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ABSTRACT
Interactions between bids to show ads online can lead to an adver-

tiser’s ad being shown to more men than women even when the

advertiser does not target towards men. We design bidding strate-

gies that advertisers can use to avoid such emergent discrimination

without having to modify the auction mechanism. We mathemati-

cally analyze the strategies to determine the additional cost to the

advertiser for avoiding discrimination, proving our strategies to be

optimal in some settings. We use simulations to understand other

settings.
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1 INTRODUCTION
Prior work found Google showing an ad for the Barrett Group, a

career coaching service promoting the seeking of high paying jobs,

more often to simulated men than to simulated women [7]. Later

work enumerates possible causes of this disparity [6].

One possibility, raised by Google itself [25], is that the Barrett

Group targeted both men and women equally, but other advertisers,

on average, focused more on women, which would be in line with

subsequent �ndings [18]. In this possibility, the Barrett Group found

itself outbid for just women by the other advertisers who were

willing to pay more than it was for reaching women but not for

men. These other advertisers might be promoting products that

many �nd acceptable to target towardwomen, such as dresses. Thus,

it’s possible that each advertiser’s targeting appears reasonable in

isolation but interacts to bring about emergent discrimination for a

job-related ad.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

FAT* ’20, January 27–30, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6936-7/20/02. . . $15.00

https://doi.org/10.1145/3351095.3375783

For conscientious advertisers of products that should be broad-

casted to women and men at equal rates, such an outcome is unac-

ceptable but currently di�cult to avoid. While Google o�ers the

ability to skew ads toward men or toward women, it provides no

way to ensure that both men and women see the ad an equal num-

ber of times. As discussed above, simply not targeting by gender is

not enough to guarantee parity. Even running two ad campaigns of

equal size is insu�cient since the size is determined by budget and

not the number of ads shown, which means that parity would only

be achieved if women and men are equally expensive to reach.

We consider how advertisers can ensure approximate demo-

graphic parity for its ads without changing Google’s ad auction

mechanism, which is based on a second-price auction [10]. Given

that an advertiser wishes to maximize its utility by reaching the

people most likely to respond to its ads, we model the advertiser’s

utility function along with the parity goal as a constrained bidding

problem. We consider both a strict absolute parity constraint and a

more relaxed relative constraint inspired by the US EEOC’s four-

�fths rule on disparate impact [9]. Although using a second-price

auction suggests that the advertisers should bid their true value of

showing an ad, a parity constraint and multiple rounds of the auc-

tion interact to make deviations from this truthful strategy optimal.

Intuitively, as in multi-round second-price auctions with budget

constraints [12], it is sometimes better to bid less to preserve the

ability to participate in later auctions that might have a lower cost

of winning. More interestingly, unlike with just budget constraints,

it is also sometimes better to bid more to ensure an acceptable

degree of parity, enabling participation in other auctions later.

Given these complexities, �nding an optimal bidding strategy

for such a constrained bidding problem is non-trivial. We do so

by modeling them as Markov Decision Problems (MDPs). Solving

these MDPs using traditional methods, such as value iteration, is

made di�cult by the continuous space of possible bid values over

which to optimize. To avoid this issue, we �nd recursive formulae

for each type of constraint providing the optimal bid value and

solve for their values instead. This approach allows us to solve the

MDPs without needing to explicitly maximize over the possible

actions as in value iteration.

We compare this optimal constrained bidding strategy to the

optimal unconstrained strategy for both real and simulated data

sets. The cost to the advertiser for ensuring parity varies by setting,

but is manageable under the more realistic settings explored. In all

cases, the revenue of the simulated ad auctioneer (Google’s role)

remains roughly the same or goes up.

By not modifying the core auction algorithm used by Google

and instead suggesting bidding strategies that could be deployed

by the advertisers, we believe this work provides a practical path

towards nondiscriminatory advertising.
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2 RELATEDWORK
The most closely related work, recently looked at enforcing par-

ity constraints with auction mechanisms, whereas we do so with

bidding strategies [4, 5]. While both approaches have their use

cases, we believe ours is easier to deploy since just the advertisers

wanting the feature need to make changes to implement it. We fur-

ther discuss tradeo�s between deployment approaches in Section 8.

Our approach also di�ers by using strict constraints whereas theirs

uses probabilistic constraints. Probabilistic constraints allow more

utility but may be insu�cient in cases where approximate parity is

required, as when disparate impact is prohibited. At an algorithmic

level, they di�er by using gradient decent.

A similar alternative approach could use auction mechanisms

with Guaranteed ad Delivery (GD) [22, 26]. An advertiser can act

as two parties to the auction, one for each gender, and use GD to

ensure an equal number of wins for each party. Unlike our bidding

strategy, which an advertiser can unilaterally employ, this approach

requires the ad exchange to change its auction mechanisms.

Prior works have looked at how to enforce (proportional) parity

constraints on the classi�cations produced by ML algorithms [2, 3,

16, 28]. We instead look at auctions.

Priorworks have usedMDPs tomodel ad slot auctions. Li et al. [19]

and Iyer et al. [13–15] have used them to �nd optimal bidding strate-

gies when advertisers do not know the exact values of each type of

ad slot and learn values by winning them. They showed that adver-

tisers should overbid to learnmore information. Gummadi et al. [12]

described the optimal bidding strategy for the second-price auc-

tion in which each advertiser has a limited budget, which leads to

underbidding. Zhang et al. [29] derived optimal real-time bidding

strategies when each ad slot have di�erent properties.

3 ONLINE AD AUCTIONS
When a person visits a webpage, the webpage will often contain

dynamically loaded ads at �xed locations on the page. These ads

each occupy an ad slot, a location at a time (or page load) on the

webpage. In some cases, the website selects which ads to show

in which slots itself, such as with Facebook. In other cases, the

website contracts with a third-party, to �ll and charge for the slots

in exchange for payments to the website. In either case, we call the

entity choosing how to �ll the slots an ad exchange. For example,

Google runs an ad exchange, Google Ad Manager, which includes

slots put up for sale by websites with its AdSense tool.

Typically, an ad exchange auctions o� the slots it controls to

advertisers. It can use real-time bidding to auction o� the slots as

the webpage loads. The website and the ad exchange can o�er

advertisers various amounts of information about the slot, such

as the webpage it is on and demographics about who is loading

the page. Advertisers performing programmatic advertising use a

dynamic bidding strategy that adjusts their bids according to how

well they expect their ads to perform in the o�ered slot. To avoid

having to create programs for executing such strategies on their

own, advertisers often use a demand-side platform (DSP). Figure 1

demonstrates a sketch of the interactions.

An ad exchange may accept bids that are more complex than

just a single price, such as including an o�er to pay a bonus if the

website visitor clicks the ad [10]. Exchanges wishing to maximize

Ad Exchange
Person

1.Request
 a page 2.Request an ad

5.Return an ad

3. Get advertisers
 bids

4. Find the best
 advertiser

DSP

Advertisers

6.Receive 
page with ad

DSP

Figure 1: Online advertisement interactions

the amount of bonuses it receives, or to avoid annoying visitors,

might consider the quality of the ad and its �t for the slot. For sim-

plicity, we will defer further consideration of these complications

to Section 9 and presently presume that all bids are simply o�ers

to pay for showing the ad.

Second price auctions is a commonmechanism for resolving such

auctions, with Google using a variation of one [10], and we will

presume the ad exchange uses one. In this auction mechanism, the

exchange selects the highest bidder as the winner but only charges

the bidder the price o�ered by the second highest bidder. Under

certain circumstances, this mechanism ensures that each bidder’s

optimal strategy is to bid the actual amount it values the slot at,

making the mechanism truthful. Since ad exchanges sometimes sell

more than one slot at time, such as for a webpage with multiple

slots, they often use generalized second-price auctions, known as

position auctions [8, 27].

Wemodel the above economy as a sequential game of incomplete

information, where in each round of the game a set of self-interested

rational advertisers bid to win an ad slot through a second-price

auction. We allow bids to vary over auctions and assume that each

advertiser has a geometric lifespan. For simplicity, we make the

total number of advertisers 𝛼 equal in all auctions by assuming that

every time an advertiser dies a new advertiser joins.

At time 𝑡 , each advertiser 𝑖 submits a bid 𝑏𝑡
𝑖
. Let 𝑏𝑡−𝑖 be the bids

of other the advertisers. The ad exchange platform runs a second-

price auction where advertiser 𝑖 wins the ad slot if its bid is higher

than all other bids: 𝑏𝑡
𝑖
> max𝑏𝑡−𝑖 . For simplicity, we assume no ties,

ensuring that such a winner exists. Let 𝑎𝑡
𝑖
be 1 if the advertiser 𝑖

wins at round 𝑡 and be 0 otherwise. If the advertiser 𝑖 wins it will

pay the second highest bid 𝑑𝑡
𝑖
= max𝑏𝑡−𝑖 . The cost of the auction 𝑡

is 𝑐𝑡
𝑖
= 𝑎𝑡

𝑖
∗ 𝑑𝑡

𝑖
since the advertiser 𝑖 only pays if it wins.

The ad slot auctioned at 𝑡 has a value 𝑣𝑡
𝑖
for the advertiser 𝑖 .

When an advertiser 𝑖 wins auction 𝑡 , it gets an immediate reward,

which is the value 𝑣𝑡
𝑖
less its price 𝑑𝑡

𝑖
. Thus, the utility of advertiser

𝑖 gained at each round is 𝑢𝑡
𝑖
= 𝑎𝑡

𝑖
∗ 𝑣𝑡

𝑖
− 𝑐𝑡

𝑖
= 𝑎𝑡

𝑖
(𝑣𝑡
𝑖
− 𝑑𝑡

𝑖
). Let the

geometric parameter for the lifespan distribution for advertiser 𝑖 be

𝛿𝑖 . The total utility for each advertiser is𝑈𝑖 =
∑︁∞
𝑡=0 𝛿

𝑡
𝑖
∗ 𝑎𝑡

𝑖
(𝑣𝑡
𝑖
−𝑑𝑡

𝑖
)

where 𝛿𝑡
𝑖
is 𝛿𝑖 raised to the 𝑡 th power, not indexing by 𝑡 .

The advertiser 𝑖 should select its bids𝑏𝑡
𝑖
to maximize the expected

value of𝑈𝑖 , where the expectation is over its value 𝑣𝑡
𝑖
and the bids

of other advertisers 𝑏𝑡−𝑖 . The advertiser can use market research, its

prior experiences, and any information provided by the ad exchange

to estimate these uncertain values. In the case of a pure second-

price auction, the values of the other bids 𝑏𝑡−𝑖 are irrelevant and the
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optimal strategy is to always set its bid 𝑏𝑡
𝑖
equal to its estimation of

its value 𝑣𝑡
𝑖
.

However, this result does not carry over to all second-price auc-

tions with constraints, including the parity constraints we consider.

In this case, the behavior the other advertisers matters, but estimat-

ing it for individual ad slots is di�cult. Furthermore, the advertiser

is unlikely to estimate the value of every ad slot individually even

for a pure second-price auction. Rather, the advertiser will likely

model ad slots as each having a type belonging to a set Θ of reason-

able size. The types will represent the most important information

to the advertiser about the slot. For simplicity, we will typically

assume that Θ has just two types, one for each gender. For each

type 𝜃 , the advertiser will estimate the expected value 𝑣𝜃
𝑖
of a slot

of type 𝜃 .

For estimating the other bids, prior research [13, 14] has shown

it reasonable to model them as coming from a stationary �xed dis-

tribution, due to the large number of other advertisers. To simplify

our analysis, we denote the CDF of other bids for a slot of type 𝜃

by 𝑔𝜃
𝑖
. Finally, let 𝑝𝜃

𝑖
be the probability that advertiser 𝑖 assigns to

the type 𝜃 .

With these estimations, we compute estimations of other key

quantities. The probability of winning on auction 𝑡 for a slot of

type 𝜃 with a bid of 𝑥 is 𝑞(𝑥 ;𝑔𝜃
𝑖
) = Pr(max𝑏𝑡−𝑖 ≤ 𝑥) = 𝑔

𝜃
𝑖
(𝑥) (𝛼−1)

where 𝛼 is the number of advertisers at each ad slot auction. The

expected value of the utility for the advertiser 𝑖 for a single auction

given the distribution of the other advertisers’ bids 𝑔𝑖 is

E[𝑢𝑡𝑖 ] =
∑︂
𝜃

𝑝𝜃𝑖 ∗ 𝑞(𝑣
𝑡
𝑖 ;𝑔

𝜃
𝑖 ) ∗ (𝑣

𝑡
𝑖 − 𝑑

𝑡
𝑖 ) (1)

The expected value of the total utility for each advertiser is

E[𝑈𝑖 ] =
∞∑︂
𝑡=1

𝛿𝑡−1𝑖

∑︂
𝜃

𝑝𝜃𝑖 𝑞(𝑣
𝑡
𝑖 ;𝑔

𝜃
𝑖 ) (𝑣

𝑡
𝑖 − 𝑑

𝑡
𝑖 ) (2)

4 PARITY CONSTRAINTS
Advertisers may have concerns in addition to attempting to maxi-

mize the utility𝑈𝑖 , such as complying with laws and social norms.

In some cases, this will include ensuring that its ads reach various

protected groups to the same degree. For example, an employer

may desire that a job ad be shown to an equal number of women

and men to comply with laws prohibiting gender discrimination

in hiring [6]. Such advertisers would like to place their bids in a

manner to ensure such demographic parity.

However, the above auction mechanism, as well Google’s actual

mechanism as far as we can tell, does not o�er any way of ensuring

that a job ad is shown to an approximately equal number of women

and men, as required by laws prohibiting gender discrimination

in hiring [6]. Furthermore, ad exchanges may be unwilling to sup-

port such constraints given that only some advertisers have such

concerns. Thus, our goal is to provide advertisers with a bidding

strategy that dynamically adjusts bids to preserve the gender par-

ity of the viewers, which advertisers can unilaterally use without

needing changes to the auction mechanism of the ad exchange.

As an additional bene�t of not modifying the ad auction mech-

anism, our bidding strategy can be used for any type of auction.

However, we design and analyze them with only with second-price

auctions in mind.

We will focus on an advertiser that wants to show an ad to equal

numbers of men and women. A particularly careful advertiser may

desire that this parity constraint holds not only at the end of ad

campaign but throughout. Such continuous parity ensures that the

advertiser would pass an audit checking for this property at any

point in time. It also ensures meeting the parity goal if the the ad

campaign must be cut short or if a sudden in�ux of competing

advertisers prevents winning addition slots.

Meeting this strict goal is impossible since the �rst ad must

go to either a man or woman, and not both. To account for this,

we relax this goal to allow for approximate parity. We distinguish

between absolute (additive) and relative (ratio) approximate parity

and �rst consider an absolute constraint. An advertiser has𝐾-parity
if after each auction, the maximum di�erence between the number

of auctions that it wins for each gender is not more than 𝐾 .

Our goal is to �nd the optimal bidding strategy for advertisers

obeying such a constraint. This task is di�cult since a constrained

advertiser must consider not just the immediate reward of winning

a slot, but also how it may close or open the possibility of winning

additional slots later. To see this, we will consider three examples

involving a simpli�ed setting in which an advertiser 𝑖 is subject to

1-parity and knows exactly how long it will live. In each example,

it values men and women both at 20 (with no variance), but other

advertisers value women at an expected value of 21 and men at an

expected value of 5. This setting re�ects that advertisers are willing

to pay more, on average, for women than men [18].

In the �rst example we consider, the advertiser knows that it

will live for exactly one ad auction. In this case, the advertiser 𝑖

will bid the value of the immediate reward 20 that it receives for

winning an auction regardless of whether it is subject to a 1-parity

constraint, since winning the auction has no e�ect other than that

immediate reward. It will win an auction for a man and lose an

auction for a woman.

Next, consider the advertiser’s behavior for a series of two auc-

tions. The interesting case is two men in a row. In this case, adver-

tiser 𝑖 can only win one of the slots since it is subject to a 1-parity

constraint. Thus, the utility of the advertiser will be smaller from

having 1-parity, but it need not be half that of when it is unre-

stricted. If the number of women is small enough (𝑝 � 0.5), the

advertiser can assume it will get twomen in a row and can lower the

value of its bid on the �rst man in hopes of winning at a discount,

given the �uctuations in the other advertisers’ bids. We call this

underbidding, although we emphasize that it is underbidding with

respect to its immediate reward, not with respect to what is overall

rational. Underbidding e�ectively allows the advertiser 𝑖 to skip

the �rst auction if the variance in the other advertisers’ bids pro-

duces a high competing bid. This is similar to how underbidding is

optimal in some repeated second-price auctions with a constrained

budget [12]. The degree of underbidding must balance the chance

of getting a male slot at a discount with the risk of either losing

both auctions or getting a female slot for the second auction.

The opposite, overbidding, can also occur. To see this, consider

a series of three auctions with a woman followed by two men. In

this case, the advertiser 𝑖 can win both men, despite the 1-parity

constraint, provided that it �rst wins the woman. Thus, winning the

woman produces not just an immediate reward, but also a future

reward by unlocking the ability to win more men. If we presume
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negligible variance in the other bids, the advertiser 𝑖 will have to

bid 22 to win the woman and pay the second price of 21, yielding

an immediate reward of −1 by bidding 1 over the the advertiser’s

inherent value of 20 for the female ad slot. Since the immediate

reward of a male slot is 20 − 5 = 15, being able to win the second

man means a net positive gain of 15− 1 = 14. (We ignore the e�ects

of underbidding since we are now considering negligible variance

in the other advertiser’s bids, which makes the e�ect go away.)

We �nd this distinction between the immediate reward and the

future rewards coming from future �exibility useful for determining

the optimal bidding strategy. However, doing so requires not only

making the above intuitions quantitative, but also dealing with

additional probabilistic factors, such as the genders of ad slots

not being known in advance and the uncertain duration of the

auction sequence. To overcome these di�culties, we switch to a

more systematic model for each type of constraint.

5 ABSOLUTE PARITY CONSTRAINTS
To make absolute constraints precise, let Γ denote a set of groups.

We are typically interested in the case where Γ = {m,w} with m
denoting men and w women. We use 𝑝 to denote the probability of

a male ad slot (i.e., 𝑝m
𝑖
). We use 𝑛

𝛾

𝑖
to denote the number ad slots

for people in group 𝛾 won by the constrained advertiser 𝑖 .

Definition 1 (𝐾-parity). An advertiser 𝑖 obeys a 𝐾-strict abso-
lute parity constraint, or 𝐾-parity for short, for a set of groups Γ i�,
after each auction, for all groups 𝛾 and 𝛾 ′ in Γ, the number of auctions
that it wins satis�es 𝑛𝛾

𝑖
− 𝑛𝛾

′

𝑖
≤ 𝐾 .

The constraint is strict by requiring that approximate parity holds

at all times with certainty and not merely with high probability.

We study approximating the optimal bidding stagy that an ad-

vertiser desiring to meet a 𝐾-parity constraint can use to do so. In

our analysis, we assume all of the advertisers have an unlimited

budget. Thus, they can bid on all auctions in its lifespan, unless

maintaining the 𝐾-parity constraint precludes it.

5.1 Modeling
To �nd the optimal bidding strategy for an advertiser subject to 𝐾-

parity, we model the problem as a Markov Decision Problem (MDP).

The obvious state space for such an MDP would have states of the

form 〈𝑛m
𝑖
, 𝑛w
𝑖
, 𝜃〉, where 𝑛m

𝑖
and 𝑛w

𝑖
is the current number male

and female slots won, respectively, and 𝜃 is the type of the ad slot

currently being auctioned o�, which we presume corresponds to a

gender. (𝜃 could be generalized to allow targeting toward certain

men and women.) Observing that only 𝑛m
𝑖
−𝑛w

𝑖
matters, we instead

use a smaller space of (2𝐾 +1) ∗ |Θ| states. We denote each state by a

tuple 〈𝑘, 𝜃〉, where 𝑘 is the di�erence between male and female slots

won. When the advertiser wins an ad slot for a male viewer, the

advertiser goes from state 𝑘 to 𝑘 + 1; for a female, it goes from 𝑘 to

𝑘 − 1. The value of the 𝜃 is decided by a random process depending

upon the value of 𝑝 , where 𝑝 is probability of the viewer being

male.

To �nd the optimal solution, we write the Bellman equation for

the MDP in the steady state. Since we consider the steady state

regime, we also replace the value of each ad slot by its expected

value (i.e., 𝑣𝜃
𝑖
). The value function for each state except for the two

states 〈𝐾,m〉 and 〈−𝐾,w〉 has two parts: a reward function 𝑅 that

indicates the immediate reward of taking action 𝑏𝑖 and 𝑁 that is

the future value the advertiser gets by doing that action. We write

the value functions as follows:

𝑉 (𝑘, 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑅𝜃 (𝑏𝑖 ;𝑔𝜃𝑖 ) + 𝛿𝑁

𝜃 (𝑏𝑖 , 𝑘 ;𝑔𝑖 )
}︂

(3)

𝑅w (𝑏𝑖 ;𝑔w𝑖 ) and 𝑅
m (𝑏𝑖 ;𝑔m𝑖 ) show the reward value that advertiser 𝑖

will receive if it wins an ad slot auction viewed by female or male:

𝑅𝜃 (𝑏𝑖 ;𝑔𝜃𝑖 ) = 𝑞(𝑏𝑖 ;𝑔
𝜃
𝑖 ) (𝑣

𝜃
𝑖 − 𝑑

𝜃
𝑖 ) (4)

𝑁𝜃 (𝑏𝑖 , 𝑘 ;𝑔𝑖 ), the future value that advertiser 𝑖 gets by bidding 𝑏𝑖
at state 〈𝑘, 𝜃〉, consists of two parts. The �rst part 𝑁𝜃win is the value

that the advertiser gets if it wins while the second part 𝑁𝜃lose is the

value when it loses. We treat 𝑔𝑖 as providing both 𝑔
m
𝑖

and 𝑔w
𝑖
.

𝑁𝜃 (𝑏𝑖 , 𝑘 ;𝑔𝑖 ) = 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ 𝑁
𝜃
win (𝑘 ;𝑔𝑖 ) + (1 − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )) ∗ 𝑁

𝜃
lose (𝑘 ;𝑔𝑖 )

with

𝑁m
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 + 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 + 1,w;𝑔𝑖 )

𝑁w
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 − 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 − 1,w;𝑔𝑖 )

𝑁𝜃lose (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )
As for the two edge cases, their values are solely determined by the

values of their successor states since the advertiser cannot win the

current auction:

𝑉 (𝐾,m;𝑔𝑖 ) = 𝛿 ∗ (𝑝𝑉 (𝐾,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝐾,w;𝑔𝑖 ))
𝑉 (−𝐾,w;𝑔𝑖 ) = 𝛿 ∗ (𝑝𝑉 (−𝐾,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (−𝐾,w;𝑔𝑖 ))

5.2 Computing Optimal Bidding Strategies
Computing 𝑉 with an MDP solver, such as value iteration, is com-

plicated by the bid space being continuous. Computing 𝑉 for a

discretization of this space will require a �ne discretization to avoid

rounding errors, which will mean slow convergence. Using numer-

ical optimization methods is complicated by 𝑉 not being a linear

function in 𝑏𝑖 . To avoid these complexities, we instead rewrite𝑉 in

a form that can be solved without any optimization.

To identify the optimal bidding strategy, we observe that the two

edge cases do not involve a decision and the strategy of bidding 0

is forced for them. We also observe that for the remaining states

the valuation function (3) includes many terms that do not change

under various bidding strategies. We collect these constants into

a term Λ𝑖 , which we can ignore while optimizing the strategy.

We replace 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑑
𝑡
𝑖
by 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ), the estimated cost of each ad

slot. The remainder of the valuation function provides the conjoint
valuation function Φ𝜃

𝑖
, a decomposition previously used by Iyer

et al. [13, 14]. Our Lemma 1 in Appendix A [21] shows that

𝑉 (𝑘, 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 ) + Λ𝑖 (𝑘 ;𝑔𝑖 )

}︂
= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑘 ;𝑔𝑖 ) (5)

where

Λ𝑖 (𝑘 ;𝑔m𝑖 , 𝑔
w
𝑖 ) = 𝛿 (𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 ))

The conjoint valuation Φ represents the reward for winning, both

immediate and long-term, which is why it is multiplied by the
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ALGORITHM 1: Iterative approach to �nd𝑉

Input: 𝐾,𝑔𝑖 , 𝛼, 𝑣𝑚, 𝑣𝑤 , 𝜖
Initialize𝑉 [−𝐾 : 𝐾,m] ← 𝑣𝑚+𝑣𝑤

2
;𝑉 [−𝐾 : 𝐾,w] ← 𝑣𝑚+𝑣𝑤

2

repeat
Δ← 0

for 𝑘 in {−𝐾, . . . , 𝐾 } do
for 𝜃 in {m,w} do

𝑉 ′ [𝑘, 𝜃 ] ← 𝑅𝜃 (Φ𝜃 (𝑘) ;𝑔𝜃
𝑖
) + 𝛿𝑁𝜃 (Φ𝜃 (𝑘), 𝑘 ;𝑔𝑖 )

Δ← max(Δ, |𝑉 ′ [𝑘, 𝜃 ] −𝑉 [𝑘, 𝜃 ] |)
end

end
𝑉 ← 𝑉 ′

until Δ < 𝜖

probability of winning 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ). The expected cost of winning

𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) is subtracted from this product. Φ breaks down along the

lines of winning and losing cases, as 𝑁 did:

Φ𝜃 (𝑘 ;𝑔𝑖 ) = 𝑣𝜃𝑖 + 𝛿 (Φ
𝜃
win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )) (6)

where

Φm
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 + 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 + 1,w;𝑔𝑖 )

Φw
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 − 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 − 1,w;𝑔𝑖 )

Φ𝜃lose (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )

The term 𝑣𝜃
𝑖
represents the immediate value of winning the ad slot.

The reminder considers the gain that the advertiser gets from the

future by winning (moving to a new state) or losing (staying put).

The di�erence between future rewards for winning and those for

losing corresponds to the amount of overbidding (or underbidding)

called for, which explains the subtraction in (6).

The following theorem shows the use of this decomposition.

Theorem 1. For all 𝐾 , 𝑖 , 𝑔𝑖 , and states 〈𝑘, 𝜃〉 other than the edge
cases 〈𝐾,m〉 and 〈−𝐾,w〉, the optimal bid for 𝑖 subject to 𝐾-parity
under the distribution 𝑔𝑖 at the state 〈𝑘, 𝜃〉 is Φ𝜃𝑖 (𝑘 ;𝑔𝑖 ).

The proof is in Appendix B [21].

This theorem means that we do not need to search the space

of possible bid values to �nd the optimal bid. Rather, we can just

compute the optimal bid using Φ. While Φ depends upon the value

function 𝑉 , we can recursively make use of this fact to compute 𝑉

without such a search either. In particular, the theorem implies that

𝑉 (𝑘, 𝜃 ;𝑔𝑖 ) = 𝑅𝜃 (Φ𝜃𝑖 (𝑘 ;𝑔𝑖 );𝑔
𝜃
𝑖 ) + 𝛿𝑁

𝜃 (Φ𝜃𝑖 (𝑘 ;𝑔𝑖 ), 𝑘 ;𝑔𝑖 )
However, this equation is still not a closed-form solution. Thus,

Algorithm 1 does this calculation iteratively to converge to the

states’ values. Although, showing the convergence in general is

an open problem, as discussed in Section 7, our experiments �nd

convergence within a reasonable tolerance within a feasible number

of iterations.

To use our approach, an advertiser (or DSP) runs Algorithm 1 to

compute the value function𝑉 and stores it as a look-up table. Then,

for each new ad auction, the advertiser �rst checks if it winning

the auction would violate the parity constraint. If so, it will not

participate in the auction (i.e., bids zero). Otherwise, The advertiser

bids the value of Φ𝜃
𝑖
(𝑘 ;𝑔𝑖 ), which can be easily computed from

value functions.

6 RATIO CONSTRAINTS
While constraints on the di�erence between the number of ads

shown to each gender are intuitive, the EEOC’s four-�fths rule

found in US regulations against disparate impact in employment

instead focuses on a ratio [9]. The ratio considered is not simply

between the number of ads shown to each gender. Rather, it ac-

knowledges that parity can be unrealistic due to having di�ering

numbers of male and female applicants. It adjusts for that factor by

comparing the fraction of female applicants receiving a job o�er to

the fraction male applicants receiving a job o�er. It requires that

this ratio of ratios be between 5/4 and 4/5. We provide a similar

constraint that compares two ratios, checking whether the fraction

of female ad slots won is within a factor of 𝑟 to the fraction of male

ad slots won.

Strictly enforcing such a check creates problems when the num-

ber of slots seen so far is small since the fractions won may be

very far apart even when the number of ads shown to each gender

only di�ers by 1. To avoid this issue, we also allow an additive

di�erence in the number of ads show to each gender. The resulting

rule may be viewed as a hybrid between a pure ratio constraint and

the absolute constraint we have already presented.

We use similar notation as in Section 5.1 to express this constraint

in a manner that avoids division by zero.

Definition 2 ((𝑟, 𝐾)-ratio). An advertiser obeys a (𝑟, 𝐾)-strict
relative constraint, or (𝑟, 𝐾)-ratio constraint for short, for groups
Γ i�, after each auction, for all groups 𝛾 and 𝛾 ′ in Γ, the number of
auctions that it wins satis�es 𝑟𝑝𝛾𝑛𝛾 ′ ≤ 𝑝𝛾 ′𝑛𝛾 + 𝐾 where 𝑝𝛾 and 𝑝𝛾 ′
are the probability of seeing slots for groups 𝛾 and 𝛾 ′, respectively.

6.1 Modeling
Similar to the 𝐾-parity constraint, we limit ourselves to the case

where Γ and Θ only contain two types, which we treat as male and

female. We use 𝑝 as the probability of a male. We denote each state

by a triplet 〈𝑛m
𝑖
, 𝑛w
𝑖
, 𝜃〉, where 𝑛m

𝑖
and 𝑛w

𝑖
is the current number

male and female slots won, respectively.

While we reuse the immediate reward function 𝑅𝜃 from (4), we

rewrite the value function 𝑉 and future value function 𝑁 . When

winning the slot would not violate the constraint,

𝑉 (𝑛m𝑖 , 𝑛
w
𝑖 , 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑅𝜃 (𝑏𝑖 ;𝑔𝜃𝑖 ) + 𝛿𝑁

𝜃 (𝑏𝑖 , 𝑛m𝑖 , 𝑛
w
𝑖 ;𝑔𝑖 )

}︂
When o�ered amale that may not be won because 𝑟 (1−𝑝) (𝑛m

𝑖
+1) >

𝑝𝑛w
𝑖
+ 𝐾 where 𝑛m

𝑖
is the current number of males won,

𝑉 (𝑛m𝑖 , 𝑛
w
𝑖 ,m;𝑔𝑖 ) = 𝛿

(︁
𝑝𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,w;𝑔𝑖 )

)︁
When a female may not be won since 𝑟𝑝 (𝑛w

𝑖
+ 1) > (1 − 𝑝)𝑛m

𝑖
+ 𝐾 ,

𝑉 (𝑛m𝑖 , 𝑛
w
𝑖 ,w;𝑔𝑖 ) = 𝛿

(︁
𝑝𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,w;𝑔𝑖 )

)︁
We call these two cases edge cases.

We set the future value 𝑁𝜃 (𝑏𝑖 , 𝑛m𝑖 , 𝑛
w
𝑖
;𝑔𝑖 ) at

𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ 𝑁
𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) + (1 − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )) ∗ 𝑁

𝜃
lose (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

with

𝑁m
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 +1, 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 +1, 𝑛

w
𝑖 ,w;𝑔𝑖 )

𝑁w
win (𝑛

m
𝑖 , 𝑛

m
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 +1,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 +1,w;𝑔𝑖 )

𝑁𝜃lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,w;𝑔𝑖 )
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ALGORITHM 2: Iterative approach to �nd𝑉

Input: 𝑟, 𝐾, 𝑝, 𝑔𝑖 , 𝛼, 𝑣𝑚, 𝑣𝑤 , 𝜖,𝑀
Initialize𝑉 [0 : 𝑀, 0 : 𝑟 (1−𝑝 )

𝑝
𝑀 +𝐾,m] ← 𝑣𝑚+𝑣𝑤

2
;

𝑉 [0 : 𝑀, 0 : 𝑟 (1−𝑝 )
𝑝

𝑀 +𝐾,w] ← 𝑣𝑚+𝑣𝑤
2

repeat
Δ← 0

for 𝑛m
𝑖
in {0, . . . , 𝑀 } do

for 𝑛w
𝑖
in {0, . . . , 𝑟 (1−𝑝 )

𝑝
𝑀 +𝐾 } do

for 𝜃 in {m,w} do
𝑉 ′ [𝑛m

𝑖
, 𝑛w

𝑖
, 𝜃 ] ← 𝑅𝜃 (Φ𝜃 (𝑛m

𝑖
, 𝑛w

𝑖
) ;𝑔𝜃

𝑖
) +

𝛿𝑁𝜃 (Φ𝜃 (𝑛m
𝑖
, 𝑛w

𝑖
), 𝑛m

𝑖
, 𝑛w

𝑖
;𝑔𝑖 )

Δ← max(Δ, |𝑉 ′ [𝑛m
𝑖
, 𝑛w

𝑖
, 𝜃 ] −𝑉 [𝑛m

𝑖
, 𝑛w

𝑖
, 𝜃 ] |)

end
end

end
𝑉 ← 𝑉 ′

until Δ < 𝜖

6.2 Computing Optimal Bidding Strategies
We use a similar approach as in Section 5.2 to �nd optimal strate-

gies. As before, we force the strategy to bid zero when winning

would violate the constraint and do not include these cases in the

optimization. As justi�ed in Appendix C [21], we rewrite the value

𝑉 (𝑛m
𝑖
, 𝑛w
𝑖
, 𝜃 ;𝑔𝑖 ) as

max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑛m𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) (7)

where

Λ𝑖 (𝑛m𝑖 , 𝑛
w
𝑖 ;𝑔

m
𝑖 , 𝑔

w
𝑖 ) = 𝛿 (𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,w;𝑔𝑖 ))

and

Φ𝜃 (𝑛m𝑖 , 𝑛
w
𝑖 ;𝑔𝑖 ) = 𝑣

𝜃
𝑖 + 𝛿 (Φ

𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ))

where

Φm
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 +1, 𝑛

w
𝑖 ,m, ;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛

m
𝑖 +1, 𝑛

w
𝑖 ,w;𝑔𝑖 )

Φw
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 +1,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 +1,w;𝑔𝑖 )

Φ𝜃lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 ,w;𝑔𝑖 )

Theorem 2. For all 𝑟 , 𝐾 , 𝑖 , 𝑔𝑖 , and states 〈𝑛m𝑖 , 𝑛
w
𝑖
, 𝜃〉 other than

the edge cases, the optimal bid for 𝑖 subject to (𝑟, 𝐾)-ratio parity under
the distribution 𝑔𝑖 at the state 〈𝑛m𝑖 , 𝑛

w
𝑖
, 𝜃〉 is Φ𝜃

𝑖
(𝑛m
𝑖
, 𝑛w
𝑖
;𝑔𝑖 ).

The proof is similar to that of Theorem 1.

This theorem eliminates the need for searching the space of

possible bids at each state to �nd the optimal one. Whereas we

could bound the state space for 𝐾-parity by tracking the di�erence

𝑘 instead of the actual numbers of male and female ad slots won, we

cannot similarly bound the state space for the (𝑟, 𝐾)-ratio constraint.
In practice, however, each advertiser either has a limited budget or

is advertising for a limited time allowing us to estimate a �nite set

of reachable states. We use𝑀 to indicate estimated the maximum

number of male ad slots won. Algorithm 2 computes the value of

each state reachable assuming that𝑀 is not surpassed.

An advertiser using our approach, does so in the same manner

as with our approach to parity constraints. That is, it �rst runs

Algorithm 2 and stores𝑉 as a look-up table. It skips auctions when

winning would violate the constraint and otherwise bids Φ𝜃
𝑖
(𝑘 ;𝑔𝑖 ),

computed from 𝑉 .

We can extend this approach to recover if the advertiser underes-

timates𝑀 . In this case, the advertiser can use a linear approximation

to estimate the optimal bid. To do so, let 𝜌 =
𝑛w
𝑖

𝑛m
𝑖
(𝑀 − 1). If 𝜌 is

an integer value, then the advertiser bids Φ𝜃 (𝜌,𝑀 − 1). Otherwise,
the advertiser bids Φ𝜃 (b𝜌c, 𝑀 − 1) + (𝜌 − b𝜌c) ∗ (Φ𝜃 (d𝜌e, 𝑛m

𝑖
) −

Φ𝜃 (b𝜌c, 𝑛m
𝑖
)).

7 EXPERIMENTS
We simulate various scenarios to show the feasibility of our method

and to measure the impact of our fairness constraints on utility. To

do so, we implemented a second-price auction simulator in Python,

where each advertiser gets the gender of the website viewer before

selecting its bid and participating in the ad slot auction. To simulate

the viewer, we draw their genders independent and identically from

a binomial distribution with probability 𝑝 where 𝑝 is the probability

of the viewer be male.

We focus on one advertiser 𝑖 and measure how its utility changes

when it has either a fairness constraint or not. When having a fair-

ness constraint, it uses our bidding strategy, with 𝛿 set to 0.999

(unless otherwise noted) and 𝜖 set to 0.001. When not, it bids its

immediate value 𝑣𝑡
𝑖
for the ad slot 𝑡 , as is rational for an uncon-

strained second-price auction. We assume that the other advertisers

are unconstrained and they always bid their immediate values.

To obtain distributions over ad values, we used both a real dataset,

the Yahoo! A1 Search Marketing Advertiser Bidding Dataset, and a

simulated one. Since the Yahoo! A1 data does not have exact times-

tamps, we could not use it to estimate the number of advertisers

(i.e., 𝛼) for each ad auction. To estimate 𝛼 , we visited top websites,

according to https://www.alexa.com/topsites, that have ads using

header bidding [23]. For one month (June 2019), we collected how

many advertisers bid on a speci�c ad slot. In our observations of

these sites, we never saw more than 10 advertisers bid on an ad

slot. In line with this observation, we assume that there are 𝛼 = 10

advertisers bidding for each ad slot.

7.1 Real Dataset
The Yahoo! A1 Search Marketing Advertiser Bidding Dataset con-

tains anonymized bids of advertisers participating in Yahoo! Search

Marketing auctions for the top 1000 search queries from June 15,

2002, to June 14, 2003. The dataset includes 18 millions bids from

more than 10,000 advertisers, but without the exact timestamps or

information about the ad viewer. Each record in this dataset indi-

cates a course timestamp with 15 minutes precision, the advertiser,

the keyword, and the bid.

In our analysis, we assumed bids have a stationary distribution.

We evaluate this assumption on our dataset. We use a speci�c

keyword (keyword number 2) and we gathered all of bids from

di�erent advertisers in four days period (starting 2/15/2003). Then,

we compute the empirical distribution of the bids of the �rst two

days and the second two days. Figure 2 presents the distribution of

the bids for these periods, showing that the distributions are very

similar in both periods, supporting our stationarity assumption.

https://www.alexa.com/topsites
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Figure 2: Distribution of the bids for two di�erent periods.
The distributions are similar in both periodswhich supports
the assumption that bids distribution are stationary.

The �gure also shows that the bids follow a log-normal distribution,

in line with the �ndings of Balseiro et al. [1].

We enforce a separate parity constraint on each keyword in the

dataset to ensure that they each get roughly equal numbers of male

and female viewers. Each keyword has a di�erent bid value distri-

bution and we have our simulated constrained advertiser model

each keyword with a separate MDP to compute the optimal bid-

ding strategy for each. We assume that the constrained advertiser

updates its model parameters every two days.

As mentioned, the Yahoo A1 dataset does not contain the exact

timestamps. Therefore, we cannot exactly determine which adver-

tisers participated in any single ad auction. We randomly select a

set of advertisers’ bids from each 15-minute interval for each of our

ad auctions. Since the dataset does not include information about

the viewers, we sample the bids for both female and male viewers

from the same set of bid values, making their values equal.

Figures 3(a), 3(b), and 3(c) show the total utility ratio of the

𝐾-parity and (𝑟, 𝐾)-ratio versions to the unconstrained version

of the advertiser 𝑖 for various values of 𝐾 , 𝑟 , and 𝑝 on Yahoo A1

bid dataset. Here, and in the other simulations, we compute this

ratio by simulating constrained and unconstrained versions of the

advertiser 𝑖 , using the same draw of values across the two versions.

We do this 100 times, computing the average of total utilities𝑈𝑖 for

each version. We then plot the ratio of these two averages. Since

the value of ad slots for both female and male viewers are equal,

the total utility of an unconstrained advertiser will not change for

di�erent values of 𝑝 . On the other hand, a constrained advertiser

will get di�erent utilities based on the distribution of the men and

women viewers. 𝐾-parity and (𝑟, 𝐾)-ratio constraints are harder

to achieve for extreme values of 𝑝 . Turning to the e�ects of 𝐾 ,

the results show that when 𝐾 is large, the 𝐾-parity advertiser can

reach the utility of the unconstrained advertiser. Also by relaxing

𝑟 , (𝑟, 𝐾)-ratio advertiser achieves higher utility.

To show the bene�t of our approach compared to simply bid-

ding immediate values, we compare the utility ratio across both

Table 1: Parameters for the log-normal distribution used in
the modeling the bids in the ad slot auctions. 𝜎2 is always
0.7.

Scenario name Others Advertiser 𝑖

𝜇m−𝑖 𝜇w−𝑖 𝜇m
𝑖

𝜇w
𝑖

Equal price - Female valuable -2.8 -2.8 -3.5 -2.4

Expensive female - Equal value -3.5 -2.4 -2.8 -2.8

approaches. Figures 3(d) and 3(e) show that our bidding strategy

allows the advertiser to achieve a higher utility ratio. We note that

the di�erence in these utility ratios is muted by assuming that each

gender is equally valuable to the advertiser. This assumption comes

from the real dataset not showing which ad slots are for men and

which are for women. We avoid this limitation when we use our

synthetic data.

7.2 Synthetic Data
We use a synthetic dataset to explore how changing their relative

values of men and women a�ects the advertiser’s utility. We gener-

ate two synthetic datasets using a log-normal distribution to sample

the advertisers bids. Table 1 shows the model parameter settings

used for the two scenarios.

To show the e�ect of assigning di�erent values to men and

women, consider an advertiser that gives more value to female slots

than to male ones, as shown in the Equal price - Female valuable
scenario. Figure 4(a) shows the utility ratio for the 𝐾-parity and

unconstrained versions of the advertiser in this scenario. The 𝐾-

parity version has its maximum utility ratio when there are more

male than female slots. This may seem counterintuitive since the

advertiser values females more, but the measured ratio re�ects

that an abundance of males means that the 𝐾-parity version will

not have to operate much di�erently from the unconstrained one.

This is due to their abundance making overbidding less needed,

decreasing the 𝐾-parity version’s costs. Figures 4(b) and 4(c) show

similar results for the (𝑟, 𝐾)-ratio constraint.

Lambrecht et al. [18] empirically showed that ad slots for young

women are more expensive. To simulate this setting, we consid-

ered a scenario in which the other advertisers prefer females (i.e.,

𝑔w
𝑗
(𝑥) ≤ 𝑔m

𝑗
(𝑥) for all 𝑗 ≠ 𝑖 and 𝑥 ). We used the Expensive female -

Equal value parameter settings for this scenario. We have advertiser

𝑖 value both types equally, at the average of the two di�erent values

used by the other advertisers. Figure 4(d) plots the total utility ratio

as before (solid line). Note that as women become rare, the 𝐾-parity

version struggles relative to the unconstrained one since the other

advertisers snap up the few women leaving the constrained version

unable to bid for men. The �gure also shows the total utility ratio

for a constrained version of the advertiser 𝑖 that uses the same sim-

ple bidding strategy as the unconstrained advertisers (dashed line).

Note that ratio is lower than with our optimal bidding strategy,

showing its value. This di�erence comes from our optimal bidding

strategy overbidding for the female viewers, delaying the afore-

mentioned e�ect. Figure 4(e) shows that under the ratio constraint,

which is less strict, the optimal strategy can do even better.
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Figure 3: Experimental results for Yahoo A1 bidding dataset

Figures 4(f) and 4(g) further explore overbidding using a variation

on the Expensive female - Equal value scenario. Rather than keep the
value that the advertiser 𝑖 assigns to males �xed at 𝜇m

𝑖
= −2.5, we

vary it to see the e�ect on overbidding. Rather than plot 𝜇m
𝑖

itself,

we plot the ratio of 𝜇m
𝑖

to the value assigned to males by the other

advertisers. Figure 4(f) shows this value ratio by using various lines.

Overbidding is not needed when the ratio is 1 since the advertiser 𝑖

can outbid the other advertisers without surpassing its immediate

reward. For ratios above 1, as the rate 𝑝 of male viewers increases,

the optimal 𝐾-parity advertiser will increase its overbidding on the

female viewers since they become more scarce. Figure 4(g) shows

that as 𝜇m
𝑖

(and, thus, the male value ratio of advertiser 𝑖 to the

other advertisers) increases, the overbidding for females increases.

Figure 4(h) plots the utility ratio as the value of the rate 𝛿 at

which the advertiser 𝑖 will leave the ad network changes. Rather

than plot 𝛿 directly, it plots the expected lifespan of the advertiser

computed from 𝛿 . It shows that for short lived advertisers, 𝐾-parity

has no e�ect since the advertiser is unlikely to reach 𝐾 wins for

either gender. However, the constraint rapidly has an e�ect as the

advertiser lives long enough to win this number of slots.

Ad Exchange Revenue. Also important is how our strategy im-

pacts the revenue of the ad exchange. We explored the ratio of the

ad exchange’s revenue when there is one constrained advertisers

for each ad slot auction to the case where all advertisers are un-

constrained for all of our scenarios (for both the real and synthetic

datasets). In most cases, the ad exchange revenue did not decrease

at all. The worst case happens for a (1.0, 1)-ratio constrained adver-
tiser on the Yahoo! A1 data, where the ratio of revenues is 0.993. The

ad exchange can avoid this worst case by having lower bounds on

𝐾 and 𝑟 . Therefore, implementing this feature will not signi�cantly

reduce the ad exchange’s revenue.

In fact, supporting constraints may raise the ad exchange’s rev-

enues. Our observations show constrained advertisers often over-

bid, which increases the exchange’s revenue. Figure 5 compares

the revenue of the exchange for various numbers of constrained

advertisers (𝜌) using the Yahoo! A1 dataset. As expected, by in-

creasing the number of constrained advertisers, the the revenue of

ad exchange’s increases above a ratio of 1 with the revenue from

having only unconstrained advertisers.

Performance. Algorithms 1 and 2, each of which only has to run

once for each parameter setting, completed in under 2 minutes and

under 10 minutes, respectively. Calculating bids during auctions,

each took the 2 microseconds. We used a 2013 MacBook Pro with a

2.3 GHz Intel Core i7 and 16GB of 1600MHz DDR3 memory.

8 DEPLOYMENT
We envision two ways in which advertisers could use our bidding

strategy. First, ad exchanges can implement it for them as a feature

in the ad buying interface. Such exchanges could use the data it

has to determine the demographics of individuals viewing ad slots

and adjust bids accordingly. While this would require a change to
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Figure 4: Experimental results for synthetic datasets

the ad exchange, it would not require modifying the core auction

mechanism, making it a more straightforward feature to add.

Second, the strategy could be used either directly by the adver-

tiser or o�ered to them by demand-side platforms as a feature. This

approach does not require any changes to the ad exchange. It has

the disadvantage of only working for ad exchanges that support

real-time bidding and programmatic advertising with rich enough

data to infer the group membership of the people viewing ad slots.

Additionally, such rich data can pose privacy concerns.

We believe that either of these approaches to deployment would

be more straightforward than any way of deploying an auction

mechanism that enforces parity constraints [5] or Guaranteed ad

Delivery (GD) [22, 26]. Only the ad exchange would be able to im-

plement such functionality. Presumably, ad exchanges have already

selected the auction mechanism that they believe would be best

for their business and would be reluctant to change it in a way

that could have wide-ranging e�ects. Given that Google uses a

generalization of second-price auctions [10], it may believe that the
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Figure 5: Ratio of the ad revenue with constrained advertis-
ers and without for various numbers of advertisers subject
to a (0.8, 5)-ratio constraint, computed with the Yahoo A1
dataset.

theoretical result that second-price auctions are optimal in certain

settings has some bearing on its setting. Thus, it may believe that

any change to its auction mechanism is likely to reduce its prof-

its, a strong disincentive. We believe that ad exchanges would be

more willing to implement a change that instead only alters the

bids of advertisers who opt in since it would be equivalent to one

that advertisers could already implement unilaterally by altering

their bids. Furthermore, since our approach changes just opted-in

advertisers’ bids, there is a sense in which they pay for it.

We believe that our approach is computationally feasible. In

some cases, an advertiser may have to solve more than one MDP.

For example, the advertiser may wish to enforce a separate par-

ity constraint for two di�erent webpages whose ad slots di�er in

characteristics included in the MDP. The advertiser will have to

solve an MDP for each ad campaign targeting a di�erent type of ad

auction, with its own expected values, bid distributions, and parity

constraints. Given modern approaches to solving large MDPs [24]

and the ability to rent cloud computing resources, we believe that

advertisers sophisticated enough to model a large number of di�er-

ent auction types will be able to solve them as well. Once solved,

the advertiser can reuse the solution for every instance of the auc-

tion type. Thus, addressing each incoming bid request from the ad

exchange takes little more than a table lookup.

9 EXTENSIONS AND FUTUREWORK
Our model of ad exchanges does not include that advertisers often

pay exchanges more when the viewer clicks on an ad. Thus, the

expected value 𝑣𝑖 and cost 𝑐𝑖 of a slot depends upon not just the bid

prices but also the �t of the ad for the slot, which can be estimated

with online tracking and machine learning. It may seem that these

changes will have to be linked since a clicked ad both increases the

value and cost, but by the linearity of expectations, we can consider

the average of each. This changes the reward on the transitions

in the MDP, but not structure of the MDP (the state space and

the transition relation). Therefore, an advertiser can still use our

approach to �nd optimal bids.

We used a simple model in which the expected value of each

female slot is equal to the others, and the expected value of each

male slot is equal to the others. Advertisers can use online tracking,

machine learning, and other techniques to compute more �ne-

grained estimations of slot values. We can accommodate such �ne-

grained modeling by increasing the size of the set Θ of types, which

will increase the size of state space.

Future work could accommodate constraints for non-binary sen-

sitive attributes, such as age and location (a proxy for race, which is

apparently not explicitly tracked by any ad exchange), leading to a

larger set Γ of protected groups. Multiple simultaneous constraints

can lead to having multiple Γ. Although our MDPs can be extended

to such cases using a cross-product-like construction, the MDP size

will be exponential in the number of constraints and their values,

motivating more signi�cant theoretical future work. Nevertheless,

we suspect that the limited number of protected attributes tracked

by ad exchanges, fast MDP solvers [24], and cloud computing will

make our approach fast enough in practice.

The constraints we explore are very strict in that they must

hold at all times, as opposed to holding with high probability or

asymptotically, which might be acceptable in some settings. In

related problems, parity may only be required at the end of certain

checkpoints, such as at the end of a hiring season. Exploring such

relaxations can be future work.

Our work is an example of the tension between not using pro-

tected attributes and avoiding disparity in outcomes. Our ratio

constraint avoids disparity in outcomes and is based on the four-

�fths rule found in U.S. antidiscrimination rules around disparate

impact [9]. However, that rule is with respect to employment prac-

tices that are, on their face, neutral toward protected groups. Our

constraints explicitly use protected attributes to enforce strict quo-

tas. In some cases, “Quotas are expressly forbidden” by U.S. reg-

ulations [11]. Resolving this tension between competing antidis-

crimination goals is tricky (see, e.g., [20]). An analysis of when our

approach would be legal would be context and country speci�c and

beyond the scope of this work. However, we will mention that, in

some cases, U.S. antidiscrimination laws would not apply, such as

to private clubs [17]. In such cases, the advertiser may be guided

by its ethics to use our approach to avoid disparity in outcomes.

10 CONCLUSION
Adding parity constraints results in a surprisingly complex bidding

problem, exhibiting both over- and underbidding relative to the

advertiser’s immediate value of an ad slot. Despite this complexity,

we show a practical way of computing optimal bids, to within a

small approximation factor 𝜖 . This enables us to characterize how

the cost of parity depends upon not just its level of strictness 𝐾 or

𝑟 , but also the base rate 𝑝 of types, their relative values to both the

governed advertiser 𝑖 and to other advertisers, and the lifespan (or

discounting factor) 𝛿 , in sometimes counterintuitive ways.
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A CONJOINT VALUATION FOR ABSOLUTE PARITY CONSTRAINTS
The following lemma justi�es Equation (5).

Lemma 1. For all 𝐾 and 𝑔𝑖 , and for all states 〈𝑘, 𝜃〉 other than the edge cases 〈𝐾,m〉 and 〈−𝐾,w〉,

𝑉 (𝑘, 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑘 ;𝑔𝑖 )

Proof. First note that

𝑁𝜃win (𝑘 ;𝑔𝑖 ) = Φ𝜃win (𝑘 ;𝑔𝑖 ) (8)

since

𝑁m
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 + 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 + 1,w;𝑔𝑖 ) = Φm

win (𝑘 ;𝑔𝑖 )
and

𝑁w
win (𝑘 ;𝑔𝑖 ) = 𝑝𝑉 (𝑘 − 1,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘 − 1,w;𝑔𝑖 ) = Φw

win (𝑘 ;𝑔𝑖 )
Thus,

𝑁𝜃 (𝑏𝑖 , 𝑘 ;𝑔𝑖 ) = 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑁
𝜃
win (𝑘 ;𝑔𝑖 ) + (1 − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )) ∗ 𝑁

𝜃
lose (𝑘 ;𝑔𝑖 ) (9)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ
𝜃
win (𝑘 ;𝑔𝑖 ) + (1 − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )) [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )] (10)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ
𝜃
win (𝑘 ;𝑔𝑖 ) − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 ) [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )] + [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )] (11)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )
(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )]

)︂
+ [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )] (12)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )
(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂
+ [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )] (13)

where (10) follows from (8). Thus,

𝑉 (𝑘, 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑅𝜃 (𝑏𝑖 ;𝑔𝜃𝑖 ) + 𝛿𝑁

𝜃 (𝑏𝑖 , 𝑘 ;𝑔𝑖 )
}︂

(14)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ (𝑣

𝜃
𝑖 − 𝑑

𝜃
𝑖 ) + 𝛿

[︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )

(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂
+ [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )]

]︂ }︂
(15)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 − 𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )𝑑

𝜃
𝑖 + 𝛿𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂
+ 𝛿 [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )]

}︂
(16)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 ) + 𝛿𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂
+ 𝛿 [𝑝𝑉 (𝑘,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑘,w;𝑔𝑖 )]

}︂
(17)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 + 𝛿𝑞(𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂
− 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) + Λ𝑖 (𝑘 ;𝑔𝑖 )

}︂
(18)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )

[︂
𝑣𝜃𝑖 + 𝛿

(︂
Φ𝜃win (𝑘 ;𝑔𝑖 ) − Φ

𝜃
lose (𝑘 ;𝑔𝑖 )

)︂]︂
− 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) + Λ𝑖 (𝑘 ;𝑔𝑖 )

}︂
(19)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 ) + Λ𝑖 (𝑘 ;𝑔𝑖 )

}︂
(20)

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑘 ;𝑔𝑖 ) (21)

where (15) follows from (4) and (13). �

B PROOF OF THEOREM 1
The following lemma is based on Lemma C.1 of Iyer et al. [14, p. 28].

Lemma 2. For all 𝜙 and all functions ℎ : R → R that is continuous and non-decreasing, the function 𝑓 : R → R such that 𝑓𝜙 (𝑥) =

ℎ(𝑥) ∗ (𝜙 − 𝑥) +
∫ 𝑥
0
ℎ(𝑢) d𝑢 is maximized at 𝑥 = 𝜙 .

Proof. Consider any 𝜙 . Since, for all 𝑥 ,∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 = [ℎ(𝑥) ∗ 𝑢 +𝐶]𝜙𝑢=𝑥 For any constant 𝐶 (22)

= (ℎ(𝑥) ∗ 𝜙 +𝐶) − (𝑞(𝑥) ∗ 𝑥 +𝐶) For any constant 𝐶 (23)

= ℎ(𝑥) ∗ (𝜙 − 𝑥) (24)
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the following holds for all 𝑥

𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) =
[︃
ℎ(𝑥) ∗ (𝜙 − 𝑥) +

∫ 𝑥

0

ℎ(𝑢) d𝑢
]︃
−

[︄
ℎ(𝜙) ∗ (𝜙 − 𝜙) +

∫ 𝜙

0

ℎ(𝑢) d𝑢
]︄

(25)

= ℎ(𝑥) ∗ (𝜙 − 𝑥) +
∫ 𝑥

0

ℎ(𝑢) d𝑢 −
∫ 𝜙

0

ℎ(𝑢) d𝑢 (26)

=

∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 +
∫ 𝑥

0

ℎ(𝑢) d𝑢 −
∫ 𝜙

0

ℎ(𝑢) d𝑢 (27)

For all 𝑥 such that 𝜙 < 𝑥 , ∫ 𝑥

0

ℎ(𝑢) d𝑢 −
∫ 𝜙

0

ℎ(𝑢) d𝑢 =

∫ 𝑥

𝜙

ℎ(𝑢) d𝑢 (28)

and, thus,

𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) =
∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 +
∫ 𝑥

0

ℎ(𝑢) d𝑢 −
∫ 𝜙

0

ℎ(𝑢) d𝑢 (29)

=

∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 +
∫ 𝑥

𝜙

ℎ(𝑢) d𝑢 (30)

= −
∫ 𝑥

𝜙

ℎ(𝑥) d𝑢 +
∫ 𝑥

𝜙

ℎ(𝑢) d𝑢 (31)

=

∫ 𝑥

𝜙

ℎ(𝑢) − ℎ(𝑥) d𝑢 (32)

(33)

For all 𝑢 such that 𝜙 ≤ 𝑢 ≤ 𝑥 , ℎ(𝑢) ≤ ℎ(𝑥) since ℎ is a non-decreasing function. Thus, ℎ(𝑢) − ℎ(𝑥) ≤ 0 and

𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) =
∫ 𝑥

𝜙

ℎ(𝑢) − ℎ(𝑥) d𝑢 ≤ 0 (34)

For all 𝑥 such that 𝑥 < 𝜙 , ∫ 𝜙

0

ℎ(𝑢) d𝑢 −
∫ 𝑥

0

ℎ(𝑢) d𝑢 =

∫ 𝜙

𝑥

ℎ(𝑢) d𝑢 (35)

(36)

and, thus,

𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) =
∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 +
∫ 𝑥

0

ℎ(𝑢) d𝑢 −
∫ 𝜙

0

ℎ(𝑢) d𝑢 (37)

=

∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 −
(︄∫ 𝜙

0

ℎ(𝑢) d𝑢 −
∫ 𝑥

0

ℎ(𝑢) d𝑢
)︄

(38)

=

∫ 𝜙

𝑥

ℎ(𝑥) d𝑢 −
∫ 𝜙

𝑥

ℎ(𝑢) d𝑢 (39)

=

∫ 𝜙

𝑥

ℎ(𝑥) − ℎ(𝑢) d𝑢 (40)

For all 𝑢 such that 𝑥 ≤ 𝑢 ≤ 𝜙 , ℎ(𝑥) ≤ ℎ(𝑢) since ℎ is a non-decreasing function. Thus, ℎ(𝑥) − ℎ(𝑢) ≤ 0 and

𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) =
∫ 𝜙

𝑥

ℎ(𝑥) − ℎ(𝑢) d𝑢 ≤ 0 (41)

Thus, for any 𝑥 , 𝑓𝜙 (𝑥) − 𝑓𝜙 (𝜙) ≤ 0, which implies that 𝑓𝜙 (𝜙) ≥ 𝑓𝜙 (𝑥) for all 𝑥 . Therefore, for all 𝜙 , 𝑓𝜙 is maximized at 𝜙 . �

Theorem 1. For all 𝐾 , 𝑖 , 𝑔𝑖 , and states 〈𝑘, 𝜃〉 other than the edge cases 〈𝐾,m〉 and 〈−𝐾,w〉, the optimal bid for 𝑖 subject to 𝐾-parity under the
distribution 𝑔𝑖 at the state 〈𝑘, 𝜃〉 is Φ𝜃𝑖 (𝑘 ;𝑔𝑖 ).

Proof. Without loss of generality we assume all of the bids are between 0 and 1. By Lemma 1, the optimal bidding strategy maximizes

term given by (5):

max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑘 ;𝑔𝑖 )
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To maximize this term, we can omit the function Λ𝑖 since it is constant for each 𝑏𝑖 . Similar to line (4) of Iyer et al. [14, p. 9], we rewrite the

cost function 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) as

𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) = 𝑞(𝑏𝑖 ;𝑔
𝜃
𝑖 ) ∗ 𝑑

𝜃
𝑖 (42)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗max𝑏𝜃−𝑖 (43)

= E[𝜒 [max𝑏𝜃−𝑖 ≤ 𝑏𝑖 ] ∗max𝑏𝜃−𝑖 ] (44)

=

∫
1

0

𝑞′(𝑢;𝑔𝜃𝑖 ) ∗ 𝜒 [𝑢 ≤ 𝑏𝑖 ] ∗ 𝑢 d𝑢 (45)

=

∫ 𝑏𝑖

0

𝑢 ∗ 𝑞′(𝑢;𝑔𝜃𝑖 ) d𝑢 (46)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ 𝑏𝑖 − 𝑞(0;𝑔
𝜃
𝑖 ) ∗ 0 −

∫ 𝑏𝑖

0

𝑏 ′𝑖 ∗ 𝑞(𝑏𝑖 ;𝑔
𝜃
𝑖 ) d𝑢 (47)

= 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ 𝑏𝑖 −
∫ 𝑏𝑖

0

𝑞(𝑢;𝑔𝜃𝑖 ) d𝑢 (48)

where 𝜒 is the Iverson indicator function, (45) follows from 𝑞(𝑏;𝑔𝜃
𝑖
) = Pr(max𝑏−𝑖 ≤ 𝑏) = cdf [max𝑏−𝑖 ] (𝑏) =

∫ 𝑏
0
pdf [max𝑏𝜃−𝑖 ] (𝑢) d𝑢 and

(47) uses integration by parts.

Next, we rewrite the decision problem of the advertiser 𝑖 as

max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) −

(︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )𝑏𝑖 −

∫ 𝑏𝑖

0

𝑞(𝑢;𝑔𝜃𝑖 ) d𝑢
)︂}︂

= max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ (Φ

𝜃
𝑖 (𝑘 ;𝑔𝑖 ) − 𝑏𝑖 ) +

∫ 𝑏𝑖

0

𝑞(𝑢;𝑔𝜃𝑖 ) d𝑢
}︂

We know that 𝑞(𝑏𝑖 ;𝑔𝜃𝑖 ) is a continuous non-decreasing function in 𝑏𝑖 for all 𝑔
𝜃
𝑖
. That is, ℎ(𝑏𝑖 ) = 𝑞(𝑏𝑖 ;𝑔m𝑖 ) is a continuous non-decreasing

function in 𝑏𝑖 for any �xed distribution 𝑔m
𝑖

and ℎ(𝑏𝑖 ) = 𝑞(𝑏𝑖 ;𝑔w𝑖 ) is a continuous non-decreasing function in 𝑏𝑖 for any �xed distribution 𝑔w
𝑖
.

Therefore, we can use Lemma 2 with 𝑏𝑖 playing the role of 𝑥 and with ℎ(𝑥) = 𝑞(𝑥 ;𝑔𝜃
𝑖
) and 𝜙 = Φ𝜃

𝑖
(𝑘 ;𝑔𝑖 ). This allows us to conclude that

equation (5) is at its maximum when the bid is Φ𝜃
𝑖
(𝑘 ;𝑔𝑖 ) for 𝜃 equal to either m or w. �

C CONJOINT VALUATION FOR RATIO CONSTRAINTS
The following lemma justi�es Equation (7). The proof follows the same outline as that of Lemma 1.

Lemma 3. For all 𝑟 , 𝐾 , and 𝑔𝑖 , for all states 〈𝑛m𝑖 , 𝑛
w
𝑖
, 𝜃〉 other than the edge cases when either 𝜃 = m and 𝑟 (1 − 𝑝) (𝑛m

𝑖
+ 1) > 𝑝𝑛w

𝑖
+ 𝐾 or

𝜃 = w and 𝑟𝑝 (𝑛w
𝑖
+ 1) > (1 − 𝑝)𝑛m

𝑖
+ 𝐾 ,

𝑉 (𝑛m𝑖 , 𝑛
w
𝑖 , 𝜃 ;𝑔𝑖 ) = max

𝑏𝑖

{︂
𝑞(𝑏𝑖 ;𝑔𝜃𝑖 )Φ

𝜃
𝑖 (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

}︂
+ Λ𝑖 (𝑛m𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

Proof. First note that

𝑁𝜃win (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = Φ𝜃win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) (49)

since

𝑁m
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 +1, 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 +1, 𝑛

w
𝑖 ,w;𝑔𝑖 ) = Φm

win (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

and

𝑁w
win (𝑛

m
𝑖 , 𝑛

m
𝑖 ;𝑔𝑖 ) = 𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 +1,m;𝑔𝑖 ) + (1−𝑝)𝑉 (𝑛m𝑖 , 𝑛

w
𝑖 +1,w;𝑔𝑖 ) = Φw

win (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

Thus,

𝑁𝜃 (𝑏𝑖 , 𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 ) (50)

= 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ 𝑁
𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) + (1 − 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )) ∗ 𝑁

𝜃
lose (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) (51)

= 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ
𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) + (1 − 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )) ∗ [𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ] (52)

= 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ
𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) [𝑝𝑉 (𝑛

m
𝑖 , 𝑛

w
𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ] + [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ] (53)

= 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )
(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ]

)︂
+ [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ] (54)

= 𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )
(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂
+ [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ] (55)
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where (52) follows from (49). Thus,

𝑉 (𝑛m𝑖 , 𝑛w𝑖 , 𝜃 ;𝑔𝑖 ) (56)

= max

𝑏𝑖

{︂
𝑅𝜃 (𝑏𝑖 ;𝑔𝜃𝑖 ) + 𝛿𝑁

𝜃 (𝑏𝑖 , 𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 )
}︂

(57)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ (𝑣

𝜃
𝑖 − 𝑑

𝜃
𝑖 ) + 𝛿

[︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )

(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂
+ [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ]

]︂}︂
(58)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 − 𝑞 (𝑏𝑖 ;𝑔

𝜃
𝑖 )𝑑

𝜃
𝑖 + 𝛿𝑞 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂
+ 𝛿 [𝑝𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,m;𝑔𝑖 ) + (1 − 𝑝)𝑉 (𝑛m𝑖 , 𝑛w𝑖 ,w;𝑔𝑖 ) ]

}︂
(59)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 − 𝑐 (𝑏𝑖 ;𝑔

𝜃
𝑖 ) + 𝛿𝑞 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂
+ Λ𝑖 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 )

}︂
(60)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )𝑣

𝜃
𝑖 + 𝛿𝑞 (𝑏𝑖 ;𝑔

𝜃
𝑖 )

(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂
− 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) + Λ𝑖 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 )

}︂
(61)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 )

[︂
𝑣𝜃𝑖 + 𝛿

(︂
Φ𝜃
win (𝑛

m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 ) − Φ𝜃

lose (𝑛
m
𝑖 , 𝑛

w
𝑖 ;𝑔𝑖 )

)︂]︂
− 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) + Λ𝑖 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 )

}︂
(62)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ

𝜃 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 ) + Λ𝑖 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 )
}︂

(63)

= max

𝑏𝑖

{︂
𝑞 (𝑏𝑖 ;𝑔𝜃𝑖 ) ∗ Φ

𝜃 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 ) − 𝑐 (𝑏𝑖 ;𝑔𝜃𝑖 )
}︂
+ Λ𝑖 (𝑛m𝑖 , 𝑛w𝑖 ;𝑔𝑖 ) (64)

where (58) follows from (4) and (55). �
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