demonstrate close performance in
case of higher energy budget, similarly to Figure 9(b), since most appliances are listed as avail-
able. We can also observe variability with respect to the duration of the energy shortage. These
results suggest the need for further research in which the time dimension is specifically taken into
account.
Users general preference for CODY solutions compared to Knapsack may be attributed to both

differences in utility and for the consideration of dependency. For example, under the energy
budget of 850, the knapsack appliance list includes “Cell Phone/Phone Charger, Clock/Alarm,
Router, Lights/lamp, Printer/Copy/Fax/Scanner, Radio/Stereo, Television.” However, the appliance
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Table 2. User Perception—Online Experiment: Binomial Comparisons of CODY to Knapsack

with Output Organized by Condition (Duration) Using Test Probability of .50

Budget
1 hr (N = 34, df = 33) 4 hr (N = 41, df = 40) 12 hr (N = 41, df = 40)
Mean SE Mean SE Mean SE

130 0.91** 0.049 0.93** 0.041 0.95** 0.033
650 0.85** 0.062 0.78** 0.065 0.78** 0.029
850 0.94** 0.041 0.78** 0.065 0.9** 0.056
2750 0.88** 0.056 0.61 0.077 0.66 0.056
4500 0.76* 0.074 0.68* 0.074 0.63 0.029
5500 0.88** 0.056 0.54 0.079 0.71* 0.030
6000 0.88** 0.056 0.61 0.077 0.63 0.030
8000 0.68* 0.081 0.56 0.078 0.49 0.029
19000 0.50 0.087 0.37 0.076 0.49 0.033

Note that “∗∗” refers to p < .001, and ‘∗’ to p < .05.

list given by CODY is “Cell Phone/Phone Charger, Clock/Alarm, Router, Lights/lamp,
Printer/Copy/Fax/Scanner, Radio/Stereo, Computer.” Inattentive to the concept of appliance de-
pendency, knapsack picks the printer that may be less useful in the absence of a computer. Fur-
thermore, even if a computer may not be used for a significant time during the day (causing it to
rank low in utility under knapsack), it is perceived as the most important appliance according to
our results described in Section 6.1. By considering the length of time as a measurement of im-
portance and considering appliances independently, knapsack misrepresents user perceptions of
the overall utility of appliances. A snapshot of the survey corresponding to this budget and the
appliances lists is depicted in Figure 10.
Finally, we show in Table 2 a statistical analysis of the results obtained through hypothesis test-

ing, specifically with binomial comparison. The purpose is to show the observed difference in the
preference given to CODY versus knapsack is statistically meaningful. The test assumes the prob-
ability of picking CODY over knapsack to be .5; it compares the observed proportion, i.e., how
often participants actually picked CODY over knapsack and indicates whether it is significantly
different from the expected proportion given the sample size. CODY outperforms knapsack in all
scenarios, except for the budget 19000. However, when the budget is very high, the two approaches
return a very similar set of appliances, generating no meaningful preference in the perception of
the returned sets.

6.2.4 User Perception—Real-field Experiment. Finally, we investigate our proposed model
through a real-field experiment at the Solar and Eco Village community located at Missouri Uni-
versity of Science and Technology campus. This is a planned community composed of student-
designed solar homes, occupied on a yearly basis by students, faculty, or temporary residents. We
conducted a small-scale experiment with residents living in and around the village. In this experi-
ment, we were able to gather user’s fully customized data for the appliance list, utility values, and
dependencies.

Experimental design. Participants first read an informed consent letter advising of their rights,
expectations, and compensations. The study took place in three parts. First, we conducted an in-
person interview with each participant to gather a list of the user’s appliances currently in the
home. We asked the participants to estimate their duration of use for each appliance on a daily,
weekly, or monthly basis (used to derive the appliance utilities used by knapsack), and, finally, we
asked the users to indicate any critical dependencies for all of the appliances in their home after
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Table 3. User Perception—Real-field Experiment: Binomial Comparisons

of Our Solution to Knapsack Organized by User, Showing the Observed

Probability for Selecting Our Solution and the Significance Values

Assuming a Test Probability of .50

User
Number of
comparisons

Observed Probability
(Our solution)

Significance (p)

1 18 0.78 0.031
2 12∗ 1.0 <0.001
3 18 0.78 0.031

Group 48 0.83 <0.001

An omnibus test for the group is also included. “∗” Note that user 2 only ranked 14 appli-

ances as being valuable so we had to exclude unranked appliances from the algorithm that

resulted in fewer unique solutions for comparison.

explaining critical dependencies in the samemanner theywere explained in Section 6.2.2. After the
in-person interview was complete, we repeated experiment 6.1 using the standard energy context,
to assess user perceptions about the relative values of each appliance they had in their homes.
This allowed us to obtain user preference for the 4-hour and 12-hour conditions, this time using
the information gathered from the interview and survey in the previous steps. So, for each user,
the list of appliances were customized based on their unique appliances, estimated duration of
use, perceptions about utility, and perceptions about dependencies. However, they were offered
knapsack solutions customized based on their estimated duration of use. Energy consumption
data was held constant for appliances across the approaches. The final comparisons were made
about one week after the initial interview and utility survey was completed.

Participants. Three residents were able to participate in the final experiment. Although the sam-
ple size was small, each participant provided 12–18 comparisons for a final total of 48. The resi-
dents were all female, with a mean age of 21 (standard deviation of 1.73), and primarily identified
as white. Residents were offered up to $30 for completing all three components of the study.

Summary of Results. Residents had between 33 and 35 appliances in their homes with mean
of 33.7 and standard deviation of 0.94. Across both the 4- and 12-hour scenarios and across all
budgets, the three participants each preferred the proposed approach in this work more often
than the knapsack solution. Table 3 shows results of binomial comparisons (as described in Section
6.2.3) by user, where the probability of picking each list is once again assumed to .5. All three tests
suggest the user’s preference for the perceived-value utility proposed in this work over knapsack
is statistically significant. As a group, participants preferred our approach 83% of the time, and this
result was also statistically significant (p < .001).

7 RELATEDWORK

According to many works in the literature, the energy management problem in a smart home, fo-
cusing on the selection of the best subset of appliances to use in a given time interval, can be for-
mulated as a multi-objective optimization problem [6]. Among the components included in such a
formulation, the cost of energy consumed by appliances is obviously predominant, followed by the
users’ well-being. The energy consumption is generally modeled according to an unbiased evalua-
tion, while the model of users’ well-being is characterized by a high heterogeneity among different
works. The most common approaches are (i) the adoption of a weighted sum of the objective func-
tions, with a set of weights that explicitly defines the tradeoff between cost and comfort, as in Ref-
erences [31, 36]; (ii) the use of a pure multi-objective optimization based on the Pareto Dominance
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criterion, as in References [26, 41]; and (iii) the formulation of some criteria as constraints to be
respected, and the optimization of a single objective function, as in References [37, 44, 47, 50].
The last approach, the second most common in the literature according to Reference [6], is also
adopted in this work, since it is well suited to model real scenarios characterized by a constraint
on energy consumption.
The authors of Reference [31] adopt an approach based on stochastic dynamic programming

and they propose to fuse energy cost and user’s comfort in a single objective function. The user’s
well-being is simply represented as a variable whose value is inversely proportional to the distance
between the current environmental conditions (e.g., temperature) and the range preferred by the
user. Such simplified model is very common in the literature focused on the interaction between
smart homes and smart grids, but it is not suitable for modeling complex scenarios where a wider
set of appliances is used.
In Reference [41], a pure multi-objective optimization system is proposed to select a fair tradeoff

betweenminimizing the total energy cost and maximizing the utility perceived by users, through a
Pareto dominance analysis. Here, the user’swell-being ismodeled through a variable that estimates
the utility perceived by the user as a function directly dependent from the amount of consumed
energy. The work described in Reference [26] presents a multi-objective problem in which the
maximization of user’s well-being, expressed as preferred range of environmental characteristics
to be satisfied, is combined with the minimization of energy cost and pollution emissions.
The authors of Reference [37] propose an algorithm to identify the optimal scheduling of house-

hold appliances that respects the priorities expressed by the user and his or her comfort levels, once
again expressed as preference range of environmental characteristics. The energy consumption is
modeled as a constraint on the total energy consumption that must be maintained below a demand
limit, as in this article.
The authors of Reference [50] model the problem of finding the appliances optimal scheduling

by exploiting a game-theoretic approach, in which the user’s well-being are related to the respect
of time intervals during which he or she prefers to use a specific appliance; the most pressing
preferences are expressed as constraints, while the others are included into the goal function to be
optimized together with the minimization of the energy cost. Such user’s well-being model, does
not consider the dependencies among appliances.
In conclusion, to the best of our knowledge, previous works oversimplify user psychological

perception of appliances and do not take into account the dependencies between appliances. The
interdisciplinary approach of our work is the first that specifically takes into consideration psy-
chological dimensions for energy optimization in smart environments.

8 CONCLUSION

In this article, we studied the problem of energy optimization in smart environments by incorpo-
rating previously unexplored social and behavioral aspects. Specifically, we derived the perceived
importance of appliances through a psychological model and quantified it using real data from
large-scale online experiments. The psychological model also includes dependencies between ap-
pliances formalized through a dependency graph. Then, we formulated an optimization problem
to maximize the perceived-value user utility under an energy budget constraint. We showed that
the problem is NP-Hard and therefore proposed a heuristic called CODY to solve the problem effi-
ciently. CODY exploits a graph condensation technique that efficiently contracts the dependency
graph and turn it into a unique directed acyclic graph. Results show that CODY outperforms pre-
viously proposed approaches on different types of synthetic and real datasets. Furthermore, we
used an online and real-field experiments to compare CODY with a knapsack approach using
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human subjects. Results show that CODY is superior as it better captures user perceptions and
needs under several budget constraints.
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