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ABSTRACT

Interactions between bids to show ads online can lead to an adver-
tiser’s ad being shown to more men than women even when the
advertiser does not target towards men. We design bidding strate-
gies that advertisers can use to avoid such emergent discrimination
without having to modify the auction mechanism. We mathemati-
cally analyze the strategies to determine the additional cost to the
advertiser for avoiding discrimination, proving our strategies to be
optimal in some settings. We use simulations to understand other
settings.
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1 INTRODUCTION

Prior work found Google showing an ad for the Barrett Group, a
career coaching service promoting the seeking of high paying jobs,
more often to simulated men than to simulated women [7]. Later
work enumerates possible causes of this disparity [6].

One possibility, raised by Google itself [25], is that the Barrett
Group targeted both men and women equally, but other advertisers,
on average, focused more on women, which would be in line with
subsequent findings [18]. In this possibility, the Barrett Group found
itself outbid for just women by the other advertisers who were
willing to pay more than it was for reaching women but not for
men. These other advertisers might be promoting products that
many find acceptable to target toward women, such as dresses. Thus,
it’s possible that each advertiser’s targeting appears reasonable in
isolation but interacts to bring about emergent discrimination for a
job-related ad.
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For conscientious advertisers of products that should be broad-
casted to women and men at equal rates, such an outcome is unac-
ceptable but currently difficult to avoid. While Google offers the
ability to skew ads toward men or toward women, it provides no
way to ensure that both men and women see the ad an equal num-
ber of times. As discussed above, simply not targeting by gender is
not enough to guarantee parity. Even running two ad campaigns of
equal size is insufficient since the size is determined by budget and
not the number of ads shown, which means that parity would only
be achieved if women and men are equally expensive to reach.

We consider how advertisers can ensure approximate demo-
graphic parity for its ads without changing Google’s ad auction
mechanism, which is based on a second-price auction [10]. Given
that an advertiser wishes to maximize its utility by reaching the
people most likely to respond to its ads, we model the advertiser’s
utility function along with the parity goal as a constrained bidding
problem. We consider both a strict absolute parity constraint and a
more relaxed relative constraint inspired by the US EEOC’s four-
fifths rule on disparate impact [9]. Although using a second-price
auction suggests that the advertisers should bid their true value of
showing an ad, a parity constraint and multiple rounds of the auc-
tion interact to make deviations from this truthful strategy optimal.
Intuitively, as in multi-round second-price auctions with budget
constraints [12], it is sometimes better to bid less to preserve the
ability to participate in later auctions that might have a lower cost
of winning. More interestingly, unlike with just budget constraints,
it is also sometimes better to bid more to ensure an acceptable
degree of parity, enabling participation in other auctions later.

Given these complexities, finding an optimal bidding strategy
for such a constrained bidding problem is non-trivial. We do so
by modeling them as Markov Decision Problems (MDPs). Solving
these MDPs using traditional methods, such as value iteration, is
made difficult by the continuous space of possible bid values over
which to optimize. To avoid this issue, we find recursive formulae
for each type of constraint providing the optimal bid value and
solve for their values instead. This approach allows us to solve the
MDPs without needing to explicitly maximize over the possible
actions as in value iteration.

We compare this optimal constrained bidding strategy to the
optimal unconstrained strategy for both real and simulated data
sets. The cost to the advertiser for ensuring parity varies by setting,
but is manageable under the more realistic settings explored. In all
cases, the revenue of the simulated ad auctioneer (Google’s role)
remains roughly the same or goes up.

By not modifying the core auction algorithm used by Google
and instead suggesting bidding strategies that could be deployed
by the advertisers, we believe this work provides a practical path
towards nondiscriminatory advertising.
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2 RELATED WORK

The most closely related work, recently looked at enforcing par-
ity constraints with auction mechanisms, whereas we do so with
bidding strategies [4, 5]. While both approaches have their use
cases, we believe ours is easier to deploy since just the advertisers
wanting the feature need to make changes to implement it. We fur-
ther discuss tradeoffs between deployment approaches in Section 8.
Our approach also differs by using strict constraints whereas theirs
uses probabilistic constraints. Probabilistic constraints allow more
utility but may be insufficient in cases where approximate parity is
required, as when disparate impact is prohibited. At an algorithmic
level, they differ by using gradient decent.

A similar alternative approach could use auction mechanisms
with Guaranteed ad Delivery (GD) [22, 26]. An advertiser can act
as two parties to the auction, one for each gender, and use GD to
ensure an equal number of wins for each party. Unlike our bidding
strategy, which an advertiser can unilaterally employ, this approach
requires the ad exchange to change its auction mechanisms.

Prior works have looked at how to enforce (proportional) parity
constraints on the classifications produced by ML algorithms [2, 3,
16, 28]. We instead look at auctions.

Prior works have used MDPs to model ad slot auctions. Li et al. [19]
and Iyer et al. [13-15] have used them to find optimal bidding strate-
gies when advertisers do not know the exact values of each type of
ad slot and learn values by winning them. They showed that adver-
tisers should overbid to learn more information. Gummadi et al. [12]
described the optimal bidding strategy for the second-price auc-
tion in which each advertiser has a limited budget, which leads to
underbidding. Zhang et al. [29] derived optimal real-time bidding
strategies when each ad slot have different properties.

3 ONLINE AD AUCTIONS

When a person visits a webpage, the webpage will often contain
dynamically loaded ads at fixed locations on the page. These ads
each occupy an ad slot, a location at a time (or page load) on the
webpage. In some cases, the website selects which ads to show
in which slots itself, such as with Facebook. In other cases, the
website contracts with a third-party, to fill and charge for the slots
in exchange for payments to the website. In either case, we call the
entity choosing how to fill the slots an ad exchange. For example,
Google runs an ad exchange, Google Ad Manager, which includes
slots put up for sale by websites with its AdSense tool.

Typically, an ad exchange auctions off the slots it controls to
advertisers. It can use real-time bidding to auction off the slots as
the webpage loads. The website and the ad exchange can offer
advertisers various amounts of information about the slot, such
as the webpage it is on and demographics about who is loading
the page. Advertisers performing programmatic advertising use a
dynamic bidding strategy that adjusts their bids according to how
well they expect their ads to perform in the offered slot. To avoid
having to create programs for executing such strategies on their
own, advertisers often use a demand-side platform (DSP). Figure 1
demonstrates a sketch of the interactions.

An ad exchange may accept bids that are more complex than
just a single price, such as including an offer to pay a bonus if the
website visitor clicks the ad [10]. Exchanges wishing to maximize
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Figure 1: Online advertisement interactions

the amount of bonuses it receives, or to avoid annoying visitors,
might consider the quality of the ad and its fit for the slot. For sim-
plicity, we will defer further consideration of these complications
to Section 9 and presently presume that all bids are simply offers
to pay for showing the ad.

Second price auctions is a common mechanism for resolving such
auctions, with Google using a variation of one [10], and we will
presume the ad exchange uses one. In this auction mechanism, the
exchange selects the highest bidder as the winner but only charges
the bidder the price offered by the second highest bidder. Under
certain circumstances, this mechanism ensures that each bidder’s
optimal strategy is to bid the actual amount it values the slot at,
making the mechanism truthful. Since ad exchanges sometimes sell
more than one slot at time, such as for a webpage with multiple
slots, they often use generalized second-price auctions, known as
position auctions [8, 27].

We model the above economy as a sequential game of incomplete
information, where in each round of the game a set of self-interested
rational advertisers bid to win an ad slot through a second-price
auction. We allow bids to vary over auctions and assume that each
advertiser has a geometric lifespan. For simplicity, we make the
total number of advertisers & equal in all auctions by assuming that
every time an advertiser dies a new advertiser joins.

At time t, each advertiser i submits a bid bf .Let bt ; be the bids
of other the advertisers. The ad exchange platform runs a second-
price auction where advertiser i wins the ad slot if its bid is higher
than all other bids: bf > max b ;- For simplicity, we assume no ties,
ensuring that such a winner exists. Let al? be 1 if the advertiser i
wins at round ¢ and be 0 otherwise. If the advertiser i wins it will

pay the second highest bid df = max b’ ;- The cost of the auction ¢
t_
L

The ad slot auctioned at ¢ has a value v} for the advertiser i.
When an advertiser i wins auction ¢, it gets an immediate reward,
which is the value vit less its price dit . Thus, the utility of advertiser
i gained at each round is ult = af. * Ul? - cf = ag(vf - dl.[). Let the
geometric parameter for the lifespan distribution for advertiser i be
8;. The total utility for each advertiser is U; = 3,32 51? * af(vl.t - dl.t)
where 51? is &; raised to the tth power, not indexing by ¢.

The advertiser i should select its bids bf to maximize the expected
value of U;, where the expectation is over its value vf and the bids
of other advertisers b’ ;- The advertiser can use market research, its
prior experiences, and any information provided by the ad exchange
to estimate these uncertain values. In the case of a pure second-
price auction, the values of the other bids b ; are irrelevant and the

isc alt. * dlf since the advertiser i only pays if it wins.
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optimal strategy is to always set its bid bf equal to its estimation of
its value o} .

However, this result does not carry over to all second-price auc-
tions with constraints, including the parity constraints we consider.
In this case, the behavior the other advertisers matters, but estimat-
ing it for individual ad slots is difficult. Furthermore, the advertiser
is unlikely to estimate the value of every ad slot individually even
for a pure second-price auction. Rather, the advertiser will likely
model ad slots as each having a type belonging to a set ©® of reason-
able size. The types will represent the most important information
to the advertiser about the slot. For simplicity, we will typically
assume that © has just two types, one for each gender. For each
type 0, the advertiser will estimate the expected value 01.9 of a slot
of type 6.

For estimating the other bids, prior research [13, 14] has shown
it reasonable to model them as coming from a stationary fixed dis-
tribution, due to the large number of other advertisers. To simplify
our analysis, we denote the CDF of other bids for a slot of type 0
by gie. Finally, let pig be the probability that advertiser i assigns to
the type 0.

With these estimations, we compute estimations of other key
quantities. The probability of winning on auction ¢ for a slot of
type 6 with a bid of x is q(x; gig) = Pr(max bil. <x)= gig(x)(“_l)
where «a is the number of advertisers at each ad slot auction. The
expected value of the utility for the advertiser i for a single auction
given the distribution of the other advertisers’ bids g; is

Eluf] = > pf «q(o}:97) (o] —d) (1)
0
The expected value of the total utility for each advertiser is

E[U] = )87 Y pla(vlg)) (vf ) @)
t=1 9

4 PARITY CONSTRAINTS

Advertisers may have concerns in addition to attempting to maxi-
mize the utility Uj;, such as complying with laws and social norms.
In some cases, this will include ensuring that its ads reach various
protected groups to the same degree. For example, an employer
may desire that a job ad be shown to an equal number of women
and men to comply with laws prohibiting gender discrimination
in hiring [6]. Such advertisers would like to place their bids in a
manner to ensure such demographic parity.

However, the above auction mechanism, as well Google’s actual
mechanism as far as we can tell, does not offer any way of ensuring
that a job ad is shown to an approximately equal number of women
and men, as required by laws prohibiting gender discrimination
in hiring [6]. Furthermore, ad exchanges may be unwilling to sup-
port such constraints given that only some advertisers have such
concerns. Thus, our goal is to provide advertisers with a bidding
strategy that dynamically adjusts bids to preserve the gender par-
ity of the viewers, which advertisers can unilaterally use without
needing changes to the auction mechanism of the ad exchange.

As an additional benefit of not modifying the ad auction mech-
anism, our bidding strategy can be used for any type of auction.
However, we design and analyze them with only with second-price
auctions in mind.
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We will focus on an advertiser that wants to show an ad to equal
numbers of men and women. A particularly careful advertiser may
desire that this parity constraint holds not only at the end of ad
campaign but throughout. Such continuous parity ensures that the
advertiser would pass an audit checking for this property at any
point in time. It also ensures meeting the parity goal if the the ad
campaign must be cut short or if a sudden influx of competing
advertisers prevents winning addition slots.

Meeting this strict goal is impossible since the first ad must
go to either a man or woman, and not both. To account for this,
we relax this goal to allow for approximate parity. We distinguish
between absolute (additive) and relative (ratio) approximate parity
and first consider an absolute constraint. An advertiser has K-parity
if after each auction, the maximum difference between the number
of auctions that it wins for each gender is not more than K.

Our goal is to find the optimal bidding strategy for advertisers
obeying such a constraint. This task is difficult since a constrained
advertiser must consider not just the immediate reward of winning
a slot, but also how it may close or open the possibility of winning
additional slots later. To see this, we will consider three examples
involving a simplified setting in which an advertiser i is subject to
1-parity and knows exactly how long it will live. In each example,
it values men and women both at 20 (with no variance), but other
advertisers value women at an expected value of 21 and men at an
expected value of 5. This setting reflects that advertisers are willing
to pay more, on average, for women than men [18].

In the first example we consider, the advertiser knows that it
will live for exactly one ad auction. In this case, the advertiser i
will bid the value of the immediate reward 20 that it receives for
winning an auction regardless of whether it is subject to a 1-parity
constraint, since winning the auction has no effect other than that
immediate reward. It will win an auction for a man and lose an
auction for a woman.

Next, consider the advertiser’s behavior for a series of two auc-
tions. The interesting case is two men in a row. In this case, adver-
tiser i can only win one of the slots since it is subject to a 1-parity
constraint. Thus, the utility of the advertiser will be smaller from
having 1-parity, but it need not be half that of when it is unre-
stricted. If the number of women is small enough (p < 0.5), the
advertiser can assume it will get two men in a row and can lower the
value of its bid on the first man in hopes of winning at a discount,
given the fluctuations in the other advertisers’ bids. We call this
underbidding, although we emphasize that it is underbidding with
respect to its immediate reward, not with respect to what is overall
rational. Underbidding effectively allows the advertiser i to skip
the first auction if the variance in the other advertisers’ bids pro-
duces a high competing bid. This is similar to how underbidding is
optimal in some repeated second-price auctions with a constrained
budget [12]. The degree of underbidding must balance the chance
of getting a male slot at a discount with the risk of either losing
both auctions or getting a female slot for the second auction.

The opposite, overbidding, can also occur. To see this, consider
a series of three auctions with a woman followed by two men. In
this case, the advertiser i can win both men, despite the 1-parity
constraint, provided that it first wins the woman. Thus, winning the
woman produces not just an immediate reward, but also a future
reward by unlocking the ability to win more men. If we presume
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negligible variance in the other bids, the advertiser i will have to
bid 22 to win the woman and pay the second price of 21, yielding
an immediate reward of —1 by bidding 1 over the the advertiser’s
inherent value of 20 for the female ad slot. Since the immediate
reward of a male slot is 20 — 5 = 15, being able to win the second
man means a net positive gain of 15 — 1 = 14. (We ignore the effects
of underbidding since we are now considering negligible variance
in the other advertiser’s bids, which makes the effect go away.)

We find this distinction between the immediate reward and the
future rewards coming from future flexibility useful for determining
the optimal bidding strategy. However, doing so requires not only
making the above intuitions quantitative, but also dealing with
additional probabilistic factors, such as the genders of ad slots
not being known in advance and the uncertain duration of the
auction sequence. To overcome these difficulties, we switch to a
more systematic model for each type of constraint.

5 ABSOLUTE PARITY CONSTRAINTS

To make absolute constraints precise, let I’ denote a set of groups.
We are typically interested in the case where I' = {m, w} with m
denoting men and w women. We use p to denote the probability of
a male ad slot (i.e., p["). We use n%/ to denote the number ad slots
for people in group y won by the constrained advertiser i.

DEFINITION 1 (K-PARITY). An advertiser i obeys a K-strict abso-
lute parity constraint, or K-parity for short, for a set of groups T iff,
after each auction, for all groupsy andy’ inT, the number of auctions

that it wins satisfies nf - nf <K.

The constraint is strict by requiring that approximate parity holds
at all times with certainty and not merely with high probability.

We study approximating the optimal bidding stagy that an ad-
vertiser desiring to meet a K-parity constraint can use to do so. In
our analysis, we assume all of the advertisers have an unlimited
budget. Thus, they can bid on all auctions in its lifespan, unless
maintaining the K-parity constraint precludes it.

5.1 Modeling

To find the optimal bidding strategy for an advertiser subject to K-
parity, we model the problem as a Markov Decision Problem (MDP).
The obvious state space for such an MDP would have states of the
form (n;“, n‘l.”, 0), where n;n and n‘l” is the current number male
and female slots won, respectively, and 0 is the type of the ad slot
currently being auctioned off, which we presume corresponds to a
gender. (6 could be generalized to allow targeting toward certain
men and women.) Observing that only n]" —n}" matters, we instead
use a smaller space of (2K +1) x|©| states. We denote each state by a
tuple (k, 0), where k is the difference between male and female slots
won. When the advertiser wins an ad slot for a male viewer, the
advertiser goes from state k to k + 1; for a female, it goes from k to
k — 1. The value of the 0 is decided by a random process depending
upon the value of p, where p is probability of the viewer being
male.

To find the optimal solution, we write the Bellman equation for
the MDP in the steady state. Since we consider the steady state
regime, we also replace the value of each ad slot by its expected
value (i.e., v?). The value function for each state except for the two
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states (K, m) and (—K, w) has two parts: a reward function R that
indicates the immediate reward of taking action b; and N that is
the future value the advertiser gets by doing that action. We write
the value functions as follows:

V(k 6590 = max {R(biigf) + ON*(bukign) ] (3)

RY(bi;g}’) and R™(b;;g7") show the reward value that advertiser i
will receive if it wins an ad slot auction viewed by female or male:

R (bi:97) = q(bi;97) (00 - d¥) ()

N9 (b;, k; g:), the future value that advertiser i gets by bidding b;
at state (k, 6), consists of two parts. The first part Nf/m is the value
that the advertiser gets if it wins while the second part N[‘Zse is the
value when it loses. We treat g; as providing both gI" and g}".

NO(bi, ks gi) = q(bis g?) « NG, (ks gi) + (1 = q(bis 69)) « NP (ks 92)
with

N (kigi) = pVi(k+1,m;g;) + (1 - p)V(k +1,w;g;)

Ny (k;gi) = pV(k—1,m;g;) + (1 - p)V(k -1, w; ;)

NP (kigi) = pV (k. m:gi) + (1 - p)V (K, wig;)

As for the two edge cases, their values are solely determined by the
values of their successor states since the advertiser cannot win the
current auction:

V(K,m;gi) =6 (pV (K, m;g;) + (1 = p)V(K, w; gi))
V(=K,w;gi) = 6 * (pV (=K, m;g;) + (1 = p)V (=K, w; gi))

5.2 Computing Optimal Bidding Strategies
Computing V with an MDP solver, such as value iteration, is com-
plicated by the bid space being continuous. Computing V for a
discretization of this space will require a fine discretization to avoid
rounding errors, which will mean slow convergence. Using numer-
ical optimization methods is complicated by V not being a linear
function in b;. To avoid these complexities, we instead rewrite V in
a form that can be solved without any optimization.

To identify the optimal bidding strategy, we observe that the two
edge cases do not involve a decision and the strategy of bidding 0
is forced for them. We also observe that for the remaining states
the valuation function (3) includes many terms that do not change
under various bidding strategies. We collect these constants into
a term A;, which we can ignore while optimizing the strategy.
We replace q(bi;gig)dit by c(bi;gig), the estimated cost of each ad
slot. The remainder of the valuation function provides the conjoint
valuation function CIJ?, a decomposition previously used by Iyer
et al. [13, 14]. Our Lemma 1 in Appendix A [21] shows that

V (k. 6:0) = max {q(bis g )0 (ki gy) = c(bisgf) + iCki g0}
= maxc {g(bi:g)) 8] (ki go) (b))} + Ailkig)) ()

where

Ai(k; gl g7) = 6(pV (k,m;gi) + (1 = p)V(k, w; gi))

The conjoint valuation @ represents the reward for winning, both
immediate and long-term, which is why it is multiplied by the
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ALGORITHM 1: Iterative approach to find V
Input: K, g;, o, 0™, 0%, €
Initialize V[-K : K, m] « 273"
repeat
A0
for kin {-K,..., K} do
for 0 in {m,w} do
V'[k, 0] — RO (2P (k); g?) + SN (07 (k), k; 9:)
A — max(A, |V'[k,0] -V [k, 0]|)
end

w

SV[-K : K,w] e 20

end
VeV
until A < e

probability of winning q(bi;g?). The expected cost of winning

c(b;; gig) is subtracted from this product. ® breaks down along the
lines of winning and losing cases, as N did:

0% (k; gi) = 0f +5(9, (k:gi) - ®f _(k;gi)) (6)

where
O (ks gi) = pV(k+1,m;gi) + (1= p)V(k+1,w; )
Din(kigi) = pV(k =1, m;g;) + (1= p)V(k - 1, w; i)
of (ks gi) = pV (k,m; gi) + (1= p)V (k, w3 gi)

The term vl. represents the immediate value of winning the ad slot.
The reminder considers the gain that the advertiser gets from the
future by winning (moving to a new state) or losing (staying put).
The difference between future rewards for winning and those for
losing corresponds to the amount of overbidding (or underbidding)
called for, which explains the subtraction in (6).

The following theorem shows the use of this decomposition.

THEOREM 1. For all K, i, g;, and states (k, 0) other than the edge
cases (K, m) and (—K, w), the optimal bid for i subject to K-parity
under the distribution g; at the state (k, 0) is CDl.G(k; gi)-

The proof is in Appendix B [21].

This theorem means that we do not need to search the space
of possible bid values to find the optimal bid. Rather, we can just
compute the optimal bid using ®. While ® depends upon the value
function V, we can recursively make use of this fact to compute V'
without such a search either. In particular, the theorem implies that

V(k,0;:) = R%(@Y (k: gi); g?) + SNO (@Y (k: gi). k: 91)

However, this equation is still not a closed-form solution. Thus,
Algorithm 1 does this calculation iteratively to converge to the
states’ values. Although, showing the convergence in general is
an open problem, as discussed in Section 7, our experiments find
convergence within a reasonable tolerance within a feasible number
of iterations.

To use our approach, an advertiser (or DSP) runs Algorithm 1 to
compute the value function V and stores it as a look-up table. Then,
for each new ad auction, the advertiser first checks if it winning
the auction would violate the parity constraint. If so, it will not
participate in the auction (i.e., bids zero). Otherwise, The advertiser
bids the value of CI)?(k; gi), which can be easily computed from
value functions.
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6 RATIO CONSTRAINTS

While constraints on the difference between the number of ads
shown to each gender are intuitive, the EEOC’s four-fifths rule
found in US regulations against disparate impact in employment
instead focuses on a ratio [9]. The ratio considered is not simply
between the number of ads shown to each gender. Rather, it ac-
knowledges that parity can be unrealistic due to having differing
numbers of male and female applicants. It adjusts for that factor by
comparing the fraction of female applicants receiving a job offer to
the fraction male applicants receiving a job offer. It requires that
this ratio of ratios be between 5/4 and 4/5. We provide a similar
constraint that compares two ratios, checking whether the fraction
of female ad slots won is within a factor of r to the fraction of male
ad slots won.

Strictly enforcing such a check creates problems when the num-
ber of slots seen so far is small since the fractions won may be
very far apart even when the number of ads shown to each gender
only differs by 1. To avoid this issue, we also allow an additive
difference in the number of ads show to each gender. The resulting
rule may be viewed as a hybrid between a pure ratio constraint and
the absolute constraint we have already presented.

We use similar notation as in Section 5.1 to express this constraint
in a manner that avoids division by zero.

DEFINITION 2 ((r, K)-RATIO). An advertiser obeys a (r, K)-strict
relative constraint, or (r, K)-ratio constraint for short, for groups
T iff, after each auction, for all groupsy and y’ inT, the number of
auctions that it wins satisfies rpynys < pyny + K where p, and py/
are the probability of seeing slots for groups y andy’, respectively.

6.1 Modeling

Similar to the K-parity constraint, we limit ourselves to the case
where I' and © only contain two types, which we treat as male and
female. We use p as the probability of a male. We denote each state
by a triplet (n;“, n‘l’", 0), where n;“ and n;"’ is the current number
male and female slots won, respectively.

While we reuse the immediate reward function R? from (4), we
rewrite the value function V and future value function N. When
winning the slot would not violate the constraint,

V(nny,6:g0) = max (R (bisg) + 6N (bi ] s g0) |
When offered a male that may not be won because r(1—p) (n"+1) >
pn} + K where n[" is the current number of males won,

8 (pV(ni" n},migi) + (1= p)V(n 0}, w; gi))
When a female may not be won since rp(n}’ +1) > (1 - p)n]" + K,
V(n,ny,wigi) =8 (pV (n", nj,m;gi) + (1 = p)V(n", nf', wi g1))

We call these two cases edge cases.
We set the future value Ne(b,-, n,

(bz,gl ) *
with

V(i ny', m;gi) =

nY;g;) at

NG (n™,n¥:gi) + (1 - q(bisg?)) « NJ__(n™,n¥; g)
N“n,‘m(nl 1 nY;gi) —pV(n +1, nl ,m;g;) + (l—p)V(n +1, nl ,W; gi)
N\‘;’m(nl 0 n; gi) —pV(nl ) +1,m;g;) + (l—p)V(n
]Vlose( i ’gl) _pV(nz > I o, m; 91) + (I_P)V(ni > 1y ,W;gi)

.y +1,w; g;)
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ALGORITHM 2: Iterative approach to find V

Input: r, K, p, gi, ¢, 0, o™, e, M
Initialize V[0 : M, 0 : r“%”M+K, m] <,

V[o:M,o:r%M+K,w]<—M

repeat
A0

for nf" in {0,...,M} do
; a-p)
for n} in {0,...,rTM+K} do
for 0 in {m,w} do
V/[n.n}.0] « RO(@%(nP.n}):g]) +
SNO(@0 (n™, n¥), n™, n¥; g;)
A — max(A, |V'[n],n},0] - V[n],n},0]])
end

end
end

VeV
until A < €

6.2 Computing Optimal Bidding Strategies

We use a similar approach as in Section 5.2 to find optimal strate-
gies. As before, we force the strategy to bid zero when winning
would violate the constraint and do not include these cases in the
optimization. As justified in Appendix C [21], we rewrite the value
V(n;", nY,0;gi) as

max {q(bis gf)9! (07" m's90) = e(bisgl) | + Mi(num'sg) ()

where

Ai(nnY; gl gY) = 6(pV (n], n}, m;gi) + (1 - p)V(n], n}, w; gi))

1

and
P (n",nY1g;) = of + 808, (n".nY1g) — @ (" nY:g:))
where

(Dm

win

(n7,n};gi) = pV(n+1,n}, m,; g;) + (1-p)V(n{"+1, 0}, w; ;)
oY (n",nY;g:) = pV(n], n¥+1,m; g;) + (1-p)V (n]", n}'+1, w; g;)
ol (n™n¥:gi) = pV (™, nY, m;g;) + (1-p)V (", n¥, w; g;)

lose

THEOREM 2. For allr, K, i, gi, and states (n;", n‘l.”, 0) other than
the edge cases, the optimal bid for i subject to (r, K)-ratio parity under
the distribution g; at the state (n]",n", 0) is @?(n;.“, nY;gi).

The proof is similar to that of Theorem 1.

This theorem eliminates the need for searching the space of
possible bids at each state to find the optimal one. Whereas we
could bound the state space for K-parity by tracking the difference
k instead of the actual numbers of male and female ad slots won, we
cannot similarly bound the state space for the (r, K)-ratio constraint.
In practice, however, each advertiser either has a limited budget or
is advertising for a limited time allowing us to estimate a finite set
of reachable states. We use M to indicate estimated the maximum
number of male ad slots won. Algorithm 2 computes the value of
each state reachable assuming that M is not surpassed.

An advertiser using our approach, does so in the same manner
as with our approach to parity constraints. That is, it first runs
Algorithm 2 and stores V as a look-up table. It skips auctions when

Milad Nasr and Michael Carl Tschantz

winning would violate the constraint and otherwise bids CD?(k; gi)s
computed from V.

We can extend this approach to recover if the advertiser underes-
timates M. In this case, the advertiser can use a linear approximation

to estimate the optimal bid. To do so, let p = %(M -1).Ifpis

an integer value, then the advertiser bids g (p, M — 1). Otherwise,
the advertiser bids <I>9(|_pJ,M -+ (p-Lp)) = (<I>9(|'p'|,n;“) -

o(LplnM).

7 EXPERIMENTS

We simulate various scenarios to show the feasibility of our method
and to measure the impact of our fairness constraints on utility. To
do so, we implemented a second-price auction simulator in Python,
where each advertiser gets the gender of the website viewer before
selecting its bid and participating in the ad slot auction. To simulate
the viewer, we draw their genders independent and identically from
a binomial distribution with probability p where p is the probability
of the viewer be male.

We focus on one advertiser i and measure how its utility changes
when it has either a fairness constraint or not. When having a fair-
ness constraint, it uses our bidding strategy, with J set to 0.999
(unless otherwise noted) and € set to 0.001. When not, it bids its
immediate value z)l.t for the ad slot ¢, as is rational for an uncon-
strained second-price auction. We assume that the other advertisers
are unconstrained and they always bid their immediate values.

To obtain distributions over ad values, we used both a real dataset,
the Yahoo! A1 Search Marketing Advertiser Bidding Dataset, and a
simulated one. Since the Yahoo! A1 data does not have exact times-
tamps, we could not use it to estimate the number of advertisers
(i.e., @) for each ad auction. To estimate a, we visited top websites,
according to https://www.alexa.com/topsites, that have ads using
header bidding [23]. For one month (June 2019), we collected how
many advertisers bid on a specific ad slot. In our observations of
these sites, we never saw more than 10 advertisers bid on an ad
slot. In line with this observation, we assume that there are a = 10
advertisers bidding for each ad slot.

7.1 Real Dataset

The Yahoo! Al Search Marketing Advertiser Bidding Dataset con-
tains anonymized bids of advertisers participating in Yahoo! Search
Marketing auctions for the top 1000 search queries from June 15,
2002, to June 14, 2003. The dataset includes 18 millions bids from
more than 10,000 advertisers, but without the exact timestamps or
information about the ad viewer. Each record in this dataset indi-
cates a course timestamp with 15 minutes precision, the advertiser,
the keyword, and the bid.

In our analysis, we assumed bids have a stationary distribution.
We evaluate this assumption on our dataset. We use a specific
keyword (keyword number 2) and we gathered all of bids from
different advertisers in four days period (starting 2/15/2003). Then,
we compute the empirical distribution of the bids of the first two
days and the second two days. Figure 2 presents the distribution of
the bids for these periods, showing that the distributions are very
similar in both periods, supporting our stationarity assumption.
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Figure 2: Distribution of the bids for two different periods.
The distributions are similar in both periods which supports
the assumption that bids distribution are stationary.

The figure also shows that the bids follow a log-normal distribution,
in line with the findings of Balseiro et al. [1].

We enforce a separate parity constraint on each keyword in the
dataset to ensure that they each get roughly equal numbers of male
and female viewers. Each keyword has a different bid value distri-
bution and we have our simulated constrained advertiser model
each keyword with a separate MDP to compute the optimal bid-
ding strategy for each. We assume that the constrained advertiser
updates its model parameters every two days.

As mentioned, the Yahoo A1l dataset does not contain the exact
timestamps. Therefore, we cannot exactly determine which adver-
tisers participated in any single ad auction. We randomly select a
set of advertisers’ bids from each 15-minute interval for each of our
ad auctions. Since the dataset does not include information about
the viewers, we sample the bids for both female and male viewers
from the same set of bid values, making their values equal.

Figures 3(a), 3(b), and 3(c) show the total utility ratio of the
K-parity and (r, K)-ratio versions to the unconstrained version
of the advertiser i for various values of K, r, and p on Yahoo Al
bid dataset. Here, and in the other simulations, we compute this
ratio by simulating constrained and unconstrained versions of the
advertiser i, using the same draw of values across the two versions.
We do this 100 times, computing the average of total utilities U; for
each version. We then plot the ratio of these two averages. Since
the value of ad slots for both female and male viewers are equal,
the total utility of an unconstrained advertiser will not change for
different values of p. On the other hand, a constrained advertiser
will get different utilities based on the distribution of the men and
women viewers. K-parity and (r, K)-ratio constraints are harder
to achieve for extreme values of p. Turning to the effects of K,
the results show that when K is large, the K-parity advertiser can
reach the utility of the unconstrained advertiser. Also by relaxing
r, (r, K)-ratio advertiser achieves higher utility.

To show the benefit of our approach compared to simply bid-
ding immediate values, we compare the utility ratio across both
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Table 1: Parameters for the log-normal distribution used in
the modeling the bids in the ad slot auctions. o? is always
0.7.

Others
e

Scenario name Advertiser i

Equal price - Female valuable -28 -28 -35 -24
Expensive female - Equal value -3.5 -24 -2.8 -2.8

approaches. Figures 3(d) and 3(e) show that our bidding strategy
allows the advertiser to achieve a higher utility ratio. We note that
the difference in these utility ratios is muted by assuming that each
gender is equally valuable to the advertiser. This assumption comes
from the real dataset not showing which ad slots are for men and
which are for women. We avoid this limitation when we use our
synthetic data.

7.2 Synthetic Data

We use a synthetic dataset to explore how changing their relative
values of men and women affects the advertiser’s utility. We gener-
ate two synthetic datasets using a log-normal distribution to sample
the advertisers bids. Table 1 shows the model parameter settings
used for the two scenarios.

To show the effect of assigning different values to men and
women, consider an advertiser that gives more value to female slots
than to male ones, as shown in the Equal price - Female valuable
scenario. Figure 4(a) shows the utility ratio for the K-parity and
unconstrained versions of the advertiser in this scenario. The K-
parity version has its maximum utility ratio when there are more
male than female slots. This may seem counterintuitive since the
advertiser values females more, but the measured ratio reflects
that an abundance of males means that the K-parity version will
not have to operate much differently from the unconstrained one.
This is due to their abundance making overbidding less needed,
decreasing the K-parity version’s costs. Figures 4(b) and 4(c) show
similar results for the (r, K)-ratio constraint.

Lambrecht et al. [18] empirically showed that ad slots for young
women are more expensive. To simulate this setting, we consid-
ered a scenario in which the other advertisers prefer females (i.e.,
g}f" (x) < g? (x) for all j # i and x). We used the Expensive female -
Equal value parameter settings for this scenario. We have advertiser
i value both types equally, at the average of the two different values
used by the other advertisers. Figure 4(d) plots the total utility ratio
as before (solid line). Note that as women become rare, the K-parity
version struggles relative to the unconstrained one since the other
advertisers snap up the few women leaving the constrained version
unable to bid for men. The figure also shows the total utility ratio
for a constrained version of the advertiser i that uses the same sim-
ple bidding strategy as the unconstrained advertisers (dashed line).
Note that ratio is lower than with our optimal bidding strategy,
showing its value. This difference comes from our optimal bidding
strategy overbidding for the female viewers, delaying the afore-
mentioned effect. Figure 4(e) shows that under the ratio constraint,
which is less strict, the optimal strategy can do even better.
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Figure 3: Experimental results for Yahoo A1 bidding dataset

Figures 4(f) and 4(g) further explore overbidding using a variation
on the Expensive female - Equal value scenario. Rather than keep the
value that the advertiser i assigns to males fixed at p[" = 2.5, we
vary it to see the effect on overbidding. Rather than plot " itself,
we plot the ratio of 1" to the value assigned to males by the other
advertisers. Figure 4(f) shows this value ratio by using various lines.
Overbidding is not needed when the ratio is 1 since the advertiser i
can outbid the other advertisers without surpassing its immediate
reward. For ratios above 1, as the rate p of male viewers increases,
the optimal K-parity advertiser will increase its overbidding on the
female viewers since they become more scarce. Figure 4(g) shows
that as ,ulf“ (and, thus, the male value ratio of advertiser i to the
other advertisers) increases, the overbidding for females increases.

Figure 4(h) plots the utility ratio as the value of the rate § at
which the advertiser i will leave the ad network changes. Rather
than plot § directly, it plots the expected lifespan of the advertiser
computed from &. It shows that for short lived advertisers, K-parity
has no effect since the advertiser is unlikely to reach K wins for
either gender. However, the constraint rapidly has an effect as the
advertiser lives long enough to win this number of slots.

Ad Exchange Revenue. Also important is how our strategy im-
pacts the revenue of the ad exchange. We explored the ratio of the
ad exchange’s revenue when there is one constrained advertisers
for each ad slot auction to the case where all advertisers are un-
constrained for all of our scenarios (for both the real and synthetic
datasets). In most cases, the ad exchange revenue did not decrease

at all. The worst case happens for a (1.0, 1)-ratio constrained adver-
tiser on the Yahoo! A1 data, where the ratio of revenues is 0.993. The
ad exchange can avoid this worst case by having lower bounds on
K and r. Therefore, implementing this feature will not significantly
reduce the ad exchange’s revenue.

In fact, supporting constraints may raise the ad exchange’s rev-
enues. Our observations show constrained advertisers often over-
bid, which increases the exchange’s revenue. Figure 5 compares
the revenue of the exchange for various numbers of constrained
advertisers (p) using the Yahoo! A1 dataset. As expected, by in-
creasing the number of constrained advertisers, the the revenue of
ad exchange’s increases above a ratio of 1 with the revenue from
having only unconstrained advertisers.

Performance. Algorithms 1 and 2, each of which only has to run
once for each parameter setting, completed in under 2 minutes and
under 10 minutes, respectively. Calculating bids during auctions,
each took the 2 microseconds. We used a 2013 MacBook Pro with a
2.3 GHz Intel Core i7 and 16 GB of 1600 MHz DDR3 memory.

8 DEPLOYMENT

We envision two ways in which advertisers could use our bidding
strategy. First, ad exchanges can implement it for them as a feature
in the ad buying interface. Such exchanges could use the data it
has to determine the demographics of individuals viewing ad slots
and adjust bids accordingly. While this would require a change to
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Figure 4: Experimental results for synthetic datasets

the ad exchange, it would not require modifying the core auction
mechanism, making it a more straightforward feature to add.
Second, the strategy could be used either directly by the adver-
tiser or offered to them by demand-side platforms as a feature. This
approach does not require any changes to the ad exchange. It has
the disadvantage of only working for ad exchanges that support
real-time bidding and programmatic advertising with rich enough
data to infer the group membership of the people viewing ad slots.
Additionally, such rich data can pose privacy concerns.

We believe that either of these approaches to deployment would
be more straightforward than any way of deploying an auction
mechanism that enforces parity constraints [5] or Guaranteed ad
Delivery (GD) [22, 26]. Only the ad exchange would be able to im-
plement such functionality. Presumably, ad exchanges have already
selected the auction mechanism that they believe would be best
for their business and would be reluctant to change it in a way
that could have wide-ranging effects. Given that Google uses a
generalization of second-price auctions [10], it may believe that the



FAT™ 20, January 27-30, 2020, Barcelona, Spain

—— p=1 —— p=2 —=— p=5

1201 = e

2115

(\!

o

[

=}

c

2 1.10

Q

o

©

5

F1.05] e—e—s P —
1001 +—= —

0.2 04 0.6 08

Figure 5: Ratio of the ad revenue with constrained advertis-
ers and without for various numbers of advertisers subject
to a (0.8, 5)-ratio constraint, computed with the Yahoo A1
dataset.

theoretical result that second-price auctions are optimal in certain
settings has some bearing on its setting. Thus, it may believe that
any change to its auction mechanism is likely to reduce its prof-
its, a strong disincentive. We believe that ad exchanges would be
more willing to implement a change that instead only alters the
bids of advertisers who opt in since it would be equivalent to one
that advertisers could already implement unilaterally by altering
their bids. Furthermore, since our approach changes just opted-in
advertisers’ bids, there is a sense in which they pay for it.

We believe that our approach is computationally feasible. In
some cases, an advertiser may have to solve more than one MDP.
For example, the advertiser may wish to enforce a separate par-
ity constraint for two different webpages whose ad slots differ in
characteristics included in the MDP. The advertiser will have to
solve an MDP for each ad campaign targeting a different type of ad
auction, with its own expected values, bid distributions, and parity
constraints. Given modern approaches to solving large MDPs [24]
and the ability to rent cloud computing resources, we believe that
advertisers sophisticated enough to model a large number of differ-
ent auction types will be able to solve them as well. Once solved,
the advertiser can reuse the solution for every instance of the auc-
tion type. Thus, addressing each incoming bid request from the ad
exchange takes little more than a table lookup.

9 EXTENSIONS AND FUTURE WORK

Our model of ad exchanges does not include that advertisers often
pay exchanges more when the viewer clicks on an ad. Thus, the
expected value v; and cost ¢; of a slot depends upon not just the bid
prices but also the fit of the ad for the slot, which can be estimated
with online tracking and machine learning. It may seem that these
changes will have to be linked since a clicked ad both increases the
value and cost, but by the linearity of expectations, we can consider
the average of each. This changes the reward on the transitions
in the MDP, but not structure of the MDP (the state space and
the transition relation). Therefore, an advertiser can still use our
approach to find optimal bids.
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We used a simple model in which the expected value of each
female slot is equal to the others, and the expected value of each
male slot is equal to the others. Advertisers can use online tracking,
machine learning, and other techniques to compute more fine-
grained estimations of slot values. We can accommodate such fine-
grained modeling by increasing the size of the set © of types, which
will increase the size of state space.

Future work could accommodate constraints for non-binary sen-
sitive attributes, such as age and location (a proxy for race, which is
apparently not explicitly tracked by any ad exchange), leading to a
larger set I of protected groups. Multiple simultaneous constraints
can lead to having multiple T'. Although our MDPs can be extended
to such cases using a cross-product-like construction, the MDP size
will be exponential in the number of constraints and their values,
motivating more significant theoretical future work. Nevertheless,
we suspect that the limited number of protected attributes tracked
by ad exchanges, fast MDP solvers [24], and cloud computing will
make our approach fast enough in practice.

The constraints we explore are very strict in that they must
hold at all times, as opposed to holding with high probability or
asymptotically, which might be acceptable in some settings. In
related problems, parity may only be required at the end of certain
checkpoints, such as at the end of a hiring season. Exploring such
relaxations can be future work.

Our work is an example of the tension between not using pro-
tected attributes and avoiding disparity in outcomes. Our ratio
constraint avoids disparity in outcomes and is based on the four-
fifths rule found in U.S. antidiscrimination rules around disparate
impact [9]. However, that rule is with respect to employment prac-
tices that are, on their face, neutral toward protected groups. Our
constraints explicitly use protected attributes to enforce strict quo-
tas. In some cases, “Quotas are expressly forbidden” by U.S. reg-
ulations [11]. Resolving this tension between competing antidis-
crimination goals is tricky (see, e.g., [20]). An analysis of when our
approach would be legal would be context and country specific and
beyond the scope of this work. However, we will mention that, in
some cases, U.S. antidiscrimination laws would not apply, such as
to private clubs [17]. In such cases, the advertiser may be guided
by its ethics to use our approach to avoid disparity in outcomes.

10 CONCLUSION

Adding parity constraints results in a surprisingly complex bidding
problem, exhibiting both over- and underbidding relative to the
advertiser’s immediate value of an ad slot. Despite this complexity,
we show a practical way of computing optimal bids, to within a
small approximation factor €. This enables us to characterize how
the cost of parity depends upon not just its level of strictness K or
r, but also the base rate p of types, their relative values to both the
governed advertiser i and to other advertisers, and the lifespan (or
discounting factor) §, in sometimes counterintuitive ways.
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A CONJOINT VALUATION FOR ABSOLUTE PARITY CONSTRAINTS

The following lemma justifies Equation (5).

LEMMA 1. For allK and g;, and for all states (k, 0) other than the edge cases (K, m) and (—-K, w),
V (k. 650) = max {q(bis )0 (ki o) = e(bisg)} + AiCkig)

Proor. First note that

NS, (k;gi) = @0 (k;g1)

since

N\Tm(k gi) =pV(k+1m;g)+(1-p)V(k+1,w;g;) = wm(k;gi)
and

N\‘:,/m(k gi) =pV(k—1,m;g;) + (1 -p)V(k-1,w;g;) = (Dxm(k gi)
Thus,

NO(bi, ks i) = q(bis g ING; (ks gi) + (1= q(bis g?)) = N (K; gi)
= q(bi;99)0. (ksgi) + (1 = q(bi; g)) [pV (k,ms; gi) + (1= p)V (k, w; g1)]
= q(bi: 9100, (ki gi) — q(bi:g)) [pV (k. migi) + (1 = PV (ko wign)] + [pV (k. migi) + (1 - p)V (k. wigi)]
= g(bisg7) (®%; (ks 90) = [V (ks ) + (1 = )V (ko ws )] ) + [pV (K, ms i) + (1 = )V (k, ws i)}
= g(bi3 g7 (001, (k 90) = B (kg0 ) + [V (ks i i) + (1 = )V (k, w gi)]
where (10) follows from (8). Thus,

V (k. 0:9i) = max [RO bis g0 + 6N (b ks g0) |

a(bisg?) * 0 = df) +8 [q(bis g?) (00, (ks gi) — @0, (ks g0 ) + [PV (ks msgi) + (1= p)V (k wsgi)] | |

= max {q(bisgf)of = q(bis Y + 8q(biz ) (90, (ki i) = ¥, (kig)) + S[pV (k. migi) + (1 = )V (k. wigi)]}
= max {g(biig))of — e(bisgf) + 6q(bisgf) (04, (kigi) — ¥, (kign)) + S1pV (k. migo) + (1 = p)V (k. wig)] |

I
=
=

I
=
R

a(bisg?) [of +6 (0,0 90) = 0 (kg0 )| = c(bisgl) + Ai ks i)}

max |
{
fn
wc {q(bisgf of + 6q(bi o) (04 (kig1) ~ 0l (ks g0)) = ebisgf) + Aitki |
x|
x|

max {q(bis9f)0! (ki gi) - e(bisg?) + Ai(kigo)|
= max {g(bi; )] (kigy) — e(bisgf) | + As(ki g
where (15) follows from (4) and (13).

B PROOF OF THEOREM 1
The following lemma is based on Lemma C.1 of Iyer et al. [14, p. 28].

©)
(10)
(11)
(12)

(13)

(14)
(15)
(16)
17)
(18)
(19)
(20)

(21)

Lemma 2. For all ¢ and all functions h: R — R that is continuous and non-decreasing, the function f: R — R such that f4(x) =

h(x) * (¢ —x) + fox h(u) du is maximized at x = ¢.
Proor. Consider any ¢. Since, for all x,

¢
/ h(x)du = [h(x) *u+ C]fzx For any constant C
X

=(h(x)*¢+C) - (q(x) *x+C) For any constant C
= h(x) * (¢ — x)

(22)

(23)
(24)
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the following holds for all x

x ¢
500 = 150 = [ 6=+ [y au - [h<¢> “@=g+ [ hw du] (25)
x ¢
= h(x) * (¢ — x) +'/0 h(u) du —‘/0 h(u) du (26)
¢ x ¢
= ‘/x h(x) du +‘/0 h(u) du — ‘/0 h(u) du (27)
For all x such that ¢ < x,
x ¢ x
‘/0 h(u) du—/O h(u) du :/¢ h(u) du (28)
and, thus,
¢ x ¢
fo(x) = fo () = ‘/x h(x)du +‘/0 h(u) du _‘/0 h(u) du (29)
= /¢ h(x)du + /x h(u) du (30)
x ¢
= —/¢ h(x) du+/q5 h(u) du (31)
= / ) h(u) - h(x) du (32)
[
(33)
For all u such that ¢ < u < x, h(u) < h(x) since h is a non-decreasing function. Thus, h(u) — h(x) < 0 and
= fp(@ = [ hw - h(x)du <0 (549
Jo(x) = Jp ‘/q5 u x) du
For all x such that x < ¢,
¢ x ¢
‘/0 h(u) du—/o h(u) du =/x h(u) du (35)
(36)
and, thus,
¢ x ¢
fo(x) = f4(¢) = / h(x) du +'/0 h(u) du _‘/0‘ h(u) du (37)
¢ ] x
= /x h(x)du — (/(; h(u) du —‘/0 h(u) du) (38)
¢ ¢
= / h(x)du — / h(u) du (39)
¢
= / h(x) = h(u) du (40)
For all u such that x < u < ¢, h(x) < h(u) since h is a non-decreasing function. Thus, h(x) — h(u) < 0 and
¢
15 £ = [ b0 - hw du < 0 (a1)
Thus, for any x, f(x) — f4($) < 0, which implies that f5(¢) > f(x) for all x. Therefore, for all ¢, fy is maximized at . o

THEOREM 1. For all K, i, g;, and states (k, 0) other than the edge cases (K, m) and (—K, w), the optimal bid for i subject to K-parity under the
distribution g; at the state (k, 0) is @ig(k; gi)-

Proor. Without loss of generality we assume all of the bids are between 0 and 1. By Lemma 1, the optimal bidding strategy maximizes
term given by (5):

max {q(bisgf) « 9 (kigi) - e(bizg)) | + Ni(kiga)
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To maximize this term, we can omit the function A; since it is constant for each b;. Similar to line (4) of Iyer et al. [14, p. 9], we rewrite the
cost function c(b;; g?) as

C(bi;gf) = q(bizgf)) * die (42)
= q(bi;g?) * max b€< (43)
= E[ y[max bfl < b;] * max b?i] (44)
=/ ¢ (u:9%) * xlu < by] +udu (45)

0
b;
= [ g aa (46)
0
= q(bisg®) * by — q(0:60) % 0 - / b, * q(bi: g9 du )
0 bi 0
= q(bisg?) * bi - /0 g(u:¢0) du (49)

where y is the Iverson indicator function, (45) follows from q(b;g?) =Pr(maxb_; < b) = cdf[max b_;](b) = fob pdf[max b?i] (u) du and
(47) uses integration by parts.
Next, we rewrite the decision problem of the advertiser i as

max {q(b,-;gf) Y (ki gi) - C(bﬂg?)} = max {q(bi;g?) * ] (ks i) - (‘I(bi;g?)bi N /0 qa(uig}) d”)}
= n;)z;lx {q(bi;g?) * (<I>,-9(k;gi) - bi) +/ q(u; g; %) d“}

We know that q(b;; g?) is a continuous non-decreasing function in b; for all gie. That is, h(b;) = q(b;;g") is a continuous non-decreasing
function in b; for any fixed distribution g{" and h(b;) = q(b;;g}") is a continuous non- decreasing function in b; for any fixed distribution g3"

Therefore, we can use Lemma 2 with b; playing the role of x and with h(x) = q(x;g; 9) and ¢ = d>9(k gi)- This allows us to conclude that
equation (5) is at its maximum when the bid is <I>l.9(k; gi) for 0 equal to either m or w. O

C CONJOINT VALUATION FOR RATIO CONSTRAINTS

The following lemma justifies Equation (7). The proof follows the same outline as that of Lemma 1.

Lemma 3. For allr, K, and g;, for all states (n]",n}", 0) other than the edge cases when either = m and r(1 - p)(n]" +1) > pn}’ + K or
0=wandrp(n} +1) > (1-p)n" + K,

V(i 050 = max {g(bis 6100 (n]' mi's 1) = ebizg )| + AT s g0)

Proor. First note that

N2 (nPn¥:gi) = @0, (n™.n}:g:) (49)
since
N (nini's i) = pV(n"+1, 0, m; i) + (1-p)V(n"+1, 0}, w3 g;) = O (nf",n"s gi)
and
Ny (n,nlY gi) = pV(n], n¥+1, m; g;) + (1-p)V (n]", 0 +1, w; ;) = @3 (n]", n}'; gi)
Thus,
NO (b, nY:g:) (50)
=q(bisg?)) * NG, (n.n}:9:) + (1 - q(bizg?)) = N2 (n], n}: gi) (51)
= q(bizg?) @0, (n7.n¥:g:) + (1 - q(bizg?))) = [pV (n]'. 0¥, m:g;) + (1 - p)V (P, n}, wig:) | (52)
= q(bisg?) + @, (n].nY:9:) — q(bisg?) [pV (n], nY,migy) + (1= p)V (n], 0y, wigi) ] + [pV (nf', nY, migi) + (1= p)V(nT, n}, wigi)]  (53)
=q<bi;gi>(@€v.n(n,, nY;gi) — [pV (n n}, migi) + (1= p)V (n], n}’ wgz>1)+[pV(ni,ni,m;gi>+(1—p>V(n,-,ni,w;gm (54)

= g(bizg0) (08, (WP m'590) — 00, (WP s 90) ) + [PV (1, msgi) + (1= p)V (] ' wigi)] (59)
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where (52) follows from (49). Thus,

V(nl,n},0;9:) (56)
{R (bisg?) + SN (b n", Y 1)} (57)
= max{q(bis gf) » (of =) +8 | q(busgf) (001, (n Y390 = @ (0T Y590 ) + [0V (0 migi) + (1= p)V (P mfowig) || 69
= x{q(b,,gnu ~ q(big)a? +6q(biigf) (08, (W5 90) = O, (WP.1¥sg0) ) + S[pV (nTmYmig) + (1= p)V (nfmfwign) ]} (59)
= max {q(bisg0)of ~ e(bisgf) + 8q(bisgf) (0, (nF' nis0) = o (n Y590 ) + As (90| (60)
x{q(bl,gl)u +8q(bisg7) (0, (n. Y3 91) = 00 (n Y5 g0) ) = e(bis g?) + As(n Y gi) | Q)
x{q bisgf) |of +8 (90, (n7nifsg0) = 00, (n i g0) )| = c(bisgl) + s (i g0)| (62)
max {q(bisgf) » 07 (nf' s 90) = e(bisgf) + i (nf s 90| (63)
= max {g(bisgf) + 0 (n]' nYsg) = e(bizg) | + Au(n] s g0) (64)

where (58) follows from (4) and (55). O
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