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Abstract

Quorum sensing (QS) is a molecular signaling modality that mediates
molecular-based cell–cell communication. Prevalent in nature,QS networks
provide bacteria with a method to gather information from the environment
and make decisions based on the intel. With its ability to autonomously
facilitate both inter- and intraspecies gene regulation, this process can be
rewired to enable autonomously actuated, but molecularly programmed, ge-
netic control. On the one hand, novel QS-based genetic circuits endow cells
with smart functions that can be used in many fields of engineering, and
on the other, repurposed QS circuitry promotes communication and aids in
the development of synthetic microbial consortia. Furthermore, engineered
QS systems can probe and intervene in interkingdom signaling between
bacteria and their hosts. Lastly, QS is demonstrated to establish conversa-
tion with abiotic materials, especially by taking advantage of biological and
even electronically induced assembly processes; such QS-incorporated bio-
hybrid devices offer innovative ways to program cell behavior and biological
function.
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Quorum sensing
(QS): a cell–cell
communication
process discovered
in bacteria

Autoinducer (AI):
small molecule
secreted by quorum
sensing bacteria as a
measure of population
density

AHL:
acyl-homoserine
lactone

1. QUORUM SENSING

1.1. History and Background

Although they are considered primitive, microbes have been found to be social creatures, just like
humans. Whereas we use words and body gestures, gregarious bacteria converse through secre-
tion and perception of small signal molecules.Greenberg and colleagues termed this phenomenon
quorum sensing (QS). Hints of microbial social interaction through extracellular molecules had
been found in early studies in which scientists discovered that both (a) luminescence in two species
of marine bacteria (1, 2) and (b) genetic competence in Streptococcus pneumoniae (3) required pro-
duction of hormone-like small molecules. The big breakthrough in QS studies came with two
landmark discoveries: One identified the genes that control (luxI, luxR) and produce (lux) lu-
minescence in Vibrio fischeri (4, 5), and the other unveiled the QS-signal molecule to be N-(3-
oxohexanoyl)-l-homoserine lactone (3OC6-HSL) (6). Soon after, the dawn of genomic profiling
allowed the discovery of an explosion of systems that are homologous to the luxQS system in dif-
ferent species (7, 8). Since then, many and widely disparate scientific efforts have been dedicated
to understanding how bacteria communicate.

1.2. Quorum Sensing Systems and Networks

In general, QS bacteria produce and release chemical signal molecules termed autoinducers (AIs),
the external concentrations of which increase as a function of increasing cell-population density
within a particular niche.Once the bacteria detect that AIs have reached a threshold concentration,
they will respond by altering their gene expression and behavior. AIs, playing a vital role in QS, are
the cues bywhichQS bacteria communicate and synchronize particular behaviors on a population-
wide scale, thus gaining the ability to function as a multicellular organism. In this section, two
well-characterized QS systems and their signals, receptors, mechanisms of signal transduction,
and target outputs are reviewed.

1.2.1. LuxI/R system. For most QS systems in Gram-negative bacteria, the LuxI/R system of
V. fischeri (Figure 1a) serves as an underlying paradigm (9). In this system, proteins LuxI and LuxR
control expression of the luciferase operon (luxICDABE) required for luminescence. luxI encodes
for an AI synthase that produces the acyl-homoserine lactone (AHL) AIN-3-oxododecanoyl-HSL
(3OC12HSL).Following its production, the AHLwill accumulate—its concentration increasing as
the cell density increases.Upon reaching a critical level, LuxR, the cytoplasmic AI receptor/DNA-
binding transcriptional activator, will bind to AHL, and this complex will initiate the expression
of the luciferase operon. This actuates a positive feedback loop, as luxI is encoded in the operon,
and soon the environment is flooded with AHL, which, in turn, switches all bacteria nearby to
the QS-active, light-shedding mode (10). All other LuxI/R systems share a general mechanism:
LuxI homologs synthesize AHL as AIs, and LuxR homologs recognize, specifically, their cognate
AHL. This specificity makes LuxI/R QS systems ideal for enabling intraspecies communication.
In Gram-positive bacteria, such as the aforementioned S. pneumoniae, the modified oligopeptides
are used as AIs, and the two-component-type membrane-bound sensor histidine kinases are
used as receptors. Like the Gram-negative LuxI/R system, each Gram-positive bacterium uses
a signal different from that used by other bacteria, and the cognate receptors are exquisitely
sensitive to the signals’ structures. Because AHLs from different species have been characterized
extensively, they can be used for synthetic cell–cell communication. In addition, components of
the LuxI/R system can be used as modules within heterologous gene circuits, as they are often
ported to non-native strains. Particularly importantly, the broad class of signals comprising the
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LuxS:
S-ribosylhomocysteine
lyase, breaks down
S-ribosylhomocysteine
into DPD, precursor
of AI-2
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Figure 1

Canonical quorum sensing (QS) systems. (a) QS in Vibrio fischeri. Pink pentagons denote the acyl-homoserine lactone (AHL)
autoinducers (AIs) that LuxI produces (3OC6-homoserine lactone). Transcriptional regulator LuxR modulates expression of AHL
synthase, LuxI, and the lux operon, leading to luciferase-mediated light emission. Homologous lux-like systems are described in
Reference 7. (b) Regulatory mechanisms of the LuxS/AI-2 circuit in Escherichia coli. AI-2 (green pentagons) is imported into the cell by the
Lsr transporter (LsrACDB) and is then phosphorylated by LsrK.When AI-2P binds LsrR and releases LsrR from the promoter region
(thus modulating Lsr gene expression), AI-2 uptake is increased. LuxS produces DPD, the precursor to AI-2. The AI is exported by
YdgG (TqsA). Lsr homologs and their organizational structures are found in both Gram-positive and Gram-negative bacteria (18).

AHLs freely diffuse through Gram-negative membranes so that active signal transduction motifs
are not needed for synthetic communications systems. Also, bacteria rarely rely on one exclusive
LuxI/R QS system but often employ multiple signaling systems in parallel. This biochemical
diversity of AHL signaling pathways can be leveraged for circuits controlled by combinations of
unique signals (11). Together, these characteristics make the LuxI/R system particularly attractive
to fields like synthetic biology, as they can be translated to function in engineered systems and
environments.

1.2.2. LuxS/AI-2 system. The LuxS/AI-2 system (Figure 1b) was first observed in yet another
bioluminescent marine bacterium,Vibrio harveyi, which can communicate via multiple QS signals,
including those secreted by other species (12). The QS signal AI-2, which is actually a family of
cyclic furanones (13), serves as the “bacterial Esperanto” (14), as it can be generated by more than
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SAH: S-
adenosylhomocysteine

Pfs: 5′-methyl-
thioadenosine/S-
adenosylhomocysteine
nucleosidase, catalyzes
SAH into
S-ribosylhomocysteine

Lsr transporter:
LuxS-regulated
transporter

80 species of bothGram-negative andGram-positive bacteria (10, 15).During central metabolism,
the reactive methyl moieties of S-adenosylmethionine are transferred to various substrates, yield-
ing by-product S-adenosylhomocysteine (SAH). LuxS-containing bacteria have two enzymes (Pfs
and LuxS) acting sequentially to convert SAH to adenine, homocysteine, and the signal molecule
4,5-dihydroxy-2,3-pentanedione (DPD). This, in turn, is exported and cyclized to AI-2, enabling
both the synthesis of AI-2 and the detoxification of the toxic by-product SAH (16).

Remarkably, AI-2 is found to be actively transported into the cell by the luxS-regulated (Lsr)
transporter inEnterobacteriaceae and several other taxa (17, 18). InEscherichia coli, the AI is imported
by the Lsr transporter (LsrACDB) and in turn is phosphorylated by LsrK to AI-2P.As AI-2P binds
LsrR, it relieves the repression of LsrR on the Lsr genes and accelerates AI-2 intake. Interestingly,
through modeling and experimental studies, alternative, less prominent routes of AI-2 synthesis
(19) and uptake (20, 21) have been postulated. Also interestingly, LsrACDB is also regulated via
glucose and cyclic AMP/cyclic AMP receptor protein, as well as other common carbon sources
(20, 22). Based on these discoveries, the LuxS/AI-2 system has two noteworthy features: (a) the
desynchronization of the LuxS/AI-2 QS system caused by AI-2 intake via the lsr operon, which al-
lows the display of bimodal Lsr signaling and fractional induction (23), and (b) the ability to endow
cell population–dependent behavior while interacting with central metabolism and regulating cell
fitness through the intracellular activated methyl cycle and intervention of the aforementioned S-
adenosylmethionine metabolism pathway. Moreover, in Figure 1b, we also show that the AI-2
uptake mechanism (Lsr) is phylogenetically dispersed among Gram negatives and Gram positives
(18). That is, although bacteria possessing the AI-2 signal transduction mechanisms are believed
to have the ability to sense the general bacterial population density in a multispecies consortium,
this diversity suggests the ability to self-report. The prevalence of LuxS among bacteria (and AI-2
in proximal microenvironments) has fueled speculation about the role of AI-2 as a QS-signal
molecule, yet its diverse uptake and signal translocationmechanisms enable species-specific ability
to respond to AI-2. Interestingly, some question whether AI-2 and the LuxS/AI-2 QS system can
be defined as a true interspecies QS-signaling pathway, or in some cases a non-QS-related cue (24),
but this system possesses many attributes and components that can be rewired and incorporated
into engineered systems.

1.3. Global Quorum Sensing Regulons

The prevalence of genomic fingerprinting has revealed that QS can control gene expression in
a global manner. QS mutants of S. pneumoniae and related streptococci show defects in multiple
pathways, including biofilm formation, acid tolerance, bacteriocin production, and virulence
(7). E. coli, too, have been reported to elicit broad QS activities. For example, the quantity and
architecture of biofilms are regulated by lsrR/K, as well as the generation of several small RNAs
(25, 26). Transcriptome analyses of an E. coli luxS mutant, which showed that 242 genes (5.6% of
the whole genome) exhibited significant transcriptional changes upon a 300-fold AI-2 signaling
differential (8, 21, 27), suggest that QS coordinates the control of a large subset of genes. Although
we are not entirely certain whether these luxS mutant phenotypes are a result of the lack of QS
signaling or may simply be due to metabolic perturbations, these findings surely demonstrate that
QS allows bacteria to alternate between distinct genome-wide programs by activating numerous
genes both directly and indirectly. For example, AI-2 also serves as a chemoattractant for E. coli
(28, 29). Chemotaxis studies have revealed that both LsrB and Tsr, a serine chemoreceptor, are
involved in AI-2 sensing (30). As a signal molecule, AI-2 is not a nutrient, unlike other known
chemoattractants of E. coli; therefore, chemotaxis toward AI-2 may not involve the narrow dose
ranges that are characteristic of most indirectly binding chemoattractants (31). This provides
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opportunities to enable programmed motility toward user-selected features on nearby surfaces.
Antigen 43–dependent autoaggregation of E. coli is also mediated by AI-2. Hence, the AI-2
chemotactic response will lead to active aggregation, and in turn, autoaggregation enhances
AI-2-mediated signaling, and subsequently, biofilm formation and stress resistance (32).

Since long before the formal recognition of metabolic engineering in 1991 (33), scientists and
engineers had been developing microbial strains for the production of valuable chemicals. The
emergence of metabolic engineering and synthetic biology was predicated on the multidimen-
sional value associated with biological synthesis processes for chemical products—a natural pro-
gression was the desire to program cells to carry out these functions. QS regulons, having the
potential to connect inter- and intraspecies communication systems with genome-spanning regu-
latory processes, dramatically simplify what otherwise might be the de novo engineering of gene
circuits (34, 35). QS serves as an excellent platform for many technologies, particularly if one un-
derstands the regulatory reach of the genetic circuits. In the past two decades, the rewiring of na-
tiveQS networks has enabled novel ways to engineer cell behavior, exemplified by such advances as
programmed population controllers (36), synchronized genetic clocks (37), and population-based
autonomous gene actuators (38, 39).These studies have set the stage for the future development of
a variety of innovative biotechnological applications, which are discussed in the following sections.

2. MANIPULATION OF QUORUM SENSING SYSTEMS: ENDOWING
CELLS WITH NEW FUNCTION

Owing to their diversity and versatility, QS systems are perfect candidates as platforms for facili-
tating the endowment of bacterial strains with unique and increasingly complex functions. In this
section, we explore recent endeavors to excerpt QS mechanisms and pathways to enable cells with
advanced functions for various applications.

2.1. Biosensors

Whole-cell biosensors, as the name suggests, are native or engineered cells that detect and report
on a target or condition of interest (40, 41). Biocompatible and renewable, they make good sub-
stitutes for current chemical or electrical sensors. Originally, cells that elicit QS behavior were
simply rewired to detect their own AIs (42). This was typically accomplished by deleting the ter-
minal AI-synthase gene and replacing the native QS-induced gene system with a reporter gene.
Perhaps the most well-characterized and used sensor is the V. harveyi strain BB170, of Bassler
and coworkers (43). Although they were developed more than two decades ago, these biosensor
cells continue to benefit science; for example, they are frequently used in studies to probe for
new QS inhibitors (44–47). Analogously, by fusing QS promoters with fluorescence genes, Pseu-
domonas aeruginosa were given the ability to report on the genetic expression of four QS networks
(48). Owing to the wide diversity of natural QS systems, various pathogens and infection markers
can also be detected by engineered QS-based biosensors (49–51). These bacterial sentinels were
further enhanced to perform with higher sensitivity (52) or to encode and distribute therapeutic
payload upon detection, which is discussed in the following section.

QS-based biosensors are also employed to probe pollutants (i.e., heavy metal ions) (see the left
side of Figure 2a) in the environment, in which the positive feedback loop of the LuxI/R system
is used for signal amplification (53, 54). On top of enhancing signal amplitude, QS circuits have
been shown to resolve some common problems met by biosensors. Genetic noise, or specifically
variation in phenotype between cells, can be assisted by QS systems (55, 56). Early work showed
that by coupling LuxI/R circuitry to the expression of a toxic protein (CcdB), it was possible to
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Figure 2 (Figure appears on preceding page)

Quorum sensing (QS)-enabled cell functions. (a, left) Paradigm of QS biosensors. A wide range of signals can be detected and amplified
through QS circuitry and reported via optical or biological means. (right) A quantified quorum of biosensors is engineered to respond
to different levels of signal and produce a collective response. (b) Examples of QS therapeutics. (left) Sense-and-kill probiotics (green)
can sense pathogenic signals, specifically acyl-homoserine lactone (AHL) produced by pathogens, and express toxin (pyocin S5) and
cell-lysis proteins (lysin E7) to eliminate Pseudomonas aeruginosa (63). Anti-biofilm enzyme (DspB) and biofilm-targeted nanobodies can
be incorporated to facilitate biofilm penetration. These smart probiotics can either autoaggregate toward tumor cells (e.g., Salmonella)
or be programmed to actively seek target cells. (right) Nanofactories consisting of Pfs, LuxS, protein G, and anti-EGFR antibody will
specifically bind to selected biomarkers (EGFR) and produce AI-2. Probiotics (Escherichia coliNissle 1917) recognize and then
chemotax toward AI-2 (produced by targeted cells) (80). Upon arriving at their destination, smart probiotics use the same AI-2 level to
report (via red/green fluorescence) (green/red, E. coli) or lyse when the population threshold is reached and release genetic-encoded
cargo (tan, Salmonella). (c) Example of QS-facilitated biosynthesis (85). G6P flux is split into three pathways: (i) myo-inositol (MI)
production (which leads to glucaric acid production), (ii) glycolysis, and (iii) the pentose phosphate pathway (deleted in study and not
shown in figure). Dynamic, autonomous downregulation of Pfk-1 is achieved by placing fruK under the PesaS promoter, and this
integrates the signaling from esaI in the genome. As the population and AHL concentration increase, the PesaS promoter will be
repressed by AHL-bound EsaR, which then switches off Pfk-1 expression. This biases the G6P-to-MI (and glucaric acid) metabolic
flux, increasing the yield of glucaric acid.

program population dynamics irrespective of the variability in individual cells (36).With the same
notion in mind, a synchronized genetic clock was engineered based on both the LuxI/R system
and the QS system of Bacillus thuringiensis (37). Here, colony-level synchronized oscillation could
diminish single-cell variability and increase the sensitivity and robustness of the response to ex-
ternal signals. These frontier endeavors have paved the way for building better, more effective
macroscopic biosensors. Interestingly, one further study chose to dwell on the heterogeneity ob-
served within bacterial populations that, despite the group showing collective behavior, could still
be observed. In this work, a stable quorum wherein a specific fraction of the whole exhibits the
desired collective behavior is generated (see the right side of Figure 2a); for instance, a group
of cells could be programmed to have 65% of the total population express DsRed, a red fluo-
rescent protein (57). This was done by manipulating the native E. coli AI-2 transduction cascade
along with an AI signal amplification vector that makes the strain hypersensitive to AI-2; there-
fore, it overexpresses the marker protein and, with this QS mechanism, leads a subgroup of cells
to exhibit the same behavior. We believe studies like this also anticipated many future works that
focus, beyond AI-2 biosensors, on intentional control of group behavior, which is discussed fur-
ther below. Owing to the development of the many tools of synthetic biology, QS components
and signaling mechanisms have helped to streamline biosensor development. The adaptable and
well-defined nature of QS systems will surely continue to benefit the improvement of biosensors,
even broadening their capabilities.

2.2. Therapeutics

Although the use of bacteria as therapeutics dates to more than a century ago (58, 59), smart
bacteria with programmed therapeutic functions are now a tangible reality owing to the recent
strides made in synthetic biology. By leveraging the species specificity of different native quorum
signals, bacteria that are able to detect infection caused by P. aeruginosa (49, 60, 61) and Enterococcus
faecalis (62) have been tested in vitro. These engineered sentinels not only can serve as diagnostics
but are capable of eliminating pathogens through expression and excretion of bacteriocins (60) or
antimicrobial peptides (49, 61, 62).

2.2.1. QS-regulated sense-and-kill probiotics. In an extension of previous work (61),Hwang
et al. (63) have endowed probiotic E. coli strain Nissle 1917 to seek the pathogen through AI
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(3OC12HSL)-regulated motility; induce self-lysis (driven by lysin E7); and release pyocin c5, an
anti–P. aeruginosa toxin (Figure 2b).The engineered strain exhibits in vivo prophylactic and thera-
peutic activity against P. aeruginosa during gut infection.Recently, BeQuIK (Biosensor Engineered
Quorum Induced Killing), a newly proposed design that aims to combat recalcitrant biofilms,
adopted the same sense-and-kill premise but with a twist for aiding in the targeting and pene-
tration of biofilms (64). Biofilms are 3D structures in which a cluster of bacteria resides within
a self-produced matrix primarily composed of proteins, polysaccharides, and extracellular DNA
(65).Mature biofilms are notoriously difficult to penetrate or degrade.BecauseQS activity governs
biofilm formation, the sense-and-kill system can be adopted to clear these 3D structures; however,
success depends on localization of the engineered E. coli because this system relies heavily on the
diffusion of AIs.Better eradication of biofilms could perchance be achieved through surface display
of one or more biofilm-targeting nanobodies (Nbs), which are single-domain antibodies derived
from the heavy-chain antibodies of camelids (66), to recognize and bind to components of the
extracellular polymeric substance or biofilm-mediated proteins. Additionally, fusing one or more
biofilm-degrading enzyme domains to the Nbs would possibly allow for more effective diffusion
of AIs for activating the killing mechanism, as well as better permeation of the therapeutic agents.

2.2.2. QS-regulated in situ production and delivery. It is perhaps inevitable that some bacte-
ria would evolve to preferentially grow in environments that harbor disease, and hence these cells
may serve as a natural platform for the development of engineered therapies (67–69). Salmonella,
for instance, are one of the ideal candidates because they preferentially accumulate in tumors, ac-
tively penetrate tumor tissue, and can be engineered to produce anticancer drugs in situ (70–73).
Notably, however, nonspecific expression can damage healthy tissue.EngineeringQS signaling of-
fers the opportunity to restrict expression of the therapeutic compounds to relevant body sites. For
example, the LuxI/R QS system was excerpted to build a density-dependent switch in Salmonella
so that the engineered bacteria express the to-be-delivered proteins only in tightly packed colonies
within tumors (74). This proof-of-concept study using an in vitro 3D tumor-on-a-chip device and
in vivo mouse models showed that QS Salmonella specifically initiates green fluorescent protein
expression within cancerous tissue while remaining uninduced in liver; hence, this study provided
a road map for limiting systemic toxicity caused by unwanted expression in healthy tissues. In ad-
dition, such therapies could also benefit from bacteria that are programmed to maintain relatively
low overall colonization levels in the body while continually producing and releasing cytotoxic
agents (75, 76). Using coupled positive and negative feedback loops that had previously been used
to generate robust oscillatory dynamics (37, 77), Din et al. (78) constructed a synchronized lysis
circuit to allow engineered Salmonella to deliver therapeutic cargo and lyse synchronously at a
threshold population. In this system, both luxI and hlyE (which encodes haemolysin E, an anti-
tumor toxin) were constitutively expressed. As the AIs slowly built up to reach a threshold level,
the bacteriophage lysis gene (φX174E) was induced, thus triggering cell lysis and simultaneously
releasing the therapeutic toxin. This genetic synchronized lysis circuit was also used in a recent
study to enable a nonpathogenic E. coli strain to lyse specifically within tumor microenvironments
and release an encoded Nb antagonist of CD47, an antiphagocytic receptor commonly overex-
pressed in human cancers (79). This approach confers multiple advantages over the conventional
immunotherapy, in that the engineered E. coli provide a way to increase the local concentration
of Nbs while preventing systemic toxicity. Alternatively, targeted therapeutic cargo delivery has
also been made possible in E. coli via incorporation of the native AI-2/Lsr signaling pathway (80)
(Figure 2c). Here, bacteria were modified to enable programmed motility, sensing, and actuation
based on the density of user-selected features on nearby surfaces. Specifically, bacterial enzymes
LuxS and Pfs were introduced onto cancerous eukaryotic cells as a nanofactory, where they were
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used to synthesize chemoattractant AI-2. That is, the LuxS-Pfs fusion protein also contained a
bacterial protein G domain that enabled the assembly of targeting antibodies. After expression
and purification from E. coli and incubation with an antibody targeting epidermal growth factor
receptor (which is upregulated on cancer cells), these nanofactories were used to synthesize AI-2
on the cell surfaces at EGFR sites, thus directing engineered E. coli to swim toward the cancer cell
line (SCCHN). Once in place, the same AI-2, which is differentially accumulated above cancer
cells, enabled QS computation to induce red fluorescent protein (RFP), a marker for therapeutic
or other compounds.

2.3. Biosynthesis

Metabolic engineering often takes inspiration from natural regulatory mechanisms in microbes
and repurposes them to maximize productivity; QS systems offer many suitable components that
can be exploited for this purpose. One of the more severe problems met by the most productive
metabolic engineeringmethods is the heavymetabolic burden that accompanies the genetic modi-
fication.BecauseQSnetworks are capable of reporting themetabolic state of a bacterial population
and the metabolic burden is self-indicated by this network (27), Tsao et al. (38) created a system
in which the system itself can autonomously induce protein expression and achieve metaboli-
cally balanced coordination through rewiring native AI-2/LuxS QS circuitry in E. coli. Further, a
LuxI/R-based, semiautonomous induction circuit was assembled in E. coli and employed for iso-
propanol production (81); it was later modified to create a fully self-induced system for synthesis
of a biofuels compound, bisabolene (82). These approaches allow cells to grow with less metabolic
burden in early stages and transition to a production mode after the population growth phase has
completed. Notably, these systems can ensue without exogenous addition of inducers or perhaps
even user input.

In addition to gene actuation, QS-based circuits can also direct metabolic flux via repres-
sion of essential genes in endogenous metabolic pathways. Saccharomyces cerevisiae were pro-
grammed to autonomously trigger RNA interference, hence silencing genes that compete with
p-hydroxybenzoic acid production at a high population density via a synthetic QS network built
by modifying the native pheromone communication system (83). Whereas gene expression is in-
duced upon reaching a threshold concentration of AIs in both LuxI/R and AI-2/LuxS systems,
the Esa QS system found in Pantoea stewartii does the opposite—originally EsaR binds at the pro-
moter region and serves as an activator, but until the AI produced by EsaI reaches a certain level
and disrupts the binding of EsaR, the promoter is in turn deactivated (84).Gupta et al. (85) rewired
this Esa QS system and successfully switched off phosphofructokinase-1 and shikimate kinase au-
tonomously at a certain cell density, which siphoned carbon into d-glucaric acid production and
led to an increase in glucaric acid, myo-inositol, and shikimic acid production (Figure 2). This
system was further enhanced by layering a pathway-dependent regulation strategy, a myo-inositol
biosensor, to allow the cells to accumulate a sufficient amount ofmyo-inositol before converting to
the final product, glucaric acid (86). Another recent study integrated both cell density–controlled
upregulation and downregulation to assemble a bifunctional metabolic switch via a synthetic QS
system and applied it for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis (87).
Although this study witnessed a 40-fold increase in end-product formation, this setup employed
only downregulation of cell-growth genes and not a bimodal balancing of metabolic flux that
would simultaneously upregulate genes in the product synthesis pathway, perhaps leading to an
even higher yield. Further, a recent study combined the power of directed evolution of critical en-
zymes along with metabolic pathway optimization in product synthesis via Esa-PEsaR (a modified
version of the native Esa circuitry that in lieu of repression activates target gene expression) QS
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activation of said engineered enzymes to amplify de novo production of 4-hydroxyphenylacetic
acid (88). Compared with other strategies exploiting dynamic pathway engineering, QS-based
regulatory mechanisms provide process- and pathway-independent control of the metabolic state,
which makes them highly applicable to different bioprocesses. That said, there remains a general
lack of quantitative understanding of exactly howmuch burden the additional QS logic gates bring
to these engineered systems; perhaps computational modeling or fundamental understanding of
resource competition within cells could bring about a more robust, productive cell factory in the
future.

3. MANIPULATION OF QUORUM SENSING SYSTEMS:
OPENING LINES OF COMMUNICATION

In the previous section, we witnessed how QS regulons could be taken apart and reassembled
into novel genetic circuits and how these endow cells with various advanced functions. These
strategies mostly made use of the QS information/control paradigm in which cells autonomously
regulate gene expression after detecting self-generated or synthetically produced molecular cues
in their immediate microenvironments. Most often these systems have employed diffusible AIs,
such as the large family of AHLs. That said, QS derives from its well-established function as a
means for conveying and coordinating social behavior (89, 90); hence, it is also expedient to apply
and further engineer QS systems to do what they do best: launch and promote communication
between groups of bacteria.

3.1. Microbial Consortium: A Prospective Platform

As the saying goes, “Two heads are better than one.” Microbial consortia have long proven their
abilities to outperform single microorganisms at multiple tasks, as evidenced by the evolutional
development of natural communities. The gut microbiota, for example, plays multiple vital roles
in human health, from regulating metabolism to influencing the immune system and even guiding
maturation of the enteric nervous system, all while varying in composition across time, location,
and individuals (91, 92). Besides their versatility, native consortia (such as the gastrointestinal mi-
crobiome) are also robust; they respond to environmental challenges, display cooperation and
exchange of public goods, and communicate (chemically or physically) between species. In light
of these beneficial traits, microbial communities present themselves as an attractive platform for
synthetic biologists who aim to modify microorganisms for biotechnological applications. From
an engineering perspective, the division of labor, in which different populations are charged to
perform different tasks, represents a key to overall effectiveness. Some potential advantages born
by such a division of labor include improving functionality via specialization, reducing metabolic
burden via function distribution, and reducing engineering complexity (93). Within consortia,
complex tasks can be segmented, and each part can be delegated to a subpopulation. This al-
lows subgroups to specialize and together display sophisticated multifunctionality that cannot be
achieved in a single clonal population. Because cells are now completing only part of the overall
function, they can be relieved from the responsibility of carrying all of the modified genetic ma-
chineries and hence ameliorate their heavy metabolic burden. Lastly, compartmentalizing cellular
processes into different populations increases modularity. Therefore, engineering design becomes
more facile, as each module (or subpopulation) can be tuned,modified, or even replaced in a plug-
and-play manner (94). That said, synthetic microbial communities are significantly more complex
to engineer than monocultures. With each additional member, the size of the interaction ma-
trix increases geometrically, so that the transition from static monoculture to dynamic consortia

456 Wang • Payne • Bentley

A
nn

u.
 R

ev
. C

he
m

. B
io

m
ol

. E
ng

. 2
02

0.
11

:4
47

-4
68

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 1
73

.6
9.

18
0.

10
4 

on
 0

6/
29

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



CH11CH19_Bentley ARjats.cls May 19, 2020 9:58

PQS1 PQS2

(QS2)I(QS1)R

(QS1)R

Target 1

AHL2

(QS1)I(QS2)R Target 2

AHL1

AND
response

AHL1 AHL2

Applications

Challenges

Intermediate a Intermediate b

+ Product

Control
growth rate

Biosynthesis Population control

Crosstalk

(QS1)box

(QS2)R

AHL1

Social cheaters

Nutrients

(QS2)R

PQS1

Figure 3

Applications and challenges of quorum sensing (QS)-based synthetic consortia. The middle images provide an example in which
QS-communicative consortia are used to provide a collective response (95). Population 1 (green) expresses regulator (QS1)R and
secretes AHL2 and target 1 under the control of promoter PQS1, which activates upon AHL1-bound QS1R. Population 2 (tan) does
the reverse. Because one population makes the required signal for the other’s gene expression, both cells and genetic circuits are needed
to generate a response. Hence, this is an AND logic switch. Such synthetic consortia can be applied to metabolic engineering for
distributing tasks among multiple strains (top left). Such a system can be fine-tuned by controlling the growth rate of one of the
populations relative to the other (top right). Challenges must be overcome, however, for these systems to work effectively. One involves
signal crosstalk (bottom left), and another, social cheaters (bottom right).

presents a new challenge for us to conquer. In the following sections, we discuss howQS networks
may contribute to the synthetic biology toolbox that assists in the construction and deployment
of synthetic microbial communities.

3.1.1. Engineering QS-based communication. Brenner et al. (95) first demonstrated a
synthetic coculture composed of two engineered E. coli strains that was able to communicate bidi-
rectionally and reach a consensus (see the middle panel of Figure 3). Two populations conversed
through secretion and detection of 3-oxododecanoyl-HSL (3OC12HSL) and butanoyl-HSL
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(C4HSL), which are AIs made by enzymes LasI and RhlI, respectively, from the QS networks of
P. aeruginosa. In this consortium, one population relied on the signal from the other population to
activate gene expression, and a consensus could be attained when both populations reached their
cell-density thresholds. Remarkably, the responses were sustained for up to several days when the
consortium was cultured as a biofilm. This success took scientists one step closer to engineering
a living film—the consensus response could potentially be replaced into an enzyme and prodrug
pair or two inactive fragments of a toxin. Complex metabolic tasks could be divided into two or
more, and the intermediate pieces could be assembled to reach consensus.

Soon after, the concept of synthetic consortia with bidirectional communication became a
paradigm for many similarly programmed consortia. Balagaddé et al. (96) reported an artificial
ecosystem that aims to mimic the canonical predator–prey systems in terms of logic and dynamics.
Here, communication was fostered by lux and lasQS networks, and similarly the two populations
regulated each other’s gene expression via QS-rewired circuits. The predator population could kill
the prey population by secreting AIs, which, in turn, induced a killer protein (CcdB) expression
within the prey; meanwhile, the prey revived the predator, in which the killer protein was con-
stitutively expressed, but with an induced antidote protein (CcdA). Recently, it was proposed and
modeled in silico that this predator-and-prey architecture, or a slightly altered version in which
two groups rescue each other, could turn into a population-controlled consortium (97, 98). A simi-
lar lux-based population control strategy was later applied to a synthetic three-species consortium
for vitamin C fermentation (99). A subsequent study built a symbiotic microbial ecosystem with
the aid of lux and rhl QS networks to examine the interplay between the environment and the
ecosystem (100). Many population dynamics, such as extinction, mutualism, and commensalism,
can be observed by tuning different levels of environmental factors (represented in this work by
antibiotics) and initial cell densities. Genetic oscillations, previously made possible in monocul-
tures, were now shown to be generated by an activator and repressor coculture (101). Two strains
conversed through QS networks: rhl (from P. aeruginosa), providing the additional positive feed-
back loop, and cin (from Rhizobium), providing the additional negative feedback loop, with both
containing an inherent AiiA-mediated negative feedback loop. Experimental and modeling data
together had shown that this network topology displays more robust oscillations than those gener-
ated by just one negative feedback loop. AHL-mediated communication can also be coupled with
AI-2 signaling to create an autonomously regulated consortium (102). In particular, this system
consists of two populations of E. coli, one of which generates AHL based on nearby AI-2 levels,
and the AHL concentration, in turn, affects the growth rate of the other population, resulting in a
change in coculture composition. Subsequent programming enables composition trajectories and
control. Together, these studies portend engineering of complex synthetic populations, perhaps
bacteria in combination with tissues and even organs composed of multiple cell types.

Cocultured cellular networks can also serve as effective biosensors.Terrell et al. (103) described
assembly of a nano-guided QS information processor, which included two cell populations that
independently interrogate natural microbial communities and autonomously generate informa-
tion about QS activity by accessing AI-2. They were used to eavesdrop on the dialogue initiated
by Gram-positive Listeria innocua in complex media. Populations displayed either red or green
fluorescent proteins on their outer surfaces and were designed to detect lower and higher levels of
AI-2, respectively.With the help of streptavidin-binding protein that was expressed on their outer
surfaces and exogenously added magnetic nanoparticles, both populations reported on AI-2 se-
creted by L. innocua and were binned by their fluorescence responses. The magnetic nanoparticles
enabled an unbiased collection of the sensing cells and at the same time focused the signal re-
sponses. This multidimensional setup combined biotic and abiotic features for the active probing
of molecular space and translated the molecular dialogue into light signals that were easy to bin
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and interpret.The success of these studies has provenQS-based communication to be an effective,
modular, and robust icebreaker for initiating communication in a microbial society.

3.1.2. Engineering a microbial consortium: challenges. Despite their utility for engineering
microbial consortia, QS systems have several drawbacks that limit their use as field-deployable
communication networks. First and foremost is the crosstalk (see challenges in Figure 3) between
different QS networks at both the promoter and signal levels (104). Signal crosstalk occurs when
a receptor can bind its noncanonical AI. LuxR is known to bind 3OC12HSL, the AI native to
another QS system, the las system. Promoter crosstalk occurs when activated receptors can bind
a noncanonical promoter. For instance, Brenner et al. (95) encountered this issue when pairing
QS networks rhl and las. Specifically, high levels of activated LasR were found to initiate the rhl
promoter. A combination of signal and promoter crosstalk is also possible, whereby a receptor that
is activated by a noncanonical AI binds to a noncanonical promoter.

That said, if parts are well-characterized, such crosstalk can be harnessed to create unique
dynamic circuits. Initially, most endeavors were made to avoid crosstalk; for example, a positive-
feedback loop on the I proteins was incorporated into the design of the bidirectional commu-
nication circuit to mitigate promoter crosstalk between LasR and rhl (95). However, it is criti-
cal that additional QS systems with complete orthogonality be developed. Via rational promoter
and protein engineering, Scott & Hasty (104) adapted two new QS systems, the rpa system from
Rhodopseudomonas palustris and the tra system from Agrobacterium tumefaciens, into E. coli to expand
upon the extensively used lux and las systems. Notably, engineered rpa and tra systems displayed
complete orthogonality, while signal and promoter orthogonality were observed between rpa/lux
and tra/las QS systems, respectively. Another recent study systematically characterized six com-
monly used QS systems, the lux, las, tra, rpa, rhl, and cin networks, and developed a software tool
that automatically identifies combinations of receptors and AIs that behave orthogonally within a
given AI concentration regime (105). The software predictions were carefully validated through
experimental characterization of synthetic E. coli consortia that, in turn, implemented three or-
thogonal communication channels: rhl, lux, and las. Use of different classes of QS systems, such
as the AI-2/LuxS system or Gram-positive signaling oligopeptide systems, in parallel with the
lux-like systems has also demonstrated orthogonality (23, 106).

Another challenge in consortia engineering would be the presence of cheaters in a microbial
community (see challenges in Figure 3). Microbial social cheaters rely on public goods or other
beneficial collective actions to survive, but they do not contribute. These noncooperating popu-
lations pose a potential threat to the robustness of consortia. Studies have shown, however, that
native consortia can stably maintain coexistence with and prevent proliferation of these external
populations compared with high-fitness monocultures that are more prone to be exploited by
cheaters (107). While it was postulated that employing QS could also be a way to reward coop-
erators and thus aid in eliminating cheaters (108), QS was also shown to be exploitable in many
laboratory cultures (109). One illustrative case concerned the opportunistic pathogen P. aerug-
inosa, which relies on QS to induce the production of extracellular proteases that are required
for growth on proteins. It was observed that QS mutants were able to survive when in coculture
with QS-competent cells (110). This phenomenon subsequently led to an ongoing debate as to
why there remain numerous functional QS systems that are maintained in nature, especially if QS
systems are so easily exploited or circumvented. Policing, the ability of cooperators or hosts to
hinder the fitness of cheaters, could be one of the possible reasons; this idea was used to introduce
the concept of punishing freeloaders (111).Majerczyk et al. (112) described how QS regulation of
pairs of genes coding for toxins and toxin immunity serve as a policing mechanism. In Burkholde-
ria thailandensis, those that are QS competent deliver toxins to other individuals. Although the
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QS-competent cells are immune, QS mutants are not. Perhaps this scheme can be incorporated
into future circuit and consortium designs to help create more robust communities that repress
or eliminate social cheaters.

3.2. Interkingdom Consortia: Engineering Communication Networks

As described earlier, the AI-2/LuxS system was shown to be distinct relative to the lux systems in
many Gram-negative bacteria, and it is been dubbed the bacterial Esperanto because a plethora
of both Gram-negative and Gram-positive bacteria have been reported to synthesize AI-2 and
putatively use AI-2 as a signal molecule. Because this LuxS-mediated AI-2 synthesis system is so
widespread, it is only natural to think of its perception as a way of delineating its role as a signal
molecule. That is, there is significant diversity in the uptake/signal transduction systems across
many genera, including Gram positives and Gram negatives. The canonical lsr operon, found in
E. coli, consists of the genes noted in Figure 1b. Quan & Bentley (18) showed how some of these
genes (e.g., lsrRK, tam) are absent in some strains, whereas their order and regulatory regions
are different in others, providing great diversity in the way AI-2 is perceived. The net result of
this is that evolutionary pressures may have led to distinct patterns by which AI-2 could be taken
up or processed and thereby used as a signal molecule. This is completely orthogonal to its syn-
thesis as a metabolic by-product. As such, it may be possible that next-generation antimicrobials
could be created by intercepting intra- and interspecies bacterial communication for the creation
of smart, disease-fighting bacteria. Instead of targeting the viability of pathogenic strains, inter-
ruption of their communication is proposed, as there may be less selective pressure to develop
resistance if instead one targets the mechanisms that key pathogenicity (113). This idea is not new
for small-molecule drugs, but to our knowledge not as mediated by bacteria. Because it is an AI,
inhibition of the signal AI-2 could possibly lead to decreased virulence in a variety of bacterial
species. Many parts of the AI-2/LuxS system, from signal generators (Pfs and LuxS) to signal re-
ceptors (LsrK, LsrR), are likely targets for inhibition, especially because many synthesized AI-2
analogs are available for quorum quenching (45–47, 114). For example, commensal E. coliwere en-
gineered to increase AI-2 levels in the mouse gut. During streptomycin-induced dysbiosis, these
AI-2-producing E. coli promoted gut colonization by Firmicutes over Bacteroidetes (115), whereas
added streptomycin massively favored the Bacteroidetes and inhibited Firmicutes. This offered an
exciting possibility that by altering AI-2, one could ameliorate the effect of an applied antibiotic
on microbiota-derived functions. This success suggests that continued efforts to engineer strains
with the intent to bias microbiome signaling (52) will surely emerge. Additionally, AI-2-producing
Ruminococcus obeum were also shown to be vital for defeating Vibrio cholerae infection and facilitat-
ing recovery (116). R. obeum restricted colonization of V. cholerae through upregulation of the luxS
gene to produce more AI-2, and in turn, AI-2 displayed QS-mediated repression of several V.
cholerae colonization factors. Whereas AI-2 signaling was found to be critical in native gut envi-
ronments, LuxI/R-type systems have not been detected in the normal, healthy gut. This provides
another possible opportunity to interrogate and manipulate communication for positive gain. A
recent study constructed an information-transfer system to probe whether the luxQS system can
be repurposed into a functional, artificially established language in the mammalian gut (117). Both
interspecies and intraspecies communication were made possible despite some complexities in in
vivo studies. Together, these studies promise to underpin many valuable uses of QS networks in
the future to either promote or interrupt communication, not just at the species level but to affect
a whole microbiome.

3.2.1. Interkingdom and beyond. QS bacteria are also observed reaching out to eukaryotes.
Indeed, QS-communicating bacteria and their components are emerging at many interfaces,
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Figure 4

Native and engineered quorum sensing (QS)-mediated communication can be used to target a variety of
areas. QS bacteria not only are observed to display both intra- and interspecies communication (right) but
also are capable of interpreting signals from eukaryotes, such as plants (top left) and mammalian cells (bottom).
Recently, viruses (top right) have been found to respond to and make decisions based upon host-produced
acyl-homoserine lactones (AHLs). Communications between abiotic materials and QS-communicating
bacteria (left) by QS-component assembly on gold electrodes or on/within artificial cells.

including in interactions with viruses, eukaryotic cells and organisms (e.g., plants), artificial
cells, biomaterials, and even electronic devices (Figure 4). Orphan, or solo, LuxR homologs
were first discovered in Salmonella typhimurium, a bacterium that was reported as lacking a LuxI
homolog and the ability to produce AHL-type AIs. It was further discovered that an E. coli LuxR
homolog, sdiA, responds to mammalian host-produced small molecules (118). This discovery
hinted at the possibility that LuxR homologs, instead of acting as QS receptors, were sensors
of the host environment. Many orphan LuxR homologs were then found in plant-associated
bacteria, regulating plant–bacterial interactions through detection of small molecules secreted
by the host (119). Contrarily, host cells could respond to AIs secreted by their commensal
bacteria. RNA-sequencing technology revealed that human colonic cell line HCT-8 expresses
inflammatory cytokine interleukin 8 in response to AI-2 secreted by nonpathogenic E. coli (120).
Surprisingly, Silpe & Bassler (121) recently revealed that vibriophage VP882 can respond to a
V. cholerae–produced QS AI (DPO). Once bound to DPO, the phage QS receptor VqmAPhage in
turn activates the phage lytic program. Activated VqmAPhage can even recognize the host vqmR
promoter and influence its QS behavior. This is the first case reported to show that viruses can
eavesdrop on their hosts and decide their actions based on what they have heard.

Finally, when considering more biotechnological objectives, we note that QS systems have also
enabled cell signaling to pass from biological niches to abiotic and even microelectromechanical
systems. Although this could be the topic of a far more extensive review, we note a few examples
that are logical extensions of the above work in that the molecular components of AI-2 QS are
abstracted and put in play to mediate bio-/device signaling. For example, to understand the inter-
play between QS signal molecules and human epithelial cells, a nanofactory consisting of the two
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terminal AI-2 synthases, Pfs and LuxS, and a targeting antibody was created and electroassembled
into microfluidic devices, where it was used to capture cells and stimulate their QS responses (122,
123). Analogously, the construct was loaded onto receptor molecules of human intestine epithe-
lial cells, where they stimulated QS activity among nearby commensal E. coli (123, 124). The same
enzyme construct was later shown to be grafted onto spider silk and subsequently wound into
place in a microfluidic device, where its molecular signaling activity could be localized with min-
imal machine guidance or intervention (125). In another example, Lentini et al. (126) engineered
minimal artificial cells capable of expressing AI-2 synthesizing fusion protein HLPT (His6-LuxS-
Pfs-Tyr5) (122), wherein newly synthesized AI-2 was proven to induce luminescence in nearby
cells. The same HLPT fusion was shown to be electrically assembled onto gold electrodes, where
its activity was controlled electrochemically (127) by simple applied voltage and redox actuation.
In all of these systems, AI-2 is synthesized in carefully controlled environments and in ways that
are programmed by external inputs—some even electronic. That is, biomolecular synthesis reac-
tions, even pathways, are carried out in well-controlled microsystems so that the kinetics and mass
transfer processes can be controlled, designed, and even optimized. Such complex microfluidic en-
vironments are recreated on chips for preclinical drug development and toxicity screening. These
studies ultimately suggest that, by bridging with nonbiological materials, there are many oppor-
tunities to build novel microelectronic, biohybrid devices that can alter the complex networks of
natural cells without tampering with the original genetic makeup. In turn, these can be used in
drug development studies as well as detailed biological studies in which distances and dynamics
are of the same scale as the cells and molecules themselves.

4. CONCLUSION AND FUTURE OUTLOOK

QS has provided researchers with a variety of novel platforms or techniques from which to ad-
dress biotechnological problems. In this article, we addressed the versatility of native QS and the
numerous strategies aiming to repurpose QS systems to program the behavior of a single cell,
a cell consortium, or even a microbiome. QS advances synthetic biology by offering various ge-
netic building blocks that can be reassembled into functional circuits to regulate gene expression
and biological phenotype. Owing to the engineered QS circuitry, cells are endowed with smart
functions, such as user-specified sensing and reporting, in situ drug delivery, and sophisticated
biosynthesis processes. Further, as researchers have attempted to build more complex functions
into a single cell, they have realized that these may be too much responsibility for one microbe to
carry. Hence, looking again to nature for guidance, many groups have turned to engineering mul-
tispecies consortia that are considered to be more robust than monocultures. In this way, rewired
QS networks can help create a synthetic microbial community in which members actively interact
with each other with end user–designed guidance. These activities feed well into the emergence
of systems biology tools that enable detailed interrogation of various microbiomes. Finally, QS
systems and their components can allow direct interaction with abiotic materials, creating biohy-
brid, microelectronic devices that may integrate with our daily lives. We believe these innovative
QS-based methods will no doubt continue to generate impactful applications in the future.

SUMMARY POINTS

1. Quorum sensing (QS), a cell–cell communication process in bacteria, can be repurposed
to facilitate many engineering applications.
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2. QS-based genetic circuits can endow cells with smart functions that can serve many
purposes.

3. QS-mediated cell–cell communication can aid in the interrogation of natural microbial
communities and the engineering of synthetic consortia.

4. Rewired QS systems can also allow communication with abiotic materials to create bio-
hybrid, microelectronic devices.
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