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Abstract

The complexity of interaction patterns among individuals in social systems plays
a fundamental role on the inception and spreading of epidemic outbreaks. Em-
pirical evidence has shown that the network of social interactions may co-evolve
with the spread of the disease at comparable time-scales. Time-varying features
have also been documented in the study of the propensity of individuals toward
social activity, leading to the emergence of burstiness and temporal clustering.
These temporal network dynamics are not independent of the disease evolution,
whereby infected individuals could experience changes in their tendency to form
connections, spontaneously or due to exogenous control policies. Neglecting
these phenomena in modeling epidemics could lead to dangerous mispredictions
of an outbreak and ineffective control interventions. In this paper, we propose
a mathematically tractable modeling framework that relies on a limited num-
ber of parameters and encapsulates all these instances of complex phenomena
through the lens of activity driven networks. Hawkes processes, Markov chains,
and stability theory are leveraged to assist in the analysis of the framework
and the formulation of theory-based control interventions. Our mathematical
findings confirm the intuition that bursty activity patterns, typical of humans,
facilitate epidemic spreading, while behavioral changes aiming at individual iso-
lation could accelerate the eradication of epidemics. The proposed tools are
demonstrated on a real-world case of influenza spreading in Italy. Overall, this
work contributes new insight into the theory of temporal networks, laying the
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foundations for analysis and control of spreading processes on networks with
complex interaction patterns.

Keywords: activity driven network, epidemic threshold, Hawkes process,
self-excitement, time-varying

1. Introduction

Our increased capability of collecting and analyzing large datasets has pro-
moted an unprecedented understanding about patterns and formation mech-
anisms of social interactions in human communities. Many empirical studies
have revealed that networks of social interactions continuously evolve in time,
where each individual dynamically generates and modifies his/her connections
with others [1, 2, 3]. In real applications, this network evolution develops on
a time-scale that is comparable with epidemic processes running on its fab-
ric [4], thereby limiting the use of time-scale separation approaches [5]. As
a result, in most practical settings, neither one can assume that contacts are
constant in time to work with a static network [6], nor one can invoke the
fast-switching limit to deal with an annealed network [7]. Just as one cannot
dismiss time variations for the network, one should not neglect time-varying
features in the individuals’ propensity to generate connections, which are re-
sponsible for the emergence of bursty patterns [8] and temporal clustering of
interactions [9, 10, 11, 12].

The link generation dynamics and individual propensity to create links may
be triggered by self-excitement mechanisms [13, 14, 15]. Many forms of social
interactions are driven by gratification dynamics that yield self-sustaining mech-
anisms, whereby the more one individual is socially active, the more he/she is
motivated to increase his/her propensity to connect with others. Hence, self-
excitement contributes to the emergence of heterogeneous temporal patterns of
social activity, with burstiness and temporal clustering [14, 16, 17]. The state
of health of individuals has also an important role in shaping their propensity
to generate connections. For instance, infected individuals may spontaneously
tend to reduce their activity as a consequence of the disease [18, 19]. Such an
activity reduction can also be enforced by administrations that could seek to
establish effective countermeasures, including awareness campaigns, quarantine,
and hospitalization [20, 21].

Motivated by this evidence, herein we investigate the combined effect of
these complex phenomena on both the formation of the network of contacts and
the concurrent epidemic spreading. Our work seeks to understand the role of
these phenomena on the emergence of epidemic outbreaks and, possibly, inform
the design of control policies that can be adopted by public health authorities
to achieve fast eradication of epidemic diseases. We model the temporal net-
work of interactions within the framework of activity driven networks (ADNs),
which has emerged as a powerful lens to study time-varying networks of inter-
actions [4]. The main advantage of this modeling choice lies in its simplicity,
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whereby the temporal nature of the network could be in principle consolidated
into a single constant parameter associated with each individual, the so-called
activity. The activity represents the propensity of an individual to generate
temporal connections with others, and can easily be inferred from empirical
data [4, 22, 23, 24]. Once the distribution of the activities is known, the pattern
of connections is generated following a probabilistic mechanism, implemented
as the system evolves in time.

In the recent literature, the ADN paradigm has been extended along many
directions to include several real-world features that favor the representation
and the rigorous analysis of important phenomena. These real-world features
comprise epidemic evolution on continuous time-scales [25, 26], heterogeneous
propensity of nodes to receive connections [27, 28], nontrivial community struc-
tures [29, 30], recurrent connections [31, 32], and high-order relationships [33].
The original ADN and its extensions are often amenable to analytical tractabil-
ity, thereby enabling the scientific community to unveil the role of temporal
patterns in epidemiology [24, 26], opinion dynamics [34], diffusion of innova-
tion [35] and rumors [36], and percolation problems [37].

Despite these major advancements, only few attempts have been made to en-
capsulate temporal features of human social behavior. Among those, we should
mention the inclusion of memory in the link generation mechanism [38, 39],
which has a nontrivial role on the spread of epidemics. Based on numerical sim-
ulations and long-run approximations, memory could favor epidemic spreading
in the absence of immunization after recovery, while the opposite effect could be
triggered in the presence of immunization mechanisms [38]. Another important
step in this direction has been undertaken by considering behavioral changes as-
sociated with health status or awareness of epidemic spreading [24, 40, 41]. Fi-
nally, recent efforts have examined burstiness in human behavior through the co-
gent modification of the inter-event distribution of connection patterns [42, 43].
However, including memory or burstiness strains the Markov property of the
model, thereby hindering analytical tractability.

Here, we propose a mathematical framework for epidemic spreading on
ADNs that encapsulates self-excitement and behavioral changes in the individ-
ual dynamics. Toward this aim, the time-homogeneous activation mechanisms
of the original ADNs [4, 25] is replaced with Hawkes processes [44]. Hawkes
processes are a family of stochastic processes, which have often been used in
seismology [45]. Their main advantages are that they rely on a small number
of parameters, they satisfy the Markov property, and they exhibit an emer-
gent behavior with burstiness and temporal clustering. Hence, the use of these
processes preserves the Markov property and the simple formulation of ADNS,
thereby favoring rigorous analysis of the system along with fast Monte Carlo
simulations based on the Gillespie algorithm [46]. In the first implementation
of this model, proposed in [47], the effect of self-excitement on the asymptotic
distribution of the activities and on the epidemic threshold of a susceptible—
infected—susceptible (SIS) epidemic model have been studied, demonstrating
that self-excitement promotes the inception of epidemic diseases by decreasing
the epidemic threshold.
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We build on [47] to establish a mathematical framework for epidemic models
with self-excitement mechanisms and activity reduction of infected nodes. An
important objective is to provide a viable method to identify model parame-
ters from epidemic data. In fact, classical parameter estimation algorithms for
Hawkes processes requires to keep track of all the individuals’ social interac-
tions [48, 49], which is not reasonable in real-world scenarios. Inspired by [50],
we develop and demonstrate an algorithm to identify model parameters from
epidemic data sampled at the population level and we test it against available
data on the 2018-2019 seasonal influenza in Italy. Within this framework, an
analytical study of the SIS epidemic model is performed. This study unveils
the interplay between self-excitement and activity reduction. In the absence
of activity reduction, self-excitement favors the inception and evolution of the
epidemics; while in the absence of self-excitement, activity reduction has the op-
posite effect. When both phenomena are taken into consideration, two regions
of the parameter space are analytically characterized: one where the effect of
self-excitement overcomes activity reduction, and the other where the opposite
occurs. We conclude the paper by studying the effectiveness of control strategies
construed upon these features. Numerical simulations are provided to corrobo-
rate our findings.

The main theoretical contributions of this work are: i) the formalization
of a general epidemic model on ADNs that include self-excitement and activ-
ity reduction due to the health state of infected nodes; ii) the development
of a parameter identification algorithm for the parameters introduced with the
self-excitement mechanism using epidemic data at the population level; 7i7)
the rigorous analysis of the SIS epidemic model within the proposed model-
ing framework, with explicit computation of its epidemic threshold; and iv)
the discussion of control techniques based on the activity reduction of infected
individuals, with an analytical assessment of the optimal value of the activ-
ity reduction. Beside these theoretical contributions, the paper also presents
some experimental contributions. Specifically, 7) the viability of the parameter
identification algorithm is tested against available data on the 2018-2019 sea-
sonal influenza in Italy; i) the epidemic threshold for the SIS epidemic model
is numerically estimated via Monte Carlo simulations, validating the analytical
predictions; and 7i7) the theoretically-determined optimal value of the activity
reduction is numerically verified through Monte Carlo simulations on the case
study of the 2018-2019 seasonal influenza in Italy.

This paper completes and extends our preliminary work in [51] along several
directions. First, the epidemic model is generalized and an algorithm to estimate
the model parameters from empirical epidemic data at the population level is
proposed. Second, a compelling array of mathematical proofs to support all
of the main results is provided. Third, the discussion on the superimposition
of self-excitement and activity reduction of infected individuals is extended by
examining control techniques based on hospitalization and quarantine. Finally,
a deeper review of related literature is presented to offer more context to the
problem and help framing its mathematical objectives.

The rest of the paper is organized as follows. In Section 2, we present some
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mathematical preliminaries. In Section 3, we illustrate the network epidemic
model. Section 4 is devoted to the description of the parameter identification
algorithm. Section 5 is devoted to the analysis of the SIS model. In Section 6,
we discuss the application of our approach to design control interventions that
use the activity reduction of infected individuals. Section 7 summarizes our key
findings and identifies areas of future research.

2. Mathematical preliminaries

2.1. Notation

We gather here the notation used throughout this paper. We denote by R>g
the set of nonnegavive real numbers, by Ry the set of strictly positive real
numbers, by N the set of nonnegative integer numbers, and by ZT the set of
strictly positive integer numbers. P[-] denotes the probability of an event and
E[-] the expected value of a random variable.

2.2. Poisson point processes and Hawkes processes

The occurrences of stochastic events are often modeled through Poisson point
processes [52]. A point process can be conveniently represented by means of its
counting process N (t) € N, where N(t) is the number of events registered up to
time ¢. Poisson point processes are formally defined as follows.

Definition 1. Let a(t) be a locally integrable nonnegative function called inten-
sity. Then, a Poisson point process verifies N(0) = 0, and, for any At € Ry,

t+At
PIN(t + At) = N(t) = 1] = /t a(s)ds + o Al). (1)

In the literature, it is often assumed that the intensity is constant, that
is, a(t) = a € Ryq for any t € R>g [4, 25]. Under this assumption, Poisson
processes are called homogeneous and (1) reduces to

P[N(t + At) — N(t) = 1] = aAt + o(At). 2)

The choice of using (2) to model the timing of events in social interactions brings
key simplifications that can lead to detailed analytical insight. However, such a
choice neglects the well-known phenomena of burstiness and temporal cluster-
ing [8, 9, 10, 11, 12]. To include these features, we adopt Hawkes processes [44],
where the intensity a(t) varies in time according due to self-excitement.

Definition 2. A Hawkes process is a Poisson point process with counting pro-
cess N(t), whose intensity a(t) evolves according to the stochastic differential
equation [53]

da(t) =~ (a — a(t))dt + JAN(t), (3)

where J € R>q, @ € Rxg, and v € R are three constants and N (t) is related
to a(t) through (1).



160

165

170

175

20 | 2 \N\}"’\,
10 | 1 :\N \:\ \;'I \\\\

0 : : : 0" : : :
0 5 10 15 0 5 10 15
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Figure 1: Sample path (a) and intensity (b) of a Hawkes process with @ = 0.75, J = 0.5, v = 2,
and initial intensity a(0) = 1. The dashed vertical lines in (b) correspond to the increase of
the intensity after each event. The onset of burstiness can be easily observed from the plot
of intensity, whereby events tend to cluster in correspondence of the intensity peaks. These
graphs are generated by numerically integrating (1) and (3), as shown in [54].

Since the evolution of N(t) and a(t) depends only on the current state of the
system (counting process and intensity), Hawkes processes satisfy the Markov
property, as explicitly proved in [44, 49]. The three parameters of Hawkes
processes regulate their dynamics as follows:

i) the background intensity a represents the intensity in the absence of self-
excitement, such that a(t) — @ as t — oo for J = 0 in (3);

ii) the jump J quantifies the increase of the intensity after each event; and

iii) the forgetting rate v determines the rate at which the intensity recovers its
background value in (3).

From the numerical simulation of a Hawkes process, illustrated in Fig. 1, one
can appreciate the temporal clustering of the events, along with the emergence
of burstiness in the intensity. The presence of these phenomena constitutes
promising evidence to employ Hawkes processes for the study of social inter-
actions within the ADN paradigm. Alternative strategies to include burstiness
into network models have been proposed in [55, 56]. However, these models rely
on non-Poisson processes, that challenge their analytical treatment, as they do
not share the Markov property.

We conclude this section by recalling a result on the asymptotic behavior of
Hawkes process, which is used in the following of the paper; its proof can be
found in [49].

Lemma 1. Let (N(t),a(t)) be a Hawkes process with J < ~. Then, the first
two moments of a(t) are

Ela(t)] = ﬁ + (a(O) - 166]/7) e~ (=Nt (4a)
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In the asymptotic limit of t — oo, we establish
. a
Jim Efa(t)] = =g/ (5a)
and
~2 sz
a” + W
lim E[a®()] = —1. 5b
Jim Ela?(0)] = = (5b)

Remark 1. From Lemma 1, we comment that the behavior of the first two
moments of the intensity exhibits the following characteristics:

e the increase in the asymptotic average intensity in (5a) is controlled by
the ratio J/v € [0,1): when the ratio is equal to 0, the average intensity
coincides with the background one; while it grows as the ratio tends to 1;

e the asymptotic variability of the intensity, measured by the coefficient of
variation, that is, c,(t) = +/E[a?(t)]/Ela(t)])?, is regulated by the ratio
J?/v € Rxq: the larger is the ratio, the broader is the asymptotic distri-
bution of the intensity;

e the exponential rate of convergence to the asymptotic quantities in (5a)
and (5b) is determined by the difference v — J € Rsq, as shown in (4a)
and (4b). Slow convergence occurs if either i) J and y are both close to 0
(such that self-excitement is negligible), or ii) J and « are large, but very
close to each other (that is, the system is close to the phase transition
at J = 7). Hence, if self-excitement is nonnegligible and the system is
bounded away from the phase transition (that is, J < ~), exponential
convergence is always attained.

3. The modeling framework

3.1. The network model
The population is modeled as a time-varying graph G = (V, £(t)), where each
individual is associated with a node in the set V = {1,...,n}, while time-varying
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Figure 2: Simulation of an ADN+HP with n = 3 nodes for "= 1. In (a), each link is plotted
along with the time-stamp of its occurrence. The color of the link identifies the node that
has generated it. In (b), it is represented the temporal evolution of nodes’ activities. Jump,
forgetting rate, and background intensity are J = 0.5, v = 1, and a, = 1, respectively. In
addition, we set the initial condition a,(0) = 2 for all the nodes.

undirected links are collected in the set £(¢). The time-varying adjacency ma-
trix of the graph is defined as A(t) € {0,1}"*™ such that A4;;(t) = 1 <=
(4,7) € £(t) and A;;(t) = 0, otherwise. Since the graph is undirected, matrix
A(t) is symmetric for any ¢ € R>¢. The network dynamics follows a continuous-
time ADN [25, 26], where nodes’ activations are regulated by Hawkes processes
(Ny(t), ay(t)), for each v € V. When a node v activates, it generates a temporal
link, independent of the others. In order to avoid the introduction of an exces-
sively large number of parameters, we assume that all of the Hawkes processes
have the same jump J € R and the same forgetting rate v € Ry, while
background and initial activities can differ from a node to the others. There-
fore, the heterogeneity of the system is modeled via the background activity
a, € R, which, in general, can differ from a node to the other, so that we
refer to @ € R% as a distribution on the nodes of the network. We refer to this
model as the ADN+HP (activity driven network plus Hawkes processes), and
its generation algorithm is summarized in the following steps:

1. at time ¢ = 0, for each node v € V, we initialize an independent Hawkes
process (N, (t), a,(t)) with initial intensity a,(0) € R>q, and we set £(0) =
0

2. if the Hawkes process associated with node v has a jump at time ¢ €
R~g, then the corresponding node is said to be active and generates an
undirected connection with a node in w € V, chosen uniformly at random.
Such a link {v,w} is added to £(¢); and

3. the link is instantaneously removed from the link set, and the algorithm
resumes from step 2.

Since all the Hawkes processes are independent of one another, one can
conclude that at most one node is active at each time ¢ € R>( almost surely [52].
Therefore, for any t € R>¢, the following properties hold almost surely: either 0



230

235

240

245

250

or 1 links belong to the link set £(¢), and the adjacency matrix A(t) has either
0 or 2 nonzero entries. Figure 2 presents a realization of an ADN+HP that
illustrates the temporal evolution of the nodes’ activities.

When considering the temporal evolution of an ADN-+HP over a time-
window of duration T' € Rs( from time ¢ to time t + T, one can observe
from (1) that the expected number of times node i € V is activated is equal
to tHTIE[a(s)]ds. Utilizing Lemma 1, we conclude that, in the asymptotic
limit of ¢ — oo, node i is activated on average a;T/(1 — J/7) times, leading to
an average of a;T/(1 — J/v)(n — 1) interactions with any other node. Further
details on the characteristics of the time-varying network can be found in [47].

In this paper, we make the following assumption, which allows us to apply
Lemma 1.

Assumption 1. All Hawkes processes have J < .

Assumption 1 naturally arises in real-world applications. In fact, the ex-
pected value of the activity of a Hawkes process with J > v grows unbounded
and blows up as time grows [49], which cannot describe real systems. Hence,
we assume J < « for Hawkes processes associated with the frequency of human
interactions.

Remark 2. In the limit case of J =0 and a(0) = &, the ADN+HP model re-
duces to the standard continuous-time ADN model [25]. Therefore, the ADN+HP
model encompasses and generalizes the original ADNs.

We conclude this section with a claim on the effect of self-excitement on the
activity distribution, which will be used later in the analysis of epidemics on
ADNs+HP. Defining the moments of the activity distribution as

(a(0) == S ailt), icZ, (©
veV

the following claim can be stated; details can be found in [47].

Lemma 2. For n — oo, under Assumption 1, the first two moments of the
activity distribution converge exponentially almost surely to

tlg&(a(t)) 1—J/y’ (72)
and P2
@) + 2 (a)
lim (a? = 77, b
Jim @0) = T ()

where the moments of the background intensity are defined similar to (6), av-
eraging the values of the corresponding powers of background activities over the
network nodes.
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3.2. Epidemics on ADN+HP

Here, we propose a general framework to describe an epidemic outbreak
on an ADN+HP that incorporates activity reduction of infected individuals.
Then, in Section 5, we examine the behavior of a specific incarnation of such an
epidemic model, the SIS model, in the thermodynamic limit of n — co.

According to [25], with each individual v € V we associate a discrete state
Y, (), chosen from a finite set of health states. In the simplest case, we have
Y, (t) € {S, I}, where

Y, () = { S if v is susceptible to the disease at time ¢ (8)
v I if v is infected at time t.

Several variants of this model can be introduced by considering more health
states and varying the transition dynamics between them. For instance, the
set of health states can comprise Y, (¢) = R if v has recovered from the disease
and cannot be infected again (recovered or removed state), or Y, (t) = H if v is
hospitalized.

Following [40], we introduce a parameter p € [0,1] to couple the network
dynamics with the disease spreading. This parameter measures the activity
reduction of an infected individual, such that, if p = 1, there is no activity
reduction due to the disease, while, if p = 0, infected individuals cannot generate
interactions. Hence, the activity of an infected node v € V is reduced to a
fraction p of its nominal activity. Formally, the activations of node v € V are still
governed by a Hawkes process (IV,(t), a, (t)) but, if the individual is infected and
becomes active, then he/she generates a connection with probability p, while no
links are generated with probability 1 — p. This probabilistic mechanism results
into a split Poisson process [52].

Upon defining the health states, we should prescribe a set of mechanism to
model the possible state transitions. A possible line of approach is to hypothesize
that two competing mechanisms govern the state transitions, such that

e when a link that connects a susceptible individual with an infected one
is generated, the disease propagates through it with a fixed probability
A € [0,1]. If it propagates, then the susceptible individual also contracts
the disease; and

e infected individuals spontaneously recover according to independent ho-
mogeneous Poisson processes with intensity p € R<o. Recovered individ-
uals may become susceptible again to the epidemic, in the case of the SIS
model, or they become recovered and not susceptible to the epidemic, in
the case of the susceptible-infected—removed (SIR) model.

The mechanisms that describe the state transitions in an SIS and in an SIR
epidemic model are sketched in Fig. 3. The inclusion of more states and tran-
sition mechanisms in the epidemic model [26] allows for a closer description of
the variety of real-world diseases [24], toward the implementation of accurate
real-time prediction algorithms of an epidemic outbreak. In this paper, we focus

10
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Figure 3: State transitions characterizing the SIS and the SIR epidemic models. A susceptible
node becomes infected after a contact with an infected node with probability A. Infected nodes
spontaneously recover with rate p becoming susceptible again (SIS) or recovered (SIR).

on the SIS model, for which rigorous analytical results can be established. How-
ever, when possible, we present results that apply to SIR as well; for example,
we illustrate our general approach to parameter identification on an SIR model.
Extensions to more complex epidemic dynamics will be the subject of further
studies.

Formally, the state vector Y (t) evolves according to a continuous-time n-
dimensional Markov process on a state space given by all the possible combina-
tions of health states among individuals, whose size grows exponentially with
n. For large-scale systems, it is possible to approximate the Markov process
using a system of differential equations with arbitrary accuracy [57, 58]. In
Section 5, we leverage this approximation to perform a rigorous analysis of the
SIS epidemic model.

4. Parameter identification from epidemic data

Inspired by [50], we propose a technique to estimate the parameters of the
self-excitement mechanisms, that is, the jump J, the forgetting rate -, and
the background activity distribution, @, from epidemics data sampled at the
population level. For many epidemic diseases, such as influenza, National and
State health departments release weekly surveillance reports on the status of
the outbreak [59]. From these reports, which include the weekly percentage of
hospitalizations and outpatient visits caused by influenza-like illness, epidemi-
ologists usually derive estimates of the evolution of the epidemic prevalence' in
the entire population [60].

Starting from the available data, in the form of epidemic prevalence sampled
weekly at the population level, we propose an algorithm to estimate the three
parameters of the self-excitement mechanism. In our implementation, we as-
sume that the disease parameters (the infection probability A and the recovery
rate p) and the background activity distribution a(p), parametrized according
to a single scalar p, are known. The algorithm applies to a generic epidemic
model on ADN+HP. Depending on the characteristics of the epidemic disease,
we initially choose the most suitable epidemic model, following the rationale in
Section 3.2. Then, the algorithm is implemented through the following steps.

IThe epidemic prevalence is the fraction of infected individuals in a population.

11
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. Inputs. The parametrized background activity distribution a(p), the in-

fection probability A, the recovery rate u, and the epidemic prevalence,
which is sampled on a periodic basis for k time-periods of duration T, to
obtain the vector z(0),z(T),...,x(kT).

. Initialization. Set an initial guess for the three parameters: J = J*,

v =~*, and p = p*. Fix the resolution of the estimates AJ, A~, and Ap,
and the number of simulations B.

. Estimation. Given the choice of parameters J = J*, v = v*, and p = p*,

estimate the expected evolution of the epidemic prevalence as follows:

i. run B simulations of the epidemic process with initial conditions given
by the actual epidemic prevalence recorded by surveillance data z(0),
up to time kT. The output of the hth simulation is a continuous-time
sample path z7 (¢), t € [0, kT];

ii. fort=1,...,k, estimate the average evolution of the epidemic preva-
lence as
1B
2(iT) = 5 ;1 25 (iT);  and (9)

iii. compute the estimation error

k
E:= %Zm*(m — z(iT)|. (10)

. Exploration. Explore any possible variation in the parameter space that

could lead to an improvement in the estimation error. Specifically,

i. repeat the procedure in step 3. for all the six possible variation, that
is, by setting J = J* + AJ, v =~* £ A~, and p = p* + Ap; and

ii. for each of the three parameters v € {J,v,p} and for each variation
(increasing/decreasing), compute the corresponding estimation error
E:t

vt

. Termination. If min Ef < E, update the parameters by choosing the

values that minimize the error and the algorithm is resumed to step 3.;
otherwise, the algorithm is terminated and the output is J = J*, v = v*,
and p = p*.

Remark 3. With a slightly different implementation of the algorithm, one could
also estimate the disease parameters. However, since the number of variations
to be explored increases linearly with the number of parameters to be estimated,
an implementation in which also the disease parameters are estimated would
sensibly increase the computational effort, with the risk of data overfitting. Also,
disease parameters such as probability of infection and recovery rate are often
estimated with a good accuracy by epidemiologists working in the field [61, 62].

12



350

355

360

365

370

375

x(t) g00 | (1)
4,000 | e
.o Y
o -®-"®--0--0 600 | L S
e A *-.
2000 | ® data 400 1 *
. - - - estimation .
K 200 ’ e data
L, - - - estimation
0 ? ‘ ‘ _ week 0 ‘ ‘ _ week
0 2 4 6 0 2 4 6
(a) SIS model (b) SIR model

Figure 4: Comparison between empirical data (black circles) and Monte Carlo estimation
(over 100 independent simulations) of the evolution of the epidemic prevalence (solid curve)
using the parameters estimated using the algorithm for the (a) SIS model and the (b) SIR
model.

Remark 4. The accuracy and the computational time of this algorithm are
subject to the initialization of the parameters, which calls for a preliminary step
where reasonable guesses about the order of magnitude of the parameters must
be drawn based on numerical simulations and real-world evidence. Noise and
adaptive resolutions can also be included to improve on the result, similar to
standard gradient descent algorithms [65].

To validate the algorithm and assess its performance, we test the proposed
method against two synthetic datasets, generated by sampling two different
realizations of the epidemic process introduced in Section 3. The first one is
obtained by simulating the SIS model described in Fig. 3a with n = 5.000,
A=04, p =01, J = 0.2, v = 0.4, and homogeneous background activity
distribution with a, = 0.2, for all the nodes. The second case is generated by
sampling the SIR model described in Fig. 3b with the same population size and
epidemic parameters, J = 0.1, v = 0.3, and power-law distributed background
activities with negative exponent —2.5 and lower cutoff at 0.1. We use the
proposed algorithm to identify the model parameters. In both scenarios, we
initialize v* = 0.5 and J* = 0.15, while the homogeneous activity and the
exponent of the power-law are initially set as 0.15 and —2, respectively. The
resolution for each parameter is fixed at 0.005, that is, AJ = Ay = Ap = 0.005.

The algorithm identifies the model parameters with high accuracy. For the
SIS model, it estimates J = 0.2, v = 0.41, and homogeneous background activity
equal to a, = 0.205, against real values of J = 0.2, v = 0.4, and a, = 0.2. For
the SIR model, it identifies J = 0.1, v = 0.295, and exponent of the power-law
equal to a = —2.495, against real values of J = 0.1, v = 0.3, and o« = —2.5. In
Fig. 4, we compare the Monte Carlo estimation of the evolution of the epidemic
prevalence computed using the parameter identified by the model with empirical
data.

Finally, we demonstrate the use of our algorithm on real-world epidemic data
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Figure 5: Monte Carlo estimation (over 100 independent simulations) of the evolution of the
epidemic prevalence using homogeneous activity (blue dotted) and power-law (red dashed)
with the parameters estimated in Tab. 1 compared with empirical data of 2018-2019 influenza
outbreak in Italy (black circles).

J 5y Gy €  average error
Homogeneous 0.12 0.285 0.135 4.51%
Power-law 0.13 0.385 0.1 3.18%

Table 1: Parameters identified for the 2018-2019 influenza outbreak in Italy.

on the 2018-2019 seasonal influenza in Italy, available in [64]. We consider the
first 10 weeks of year 2019, which embrace the peak of the seasonal outbreak [64].
Since individuals who recover from influenza are immunized, we adopt the SIR
model described in Fig. 3b. To mitigate the computational effort of numerical
simulations, the population size is scaled down to n = 5,000 units. The disease
parameters are set equal to A = 0.43 and p = 0.138, following [25]. Two
different background activity distributions are tested: ¢) homogeneous (with a,
initialized at 0.13, for all the nodes), and i) power-law with negative exponent
—2.09, as in [65] (with the lower cutoff ¢ initialized at 0.08). Monte Carlo
simulations are averaged over B = 200 simulations. In both scenarios, we
initialize v* = 0.2 and J* = 0.05 and the resolution for each parameter is chosen
as AJ = Ay = Ap = 0.005. All the initializations are based on preliminary
simulations of the epidemic process. The results of our analysis are summarized
in Tab. 1. From Fig. 5, one can observe that the power-law distribution yields
a slightly smaller average error and better follows the peak of the epidemic
outbreak, registered in the fourth week of the dataset. Following a similar
procedure, one might test different distributions for the background activities
and, by comparing the outputs of the algorithm, identify the distribution that
best fits the observed empirical data.

5. Analytical results for the SIS model

Here, we analytically study the effect of self-excitement and activity reduc-
tion of infected individuals on the epidemic threshold of an SIS model in the
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thermodynamic limit of n — oo. The SIS model, sketched in Fig. 3a, is charac-
terized by the presence of a phase transition between a fast extinction regime
and an endemic regime, which is regulated by the quantity o called epidemic
threshold [66]. Such an epidemic threshold depends on the structure of the net-
work of interactions among individuals [67, 68]. In the thermodynamic limit,
if A\/u < o, the system is in the fast extinction regime and all the trajectories
quickly converge to the disease-free equilibrium. On the contrary, if \/u > o,
the system is in the endemic regime and trajectories with nonzero initial condi-
tions do not reach the disease-free equilibrium, until a time exponentially long
in n has elapsed [68, 69].

As noted earlier, the system evolves as a Markov process on the state space
{I, S}V, whose size grows exponentially with the population size, thereby hin-
dering its analysis for large-scale systems. Following [26, 70], we consider a
continuous relaxation of the dynamics by studying the evolution of the proba-
bility that any individual is infected, denoted by w,(t) := P[Y,(¢t) = I]. This
probability evolves in time according to the differential equation [26, 47]

dy, 1 1
(:jyt = _Myv+/\(1—yv) (Clyn Zyw‘FE Zpawyw> . (11)

weyY wey

From (11), one can observe that the probability that a node v is infected is
controlled by three terms. The first one is negative and accounts for the spon-
taneous recovery process. The other two terms are both positive: the former
quantifies the effect of links generated by v toward infected nodes, and the lat-
ter is the contribution of infected nodes that generate connections with v. The
parameter p influences only this last term, due to the activity reduction in the
infected state.

We compute the epidemic threshold by studying the linear stability of the
disease-free equilibrium for the continuous relaxation, relying on the analytical
results in [57, 58]. Therein, it has been rigorously proved that the evolution
of the epidemic prevalence in the Markov process can be approximated via
the continuous relaxation in (11), with exponential accuracy in the population
size. Specifically, in the thermodynamic limit, the evolution of the epidemic
prevalence in the Markov process and in its counterpart in the continuous-
state approximation coincide almost surely. The results of our analysis are
summarized in the following theorem.

Theorem 1. Under Assumption 1, the epidemic threshold of an SIS epidemic
model on an ADN+HP with activity reduction due to infection with parameter
p €[0,1] is

oHP = 2 2
L@ + ¢ =l a2 4 pa) + 3 @)

15



Proof The proof is based on the change of variables

— lZaiv_lym i€zt (13)
n veVY

and on the stability analysis of the origin in the new set of variables. The
first two variables x; and x have a clear physical interpretation: z; counts
the fraction of infected individuals, and x5 measures their average activity. We
notice that 1 = 0 implies that: ¢) y, = 0 for any v € V, and ) x; = 0 for any
J € Z". Hence, to examine the stability of the origin in (11) it is sufficient to
study the linear stability of 1 = 0. By differentiating z; and using (6), (11)
and (13), we establish the following differential equation:

dry _ dys
‘E‘—*Z
= Zl ,uyv+)\1_yv (avlzyw+1pzau:ylu>]
UEV 1 nwEV 1 " 1{61} (14)
= —u* yv+Af W= ) Yot A=) — D uwlu
_)\7 Z Yoply— Z Yw — )\P* Zyvf Z QyYw
n veEV " weY n veEVY " weY

= —pxi(t) + Ma(t))z1(t) + Apz2(t) — (14 p)Az (8)2 ().
Since second-order terms do not influence the stability of the origin, the latter
is determined by z1, x2, and (a).
Although almost sure convergence of (a) is ascertained by Lemma 2, the
stability analysis of zo = 0 requires the study of a separate differential equation,
which is constructed similar to (14), that is,

dx

d72 — pxa(t) + Ma?(#)) 21 (8) + Apla(t))za(t) — Azr (H)z3(t) — Apaa(t)®. (15)
Through linearization about the origin, we determine that the stability of zo = 0
is affected by x1, o2, (a), and (a?) (which also converges according to Lemma 2).
Hence, we simplify the problem to the stability analysis of two linear differential

equations in x; and x9, that is,

BL— (Aa(oo)) - e + Apea, »
B2 (a2 (o0)r + Oola2(o0) — s,
whose Jacobian matrix is
—p+ A (@) Ap
1— J/A
D= a2>+i2<a> (17)
< 2y N (a)
720 R /P
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The eigenvalues of D are equal to

—u+ 1;%% + A\/OQW@Q + p(a?) + P£<@>~ (18)

The largest eigenvalue is negative if and only if

Ao 1 -/ : (19)

[ )2 2
L2y \/“4’))@2 +pla?) + o0

which provides the linear stability condition at the origin.

Remark 5. In the absence of activity reduction, that is, for p = 1, the epidemic
threshold in (12) reduces to the one computed in [47], namely

- L= J/y . (20)

OHP

We note that the SIR model described in Fig. 3b yields the same linearization
about the origin of the SIS model in (16). Hence, in the thermodynamic limit
of n — o0, the epidemic threshold of the two models coincide.

In Fig. 6, the theoretical predictions of the epidemic threshold from The-
orem 1 are compared with the corresponding numerical estimation, computed
using a method similar to the one proposed in [71]. Specifically, independent
simulations of the dynamics are performed for a fixed time-window of duration
T = 100, for different choices of the ratio A\/u. For the sake of simplicity, we fix
p = 0.138 (similar to [25]) and we let A vary. Then, the threshold is estimated
as the ratio A/p that maximizes the coefficient of variation of the fraction of
infected individuals at the end of the time-window. The numerical study is per-
formed for the two different sets of parameters identified for the case study of
the 2018-2019 seasonal influenza outbreak in Italy, presented in Section 4, and
for two different choices of the level of activity reduction. In all the scenarios,
numerical estimations confirm the validity of theoretical predictions.

Differently from the scenario with only self-excitement in (20), where the
epidemic threshold for the SIS model on an ADN+HP is always reduced, the
behavior of (12) cannot be easily inferred from its expression. Depending on
the relative strength of the two concurrent mechanisms, the epidemic threshold
may increase or decrease, thereby unveiling a nontrivial relation between model
parameters, shown in Fig. 7. In what follows, we establish a corollary that sum-
marizes the conditions for which the epidemic threshold in Theorem 1 increases
with respect to the one of a standard SIS over an ADN, where the activities
of the nodes are equal to the expected asymptotic activities in the ADN+HP
model.
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Figure 6: Numerical estimation (over 100 independent simulations of duration T' = 100)

of the epidemic threshold for an SIS model on an ADN+HP, for different levels of activity
reduction: p = 0.5 (red) and p = 0.25 (blue). The threshold is estimated by identifying
the peak of the coefficient of variation cy [z1(T)] of the fraction of infected individuals at
the end of each simulation. Vertical dashed lines correspond to the analytical thresholds for
the SIS model computed using Theorem 1. Common simulation parameters are n = 2000,
p = 0.138, and initial fraction of infected nodes x;(0) = 0.005, randomly selected in the
population. Background activities are (a) homogeneous and (b) power-law distributed, with
the parameters identified in Tab. 1.
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Figure 7: Variation of the epidemic threshold in the presence of self-excitement and activity
reduction due to infection, as function of J2/v and p. The black curve from (26) separates
the two regions of the parameter space where the threshold decreases (above), favoring the
spread, from the one where it is increased (below). The color maps code the ratio between the
epidemic threshold computed in Theorem 1 with respect to the one of a standard ADN model.
The darker the red, the more the spread is favored in the ADN+HP model, the darker the
blue, the more it is hindered. Background activities are (a) homogeneous and (b) power-law
distributed, with the parameters identified in Tab. 1.
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Corollary 1. The increase in the epidemic threshold caused by the activity re-
duction of infected nodes overcomes the decrease due to self-excitement if and
only if

J2/y
(a?) A
2L +2¢/(a%) + —
(@) g
Proof We compare the epidemic threshold in Theorem 1, with the one of a
standard SIS on an ADN [4], where the activities of the nodes are equal to the
expected asymptotic activities in the ADN+HP model, that is, d,/(1 — J/7),
for every v € V to obtain

p<1-—

(21)

Gy \/ C2P a2+ pfa2) + 03 a)

By setting the ratio in (22) to be larger than 1 and moving all the square roots
to the right-hand-side of the inequality, we establish

J2

L) > ¢ C Pl piar) @) - V@ (2)

By taking the square of both sides and performing some algebraic manipulations,
we compute

2
(14 p)(@) + p%@ > ¢ (1 — p)2(a)2(a2) + 4p(a2)? + p2f<&><a2>. (24)

By squaring again both sides to eliminate the square root and conducting a few
more algebraic manipulations, we finally achieve

I G R
1—p>2J2[<d>+ ( >}, (25)

which yields the claim.

Remark 6. From the analysis of the claim in Corollary 1, one can conclude
that the critical value of p for which the activity reduction of infected nodes
overcomes the negative effect of self-excitement has a monotonic behavior with
respect to the model parameters. Specifically, it increases as J and (G) increase,
and it decreases as vy and (a?) increase. Hence, networks with a highly het-
erogeneous activity distribution require a stronger level of activity reduction to
compensate for the presence of self-excitement than homogeneous networks.
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6. Enforcing activity reduction through external intervention

Although individuals should tend to spontaneously diminish their activity
upon contracting the infection, such an endogenous reduction could not be suf-
ficient to bring the epidemic disease in the fast extinction regime. Toward this
aim, activity reductions could be enforced by public health authorities, through
awareness campaigns and restriction policies that include hospitalization and
quarantine [20, 21]. Since the implementation of these control interventions is
often costly for public administrations and impinge on the rights of infected in-
dividuals, predictive modeling tools are of paramount importance. Specifically,
it is critical to accurately quantify the level of activity reduction that is required
for reaching the fast extinction regime to reduce economic and social costs. The
target level of activity reduction is computed from Theorem 1, yielding the
following corollary.

Corollary 2. An SIS epidemic model is in the fast extinction regime if and
only if

p<p = . (26)

Proof This claim is obtained by setting A\/p < ogp in (12), after some
algebraic manipulations similar to those in Corollary 1.

Remark 7. It is clear that p* decreases as (a°) increases, but the dependence
on the other parameters is less trivial. When the parameters are such that
the system is in the endemic regime according to (20) in the absence of activity
reduction, it is possible to identify a monotonic behavior by computing the partial
derivatives of (26). Specifically, we determine that an increase in J and A
causes a decrease of p*, whereas an increase in vy, u, and {a) has the opposite
effect. Once the other parameters are blocked, epidemics in highly heterogeneous
networks require a greater effort to be controlled.

The prediction formalized in Corollary 2 could be utilized by practitioners
to ascertain how much the activity of infected individuals should be reduced to
attain fast eradication of the outbreak. To demonstrate the use of this corollary,
we consider once again the case study of the 2018-2019 seasonal influenza out-
break in Italy, presented in Section 4. From Corollary 2, we establish that the
system is in the fast extinction regime if p* = 0.3313 (under the homogeneous
background distribution assumption) or p* = 0.3334 (under the power-law as-
sumption). Comparing these two results, predictions suggest that the desirable
level of activity reduction p* is robust with respect to the choice of the back-
ground activity distribution made in the parameter identification algorithm.

Figure 8 compares the evolution of the epidemic prevalence of an SIS model
(averaged over 200 Monte Carlo simulations) for different choices of the activity
reduction parameter p. The numerical simulations validate our analytical re-
sults, whereby if p > p*, the disease spreads in the population (orange, red, and
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Figure 8: Estimated evolution of the epidemic prevalence for an influenza-like SIS model
on ADN+HP with different levels of activity reduction of the infected nodes. Background
activities are (a) homogeneous and (b) power-law distributed, with the parameters identified
in Tab. 1.

violet curves), while, if p < p*, it is quickly eradicated (blue and green curves).
By comparing the blue and the green curves (both with p < p*), one observes
that, once p is sufficiently small to reach the fast extinction regime, there is not
a clear advantage of imposing further reductions, since no significant improve-
ment can be appreciated. In this sense, Corollary 2 establishes the optimal level
of activity reduction that is needed to achieve fast extinction of the disease: a
higher level of activity may beget an unsuccessful effort by the public adminis-
tration, which would not be sufficient to stop the epidemic outbreak; while, a
lower level of activity may lead to unnecessary costs for the administration and
needless discomfort for the population, without improvements in the eradication
of the disease.

7. Conclusion

Through the lens of activity driven networks, we have established a modeling
framework for the analysis and control of epidemics on temporal networks that
includes self-excitement mechanisms and activity reduction of infected individ-
uals. The modeling framework is grounded in the theory of Hawkes processes,
which provide a potent tool to study burstiness and temporal clustering without
losing the Markov property that is needed for analytical treatment and without
introducing an excessively large number of parameters. To support the applica-
tion of the framework in the study of real-world data, a parameter identification
technique has been proposed and validated. This algorithm takes as input data
at the population level, such as the National epidemic prevalence, and outputs
the parameters of the underlying Hawkes processes. The viability of the identifi-
cation procedure has been demonstrated on a real-world case study of 2018-2019
seasonal influenza in Italy.
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Within this framework, the susceptible-infected—susceptible epidemic model
has been studied, unveiling a nontrivial interaction between self-excitement and
activity reduction. If self-excitement overcomes the activity reduction, then the
spread of the disease is favored and the network is more prone to the inception of
an epidemic outbreak. In the opposite scenario, the system is more robust to the
spread of the epidemics. Through a linear stability analysis, we have successfully
characterized these two regimes, as a function of the model parameters. Based
on these theoretical claims, we have addressed the epidemiological problem of
estimating the level of activity reduction that is required to increase the epidemic
threshold so that a fast eradication of the epidemic outbreak is observed. From
a practical point of view, reducing individual activity is at the basis of standard
interventions, including awareness campaigns, quarantine, and hospitalization.

The inclusion of real-world phenomena within analytically tractable epi-
demic models constitutes a key methodological step toward the development
of accurate and reliable techniques to predict and control epidemic outbreaks.
Encouraged by the results in the paper, our future research will seek to deepen
the design of control strategies based on activity reduction of infected nodes.
In particular, we aim at including additional real-world constraints, such as the
limited amount of hospital beds that hinders the implementation of large-scale
hospitalization and budget constraints for awareness campaigns. Addressing
these constraints will call for fundamental research at the interface of network
theory and optimization to solve control problems in stochastic, time-varying
settings. We believe that the possibility to rigorously analyze the joint effect of
self-excitement mechanisms and (possibly exogenous) activity reduction could
find applications in spreading processes of different nature, including fake news,
computer viruses, and diffusion of information.

The results of this paper contribute to an improved understanding of the
interplay between two inherent characteristics of epidemics in complex social
networks: burstiness due to the presence of self-excitement mechanisms and
(spontaneous or enforced) activity reduction of infected nodes. Future efforts
should be placed toward the extension of these claims and techniques to more
complex temporal networks, encapsulating other inherent properties of social
networks, such as the presence of community structures [29, 30], recurrent con-
nections [31, 32], high-order relationships [33], and time-delays [72]. We believe
that this direction of research, along the development of realistic and analytically
tractable models, is necessary to unveil and understand the interplay between
the critical dynamic phenomena that govern the spread of epidemic diseases in
complex networks and, possibly, to leverage this knowledge toward the control
of their evolution.
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