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Abstract—Smart environments, such as smart cities and smart
homes, are Cyber-Physical-Systems (CPSs) which are becoming
an increasing part of our everyday lives. Several applications
in these systems, such as energy management through home
appliance identification or activity recognition, adopt Machine
Learning (ML) as a practical tool for extracting useful knowledge
from raw data. These applications are usually characterized by
a sequential stream of data, unlike the classical ML scenario
in which the entire data is available during training. For such
applications, Stream-based Active Learning (SAL) has been
designed as a type of supervised ML in which an expert is asked
to label the most informative instances as they arrive. Previous
SAL techniques assume that the expert is always available and
always labels the data correctly. However, in several applications,
such as those mentioned above, the SAL activity interweaves
with the everyday life of regular residents, who are often not
experts, and may also not always be willing to participate in the
labeling process. In this paper, we discuss the importance of user-
centered ML, and show how taking into account realistic models
of user behavior significantly improves the accuracy and reduces
the training period of smart environment applications based on
SAL. We consider two use cases, namely appliance identification
and activity recognition. Results based on real data sets show an
improvement in terms of accuracy up to 55.38%.

Index Terms—Cyber-Physical-Systems (CPSs), Internet of
Things (IoT), Smart City, Smart Home, Machine Learning,
Active Learning, User-Centered

I. INTRODUCTION

With the increasing technological development in computa-
tion and communication capabilities, Cyber-Physical-Systems
(CPSs), such as smart cities and smart homes, are growing in
popularity [1], [2]. CPSs consolidate a physical component,
like sensors and actuators, to a cyber component, such as soft-
ware and algorithms, in order to create an integrated intelligent
system capable of predicting and reacting to situations [3].

Accordingly, smart cities comprise several layers of tech-
nology including various methods of data collection and
processing in order to efficiently manage resources such as
energy and transportation [4]. A key component of a smart
city are smart homes, namely homes with sensing, computa-
tion and communication capabilities able to provide residents
comfort, security, and energy efficiency [5]. Nowadays, certain
technologies are ubiquitous to smart homes, such as smart
TVs, tablets, smartphones, and wearable devices. A defining
characteristic of applications involving these technologies is

the use of Machine Learning (ML) methods, as in the examples
listed below.

• Face Recognition: Nowadays, not only home security
systems but also smartphones utilize the face recognition
technology to identify the faces of authorized users, for
example home’s residents or cell phone owner. Such
systems deny access and in some cases send the picture
of suspicious user to the authorized user [6].

• Home Appliance Recognition: For the purpose of fine
grain energy management in smart homes, it is essen-
tial to recognize energy consumption of each individual
appliance. Unlike smart meters which usually provide
aggregated energy usage, smart outlets are able to collect
data from the single appliance plugged in [7], [8].

• Voice Recognition Technology: These days, most of
home automation systems are compatible with intelligent
personal assistants like, Siri, Alexa or Google Home. To
keep the system secure, such technologies should identify
the legitimate user’s voice. To this aim, voice recognition
and natural language processing tools, such as Amazon
Transcribe and Azure Custom Speech Service, are applied
to recognize user’s voice, verify the identity and then
mine the meaning and operate the pertinent action.

The tradition supervised ML approach, in which a model
is trained on an entire, established data set, is often not
appropriate for such applications. In fact, these applications
are characterized by a dynamic stream of data, and these
data is often highly user-specific, which makes generaliz-
ability difficult. As an example, consider the task of home
appliance recognition, where the goal is to infer the usage
of home appliances from the electric signatures collected by
smart outlets [9], [10]. Users have different appliances which
generate different signatures, new appliances are continuously
available on the market, and signatures are generated over time
as appliances are used. Clearly, training cannot be done offline
as in classic supervised ML, and data needs to be labeled as it
arrives. A class of active learning approaches, namely stream-
based active learning (SAL), have been proposed to deal with
these scenarios [11]. According to SAL, an expert is available
to label the data, and an algorithm is designed to select the
most informative samples from the incoming stream to propose
to the expert. Usually, a budget is used to limit the maximum
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TABLE I: ML Algorithms

Algorithms Type Task
K-Nearest Neighbors Supervised Classification
Support Vector Machine Supervised Classification
Linear Regression Supervised Regression
K-Means Unsupervised Clustering
Principal Component Analysis Unsupervised Feature extraction

number of samples to label.
In this paper we argue that the classical approach to SAL

described above is also not suitable for applications “in the
wild”, where the expert is just a regular user, as in the
case of appliance recognition in smart environments. In these
scenarios, users may not be always available and engaged in
the labeling activity. Therefore, we claim that:

It is essential to develop SAL and ML approaches for
smart environment applications in particular - and
Cyber-Physical Systems in general - by taking into
account the limits of real non-expert users, through
realistic user behavioral models of engagement, par-
ticipation, and availability.

The remainder of this paper is organized as follows. In
Section II, we review the ML techniques in CPSs. Section III
studies the impact of real residents on ML techniques. Two
use cases of user-centered ML will be explained in Section
IV. Finally, Section V overviews the benefit of realistic user
modeling and suggests future directions in this field.

II. MACHINE LEARNING ALGORITHMS IN
CYBER-PHYSICAL SYSTEMS

ML techniques are well-suited for extracting usable knowl-
edge from sensor readings, making them the method of choice
in achieving the goals of CPSs. They have been extensively
investigated in the literature. Specific to our context, [4] gives
an overview of different ML techniques in IoT applications.

A. Classical ML Techniques

ML approaches are mainly categorized into supervised,
unsupervised techniques which usually differ in terms of
accuracy, complexity and their input data, referred to as the
training set, which is a set of sample data used to prepare the
model.

In supervised learning, instances in the training set are
associated with labels, which are usually assigned by an ex-
pert. The labeling task is usually expensive and time consum-
ing [12]. Unsupervised learning aims to identify similarities
amongst the input data and performs so-called clustering. The
training set in this case is not labeled. Some of the most
common algorithms in this category include, k-means [13],
hierarchical [14] and probabilistic clustering [15]. Table I
provides some algorithms for these two ML categories.

Moreover, a comparison between supervised and unsuper-
vised learning approaches from different perspectives is given
in Table II. Briefly speaking, although supervised learning
is more complex and more expensive, it generally achieves
higher accuracy and reliability.

In the context of smart city applications, ML algorithms
are used in order to analyze data from different sources
such as traffic cameras, utility consumption, weather forecast
etc. Authors in [16] used Regression Trees, Neural Networks
and Support Vector Regression (SVR) to present a prediction
mechanism for the parking occupancy. In another work, open
source data has been adopted to perform real-time predictive
analysis for energy management purposes [17].

Moreover, ML techniques have been used for fault detec-
tion.For event detection and activity classification in an indoor
environment, like an office, home, public mall or airport, [18]
compares Principal Component Analysis (PCA) and Canonical
Correlation Analysis (CCA) to detect intermittent faults and
mask such failures.

In the context of smart health, [19] demonstrated the im-
provement to mobile eHealth applications achievable through
the use of Feed Forward Neural Netowrks, which improved
performance with respect to network load, CPU and energy
consumption.

One important application in smart homes is to perform
energy management by identifying different home electric
appliances [20]. Such appliances can be smart, capable of
communicating with other devices, or not. To this aim, dif-
ferent ML techniques have been investigated [21]. In case of
non-smart appliances, wireless outlets have been designed to
collect corresponding data for analysis [22].

In the next section, we review the concept of Active
Learning (AL) and explain two families of this technique,
namely pool-based and stream-based AL (SAL).

B. Active Learning

As mentioned before, labeling the all instances of a training
set is costly and requires an expert. However, in some cases,
due to the huge amount of data, it is not practical to label
every single instance. Therefore, Active Learning (AL) has
been introduced to reduce labeling costs by selecting only
the most informative instances for labeling [23], [12]. Briefly
speaking, AL algorithms follow a selection criteria to query an
expert on the most informative instances. This approach intel-
ligently prevents the training phase from being overwhelmed
by uninformative samples.

AL queries instances by taking advantage of past queries,
i.e., already known responses (labels)[12]. To determine in-
formativeness of the instance, some works, such as [24], [11],
consider Uncertainty Sampling (US) as a selection criteria,
in which instances with the highest uncertainty are chosen
to be labeled. Some metrics used to measure uncertainty
are maximum entropy [25], smallest-margin [26] and least
confident [27].

[11], [28] studied a new class of AL from data streams.
In such scenarios, the data volumes increase continuously.
They proposed a classifier ensemble to predict newly arrived
samples while only a small portion of stream data are labeled.
Finally, [29] studies budgeted SAL where they investigate
the possibility of converting existing AL methods to stream-
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TABLE II: Comparison

Supervised Learning Unsupervised Learning
Input Data Uses Known and Labeled Input Data Uses Unknown Input Data
Computational Complexity Very Complex in Computation Less Computational Complexity
Real Time Uses off-line analysis Uses Real Time Analysis of Data
Number of Classes Number of Classes is Known Number of Classes is not Known
Accuracy of Results Accurate and Reliable Results Moderate Accurate and Reliable Results

based scenarios and provides theoretical guarantees on their
performances.

All the above mentioned papers assume the presence of an
always available expert willing to label the most informative
instances. This is not always the case in a smart environments,
where a regular resident is asked to perform the labeling. Such
users are often not experts and may not always be willing to
respond upon query. The problem of not only selecting the best
instances, but also adapting to the user willingness to respond,
has been first introduced in [28]. However, the authors assume
the presence of a random oracle, or an expert that is willing to
respond to the queries uniformly at random. Not surprisingly,
the authors show that a random sampling strategy is the best
in this specific context.

In the following, we describe two families of AL, namely
pool-based and stream-based AL. In most AL algorithms [30],
[31], [32], [33], a fixed set of unlabeled instances, called
a pool, is given to the learner in order to find the most
informative instances to label. At this point, the expert gives
the corresponding labels to the learner and then an updated
classifier is made based on all the labeled samples so far. How-
ever, in smart environment applications, sensor measurements
are usually collected continuously along the time, which can
be interpreted as a big stream of data. Therefore, stream-based
AL has been introduced to deal with this sort of data [11].

In the case of sequential data arrival, the learner observes a
stream of unlabeled instances, where it should decide whether
to ask the expert for labeling of incoming instance and so use
this sample for learning process or not.

Several strategies have been proposed for SAL [11], [34],
[23], [28] most of which follow a single criterion to pick infor-
mative instances. [35], [36], [37] show that this method limits
the performance of AL, known as exploitation-exploration
dilemma. Specifically in a stream-based scenario, it is destruc-
tive to select data for labeling when it does not depute the
characteristics of original sample properly [38]. In more detail,
authors in [38] propose a reinforcement learning framework
for stream-based data in order to learn the optimal strategy
during the labeling process. They adopt the feedback from the
classifier to refine the selecting criteria.

III. IMPACT OF REAL USERS

As mentioned before, unlike classical ML approaches, in
various smart environments applications, ML techniques are
in direct contact with the regular residents and needs them to
perform the labeling task. In this respect, several challenges
arise, first, the human mistake is inevitable. In the context of
ML, such mistakes can be interpreted as noisy labels. Second,

TABLE III: Summary of datasets

Dataset Num. Instances Num. Features Num. Classes
Appliance [10] 419 35 6
Activity [44] 692 351 12

the residents may not always be available or willing to perform
labeling.

A. Noisy Labels

In a typical supervised learning scenario, a set of training
instances are mapped to a set of labels in a 1-to-1 relationship.
Noisy labels occur when one instance is mapped to multiple
labels [39], [40], the mapping is incorrect [41], or a com-
bination of the two scenarios. With the growth of crowd-
sourcing techniques, such as Amazon Turk, and applications
dependent on human interaction, such as in CPSs, noise
reduction is becoming increasingly relevant to ML. Although
an exploration of label noise is beyond the scope of this paper,
we maintain that it is crucial to realistic user modeling and will
be included in future work.

B. Abstention from labeling

Unlike most AL approaches in which the expert is always
available for labeling, authors in [42], [43] investigate the
a pool-based AL where the expert abstains from labeling
and also may give noisy labels. In these works, the learner
keeps repeatedly querying instances where the expert abstains.
Moreover, abstention is modeled by a certain probability
which increase as the query points get closer to the decision
boundary. However, this method can not be applied to SAL
where the instances show up sequentially. Therefore, our work
adopts a novel strategy which is distinct from the previous
ones.

IV. CASE STUDY

In this section, we investigate two smart environments ap-
plications, namely appliance recognition and physical activity
monitoring, using the public data sets, available in [10] and
[44], respectively. Both applications are SAL examples which
are in direct contact with the residents and require them for
labeling.

A. Experimental Design

1) Stream-based Active Learning Scenarios: A smart de-
vice may enable the residents to monitor and control energy
usage in the smart homes. In order to perform accurate
analysis, such smart systems must be robust to different types
of electrical appliances. This challenge presents itself in a
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typical stream-based learning scenario where new appliances
are learned by the system as they are used.

In addition, stream-based learning is advantageous in phys-
ical activity monitoring because it is able to learn activities
that are specific to the user.

2) Data: The public data sets on appliance recognition [10]
and activity monitoring [44] are outlined in Table III. The basic
features, extracted from the high frequency signal data, include
mean, maximum, and variance of each signal.

Additionally, we applied the following transformations to
the signals: Fourier Transform, the Power Spectral Density,
and auto-correlation. The x-y coordinates at the n highest
peaks of these transformations form the feature set. Semanti-
cally, these peaks represent the frequency and corresponding
amplitude of oscillations in the signal.

The activity data consists of more features than the appli-
ance data because of the complexity of the sensing technology.
While the appliance monitor only extracted current and voltage
information, the wearables tracked 50 separate inertial mea-
surement units. To account for dimensionality, we set n = 3
and n = 1 for the appliance and activity sets, respectively.

3) Model: In this model, time is discretely divided into
24 slots corresponding to 24 hours per day, denoted as h.
In interacting with the system as labeler, the resident is
assumed to follow a certain response distribution according to
his willingness/availability. Let P (h) be the probability that
the resident will successfully respond to a query at hour h,
independent of other time slots. The learner is given D days
of training and a budget of B queries to the resident per day.
B is a design parameter that can be adjusted to the resident’s
preference.

For simplicity, we assume that only one instance arrives per
hour. This means that over D days, there are N = D × 24
instances observed by the ML system. In our experiments, the
N instances are sampled with replacement from the training
set and randomly assigned an hour h.

4) User Distributions: We consider three different residents
that follow a uniform, alternating, and Gaussian user distribu-
tion, as shown in Figure 1. Finally, for fair comparison, we
consider the same resident abstention rate for all distributions,
such that P (0 ≤ h ≤ 24) = 0.5.

5) Sampling Strategies: Through these experiments, we
show that higher accuracy is achieved by modeling the user
distribution. We compare the Random Sampling (RS) strategy
to a User Aware Sampling (UAS) strategy, where the true
user distribution is known to the ML system. Given a user
distribution P (h), hour h, random number r in [0, 1], UAS
will query the resident if r ≤ P (h). The RS strategy will
simply choose B hours at which to query the resident for the
day.

B. Results

This experiment models a training period of three weeks,
i.e., 21 days. We compare the performance of the RS to
the UAS strategy for the three defined user distributions. As
expected, the uniform distribution looks similar for both RS
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Fig. 1: Response distribution P (h) for three different residents

and UAS. This is because random sampling is the uniform
distribution; in such distribution, there is not much room for
improvement. However, when the user distribution follows a
non-uniform pattern, such as alternating or Gaussian, we see
queries guided by knowledge of the user’s behavior results in
higher accuracy.

It should be noted that the UAS strategy achieves higher
accuracy in shorter training period than the RS strategy. In
Figure 3, we see that the UAS strategy begins to separate
from RS by day 6 of the Gaussian distribution and day 5 of
the alternating distribution. With enough days, both strategies
are expected to observe enough labeled instances to plateau
at similar upper-bound accuracy. However, UAS is able to
reach this higher accuracy quicker, which in a real-life smart
environment, is more convenient to the residents.

Table IV displays the mean difference between the RS and
UAS strategies over the course of 21 days. Graphically, this
is the average “distance” between the RS and AUS curves
displayed in Figure 3. In Figure 2, we see a clear difference
in accuracy between the two strategies starting at values of
B = 3. For this reason, Table IV and V display the accuracy
gain for budget values B ∈ [3, 10]. We perform a t-test on the
difference of means between the RS and UAS strategies, such
that ha : µUAS > µRS. We apply the Bonferroni correction to
account for the eight budgets and three distributions that are
being tested. Therefore, a statistically significant result will
have pval < 0.05

3×8 = 0.002. As expected, UAS outperforms
RS for both the Gaussian and alternating user distributions.
Note that in the uniform distribution, UAS is considered a
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Fig. 2: Appliance data comparison of RS and UAS strategy for different budgets B after one week (D = 7)
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Fig. 3: Appliance data comparison of RS and UAS strategy for B = 5 over 21 days

TABLE IV: Appliance data mean difference in accuracies
between UAS and RS strategies. Statistically significant values
are highlighted.

Distribution
Budget Uniform Gaussian Alternating

3 0.90 1.20 16.19
4 0.70 4.6 22.35
5 -0.16 9.28 27.75
6 -0.45 13.04 32.99
7 0.20 18.32 38.53
8 -1.16 23.77 44.29
9 -1.76 24.82 49.73

10 -0.70 28.71 55.58

TABLE V: Activity data mean difference in accuracies be-
tween UAS and RS strategies. Statistically significant values
are highlighted.

Distribution
Budget Uniform Gaussian Alternating

3 -0.74 0.96 17.17
4 0.32 3.93 21.59
5 0.33 8.78 27.56
6 -5.3e-16 14.37 32.51
7 0.80 18.02 38.87
8 -0.86 23.64 43.98
9 -1.10 26.05 49.42

10 -2.6 28.11 55.16

significant improvement on RS for certain budget values. For
these cases, the corresponding difference in accuracy is a small
positive number. This is likely a result of the significance tests
themselves, which are set to identify a positive difference in
means, but not the scale, or amount, of the difference.

V. CONCLUSION AND FUTURE WORKS

In this work, we studied the impact of residents engagement
in smart environments through ML techniques. Such residents
which are supposed to perform labeling, are often not experts,
and may also not always available. To demonstrate the im-
portance of realistic user modeling, we provide a case study
that compares the performance of Random Sampling (RS) and
User Aware Sampling (UAS) for three different user response
distributions on two real life data sets. Our results, which
include an accuracy boost of up to 55.58%, demonstrate that an
accurate user model will result in a smart system that achieves
high accuracy at a quicker rate, i.e., shorter training period.
According to the result of this work, considering a user-
centered ML allows creating a system that learns quicker and
enables us to provide an easily deployable, high performing
CPS to the residents.

Future works may expand upon user modeling in two main
areas. First, it is necessary to establish a strategy to learn
the user distribution. Second, the possibility of noisy labels
must be incorporated in the model which will introduce many
areas for exploration. For example, in this paper we noted
that a system trained on RS will achieve an accuracy similar
to UAS with enough time. However, with noisy labels, a user-
aware system may also consider noise reduction in addition to
availability as a querying criteria to the user. While a blind RS
strategy will use all the labeled instances it receives, a user-
aware model may cherry pick the most representative instances
in training, resulting in classification performance that may
only be achievable with realistic user-modeling.
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