

Spiking and membrane properties of rat olfactory bulb dopamine neurons

Kirill S. Korshunov^{1*}, Laura J. Blakemore¹, Richard Bertram¹, Paul Q. Trombley¹

¹Florida State University, United States

Submitted to Journal:
Frontiers in Cellular Neuroscience

Specialty Section:
Cellular Neurophysiology

Article type:
Original Research Article

Manuscript ID:
512967

Received on:
18 Nov 2019

Revised on:
20 Feb 2020

Frontiers website link:
www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

KSK, LJ B, RB, and PQT designed the experiments. KSK performed the experiments and collected data. KSK, LJ B, RB, and PQT analyzed the data. KSK wrote the first draft of the manuscript. All authors contributed to subsequent drafts.

Keywords

Dopamine, Olfactory Bulb, Electrophysiology, Membrane properties, h-current, Na⁺ Current, Ramp protocol

Abstract

Word count: 349

The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose function is to increase odor discrimination through mostly inhibitory synaptic mechanisms. However, it is not well understood whether there is more than one neuronal type of OB DA neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA neurons for recording via whole-cell electrophysiology. These neurons were grouped based on their localization in the glomerular layer ("Top" vs. "Bottom") with these largest and smallest neurons grouped by neuronal area ("Large" vs. "Small," in μm^2). We found that some membrane properties could be distinguished based on a neuron's area, but not by its glomerular localization. All OB DA neurons produced a single action potential when receiving a sufficiently depolarizing stimulus, while some could also spike multiple times when receiving weaker stimuli, an activity that was more likely in Large than Small neurons. This single spiking activity is likely driven by the Na⁺ current, which showed a sensitivity to inactivation by depolarization and a relatively long time constant for the removal of inactivation. These recordings showed that Small neurons were more sensitive to inactivation of Na⁺ current at membrane potentials of -70 mV and -60 mV than Large neurons. The hyperpolarization-activated H-current (identified by voltage sags) was more pronounced in Small than Large DA neurons across hyperpolarized membrane potentials. Lastly, to mimic a more physiological stimulus, these neurons received ramp stimuli of various durations and current amplitudes. When stimulated with weaker/shallow ramps, the neurons needed less current to begin and end firing and they produced more action potentials at a slower frequency. These spiking properties were further analyzed between the four groups of neurons, and these analyses support the difference in spiking induced with current step stimuli. Thus, there may be more than one type of OB DA neuron, and these neurons' activities may support a possible role of being high-pass filters in the OB by allowing the transmission of stronger odor signals while inhibiting weaker ones.

Contribution to the field

The mammalian olfactory bulb receives odor signals from the nasal epithelium and is the first site of odor processing. The olfactory bulb uses a variety of neurons, including dopamine neurons, to modify these signals. Dopamine neurons are known to inhibit other olfactory bulb neurons, causing inhibition of certain odors while other odors are processed by higher brain regions. In the current literature, however, little is known about how these neurons specifically respond to different odor signals, and more information is needed regarding the different types of dopamine neurons present in the olfactory bulb. We use a transgenic rat line, which produces fluorescent dopamine neurons, to record their activity in response to artificial stimuli that mimic natural odor stimuli and to differentiate between different dopamine neuron types based on their localization in different parts of an olfactory bulb layer and their size. We found that these neurons appear to be more responsive to weaker than stronger odors, and that they may have different properties based on their size, but not necessarily their location. These results advance understanding of how olfactory bulb dopamine neurons may be classified, how they may process different odor signals, and how this may impact overall odor processing.

Funding statement

This research was supported by the FSU Chemical Senses Training (CTP) Grant Award T32 DC000044 from the National Institutes of Health (NIH/ NIDCD) to K. Korshunov and by the National Science Foundation (NSF) grant DMS 1853342 to R. Bertram.

Ethics statements

Studies involving animal subjects

Generated Statement: The animal study was reviewed and approved by Florida State University Animal Care and Use Committee.

Studies involving human subjects

Generated Statement: No human studies are presented in this manuscript.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

In review

Data availability statement

Generated Statement: The datasets generated for this study are available on request to the corresponding author.

In review

1 **Spiking and membrane properties of rat olfactory bulb dopamine neurons**

2

3 **Kirill S. Korshunov^{1, 2}, Laura J. Blakemore^{1, 2}, Richard Bertram^{1, 3}, Paul Q. Trombley^{1, 2}.**

4 ¹Program in Neuroscience, Florida State University, Tallahassee, FL, USA.

5 ²Department of Biological Science, Florida State University, Tallahassee, FL, USA.

6 ³Department of Mathematics, Florida State University, Tallahassee, FL, USA.

7

8 **Corresponding author:**

9 Kirill S. Korshunov

10 Florida State University,

11 Department of Biological Science,

12 3011 King Life Science Building,

13 319 Stadium Drive,

14 Tallahassee, FL 32306-4295

15 USA

16 Telephone: (850) 644-1614

17 Email: kkorshunov@neuro.fsu.edu

18

19

20

21 Word count: 11,127 words

22 Figure count: 7 figures

23 **Abbreviations**

24 aCSF, artificial cerebrospinal fluid; AIS, axon initial segment; Ca_v , voltage-gated Ca^{2+} channels;
25 Cd, cadmium; Cs, cesium; DA, dopamine; EPSP, excitatory postsynaptic potential; ETC,
26 external tufted cell; EPL, external plexiform layer; GABA, γ -amino butyric acid; GAD, glutamic
27 acid decarboxylase; GCL, granule cell layer; GL, glomerular layer; HCN, hyperpolarization-
28 activated cyclic nucleotide-gated channel; hTH-GFP, tyrosine hydroxylase green fluorescent
29 protein; $I_{Ca^{2+}}$, Ca^{2+} current; I_H , H-current; I_{Na} , Na^+ current; IPI, interpulse interval; JGC,
30 juxtaglomerular cell; M/TC, mitral/tufted cell; MCL, mitral cell layer; Na_v , voltage-gated Na^+
31 channels; OB, olfactory bulb; ONL, olfactory nerve layer; OSN, olfactory sensory neuron; P,
32 postnatal day; PD, Parkinson's disease; PGC, periglomerular cell; SAC, short-axon cell; SEM,
33 standard error of the mean; TH, tyrosine hydroxylase; V_f , final voltage; V_i , initial voltage

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 **Abstract**

50 The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose
51 function is to increase odor discrimination through mostly inhibitory synaptic mechanisms.
52 However, it is not well understood whether there is more than one neuronal type of OB DA
53 neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those
54 responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA
55 neurons for recording via whole-cell electrophysiology. These neurons were grouped based on
56 their localization in the glomerular layer (“Top” vs. “Bottom”) with these largest and smallest
57 neurons grouped by neuronal area (“Large” vs. “Small,” in μm^2). We found that some membrane
58 properties could be distinguished based on a neuron’s area, but not by its glomerular localization.
59 All OB DA neurons produced a single action potential when receiving a sufficiently depolarizing
60 stimulus, while some could also spike multiple times when receiving weaker stimuli, an activity
61 that was more likely in Large than Small neurons. This single spiking activity is likely driven by
62 the Na^+ current, which showed a sensitivity to inactivation by depolarization and a relatively
63 long time constant for the removal of inactivation. These recordings showed that Small neurons
64 were more sensitive to inactivation of Na^+ current at membrane potentials of -70 mV and -60 mV
65 than Large neurons. The hyperpolarization-activated H-current (identified by voltage sags) was
66 more pronounced in Small than Large DA neurons across hyperpolarized membrane potentials.
67 Lastly, to mimic a more physiological stimulus, these neurons received ramp stimuli of various
68 durations and current amplitudes. When stimulated with weaker/shallow ramps, the neurons
69 needed less current to begin and end firing and they produced more action potentials at a slower
70 frequency. These spiking properties were further analyzed between the four groups of neurons,
71 and these analyses support the difference in spiking induced with current step stimuli. Thus,
72 there may be more than one type of OB DA neuron, and these neurons’ activities may support a
73 possible role of being high-pass filters in the OB by allowing the transmission of stronger odor
74 signals while inhibiting weaker ones.

75

76

77 **Keywords:** dopamine, olfactory bulb, electrophysiology, membrane properties, H-current, Na^+
78 current, ramp protocols

79

80 **Introduction**

81 Olfaction is central to the perception of chemical environments and is a necessary sensory
82 system for the survival of most animals. The olfactory bulb (OB) is the first region of the brain to
83 receive and modify odor signals before sending them to higher brain regions. In many ways
84 similar to the retina, the OB accomplishes its tasks by utilizing different subtypes of neurons
85 embedded in distinct laminae. The neuronal circuitry and synaptic activities within the OB are
86 complex. Chemical odors are first transduced by the olfactory sensory neurons (OSNs) in the
87 olfactory epithelium. OSNs form glutamatergic axodendritic synapses (Berkowicz et al., 1994;
88 Ennis et al., 1996) with interneurons of the glomerular layer (GL) and the main output neurons of
89 the OB, mitral and tufted cells (M/TCs) (Bardoni et al., 1996a, 1996b; Keller et al., 1998;
90 Kosaka et al., 1997; Pinching and Powell, 1971). The interneurons found in the GL are
91 collectively termed juxtaglomerular cells (JGCs), which can be divided into three types:
92 periglomerular cells (PGCs), short-axon cells (SACs), and external tufted cells (ETCs) (Golgi,
93 1875; Nagayama et al., 2014; Pinching and Powell, 1971; Shepherd, 1972; Shepherd et al.,
94 2011). As the odor signal is being transmitted to the M/TCs, the JGCs modify the signal by the
95 release of neurotransmitters such as glutamate, γ -amino butyric acid (GABA), and dopamine
96 (DA).

97 Endogenous to the GL, DA-releasing JGCs are localized around the spherical, dense
98 neuropil structures called glomeruli. DA is expressed in 10-16% of all JGCs; this corresponds to
99 roughly 88,000 neurons in the GL of the OB of the mouse and roughly 100,000 neurons in the
100 GL of the rat (McLean and Shipley, 1988; Panzanelli et al., 2007; Parrish-Aungst et al., 2007).
101 The DA neuron population in the OB is estimated to be the largest in the entire brain (Cave and
102 Baker, 2009). These neurons mainly make inhibitory contacts with the OSNs and the apical
103 dendrites of M/TCs (Berkowicz and Trombley, 2000; Davila et al., 2003; Ennis et al., 2001; Hsia
104 et al., 1999; Nickell et al., 1994; Vaaga et al., 2017). Functionally, these DA neurons are
105 important for increasing odor resolution by simultaneously increasing odor discrimination and
106 decreasing odor noise (Ennis et al., 2001; Tillerson et al., 2006; Wilson and Sullivan, 1995).
107 Thus, the gating mechanisms of OB DA neurons are crucial, but it is not fully understood how
108 these neurons respond to specific signal stimuli.

109 Recent studies show that OB DA neurons fall into two categories: larger neurons
110 possessing an axon and smaller neurons that are anaxonic (Chand et al., 2015; Galliano et al.,

111 2018). These results support earlier reports (Halász et al., 1981; Kosaka and Kosaka, 2007, 2008,
112 2009; Pignatelli et al., 2005) and reviews (Kosaka and Kosaka 2011, 2016; Pignatelli & Belluzzi
113 2017) describing two distinct sizes of OB DA neurons. What is/are the potential identities and
114 locations of these small and large DA neurons? Based on different neuronal features, many
115 studies often categorize OB DA neurons as being either PGCs (Kosaka et al., 1995, 1997, 1998;
116 Kosaka and Kosaka, 2007; Parrish-Aungst et al., 2007) or SACs (Bywalez et al., 2017; Kiyokage
117 et al., 2010; Liu et al., 2013; Cockerham et al. 2016), with SACs having a slightly larger soma
118 size than PGCs (Nagayama et al., 2014; Pinching and Powell, 1971). A subgroup of potential
119 DAergic PGCs were identified as the “Type-1” PGCs, which express tyrosine hydroxylase (TH;
120 the rate-limiting enzyme present in all DA neurons) and receive excitatory input from the “ON
121 Zone,” corresponding to the area between the middle and the superficial (olfactory nerve layer
122 [ONL]/GL) border of the glomerulus (Kosaka et al., 1995, 1997, 1998; Kosaka and Kosaka,
123 2007). A potential DAergic population of SACs provide the most common source of
124 interglomerular projections in the OB (Aungst et al., 2003; Kiyokage et al., 2010), thus, may
125 correspond to the axonic DA neurons, which are mostly found in the deeper (closer to the
126 external plexiform layer [EPL]) portion of the GL (Galliano et al., 2018). Therefore, to
127 distinguish between these two potential types of OB DA neurons, we used whole-cell
128 electrophysiology to investigate differences in the membrane properties of OB DA neurons
129 based on their laminar localization in the GL and size (neuronal area).

130 The response of a neuron to artificial stimuli can be indicative of both how that neuron
131 responds to natural stimuli and the functional outcomes in the neuronal circuit. Surprisingly,
132 there is a lack of information regarding how OB DA neurons respond to artificial stimuli.
133 Therefore, another focus of this study was to determine the firing and gating properties of OB
134 DA neurons in response to evoked current step stimuli. Further, the ionic currents that directly
135 and indirectly contribute to spiking properties – Na^+ current (I_{Na}) and the nonspecific cation H-
136 current (I_{H}), respectively (Iseppe et al., 2016; Pignatelli et al., 2013) – were examined in these
137 neurons. To potentially further distinguish between types of OB DA neurons, these properties
138 were also studied in neurons categorized according to laminar (GL) localization and neuronal
139 area.

140 Lastly, the signal processing properties of OB DA neurons were investigated. These
141 neurons are mostly inhibitory and, upon activation, release DA and the inhibitory

142 neurotransmitter GABA, which most OB DA neurons co-express (Baker et al., 1988; Borisovska
143 et al., 2013; Gall et al., 1987; Kosaka et al., 1985, 1995; Liu et al., 2013, 2016; Maher and
144 Westbrook, 2008). These inhibitory actions could increase odor discrimination through the
145 activity of the D₂ receptor (Tillerson et al., 2006). It has been shown that higher odor
146 concentrations increase odor discrimination (Wei et al., 2006). To investigate whether the OB
147 DA neurons contribute to this, we used a whole-cell current-clamp recording protocol that
148 injected ramps of current into the neurons, with variable ramp slopes. Unlike the conventional
149 step protocols, these ramp protocols are more akin to the summation properties of natural stimuli.
150 In combination with the conventional step stimulations, the ramp stimuli allowed us to determine
151 how responsive OB DA neurons are to strong and weak stimuli. These responses were also
152 differentiated between OB DA neurons based on their GL localization and neuronal area.

153 As many previous studies have characterized OB DA neurons in transgenic mice
154 (Pignatelli et al., 2005, 2009, 2013; Puopolo et al., 2005), the last goal of this study was to
155 determine these properties in the rat. Rats offer some clear advantages over mice (e.g., easier to
156 handle, lower susceptibility to stress, larger brain size facilitates brain surgery and imaging) and
157 are better models for the study of some human behaviors and conditions (Ellenbroek and Youn,
158 2016). For these experiments, we used a transgenic rat line – the TH green fluorescent protein
159 (hTH-GFP) line (Iacovitti et al., 2014) – which expresses GFP in all TH+ (DA) neurons in the
160 OB and other regions of the brain. The advent of this transgenic rat model has important
161 implications to future research and facilitates the exploration of species differences (see
162 Discussion). Whereas previous research in the rat OB characterized the biophysical properties of
163 JGCs without determining the cell type (DA or other) (e.g., Puopolo and Belluzzi, 1998), our
164 transgenic rat model allowed us to directly examine the electrophysiological properties of
165 fluorescent OB DA neurons and to determine potential differences between rat and mouse OB
166 DA neurons.

167 Overall, our results show that OB DA neurons may have spiking properties that differ
168 from those of other OB neurons. These spiking properties, along with their membrane properties,
169 I_H, and gating properties, may differ between neurons based on the neuronal area, but not
170 necessarily the localization of these neurons in the GL. Given that OB DA neurons appear to be
171 more responsive to weaker stimuli and are inhibitory, these results also imply that these neurons
172 act as high-pass filters in the OB. Additionally, these spiking properties are characteristic of DA

173 neurons of rats, but not mice. These findings provide further insight not only to the identity of
174 the OB DA neurons, but also to their signal processing properties that allow them to respond to
175 different odor signals to properly process information in the rat OB.

176

177 **Materials and Methods**

178 *Animals*

179 Transgenic hTH-GFP Sprague Dawley rats (Iacovatti et al. 2014) were used for all experiments
180 (Taconic Biosciences, USA). Rats were housed in an animal vivarium facility at Florida State
181 University, exposed to a 12-hour light and dark cycle, and provided *ad libitum* access to food and
182 water. All experiments were carried out in accordance with the current edition (8th) of the
183 National Institutes of Health Guide for the Care and Use of Laboratory Animals, and the Florida
184 State University Institutional Animal Care and Use Committee approved all procedures.

185

186 *Olfactory bulb dissection*

187 Rat OB tissue slices were prepared as previously described (Blakemore et al., 2006). Rats
188 between the ages of postnatal day (P)12 and P22 were used. A total of 83 rats were used for these
189 experiments (approximately 2 rats for each day of recording). Animals were anesthetized with
190 isoflurane (Henry Schein Animal Health, Dublin, OH, USA) and were decapitated. OBs were
191 harvested in ice cold, oxygenated (95% O₂, 5% CO₂) artificial cerebrospinal fluid with sucrose
192 (sucrose aCSF). The makeup of the sucrose aCSF solution is as follows (in mM): 83 NaCl, 2.5
193 KCl, 26.2 NaHCO₃, 1 NaH₂PO₄, 0.5 CaCl₂, 3.3 MgCl₂, 22 glucose, and 72 sucrose. OBs were
194 glued onto a metal pedestal using cyanoacrylate and 300- μ m thick horizontal slices were cut with
195 a Vibratome (St Louis, MO, USA) in ice-cold sucrose aCSF solution. Slices were gently
196 transferred to a holding chamber, incubated in 35° C-oxygenated aCSF solution for 30 minutes,
197 and then stored at 20-24° C until use. The makeup of the aCSF solution is as follows (in mM):
198 125 NaCl, 2.5 KCl, 25 NaHCO₃, 1.25 NaH₂PO₄, 2 CaCl₂, 1 MgCl₂, and 25 glucose. Tissue slices
199 were then transferred to a recording chamber for all electrophysiology experiments.

200

201 *Electrophysiology*

202 For all electrophysiology experiments, 300- μ m horizontal OB slices were used for recordings in
203 whole-cell current- and voltage-clamp modes. A Multiclamp 700B amplifier (Molecular

204 Devices, Axon Instruments, San Jose, CA, USA), ITC-18 digitizer (Instrutech, Longmont, CO,
205 USA), and AxographX acquisition software (John Clements) were used for all data acquisition.
206 Neurons were visualized with a Leica DMLFS fluorescent microscope (Meyer Instruments,
207 Houston, TX, USA) and a Hitachi HV-D30 camera (B&H, NY, USA).

208 Borosilicate glass (World Precision Instruments, Sarasota, FL, USA) was pulled into
209 electrodes with a final resistance of 4-6 M Ω . The intracellular solution for most whole-cell
210 recordings was composed of the following (in mM): 125 KMeSO₄, 0.025 CaCl₂, 2 MgCl₂, 1
211 EGTA, 2 Na₂ATP, 0.5 NaGTP, and 10 HEPES. Neurons were constantly perfused with an
212 oxygenated aCSF solution at a rate of 1 ml per minute. In total, we recorded from 140 neurons
213 from OB slices. Extracellular drugs were delivered by bath perfusion. We used 25 μ M CdCl₂ to
214 inhibit voltage-gated calcium channels (Ca_v) for I_{Na} analyses. In addition, 5 μ g/ml of propidium
215 iodide was used to visualize the OB layers, which was incubated with post-recorded slices for 2
216 hours in 20-24 °C before being imaged with a Leica DMLB fluorescent microscope (Meyer
217 Instruments, Houston, TX, USA) and an Andor camera (Andor, Oxford Instruments, Europe),
218 with the NIS Elements AR 3.2 software (Nikon, Melville, NY, USA).

219

220 *Calculating membrane properties*

221 Membrane properties of OB DA neurons were compared based on their localization in the GL
222 (“Top” vs. “Bottom”) and neuronal areas (“Large” vs. “Small” neurons). The localization of DA
223 neurons in the GL was distinguished visually before targeting them for whole-cell
224 electrophysiology recordings. “Top” DA neurons were identified as the fluorescent neurons in
225 the “upper half” (the area between the center and the ONL/GL border) of their respective
226 glomeruli. “Bottom” DA neurons were identified as the fluorescent neurons in the “bottom half”
227 (the area between the center and the GL/EPL border) of their respective glomeruli. We recorded
228 from a total of 94 neurons (45 Top and 49 Bottom) categorized in this manner. (The rest of the
229 recorded neurons were not identified by their localization or neuronal area and were thus
230 excluded from these and subsequent calculations.)

231 Of the total of 140 neurons from which we recorded in slice, we determined neuronal
232 areas (“areas”) for 87 of these neurons. For the purpose of analysis, these neurons were
233 categorized according to size and separated into thirds. As large versions of the “Small” neurons
234 could overlap with small versions of the “Large” neurons, we eliminated the middle group of

235 neurons from this analysis to reduce misidentification of cells. Therefore, one-third ($n = 29$) of
236 the neurons with the largest areas (3390 to 4890 μm^2) and one-third ($n = 27$) of the neurons with
237 the smallest areas (1589 to 2610 μm^2) were used for calculations and comparisons of membrane
238 properties based on neuronal area. All membrane properties were calculated from current-clamp
239 voltage traces.

240 Membrane resistance was calculated by analyzing the hyperpolarizing voltage deflection
241 in response to current injection (-10, -25, -50, or -75 pA step) using $V = IR$. The time constant (τ)
242 was calculated by analyzing the amount of time it took for the neuron to hyperpolarize to 63% of
243 its total voltage step. Capacitance was then derived using $\tau = RC$. From the capacitance, the
244 neuronal area was calculated by $C = AC_m$. The C_m (specific capacitance) was previously
245 determined to be $1.0 \frac{\mu\text{F}}{\text{cm}^2}$ (Gentet et al., 2000; Hodgkin and Huxley, 1952; Holohean et al., 1996),
246 which was converted to $0.01 \frac{\text{pF}}{\mu\text{m}^2}$, the value used for these calculations. The neurons' action
247 potential thresholds were determined through specific protocols. The first protocol injected 40, 3-
248 ms depolarizing currents, at 1.5 second increments, with each incremental injection being 10 pA
249 more depolarizing than the last (beginning with 10 pA and ending with 400 pA). The action
250 potential threshold was defined as the amount of current that produced a voltage spike distinct
251 from an Ohmic response. If the first protocol did not produce spiking in a neuron, a second
252 protocol was used with the same specifications, except the injections were increased to
253 increments of 20 pA (beginning with 20 pA and ending with 800 pA). Finally, voltage sag ratios
254 were calculated by analyzing the minimum (V_i) and final (V_f) membrane voltages of a
255 hyperpolarization step. The V_i is the value of the voltage drop before the depolarization sag,
256 while the V_f is the voltage value at the very end of a hyperpolarizing stimulus (voltage sag ratio
257 $= \frac{V_i - V_f}{V_i}$). All calculations were made on voltage drops produced by -25, -50, and -75 pA stimuli.

258

259 *Na⁺ current properties*

260 For the recording of the I_{Na} , the intracellular recording solution consisted of the following (in
261 mM): 125 CsCl, 2 MgCl₂, 1.1 EGTA, 2 ATP, 0.5 GTP, and 10 HEPES. To isolate these inward
262 currents from the inward Ca²⁺ currents ($I_{\text{Ca}^{2+}}$), recordings were made in the presence of 25 μM
263 CdCl₂ in the extracellular aCSF solution. All I_{Na} s were elicited by depolarizing the neuronal
264 membrane with 200-ms, 10-mV voltage steps. I_{Na} was identified as a transient fast-activating and

265 inactivating inward current that would last no longer than 10 ms. The current-voltage I_{Na} curve
266 was constructed by taking the peak current values at each depolarization step (ranging from -80
267 to 30 mV). To calculate the inactivation (h^∞) curve, the neuronal membrane received 7 50-ms
268 pre-pulse voltage steps (ranging from -90 to -30 mV, in 10 mV increments), followed by a 100-
269 ms 80 mV depolarizing step. The currents that resulted at the 80-mV step were used to calculate
270 the inactivation curve. The I_{Na} with the largest amplitude, occurring when the membrane went
271 from -90 to 80 mV, was used as a reference peak. At this point, the peak of each subsequent
272 current (-80, -70 mV, etc.) was divided by the maximum peak, and the resulting ratios showed
273 how much voltage-gated Na^+ (Na_v) channels were inactivated at certain membrane potentials.
274 The half-inactivation is presented in this paper as the membrane potential (I_{Na} Peak/ I_{Na} Peak
275 (Max)) = 0.5. This inactivation curve shows the cumulative peak from 23 neurons. Each neuron
276 also had an individual inactivation curve constructed, where their individual membrane
277 potentials at half inactivation values were derived and compared. Two additional inactivation
278 plots were constructed for Top vs. Bottom and Large vs. Small DA neurons, which were taken
279 from the pooled sample of 23 neurons. To derive the amount of time it would take to remove
280 inactivation from 63% of Na_v s, we constructed an interpulse interval (IPI) curve. This curve was
281 derived by depolarizing each neuron with two 20-ms 60 mV voltage steps, with each pair of
282 pulses separated by increasing intervals (0.5, 1, 3, 5, 7.5, 10, 12.5, 15, and 50 ms). At each IPI,
283 the peak of current 2 (from the second 60 mV pulse) was divided by the peak of current 1 (from
284 the first 60 mV pulse). The resulting ratio shows how the increasing durations of IPIs remove the
285 inactivation of Na_v . The amount of time it would take to remove inactivation from 63% of these
286 channels was derived when the curve crossed I_{Na} Peak 2/ I_{Na} Peak 1 = 0.63. The cumulative curve
287 was constructed from 25 neurons. Subsequently, each neuron also had its own IPI curve
288 constructed, and their individual times to remove inactivation from 63% of Na_v s were derived
289 and compared. Two additional removal of inactivation plots were constructed for Top vs. Bottom
290 and Large vs. Small DA neurons, which were taken from the pooled sample of 25 neurons.
291

292 *Ramp protocols*

293 For all analyses involving ramp stimuli, the “ON current” and “OFF current” were found at the
294 beginning and ending of action potential firing, respectively. The interspike period (Δt) was
295 calculated as the time between two consecutive action potentials, with Δt_1 = the time between the

296 first and second action potential, Δt_2 = the time between the second and third action potential,
297 and so on. Individual spike frequencies (f) were determined by taking the inverse of each Δt .

298

299 *Data Analysis*

300 For all statistical and graphical analyses, GraphPad Prism (version 8.2.1; La Jolla, CA, USA)
301 was used. All data are presented as mean \pm standard error of the mean (SEM). Homogeneity of
302 variance was determined via the F-test. The normality of residuals was checked with the
303 Kolmogorov-Smirnov and Shapiro-Wilk tests. Residuals were considered normally distributed if
304 p-values were > 0.05 . Additionally, the residual and Q-Q plots were visualized to confirm
305 residuals' normality. As the sampled distributions had normal distributions and equal variances,
306 unpaired t-tests were used to determine whether mean values for membrane properties differed
307 based on two groups of independent categorical variables – GL localization ("Top" vs. "Bottom"
308 of GL) or neuronal area ("Large" vs. "Small" neurons). These results are presented as $t(df) =$
309 $x.xx$, $p = 0.xx$. Statistically significant values are represented as any p-value less than 0.05. * = p
310 < 0.05 ; ** = $p < 0.01$; *** = $p < 0.001$; **** = $p < 0.0001$.

311 For the ramp experiments, we transformed all the results into log-log plots by taking the
312 logarithms of the x-values (ramp slopes) and the y-values (ON/OFF currents, spiking
313 frequencies, and spike numbers). This transformation linearized the data, indicating that they are
314 distributed as power functions, $y = 10^b \cdot x^m$, where b is the y-intercept and m is the slope of the
315 transformed data. With the data now linearized, we compared the slopes of each group (Top vs.
316 Bottom and Large vs. Small DA neurons) using a simple linear regression analysis, after
317 confirming that the criteria for normality (as described above) were met. A significant difference
318 ($p < 0.05$) in m between different DA groups indicates a significantly different responses to
319 changes in ramp slopes.

320

321 **Results**

322 *Visualization and glomerular localization of rat olfactory bulb dopamine neurons*

323 Most fluorescent OB DA neurons were localized to the GL (**Fig. 1A-C**). Some DA neurons were
324 also expressed in layers deep to the GL, including the EPL, mitral cell layer (MCL), and granule
325 cell layer (GCL) (**Fig. 1B**). Neurons expressed in layers deep to the GL are likely the neonatal
326 and adult-born DA neurons that are migrating from the subventricular zone and rostral migratory

327 stream to their final destination within the GL (Baker et al., 2001; Betarbet et al., 1996; Pignatelli
328 et al., 2009). Roughly 1,700 TH-positive neurons were previously reported in the EPL (Parrish-
329 Aungst et al., 2007). These OB DA neurons showed a variety of morphologies, including
330 multipolar and bipolar shapes, with varying soma sizes (**Fig. 1B** and **C**). Some areas in the GL
331 have DA neurons that are equally distributed around their respective glomeruli's circumferences
332 (**Fig. 1B** and **C**). We determined whether these neurons express differences that may account for
333 them being more than one OB DA neuron subtype.

334

335 *Insert Figure 1 around here.*

336

337 *Membrane properties*

338 It is unclear whether the properties of OB DA neurons expressed in the superficial half of the
339 glomerulus (closer to the ONL; “Top,” red neurons) differ from those expressed in the deeper
340 half of the glomerulus (closer to the EPL; “Bottom,” blue neurons) (**Fig. 2A**). Such differences
341 may be indicative of different neuronal subtypes, such as PGCs and SACs. We compared
342 membrane resistance, capacitance, neuronal areas, time constants, and action potential thresholds
343 between DA neurons localized to the upper/”top” and lower/”bottom” portions of their respective
344 glomeruli. In the following sections, we also compared the properties of ionic currents (I_{Na} , I_H ,
345 and ON and OFF currents) and spiking properties (spiking frequencies and number of spikes)
346 between these groups of DA neurons. For this section, we compared the membrane properties of
347 64 recorded neurons (32 “Top”, 32 “Bottom”, and 9 neurons not identified by their localization,
348 which were not included in the “Top” vs. “Bottom” analyses) (**Table 1**).

349 There were no significant differences between Top and Bottom neurons in regard to their
350 membrane resistance ($n = 64$ neurons, $t(62) = 0.8151$, $p = 0.4181$, **Fig. 2Ci**), capacitance ($n = 64$
351 neurons, $t(62) = 1.050$, $p = 0.2979$, **Fig. 2Di**), neuronal areas ($n = 64$ neurons, $t(62) = 0.1.050$, p
352 = 0.2979, **Fig. 2Ei**), time constants ($n = 64$ neurons, $t(62)=0.82$, $p = 0.4153$, **Fig. 2Fi**), and action
353 potential thresholds ($n = 20$ neurons, $t(18) = 1.398$, $p = 0.1792$, **Fig. 2Gi**). Additionally, we
354 observed a wide distribution of neuronal areas for these DA neurons (**Fig. 2H**), which coincides
355 with previous findings that OB DA neuron subtypes may be distinguished by their size (Chand et
356 al., 2015; Galliano et al., 2018; Kosaka et al., 2019; Kosaka and Kosaka, 2009; Pignatelli et al.,
357 2005; Pignatelli and Belluzzi, 2017).

358

359 **Table 1.** Membrane properties of recorded OB DA neurons based on glomerular localization.

	Top of glomerulus	Bottom of glomerulus	All neurons
Membrane resistance (MΩ)	1725 ± 173.5	1926 ± 174.5	1742 ± 113.5
Membrane capacitance (pF)	30.71 ± 1.44	28.64 ± 1.33	29.96 ± 0.95
Neuronal area (μm ²)	3071 ± 144.1	2864 ± 133.4	2996 ± 94.72
Time constant (ms)	48.57 ± 3.82	53.26 ± 4.26	49.27 ± 2.7
Action potential threshold (pA)	325.2 ± 34.80	251.3 ± 40.09	298.7 ± 23.35

360 All results presented as mean ± SEM, with no significant differences (p > 0.05) between Top and
361 Bottom DA neurons. The “All neurons” column includes neurons localized to the top and bottom
362 of the GL and those not initially distinguished by their glomerular localization.

363

364 Given the previous findings (Halász et al., 1981; Kosaka and Kosaka, 2007, 2008, 2009;
365 Pignatelli et al., 2005) of differences in soma sizes between two potential populations of OB DA
366 neurons and our finding that neuronal areas of DA neurons are widely distributed (Fig. 2H), we
367 also compared these same properties between recorded DA neurons with different sizes (Table
368 2). For these results, we compared neurons classified as “Large” (3390 to 4890 μm², n = 24,
369 green neurons) and with neurons classified as “Small” (1589 to 2610 μm², n = 24, pink neurons)
370 (Fig. 2B). These separations are also marked by dashed lines, with each color corresponding to
371 neuronal size (Fig. 2H). The neuronal areas in these groups were significantly different from
372 each other (n = 48 neurons, t(46) = 16.23, p < 0.0001, Fig. 2Eii).373 The membrane resistance was significantly greater in Small neurons (n = 48 neurons,
374 t(46) = 4.251, p = 0.0001, Fig. 2Cii), and the capacitance was significantly greater in Large
375 neurons (n = 48 neurons, t(46) = 16.23, p < 0.0001, Fig. 2Dii). These results were expected,
376 because membrane resistance and capacitance are a function of neuronal size (further functional
377 implications are also addressed in the Discussion). There was no significant difference in time
378 constants between Large and Small neurons (n = 48 neurons, t(46) = 0.1536, p = 0.8786, Fig.
379 2Fii). The action potential thresholds were significantly greater in Large than Small neurons (n =
380 14 neurons, t(12) = 5.898, p < 0.0001, Fig. 2Gii). These results are summarized in Table 2.

381

382 **Table 2.** Membrane properties of recorded OB DA neurons based on neuronal area.

	Large neurons	Small neurons
Membrane resistance (MΩ)	1274 ± 107.9	2401 ± 242.1***
Membrane capacitance (pF)	39.32 ± 0.917****	21.23 ± 0.633
Neuronal area (μm ²)	3932 ± 91.73****	2123 ± 63.27
Time constant (ms)	50.41 ± 4.462	51.50 ± 5.549
Action potential threshold (pA)	417.8 ± 23.99****	181.7 ± 33.51

383 All data presented as mean ± SEM.

384

385 *Insert Figure 2 around here.*

386

387 *General action potential spiking properties*

388 All electrophysiology recordings were made in whole-cell current-clamp or voltage-clamp mode.

389 The DA neurons were easily targeted for recording based on their green fluorescence (**Fig. 1**). A
 390 total of 140 DA neurons were recorded in horizontal OB slices. The first set of experiments
 391 examined whether these neurons display spontaneous, non-synaptically driven action potential
 392 firing, which is a well-characterized property of mouse OB DA neurons (Chand et al., 2015;
 393 Pignatelli et al., 2005; Puopolo et al., 2005). None of the neurons examined (n = 32) fired
 394 spontaneous action potentials (**Fig. 3A**). Many recordings showed evidence of excitatory
 395 postsynaptic potentials (EPSPs, the peaks in **Fig. 3A**), indicating the presence of excitatory input
 396 to DA neurons, likely from OSNs, M/TCs, and/or ETCs, which may show that these neurons
 397 have reached maturity (Pignatelli et al., 2009). Some DA neurons did fire action potentials
 398 without stimulation (data not shown); however, these neurons appeared to be synaptically driven,
 399 because they did not show firing at a consistent frequency (4-12 Hz) associated with the
 400 spontaneous activity of OB DA neurons in mouse OBs (Pignatelli et al., 2005; Puopolo et al.,
 401 2005). Therefore, the firing activity of rat OB DA neurons cannot be considered spontaneous,
 402 representing a possible functional species difference between rat and mouse OBs.

403 We further examined the spiking profile of these neurons in response to depolarizing
 404 current step stimuli. Of the 60 DA neurons recorded for this activity, 59 neurons displayed single
 405 spiking activity at some stimulus level: in response to a sufficiently large depolarizing stimulus,
 406 these neurons produced a single action potential, followed by a plateau phase (depolarization
 407 block) for the duration of the stimulus (**Fig. 3B**). While these neurons would display single

408 spiking activity for some stimuli as low as 80 pA (**Fig. 3C**). In contrast, mitral cells would
409 display tonic spiking in response to a much larger 200 pA stimulus (**Fig. 3D**). Thus, the DA
410 neurons may be single spikers. However, of these 59 neurons, 27 neurons additionally produced
411 multiple action potentials in response to weaker depolarizing stimuli (**Fig. 3E** and **F**). As shown
412 in **Fig. 3F**, the multiple spike pattern produced with a weak stimulus (blue) was replaced by
413 decaying spikes and depolarization block at a larger stimulus level (red). With even larger
414 stimuli the cell becomes a single spiker. Therefore, these single spiker neurons are most
415 responsive to weaker stimuli, so that they may act as high-pass filters (Korshunov et al., 2017;
416 also see Discussion).

417 Further, to analyze whether these spiking properties differ between Top and Bottom
418 and/or Large and Small neurons, we assigned “dummy variables” to add a quantitative measure
419 to these qualitative properties (0 = no more than one spike at any depolarizing stimulus; 1 =
420 multiple spiking only at weaker depolarizing stimuli). After summatting these values and
421 comparing the means, there was no significant difference between the spiking properties of DA
422 neurons based on glomerular localization (Top: 0.474 ± 0.117 , n = 19; Bottom: 0.529 ± 0.125 , n
423 = 17; n = 36 neurons, $t(34) = 0.3249$, $p = 0.7472$, **Fig. 3Gi**), but there was a difference based on
424 the neuronal area of the neuron (Large: 0.6429 ± 0.133 , n = 14; Small: 0.154 ± 0.104 , n = 13; n =
425 27, $t(25) = 2.866$, $p = 0.0083$, **Fig. 3Gii**). Therefore, larger DA neurons are more likely to
426 produce multiple spikes in response to weaker depolarizing stimuli than are smaller DA neurons.
427

428 *Insert Figure 3 around here.*

429

430 *Na⁺ current*

431 In whole-cell voltage-clamp, all recorded neurons displayed the fast-activating and inactivating
432 inward I_{Na} (**Fig. 4A**). To isolate the I_{Na} in these neurons, recordings were performed with a 132
433 mM Cs-based intracellular solution and bath-applied 100 μ M Cd (see Materials and Methods).
434 The transient fast activating and inactivating I_{Na} was often no longer than 10 ms (**Fig. 4A**).
435 Recordings from 33 neurons were made for these experiments. The I_{Na} current-voltage curve
436 shows that peak current is largest when the membrane is depolarized to between -20 and 0 mV (n
437 = 11 neurons; **Fig. 4B**).

438 To visualize the inactivation properties of this current, a I_{Na} h_∞ -curve (**Fig. 4E**, but also
439 see Materials and Methods) was derived. An example protocol used to derive this curve is
440 included in **Fig. 4C**. The resulting I_{Na} inactivation curve shows half-inactivation at -49 mV ($n =$
441 23 neurons; **Fig. 4E**). To determine if these I_{Na} inactivation properties differ between DA
442 neurons based on their localization or neuronal area, an inactivation curve was derived for each
443 neuron, and the individual membrane potentials at 50% I_{Na} inactivation were summed and their
444 means compared. There were no significant differences based on glomerular localization ($n = 23$
445 neurons, $t(21) = 1.279$, $p = 0.2149$, **Fig. 4Fi**) or neuronal area ($n = 13$ neurons, $t(11) = 0.7577$, p
446 = 0.4654, **Fig. 4Fii**) of OB DA neurons (**Table 3**). To further determine if this current
447 contributes to the spiking difference seen in **Fig. 3Gii**, we examined and compared the
448 inactivation curves of Top and Bottom (**Fig. 4Gi**) and Large and Small (**Fig. 4Gii**) neurons at
449 membrane potentials of interest (-70 and -60 mV). This comparison was prompted by our
450 observation that spiking differences between Large and Small neurons with weaker current
451 stimuli (closer to their resting potential) would disappear when those stimuli increased in
452 strength. Whereas the inactivation curve for Top neurons was left shifted from that for the
453 Bottom neurons, there were no significant differences between the Top and Bottom inactivation
454 curves at either of the membrane potentials of interest (-70 mV: $n = 23$ neurons, $t(21) = 1.494$, p
455 = 0.15; -60 mV: $n = 23$ neurons, $t(21) = 1.926$, $p = 0.0677$). Similarly, the inactivation curve for
456 Small neurons was left shifted from that of Large neurons, and there were significant differences
457 at both membrane potentials (-70 mV: $n = 13$ neurons, $t(11) = 3.748$, $p = 0.0032$; -60 mV: $n = 13$
458 neurons, $t(11) = 2.576$, $p = 0.0258$) between Large and Small neurons' inactivation curves. This
459 finding suggests that Small DA neurons' Na_v s are more sensitive to inactivation than Large
460 neurons at membrane potentials close to the resting membrane potential.

461 Lastly, to characterize the rate of recovery from inactivation, an IPI I_{Na} curve (**Fig. 4H**,
462 but also see Materials and Methods) was derived. An example protocol used to derive this curve
463 is included in **Fig. 4D**. The resulting IPI curve shows that the average time that it takes for 63%
464 of Na_v channels to recover from inactivation (τ) was 13 ms ($n = 25$ neurons; **Fig. 4H**). Again, to
465 determine if these properties differed between DA neurons based on their localization or
466 neuronal area, an IPI curve was derived for each neuron, and the individual τ values were
467 summed and their means compared. There were no significant differences based on glomerular
468 localization ($n = 25$ neurons, $t(23) = 0.03674$, $p = 0.9710$, **Fig. 4Ii**) or neuronal area ($n = 12$

469 neurons, $t(10) = 1.114$, $p = 0.2913$, **Fig. 4Iii**) of these DA neurons (**Table 3**). To further
470 determine if recovery from Na_v channel inactivation influences the spiking difference seen in
471 **Fig. 3Gii**, we constructed and compared IPI curves for Top and Bottom (**Fig. 4Ji**) and Large and
472 Small (**Fig. 4Jii**) neurons. These curves were similar between Top and Bottom and Large and
473 Small neurons throughout increasing IPIs.

474

475 **Table 3.** I_{Na} properties of OB DA neurons.

	Top	Bottom	Large	Small	All
50% I_{Na} inactivation (mV)	-51.16 ± 1.93	-47.59 ± 1.62	-48.27 ± 1.934	-57.16 ± 3.14	-49
IPI (ms)	13.35 ± 1.353	13.41 ± 1.128	14.53 ± 1.633	11.07 ± 2.918	13

476 All data, except for the “All” category presented as mean \pm SEM. There were no significant
477 differences between Top and Bottom DA neurons or between Large and Small DA neurons

478

479 *Insert Figure 4 around here.*

480

481 *H-current*

482 The I_{H} (a nonspecific cation current activated during hyperpolarization) is produced by the
483 hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (Biel et al., 2009; Wahl-
484 Schott and Biel, 2009). Because the I_{H} has been shown to indirectly influence the resting
485 membrane potential of OB DA neurons (Pignatelli et al., 2013), and because it influences several
486 spiking frequencies in the hippocampus (Biel et al., 2009), we analyzed its strength as a possible
487 metric that could contribute to spiking differences between Large and Small DA OB neurons
488 (**Fig. 3Gii**). The presence of I_{H} in our recordings was identified by depolarizing voltage sags in
489 the membrane potential when a sufficiently large hyperpolarizing current is applied. It can also
490 contribute to rebound spiking after the removal of the hyperpolarizing applied current. Both sag
491 and rebound spiking are exemplified in **Fig. 5A**, confirming that rat OB DA neurons possess I_{H} .
492 Examples of individual hyperpolarizing traces and the presence of voltage sags are also shown
493 for Top, Bottom, Large, and Small DA neurons (**Fig. 5B**).

494 The voltage sag ratio (see Materials and Methods for calculation methods), a proxy of the
495 slowly-activating I_{H} (see Discussion), was used to differentiate between OB DA neurons based
496 on their localization in the GL and neuronal areas. Two sets of voltage sag ratios were used: one

497 set from voltage traces resulting from a -25-pA stimulus only and the second from traces
498 resulting from some combination of -25, -50, or -75 pA stimuli (or all three). For voltage sags
499 resulting from a -25-pA stimulus only, there was no significant difference between the voltage
500 sag ratios of DA neurons based on glomerular localization ($n = 34$ neurons, $t(32) = 0.765$, $p =$
501 0.45, **Fig. 5Ci**), but there was a significant difference based on neuronal area ($n = 26$ neurons,
502 $t(24) = 3.009$, $p = 0.0061$, **Fig. 5Ciii**) (**Table 4**). Likewise, for voltage sags resulting from the
503 combination of hyperpolarizing stimuli (“all currents” in the figure legend), there was no
504 significant difference between the voltage sag ratios of DA neurons based on localization ($n = 26$
505 neurons, $t(24) = 0.5456$, $p = 0.5904$, **Fig. 5Cii**), but there was a significant difference based on
506 neuronal area ($n = 18$ neurons, $t(16) = 3.113$, $p = 0.0067$, **Fig. 5Civ**) (**Table 4**).

507 A reason why smaller DA neurons display larger voltage sag ratios, possibly indicating a
508 stronger overall I_H , is due to the large resistance of these neurons. However, Small DA neurons
509 may also possess a larger HCN channel density than Large neurons, which would further
510 contribute to a larger voltage sag ratio in the Small population. To test this hypothesis, we
511 divided the voltage sag ratios into two groups based upon the voltage that they dropped to
512 immediately upon application of the hyperpolarizing applied current (V_i). In one group, the V_i
513 was greater than (positive to) -120 mV, and in the second group V_i was less than (negative to) -
514 120 mV. This division was made since HCN channels are typically almost entirely activated at
515 potentials below -120 mV (Ross et al., 2017), so this second group should have almost
516 maximally-activated channels. If Small neurons possess greater voltage sag ratios than Large
517 neurons at these potentials, then they will likely have a stronger I_H , possibly due to a greater
518 density of HCN channels. When the V_i was positive to -120 mV, the voltage sag ratio did not
519 significantly differ between DA neurons based on their glomerular localization ($n = 49$ sags,
520 $t(47) = 0.4173$, $p = 0.6784$, **Fig. 5Di**) but the voltage sag ratio was significantly greater in Small
521 versus Large neurons ($n = 30$ sags, $t(28) = 5.547$, $p < 0.0001$, **Fig. 5Dii**) (**Table 4**). When the V_i
522 was negative to -120 mV, there was again no significant difference in the voltage sag ratio
523 between DA neurons based on their glomerular localization ($n = 90$ sags, $t(88) = 1.139$, $p =$
524 0.2576, **Fig. 5Ei**), but the voltage sag ratio was significantly greater in Small versus Large
525 neurons ($n = 63$ sags, $t(61) = 2.064$, $p = 0.0432$, **Fig. 5Eii**) (**Table 4**). Thus, Small DA neurons
526 possessed a stronger I_H than Large DA neurons, regardless of how the sag ratio quantification
527 was performed.

528

529 **Table 4.** I_H properties of OB DA neurons.

	Top	Bottom	Large	Small
Voltage sag ratio (-25 pA)	0.05 ± 0.01	0.07 ± 0.02	0.03 ± 0.01	0.10 ± 0.05**
Voltage sag ratio (all)	0.06 ± 0.02	0.07 ± 0.02	0.04 ± 0.01	0.12 ± 0.03**
V_i positive to -120 mV	0.03 ± 0.2 x 10 ⁻²	0.03 ± 0.3 x 10 ⁻²	0.03 ± 0.3 x 10 ⁻²	0.10 ± 0.02****
V_i negative to -120 mV	0.07 ± 0.8 x 10 ⁻²	0.09 ± 0.01	0.06 ± 0.8 x 10 ⁻²	0.10 ± 0.02*

530 All data presented as mean ± SEM. There were no significant differences between Top and
 531 Bottom DA neurons, but there were several significant differences between Large and Small DA
 532 neurons.

533

534 *Insert Figure 5 around here.*

535

536 *Current ramps reveal spiking properties*

537 In the next experiments, we applied ramp stimulus protocols (**Fig. 6A**), where the input current is
 538 gradually increased to a peak and is then removed. This protocol was used to avoid or postpone
 539 the depolarization block that occurs in OB DA neurons when the input current is applied as a
 540 step pulse (**Fig. 3**), allowing analysis of spiking properties of the neurons. The ramp protocols
 541 used for the following experiments varied in 6 amplitudes (starting with 0 pA and increasing to
 542 either 100, 200, 300, 400, 500, or 600 pA) over 7 durations (50, 100, 200, 300, 400, 500, or 600
 543 ms). In total, 42 ramps were used. The ramps with longer duration and smaller current amplitude
 544 have shallow slopes (in pA/ms), so there is a more gradual application of the stimulus, and the
 545 ramps with shorter duration and large current amplitudes have steep slopes.

546 In the first experiment, we examined how the ramp slopes influenced the amount of
 547 current required for a neuron to begin spiking (“ON current”) and end spiking (“OFF current”)
 548 (**Fig. 6A**). At the OFF current, a depolarization block is initiated that lasts for the duration of the
 549 stimulus. A total of 19 DA neurons were tested, including neurons that produced one or more
 550 action potential spike(s) per ramp. Steeper ramp slopes consistently resulted in larger ON and
 551 OFF currents in all DA neurons tested (**Fig. 6B**). This result indicates that neurons fire over a
 552 longer range of current when stimulated with steep slopes, but their duration of firing decreases
 553 with increasing ramp slopes (Duration = $\left(\frac{\text{OFF current}}{\text{Ramp slope}}\right) - \left(\frac{\text{ON current}}{\text{Ramp slope}}\right)$). The changes in these
 554 responses were then compared between DA neurons based on GL localization and neuronal area.

555 The data appear to be distributed as power functions, $y = 10^b \cdot x^m$, where b and m are
556 parameters. For this reason, we transformed the data by taking the common logarithm of the x
557 (ramp slope) and y values (ON- or OFF-current, or spike frequency, or number of spikes) and
558 constructing log-log plots (see Materials and Methods and also Supplementary Figures). This
559 linearized the data, confirming the power-law dependence of the data on the ramp slope, and we
560 looked for significant differences in the slopes m of the linearized data (this parameter is the
561 exponent of the power function). There were no significant difference in m between Top and
562 Bottom neurons in their increasing ON currents (Top: $b = 1.767$, $m = 0.4494$, $n = 9$ neurons;
563 Bottom: $b = 1.657$, $m = 0.4281$, $n = 10$ neurons; $p = 0.3405$, **Supplementary Fig. 1A**) nor in
564 their increasing OFF currents (Top: $b = 2.116$, $m = 0.4359$, $n = 9$ neurons; Bottom: $b = 1.993$, m
565 = 0.4537 , $n = 10$ neurons; $p = 0.5368$, **Supplementary Fig. 2A**) with increasing ramp slopes.
566 The raw, un-transformed data are shown in **Fig. 6C**. For the Large and Small DA neurons, there
567 was no difference in m between their increasing ON currents with increasing ramp slope (Large:
568 $b = 1.827$, $m = 0.4274$, $n = 5$ neurons; Small: $b = 1.612$, $m = 0.4210$, $n = 5$ neurons; $p = 0.7680$,
569 **Supplementary Fig. 1B**), but there was a significant difference in m between the increasing OFF
570 currents of Small and Large DA neurons (Large: $b = 2.194$, $m = 0.4026$, Small: $b = 1.905$, $m =$
571 0.4729 ; $p = 0.0402$, **Supplementary Fig. 2B**). The un-transformed data are shown in **Fig. 6D**.
572 These results indicate that the OFF current for Small neurons increases significantly more with
573 increases in the current ramp slope than does the OFF current for Large neurons, however, Large
574 neurons still have larger OFF currents when stimulated with this range of ramp stimuli (see
575 **Supplementary Fig. 2B** and Discussion). There are no significant differences in either ON or
576 OFF currents between Top and Bottom neurons.

577 *Insert Figure 6 around here.*

578 Next, we examined the frequency response of OB DA neurons over a range of input ramp
579 slopes. Spike frequency was calculated for each individual action potential by measuring the
580 time period (Δt) between that action potential and the next one, and taking the reciprocal of the
581 period to determine frequency (f) (**Fig. 6A**). This was then averaged over all spikes in the
582 response. A total of 13 neurons that produced more than one action potential per ramp were used
583 for these experiments. Overall, the spike frequency increased with increasing ramp slopes, up to
584 a saturation frequency (~70-75 Hz) (**Fig. 7A**). The change in spike frequency was used as
585 another metric to compare DA neurons based on glomerular localization and neuronal area. The

586 m for the increase in spike frequency across ramp stimuli did not differ between Top and Bottom
587 DA neurons (Top: $b = 1.568$, $m = 0.2900$, $n = 6$ neurons; Bottom: $b = 1.567$, $m = 0.3068$, $n = 7$
588 neurons; $p = 0.35$, **Supplementary Fig. 3A**). The un-transformed data are shown in **Fig. 7B**.
589 However, the significantly higher m in Small neurons indicates that they had a greater increase in
590 spike frequency than Large neurons across increasing ramp slopes (Large: $b = 1.566$, $m =$
591 0.2649 , $n = 4$ neurons; Small: $b = 1.626$, $m = 0.3217$, $n = 3$ neurons; $p = 0.004$, **Supplementary**
592 **Fig. 3B**). The un-transformed data are shown in **Fig. 7C**. Thus, Small DA neurons appear to
593 increase their spike frequency with increasing ramp slope strength more than the DA Large
594 neurons.

595 Lastly, we determined the effect of ramp slope on the number of action potentials
596 produced by these neurons. Again, 13 neurons with multiple action potentials per ramp stimulus
597 were used. Overall, the number of action potential spikes decreased with increasing ramp slopes
598 (**Fig. 7D**). We observed differences in this change in the number of action potentials between
599 DA neurons based on both GL localization and neuronal area. Interestingly, Top DA neurons had
600 a significantly more negative m than Bottom neurons, and thus produced a greater decrease in
601 spikes across increasing ramp stimuli than Bottom neurons (Top: $b = 0.5636$, $m = -0.3035$, $n = 6$
602 neurons; Bottom: $b = 0.4046$, $m = -0.1875$, $n = 7$ neurons; $p < 0.001$, **Supplementary Fig. 4A**).
603 The un-transformed data are shown in **Fig. 7E**. The m value was even more significantly
604 negative in Large neurons, indicating that they had an even greater decrease in spikes across
605 increasing ramp stimuli than Small DA neurons (Large: $b = 0.6208$, $m = -0.3859$, $n = 4$ neurons;
606 Small: $b = 0.3994$, $m = -0.1909$, $n = 3$ neurons; $p < 0.0001$, **Supplementary Fig. 4B**). The un-
607 transformed data are shown in **Fig. 7F**.

608 *Insert Figure 7 around here.*

609 These data suggest that slowly increasing inputs result in long, low-frequency responses,
610 while inputs that increase rapidly result in short, high-frequency responses. The number of spikes
611 produced during a current ramp declines faster with the ramp slope in the Top DA neurons than
612 in the Bottom DA neurons. The greatest difference in the number of spikes between these groups
613 appears at shallower ramps (0-7 pA/ms). The Small DA neurons exhibit a greater increase in
614 spike frequency with increase in the current ramp slope than do the Large DA neurons. These
615 same Small DA neurons exhibit less of a decrease in the number of spikes produced as current
616 ramp slope is increased than do the Large DA neurons. We note that the ramp protocol was the

617 only protocol that we applied that was able to distinguish some differences between Top and
618 Bottom DA neurons.

619

620 **Discussion**

621 We used a novel transgenic rat line (TH-GFP) to show that DA neurons are widely expressed in
622 the GL of the rat OB. The interneurons that express TH and GABA are collectively termed
623 JGCs, which are among the first neurons to make contact with the OSNs. In the GL, DA, GABA,
624 and glutamate can modulate the odor signal being transmitted to the main output neurons, the
625 M/TCs. These modulatory mechanisms include inhibition of glutamate release from OSNs via
626 presynaptic activation of the D₂ and GABA_B receptors (Baker et al., 1986; Berkowicz and
627 Trombley, 2000; Ennis et al., 2001; Hsia et al., 1999; Nickell et al., 1994; Vaaga et al., 2017),
628 inhibition of glutamate release from M/TCs via D₂ receptor activation (Davila et al., 2003), and
629 an interglomerular inhibition-excitation of ETCs via activation of GABA_A and D₁ receptors,
630 respectively (Liu et al., 2013). While there is much understanding about the synaptic activity of
631 OB DA neurons, it is not fully understood if there are more than one type of OB DA neuron and
632 how these neurons respond to artificial stimuli. Based on our examination of membrane
633 properties, we show that OB DA neurons may be differentiated according to their neuronal area,
634 but not always according to their glomerular localization (whether closer to the ONL or the EPL)
635 in the GL. While most membrane properties could not be differentiated between neurons based
636 on their glomerular localization, responses to ramp stimuli, including the ON and OFF currents
637 and the number of spikes as the ramp slope increased, differed between both Top and Bottom
638 neurons and Large and Small neurons. The spiking profiles of these neurons in response to step
639 stimuli were distinguishable by their neuronal area and sometimes by their glomerular
640 localization. Along with these findings, we conclude by discussing potential species differences
641 between OB DA neurons.

642

643 *Evidence for and potential identity of at least two types of olfactory bulb dopamine neurons*

644 Previous findings commonly categorize OB DA neurons into two size profiles (Chand et al.,
645 2015; Galliano et al., 2018; Halász et al., 1981; Kosaka et al., 2019; Kosaka and Kosaka, 2007,
646 2008, 2009, 2011; Pignatelli et al., 2005; Pignatelli and Belluzzi, 2017). It is possible that OB
647 DA neurons with smaller soma sizes that sometimes lack an axon are PGCs (Kosaka and

648 Kosaka, 2011; Nagayama et al., 2014; Pinching and Powell, 1971), while DA neurons with
649 larger soma sizes and interglomerular projections are SACs (Aungst et al., 2003; Bywalez et al.,
650 2017; Kiyokage et al., 2010). Are these two potentially different populations of OB DA neurons
651 differently localized in the GL? Our membrane properties results indicate that there is no
652 preferred glomerular localization of Large and Small DA neurons. However, a recent study by
653 Galliano et al. (2018) found that large TH+/DA neurons were mostly expressed in the deep
654 glomerulus, at the border of GL/EPL. Interestingly, these large neurons exclusively possessed an
655 axon initial segment (AIS), indicating that these DA neurons are axonic (Galliano et al., 2018).
656 While we have recorded a total of 10 Large DA neurons that were localized to the Bottom of the
657 GL, we also recorded from a total of 15 Large DA neurons that were localized to the Top of the
658 GL. Thus, our data suggest that Large DA neurons are found in both the superficial and deep
659 halves of the glomerulus. While Large DA neurons in the deep GL likely possess an axon, Large
660 neurons in the superficial GL may not possess an axon.

661 A new study by Kosaka et al. (2019) has further described the OB DA population as
662 belonging to four groups: the Large PGCs with apparent axons, Small PGCs that are either
663 axonic or anaxonic, Transglomerular cells with processes extending up to two or more glomeruli,
664 and the Incrusting cells that extend their processes in the periphery of the glomeruli. These
665 findings, along with our results on the many differences (passive membrane properties, tonic
666 spiking or single action potentials, the I_H , OFF currents, spiking frequency, and number of spikes
667 produced) between the “Large” and “Small” OB DA neurons, support the previous findings that
668 there are at least two types of OB DA neurons. It is also clear that, given that there are new ways
669 of differentiating these neurons based on their dendritic arborizations (Bywalez et al. 2017) and
670 projections of their processes (Kiyokage et al., 2010; Kosaka et al., 2019), further studies to
671 better understand OB DA neurons should focus on their spiking properties.

672

673 *Spiking properties, ionic currents, and further evidence for at least two types of dopamine
674 neurons in the olfactory bulb*

675 When depolarized by conventional current step stimuli, OB DA neurons overwhelmingly ($n =$
676 59/60 neurons) produced a single action potential at the beginning of a strong depolarizing
677 stimulus, before entering a depolarization block for the duration of the stimulus (**Fig. 3B** and **C**).
678 This was in contrast to the tonic spiking produced in mitral cells (**Fig. 3D**). Some ($n = 27/59$

679 neurons) of these single spikers also produced multiple spikes continuously when stimulated
680 with weaker stimuli only (Fig. 3E and F). Therefore, we classified these neurons as single
681 spikers that are more responsive to weaker stimuli. These neurons may fit the criteria of the “non
682 accommodating” spiking group characterized by McQuiston and Katz (2001), because when they
683 produced tonic spiking, these spikes appeared to maintain a consistent spike frequency
684 throughout the step stimulus. Based on the number of Large and Small neurons that showed
685 these properties, it was more likely that Large OB DA neurons would produce multiple spikes at
686 weaker stimuli, but not Small neurons (Fig. 3G). The spiking data imply that the larger OB DA
687 neurons are more responsive to weaker, not stronger, odor stimuli.

688 To examine the role that ionic currents play in these neurons being single spikers, we
689 investigated the I_{Na} (Fig. 4). Of these ionic properties, we found that Small DA neurons’ Na_v
690 channels were much more sensitive to inactivation at membrane potentials close to the resting
691 membrane potential (-70 mV and -60 mV) than those of Large DA neurons (Fig. 4Gii). Thus,
692 this difference in Na_v sensitivity should, at least partially, address the difference in spiking
693 between Large and Small DA neurons (Fig. 3Gii). Future studies that could address this
694 difference in spiking could include investigating a potential difference in the density of Na_v
695 between Large and Small DA neurons (Sengupta et al., 2013; Zengel et al., 1985), the neuronal
696 localization of these channels (Kress and Mennerick, 2009; Trimmer and Rhodes, 2004), and
697 further analyses of K^+ currents, including the A-type (Iseppe et al., 2016) and M-currents (Li et
698 al., 2015; Nai et al., 2011). Our reported time constant (13 ms, Fig. 4H) is similar to the
699 previously reported 16.8 ms in OB PGCs (Iseppe et al., 2016). In OB PGCs, it was determined
700 that the long time constant required to remove inactivation from Na_v and the short time constant
701 required to remove the inactivation from channels that produce the K^+ A-current contribute to the
702 single spiking properties of OB PGCs (Iseppe et al., 2016). Given our reported values for
703 inactivation and the similarly long removal of inactivation time constant for Na_v , these
704 properties may contribute to the single spiking activity of OB DA neurons.

705 The I_H can act as a pacemaker current for neurons that experience spontaneous, rhythmic
706 spiking (Wahl-Schott, 2009). In mouse OB DA neurons, pharmacological blockade of I_H/HCN
707 did hyperpolarize their resting membrane potential, but this did not cause these neurons to stop
708 their spontaneous spiking (Pignatelli et al., 2013). We did not test the importance of the I_H in the
709 firing properties of rat OB DA neurons. However, as the neurons in our study did not produce

710 spontaneous spikes (**Fig. 3A**), it is likely that this current does not act as a pacemaker in rat OB
711 DA neurons either. We observed further biophysical difference between Large and Small OB
712 DA neurons in the form of the I_H . The presence of I_H in these neurons was evident, because they
713 produced voltage sags when a hyperpolarizing current was applied, often followed by rebound
714 action potentials that can be due in part to I_H (**Fig. 5A**). We used the voltage sag ratio as a
715 representative measure of the strength of I_H and as a means to distinguish between potential types
716 of OB DA neurons. At all hyperpolarizing stimuli, voltage sag ratios did not differ between DA
717 neurons based on GL localization, but were consistently larger in Small compared with Large
718 DA neurons (**Fig. 5Ciii and iv, 5Dii, and 5Eii**). One functional implication of I_H could be that it
719 allows for the smaller neurons to get out of hyperpolarization, bypass their action potential
720 thresholds (which would be easier for these neurons since smaller neurons have a lower
721 threshold, **Fig. 2Gii**), and generate an action potential earlier than larger neurons. Given the
722 inactivation properties of Na_v s in Small neurons, their larger I_H can indirectly inactivate these
723 channels more than it would in Large DA neurons, which may contribute to the difference in
724 spiking between these neurons.

725 According to Ohm's Law, smaller neurons should produce a greater voltage drop when
726 hyperpolarized than larger neurons, activating a larger fraction of HCN channels. Thus, smaller
727 neurons would be expected to produce larger voltage sags, as well. However, if larger DA
728 neurons experienced the same voltage drop as smaller neurons, would their voltage sag ratios be
729 different or the same? As we found that Small DA neurons experienced larger voltage sag ratios
730 even when they began at similar membrane potentials as Large DA neurons (**Fig. 5D-E**), we
731 conclude that Small DA neurons have a stronger I_H than Large neurons. Interestingly, the
732 difference in voltage sag ratios between Small and Large neurons was much greater at more
733 positive hyperpolarized potentials (**Fig. 5D**) than more negative hyperpolarized potentials (**Fig.**
734 **5E**). This suggests that the HCN channel activation curve could be right shifted in the smaller
735 neurons, so that the channels activate at higher voltages.

736 It should be noted that, while some of the recorded neurons did not have noticeable
737 voltage sags, it does not necessarily mean that they do not possess an I_H . Depending on the
738 presence of specific HCN subunits (subunits 1-4; [Meredith et al., 2012](#); [Wahl-Schott and Biel,](#)
739 [2009](#)), these neurons may possess the fast-activating I_H , slow-activating I_H , or a mixture of both.
740 The fast-activating I_H rapidly opposes the applied hyperpolarizing current, reducing the size of

741 the voltage drop when the hyperpolarizing current is applied. In contrast, the slow-activating I_H
742 produces the voltage sags (Ross et al., 2017). Therefore, those neurons that did not display
743 voltage sags (a property of slow-activating I_H) may still possess the fast-activating I_H . Future
744 experiments could label the HCN subunits and verify the distribution of the fast and slow
745 components of the I_H among different rat OB DA neurons, as has recently been done in
746 vestibular ganglion neurons (Michel et al., 2015).

747

748 *Further spiking properties in response to current ramp stimulations*

749 Our current clamp data up to this point show spiking in response to single step stimuli. While
750 current step protocols provide a good snapshot of the spiking response per individual stimulus,
751 we wanted to further characterize spiking properties in response to increasing stimuli. Thus, we
752 used ramp stimuli, which can be thought of as a new current step stimulus every millisecond.
753 Ramps with smaller current amplitudes and longer durations had shallow slopes, while ramps
754 with larger amplitudes and shorter duration had steep slopes (“ramp slopes” is interchangeable
755 with “ramp stimuli”). The resulting power functions (Figs. 6 and 7) and their transformed log-log
756 plots (Materials and Methods and Supplementary Figures) describe the response of these neurons
757 to increasing ramp stimuli, as well as differences between the responses of Top vs. Bottom and
758 Large vs. Small DA neurons.

759 Shallow ramp stimuli yielded smaller ON/OFF currents, while steeper stimuli yielded
760 larger ON/OFF currents (Fig. 6B). Shallow ramp stimuli also yielded smaller spike frequencies
761 (Fig. 7A) and more spikes (Fig. 7D) than steep stimuli. Large neurons produced larger OFF
762 currents than Small neurons (Fig. 6D). This is consistent with data in Fig. 3Gii, because Large
763 neurons would take a longer time to enter depolarization block than Small neurons, especially at
764 very shallow ramp stimuli (Duration = Current/Ramp slope). Small neurons developed larger
765 spike frequencies across increasing ramp stimuli (Fig. 7C) and had considerably fewer spikes at
766 shallow ramp stimuli (Fig. 7F) than Large neurons. This again confirms our findings that not
767 only are OB DA neurons more sensitive to weaker stimuli, but Large DA neurons tend to
768 develop more, lower interspike frequency action potentials than Small neurons. While these
769 results confirm our hypothesis for Large and Small neurons based on Fig. 3, the findings
770 between Top and Bottom neurons are less intuitive.

771 There are two parameters – derived from log-log plots – that influence these DA neurons:
772 10^b and x^m . Whereas 10^b is a constant, x^m changes with increasing ramp stimuli. If the exponent
773 m (which is the slope of the linear equations generated in log-log plots, and also the exponent of
774 the ramp slope stimulus in the un-transformed power functions) is significantly greater in one
775 group, then the change that group experiences will increase (or decrease, if m is negative) more
776 than the other group. Small neurons experience a greater increase in their spike frequencies
777 (**Supplementary Fig. 3B**), with a smaller decrease in their overall spiking (**Supplementary Fig.**
778 **4B**), compared to Large neurons as ramp stimuli increase. Small neurons also have a
779 significantly larger increase in their OFF currents than Large neurons with increasing ramp
780 stimuli, as demonstrated by their greater m value (**Supplementary Fig. 2B**). However, because
781 the b value for Small neurons (1.905) is smaller than that of the Large neurons (2.194), the OFF
782 current for Large neurons will consistently stay higher than that of Small neurons across the
783 ramp stimuli that we tested (0-12 pA/ms) and is consistent with the data presented here that
784 Large neurons have a longer duration of spiking than Small neurons. This means that the
785 constant 10^b also dictates the spiking properties of not only Large and Small neurons, but also
786 those of Top and Bottom neurons (**Figs. 6C** and **7E**). Some of the properties that can contribute
787 to the b and m parameters of each neuron include that neuron's action potential threshold
788 (rheobase – **Fig. 3G**), I_{Na} properties, including inactivation (**Fig. 4E** and **G**), Na_v density
789 (Sengupta et al., 2013; Zengel et al., 1985) and distribution throughout the neuron (Kress and
790 Mennerick, 2009; Trimmer and Rhodes, 2004), K^+ current properties, including the fast-
791 activating and inactivating A-type current (Iseppe et al., 2016) and the non-inactivating M-
792 current (Li et al., 2015; Nai et al., 2011), the I_H (**Fig. 5** and Pignatelli et al., 2013), and further
793 biophysical properties. Some of the differences between Top and Bottom neurons may also come
794 from morphological properties, including possessing an axon/AIS (Chand et al., 2015; Galliano
795 et al., 2018) and the growing classification of DA neurons in the OB (Kosaka et al., 2019),
796 among other factors.

797

798 *Do olfactory bulb dopamine neurons act as high-pass filters?*

799 Which spiking pattern is more effective at releasing neurotransmitter depends on the presynaptic
800 plasticity that occurs in the DA neuron's presynaptic terminals. If the synapses facilitate, then
801 high-frequency bursts of activity are likely more effective. However, if depletion of the readily

802 releasable vesicle pool predominates, then the low-frequency spike trains could be more
803 effective. The efficacy of the response of DA neurons to ramp input thus raises several questions.
804 Are OB DA neurons dependent on action potentials for DA release, and what are the most
805 effective stimuli for inducing transmitter release from these OB DA neurons? How can these
806 gating mechanisms contribute to functionality of OB DA neurons?

807 First, because OB DA release can be evoked by a single action potential (Borisovska et
808 al., 2013), OB DA neurons receive excitatory synaptic input (Hayar et al., 2004), and their
809 synaptic activity increases after depolarization (Baker et al., 1986; Berkowicz and Trombley,
810 2000; Davila et al., 2003; Ennis et al., 2001; Hsia et al., 1999; Liu et al., 2013; Nickell et al.,
811 1994; Vaaga et al., 2017), it is likely that exocytosis of synaptic vesicles is triggered by electrical
812 impulses. These levels of release would likely differ depending on the time of the day, with
813 higher levels in the daytime and lower levels in the nighttime of rodents (Corthell et al., 2013).

814 Unlike the midbrain DA neurons (Covey et al., 2016; Ito and Schuman, 2007; Suaud-
815 Chagny, 2004; Suaud-Chagny et al., 1992; Zhang et al., 2009; Zhang and Sulzer, 2004), to the
816 best of our knowledge, there is no direct evidence to suggest that OB DA neurons are more
817 sensitive to stronger stimuli. Rather our data combined with the functionality of these neurons
818 provide support for the notion that they are more sensitive to weaker stimuli. Because OB DA
819 neurons are inhibitory, they may filter out the background, tonic odors. In the context of the OB,
820 this suggests that DA neurons may act as high-pass filters to allow stronger odor signals to be
821 processed by the main output neurons (Korshunov et al., 2017). A similar hypothesis was
822 described for the function of calretinin PGCs, which are also single spikers (Iseppe et al., 2016).

823 Whether DA neurons may act as high-pass filters depends on whether these neurons stop
824 releasing transmitter during depolarization block. When these neurons receive a large enough
825 stimulus, they will revert to inactivity, which is characterized by depolarization block (plateau,
826 non-spiking phase that can be distinguished in **Fig. 3B, C, and F**). Does this inactivity mean that
827 OB DA neurons can no longer be synaptically active? During depolarization block, these
828 neurons have a depolarized membrane potential of about -40 to -30 mV. This depolarization
829 could activate Ca_v channels that are necessary for inducing a synaptic cascade, thus releasing DA
830 and GABA. If this is the case, then these neurons can still be synaptically active, even though
831 they are quiescent in terms of their somatic action potentials. This would especially be likely if a
832 somatic action potential/depolarization block is proximal to the Ca_v of dendrites, causing a

833 dendritic release of transmitters. However, depolarization block causing transmitter release may
834 not be as likely for DA neurons expressing an axon. Without somatic action potentials, saltatory
835 conduction in the nodes of Ranvier of the axon may not be possible. If saltatory conduction still
836 occurs during depolarization block, then we would expect to record back-propagating action
837 potentials during depolarization block. Additionally, a simulated study shows that high-
838 frequency stimulations of axons will cause partial depolarization block (Guo et al., 2018).
839 Therefore, since there is/are a subpopulation of OB DA neurons that do express an axon
840 (Galliano et al., 2018; Kosaka et al., 2019), and because DAergic projections can span up to 1
841 mm (Kiyokage et al., 2010), it is unlikely that sustained depolarization block will cause synaptic
842 release at the axonal terminals of a subset of OB DA neurons. Future voltammetry studies, which
843 can measure DA release from dendrites and axon terminals, while simultaneously recording
844 depolarization block in soma, may be an effective approach for answering this question.

845 In the OB, DA release causes a presynaptic inhibition of OSNs via the D₂ receptor,
846 effectively decreasing excitatory input onto and from the M/TCs (Berkowicz and Trombley,
847 2000; Davila et al., 2003; Ennis et al., 2001; Hsia et al., 1999; Liu et al., 2013; Nickell et al.,
848 1994; Vaaga et al., 2017). Perhaps, higher odor concentrations could inhibit DA neurons, as did
849 the stronger depolarization stimuli (Fig. 3E and F) and steeper ramps (Fig. 7D, E, and F). If
850 these stronger odors bypass the DAergic network in the glomerulus, then these neurons may act
851 as high-pass filters (Korshunov et al., 2017): actively inhibiting transmission of weak/ambient
852 odors while being quiescent in the presence of stronger odors. Thus, the activity of OB DA
853 neurons may increase odor discrimination through the D₂ receptor (Tillerson et al., 2006) by
854 inhibiting glutamate release from its intraglomerular OSNs and M/TCs, while having more
855 complicated, temporal effects on its interglomerular targets (Liu et al., 2013).

856

857 *Clinical implications*

858 The increasing availability of transgenic mice over the past few decades has caused mice to
859 assume a greater role in biomedical science compared to rats. However, the advent of transgenic
860 rats such as this hTH-GFP rat line (Iacovitti, et al., 2014) allows for further characterization of
861 OB DA neurons from a different rodent species. This adds to the collective knowledge of the
862 function of OB DA neurons, as well as how these neurons may be affected by neurodegenerative
863 diseases such as Parkinson's disease (PD), and is of particular interest to those in the fields of

864 pathology and neurology. When afflicted with PD, the OB DA neurons of rats and people
865 paradoxically increase in number (Huisman et al., 2004; Lelan et al., 2011; Mundiñano et al.,
866 2011). A loss of olfaction – hyposmia and anosmia – precedes overt PD and can be a sign of the
867 early stages of this disease (Berendse et al., 2001; Doty et al., 1988; Huisman et al., 2004; Ross
868 et al., 2008; Ponsen et al., 2004). This hyposmia and anosmia is possibly due to increased
869 inhibition from the greater number of DA-GABA neurons present in the affected OBs of PD
870 patients (Alizadeh et al., 2015). In some rodent models of PD, rats (but not mice) appear to
871 display Parkinsonian motor deficits more akin to the symptomology in humans (Ellenbroek and
872 Youn, 2016). Our finding that OB DA neurons do not spontaneously spike in rats (Fig. 3A),
873 while they do in mice (Pignatelli, et al., 2005; Puopolo, et al., 2005), suggest biophysical
874 differences that may be important in the function of the neurons in odor discrimination.
875 Therefore, clarifying the function of DA neurons in mammalian, including human, OBs and
876 investigating potential species differences may facilitate the successful design of clinical trials
877 and treatments for olfactory dysfunction as well as the early detection of neurodegenerative
878 disorders.

879
880

881 **Author Contributions**

882 KSK, LJB, RB, and PQT designed the experiments. KSK performed the experiments and
883 collected data. KSK, LJB, RB, and PQT analyzed the data. KSK wrote the first draft of the
884 manuscript. All authors contributed to subsequent drafts.

885

886 **Acknowledgement**

887 We thank Charles Badland for his help and guidance with the figures and Dr. Scott Burgess for
888 his discussion and help with statistics. This research was supported by the FSU Chemical Senses
889 Training (CTP) Grant Award T32 DC000044 from the National Institutes of Health
890 (NIH/NIDCD) and by the National Science Foundation (NSF) grant DMS 1853342 to R.
891 Bertram.

892

893 **Conflict of Interest**

894 The authors have no conflicts of interest to declare.

895 **References**

896 Alizadeh, R., Hassanzadeh, G., Soleimani, M., Joghataei, M.T., Siavashi, V., Khorgami, Z., et al.
897 (2015). Gender and age related changes in number of dopaminergic neurons in adult
898 human olfactory bulb. *J. Chem. Neuroanat.* 69: 1-6. doi:
899 10.1016/j.jchemneu.2015.07.003.

900 Aungst, J.L., Heyward, P.M., Puche, A.C., Karnup, S.V., Hayar, A., Szabo, G., et al. (2003).
901 Centre-surrounding inhibition among olfactory bulb glomeruli. *Nature*. 426(6967): 623-
902 629. doi: 10.1038/nature02185.

903 Bardoni, R., Magherini, P.C., and Belluzzi, O. (1996a). Excitatory synapses in the glomerular
904 triad of frog olfactory bulb in vitro. *Neuroreport*. 7(11): 1851-1855. doi:
905 10.1097/00001756-199607290-00033.

906 Bardoni, R., Puopolo, M., Magherini, P.C., and Belluzzi, O. (1996b). Potassium currents in
907 periglomerular cells of frog olfactory bulb in vitro. *Neurosci. Lett.* 210(2): 95-98. doi:
908 10.1016/0304-3940(96)12677-x.

909 Baker, H. (1986). Species differences in the distribution of substance P and tyrosine hydroxylase
910 immunoreactivity in the olfactory bulb. *J. Compt. Neurol.* 252: 206-226. doi:
911 10.1002/cne.902520206.

912 Baker, H., Liu, N., Chun, H.S., Saino, S., Berlin, R., Volpe, et al. (2001). Phenotypic
913 differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. *J.*
914 *Neurosci.* 21(21): 8505-8513. doi: 10.1523/JNEUROSCI.21-21-08505.2001.

915 Baker, H., Towle, A.C., and Margolis, F.L. (1988). Differential afferent regulation of
916 dopaminergic and GABAergic neurons in the mouse main olfactory bulb. *Brain. Res.*
917 450: 69-80. doi: 10.1016/0006-8993(88)91545-4.

918 Berendse, H.W., Booij, J., Francot, C.M.J.E., Bergmans, P.L.M., Hijman, R., Stoof, J.C., et al.
919 (2001). Subclinical dopaminergic dysfunction in asymptomatic Parkinson's disease
920 patients' relatives with a decreased sense of smell. *Ann. Neurol.* 50(1): 34-41. doi:
921 10.1002/ana.1049.

922 Berkowicz, D.A., and Trombley, P.Q. (2000). Dopaminergic modulation at the olfactory nerve
923 synapse. *Brain. Res.* 855: 90-99. doi: 10.1016/s0006-8993(99)02342-2.

924 Berkowicz, D.A., Trombley, P.Q., and Shepherd, G.M. (1994). Evidence for glutamate as the
925 olfactory receptor cell neurotransmitter. *J. Neurophysiol.* 71: 2557-2561. doi:
926 10.1152/jn.1994.71.6.2557.

927 Betarbet, R., Zigova, T., Bakay, R.A., and Luskin, M.B. (1996). Dopaminergic and GABAergic
928 interneurons of the olfactory bulb are derived from the neonatal subventricular zone. *Int.*
929 *J. Dev. Neurosci.* 14(7-8): 921-930. doi: 10.1016/s0736-5748(96)00066-4.

930 Biel, M., Wahl-Schott, C., Michalakis, S., and Zong, X. (2009). Hyperpolarization-activated
931 cation channels: From genes to function. *Physiol. Rev.* 89: 847-885. doi:
932 10.1152/physrev.00029.2008.

933 Blakemore, L.J., Resasco, M., Mercado, M.A., and Trombley, P.Q. (2006). Evidence for Ca(2+)-
934 permeable AMPA receptors in the olfactory bulb. *Am. J. Physiol. Cell. Physiol.* 290:
935 C925-935. doi: 10.1152/ajpcell.00392.2005.

936 Borisovska, M., Bensen, A.L., Chong, G., and Westbrook, G.L. (2013). Distinct modes of
937 dopamine and GABA release in dual transmitter neuron. *J. Neurosci.* 33(5): 1790-1796.
938 doi: 10.1523/JNEUROSCI.4342-12.2013.

939 Bywalez, W. G., Ona-Jodar, T., Lukas, M., Ninkovic, J., and Egger, V. (2017). Dendritic
940 arborization patterns of small juxtaglomerular cell subtypes within the rodent olfactory
941 bulb. *Front. Neuroanat.* 10: 127. doi: [10.3389/fnana.2016.00127](https://doi.org/10.3389/fnana.2016.00127).

942 Cave, J.W., and Baker, H. (2009). Dopamine systems in the forebrain. *Adv. Exp. Med. Biol.* 651:
943 15-35. doi: 10.1007/978-1-4419-0322-8_2.

944 Chand, A.N., Galliano, E., Chesters, R.A., and Grubb, M.S. (2015). A distinct subtype of
945 dopaminergic interneuron displays inverted structural plasticity at the axon initial
946 segment. *J. Neurosci.* 35(4): 1573-1590. doi: 10.1523/JNEUROSCI.3515-14.2015.

947 Cockerham, R., Liu, S., Cachope, R., Kiyokage, E., Cheer, J. F., Shipley, M. T., et al. (2016).
948 Subsecond regulation of synaptically released dopamine by COMT in the olfactory bulb.
949 *J. Neurosci.* 36(29): 7779-7785. doi: 10.1523/JNEUROSCI.0658-16.2016.

950 Corthell, J.T., Stathopoulos, A.M., Watson, C.C., Bertram, R., and Trombley, P.Q. (2013).
951 Olfactory bulb monoamine concentrations vary with time of day. *Neuroscience.* 247:
952 234-241. doi: 10.1016/j.neuroscience.2013.05.040.

953 Covey, D.P., Bunner, K.D., Schuweiler, D.R., Cheer, J.F., and Garris, P.A. (2016).
954 Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent

955 mechanism that is modulated by endocannabinoids. *Eur. J. Neurosci.* 43(12): 1661-1673.
956 doi: 10.1111/ejn.13248.

957 Davila, N.G., Blakemore, L.B., and Trombley, P.Q. (2003). Dopamine modulates synaptic
958 transmission between rat olfactory bulb neurons in culture. *J. Neurophysiol.* 90(1): 395-
959 404. doi: 10.1152/jn.01058.2002.

960 Doty, R.L., Deems, D.A., and Stellar, S. (1988). Olfactory dysfunction in Parkinsonism: A
961 general deficit unrelated to neurologic signs, disease stage, or disease duration.
962 *Neurology.* 38: 1237-1244. doi: 10.1212/WNL.38.8.1237.

963 Ellenbroek, B., and Youn, J. (2016). Rodent models in neuroscience research: is it a rat race?
964 *Dis. Model. Mech.* 9(10): 1079-1087. doi: 10.1242/dmm.026120.

965 Ennis, M., Zhou, F.M., Ciombor, K.J., Aroniadou-Anderjaska, V., Hayar, A., Borrelli, E., et al.
966 (2001). Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve
967 terminals. *J. Neurophysiol.* 86(6): 2986-2997. doi: 10.1152/jn.2001.86.6.2986.

968 Ennis, M., Zimmer, L.A., and Shipley, M.T. (1996). Olfactory nerve stimulation activates rat
969 mitral cells via NMDA and non-NMDA receptors in vitro. *Neuroreport.* 7(5): 989-992.
970 doi: 10.1097/00001756-199604100-00007.

971 Gall, C.M., Hendry, S.H., Seroogy, K.B., Jones, E.G., and Haycock, J.W. (1987). Evidence for
972 coexistence of GABA and dopamine in neurons of the rat olfactory bulb. *J. Comp.*
973 *Neurol.* 266: 307-318. doi: 10.1002/cne.902660302.

974 Galliano, E., Franzoni, E., Breton, M., Chand, A.N., Byrne, D.J., Murthy, V.N., et al. (2018).
975 Embryonic and postnatal neurogenesis produce functionally distinct subclasses of
976 dopaminergic neuron. *Elife.* 7: e32373doi: 10.7554/eLife.32373.

977 Gentet, L.J., Stuart, G.J., and Clements, J.D. (2000). Direct measurement of specific membrane
978 capacitance in neurons. *Biophys. J.* 79(1): 314-320. doi: 10.1016/S0006-3495(00)76293-
979 X.

980 Golgi C. (1875). Sulla fina struttura dei bulbi olfattori (On the fine structure of the olfactory
981 bulb). *Riv. Sper. Freniatr. Med. Leg.* 1: 404-425.

982 Guo, Z, Feng, Z., Wang, Y., and Wei, X. (2018). Simulation study of intermittent axonal block
983 and desynchronization effect induced by high-frequency stimulation of electrical pulses.
984 *Front. Neurosci.* 12: 858. doi: 10.3389/fnins.2018.00858.

1015 Kiyokage, E., Pan, Y.Z., Shao, Z., Kobayashi, K., Szabo, G., Yanagawa, Y., et al. (2010).
1016 Molecular identity of periglomerular and short axon cells. *J. Neurosci.* 30(3): 1185-1196.
1017 doi: 10.1523/JNEUROSCI.3497-09.2010.

1018 Korshunov, K. S., Blakemore, L. J., and Trombley, P. Q. (2017). Dopamine: A modulator of
1019 circadian rhythms in the central nervous system. *Front. Cell. Neurosci.* 11: 91. doi:
1020 10.3389/fncel.2017.00091.

1021 Kosaka, K., Aika, Y., Toida, K., Heizmann, C.W., Hunziker, W., Jacobowitz, D.M., et al.
1022 (1995). Chemically defined neuron groups and their subpopulations in the glomerular
1023 layer of the rat main olfactory bulb. *Neurosci. Res.* 23: 73-88.

1024 Kosaka, K., Hama, K., Nagatsu, I., Wu, J.Y., Ottersen, O.P., Storm-Mathisen, J., et al. (1987).
1025 Postnatal development of neurons containing both catecholaminergic and GABAergic
1026 traits in the rat main olfactory bulb. *Brain. Res.* 403(2): 355-360. doi: 10.1016/0006-
1027 8993(87)90075-8.

1028 Kosaka, K., and Kosaka, T. (2004). Organization of the main olfactory bulbs of some mammals:
1029 musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats. *J. Comp. Neurol.* 472:
1030 1-12. doi: 10.1002/cne.20004.

1031 Kosaka, K., and Kosaka, T. (2005). Synaptic organization of the glomerulus in the main
1032 olfactory bulb: Compartments of the glomerulus and heterogeneity of periglomerular
1033 cells. *Anat. Sci. Int.* 80(2): 80-90. doi: 10.1111/j.1447-073x.2005.00092.x.

1034 Kosaka, K., and Kosaka, T. (2007). Chemical properties of type 1 and type 2 periglomerular
1035 cells in the mouse olfactory bulb are different from those in the rat olfactory bulb. *Brain.*
1036 *Res.* 1167: 42-55. doi: 10.1016/j.brainres.2007.04.087.

1037 Kosaka, K., Toida, K., Aika, Y., and Kosaka, T. (1998). How simple is the organization of the
1038 olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. *Neurosci. Res.*
1039 30: 101-110. doi: 10.1016/s0168-0102(98)00002-9.

1040 Kosaka, K., Toida, K., Margolis, F.L., and Kosaka, T. (1997). Chemically defined neuron group
1041 groups and their subpopulations in the glomerular layer of the rat main olfactory bulb –
1042 II. Prominent differences in the intraglomerular dendritic arborization and their
1043 relationship to olfactory nerve terminals. *Neuroscience.* 76(3): 775-786. doi:
1044 10.1016/s0306-4522(96)00308-9.

1045 Kosaka, T., Hataguchi, Y., Hama, K., Nagatsu, I., and Wu, J.Y. (1985). Coexistence of
1046 immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some
1047 neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence
1048 of gamma-aminobutyric acid (GABA) and dopamine. *Brain. Res.* 343: 166-171. doi:
1049 10.1016/0006-8993(85)91172-2.

1050 Kosaka, T., and Kosaka, K. (2008). Tyrosine hydroxylase-positive GABAergic juxtaglomerular
1051 neurons are the main source of the interglomerular connections in the mouse main
1052 olfactory bulb. *Neurosci. Res.* 60(3): 349-354. doi: 10.1016/j.neures.2007.11.012.

1053 Kosaka, T., and Kosaka, K. (2009). Two types of tyrosine hydroxylase positive GABAergic
1054 juxtaglomerular neurons in the mouse main olfactory bulb are different in their time of
1055 origin. *Neurosci. Res.* 64: 436-441. doi: 10.1016/j.neures.2009.04.018.

1056 Kosaka, T., and Kosaka, K. (2011). "Interneurons" in the olfactory bulb revisited. *Neurosci. Res.*
1057 69: 93-99. doi: 10.1016/j.neures.2010.10.002.

1058 Kosaka, T., and Kosaka, K. (2016). Neuronal organization of the main olfactory bulb revisited.
1059 *Anat. Sci. Int.* 91: 115-127. doi: 10.1007/s12565-015-0309-7.

1060 Kosaka, T., Pignatelli, A., and Kosaka, K. (2019). Heterogeneity of tyrosine hydroxylase
1061 expressing neurons in the main olfactory bulb. *Neurosci. Res.* In press. doi:
1062 10.1016/j.neures.2019.10.004.

1063 Kress, G.J., and Mennerick, S. (2009). Action potential initiation and propagation: Upstream
1064 influences on neurotransmission. *Neuroscience*. 158: 211-222. doi:
1065 10.1016/j.neuroscience.2008.03.021.

1066 Lelan, F., Boyer, C., Thinard, R., Remy, S., Usal, C., Tesson, L., et al. (2011). Effects of human
1067 alpha-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation
1068 in a transgenic rat model of Parkinson's disease. *Parkinsons. Dis.* 2011: 987084. doi:
1069 10.4061/2011/987084.

1070 Li, G., Linster, C., and Cleland, T. A. (2015). Functional differentiation of cholinergic and
1071 noradrenergic modulation in a biophysical model of olfactory bulb granule cells. *J.*
1072 *Neurophysiol.* 114: 3177-3200. doi: 10.1152/jn.00324.2015.

1073 Liu, S., Plachez, C., Shao, Z., Puche, A., and Shipley, M.T. (2013). Olfactory bulb short axon
1074 cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation

1075 response in external tufted cells. *J. Neurosci.* 33(7): 2916-2926. doi:
1076 10.1523/JNEUROSCI.3607-12.2013.

1077 Liu, S., Puche, A.C., and Shipley, M.T. (2016). The interglomerular circuit potently inhibits
1078 olfactory bulb output neurons by both direct and indirect pathways. *J. Neurosci.* 36(37):
1079 9604-9617. doi: 10.1523/JNEUROSCI.1763-16.2016.

1080 Maher, B.J., and Westbrook, G.L. (2008). Co-transmission of dopamine and GABA in
1081 periglomerular cells. *J. Neurophysiol.* 99: 1559-1564. doi: 10.1152/jn.00636.2007.

1082 McLean, J. H., and Shipley, M. T. (1988). Postmitotic, postmigrational expression of tyrosine
1083 hydroxylase in olfactory bulb dopaminergic neurons. *J. Neurosci.* 8(10): 3658-3669.

1084 McQuiston, A. R., and Katz, L. C. (2001). Electrophysiology of interneurons in the glomerular
1085 layer of the rat olfactory bulb. *J. Neurophysiol.* 86(4): 1899-1907. doi:
1086 10.1152/jn.2001.86.4.1899

1087 Meredith, F.L., Benke, T.A., and Rennie, K.J. (2012). Hyperpolarization-activated current (I_h) in
1088 vestibular calyx terminals: Characterization and role in shaping postsynaptic events.
1089 *JARO.* 13: 745-758. doi: 10.1007/s10162-012-0342-3.

1090 Michel, C.B., Azevedo, C.C., Desmadryl, G., Puel, J.L., Bourien, J., and Graham, B.P. (2015).
1091 Identification and modelling of fast and slow I_h current components in vestibular
1092 ganglion neurons. *Eur. J. Neurosci.* 42(10): 2867-2877. doi: 10.1111/ejn.13021.

1093 Mundiñano, I.C., Caballero, M.C., Ordóñez, C., Hernandez, M., DiCaudo, C., Marcilla, I., et al.
1094 (2011). Increased dopaminergic cells and protein aggregates in the olfactory bulb of
1095 patients with neurodegenerative disorders. *Acta. Neuropathologica.* 122: 61-74. doi:
1096 10.1007/s00401-011-0830-2.

1097 Nagayama, S., Homma, R., and Imamura, F. (2014). Neuronal organization of olfactory bulb
1098 circuits. *Front. Neural. Circuits.* 8: 98. doi: 10.3389/fncir.2014.00098.

1099 Nai, Q., Dong, H. W., Linster, C., and Ennis, M. (2011). Activation of $\alpha 1$ and $\alpha 2$ noradrenergic
1100 receptors exert opposing effects on excitability of main olfactory bulb granule cells.
1101 *Neuroscience.* 169(2): 882-892. doi: 10.1016/j.neuroscience.2010.05.010.

1102 Nickell, W.T., Behbehani, M.M., and Shipley, M.T. (1994). Evidence for GABAB-mediated
1103 inhibition of transmission from the olfactory nerve to mitral cells in the rat olfactory bulb.
1104 *Brain. Res. Bull.* 35(2): 119-123.

1105 Panzanelli, P., Fritschy, J.M., Yanagawa, Y., Obata, K., and Sassoë-Pognetto, M. (2007).
1106 GABAergic phenotype of periglomerular cells in the rodent olfactory bulb. *J. Comp. Neurol.* 502(6): 990-1002. doi: 10.1002/cne.21356.

1107

1108 Parrish-Aungst, S., Shipley, M.T., Erdelyi, F., Szabo, G., and Puche, A.C. (2007). Quantitative
1109 analysis of neuronal diversity in the mouse olfactory bulb. *J. Comp. Neurol.* 501(6): 825-
1110 836. doi: 10.1002/cne.21205.

1111 Pignatelli, A., Ackman, J.B., Vigetti, D., Beltrami, A.P., Zucchini, S., and Belluzzi, O. (2009). A
1112 potential reservoir of immature dopaminergic replacement neurons in the adult
1113 mammalian olfactory bulb. *Eur. J. Physiol.* 457: 899-915. doi: 10.1007/s00424-008-
1114 0535-0.

1115 Pignatelli, A., and Belluzzi, O. (2017). Dopaminergic neurons in the main olfactory bulb: An
1116 overview from an electrophysiological perspective. *Front. Neuroanat.* 11:7. doi:
1117 10.3389/fnana.2017.00007.

1118 Pignatelli, A., Borin, M., Iseppe, A.F., Gambardella, C., and Belluzzi, O. (2013). The h-current
1119 in periglomerular dopaminergic neurons of the mouse olfactory bulb. *PLoS. One.* 8(2):
1120 e56571. doi: 10.1371/journal.pone.0056571.

1121 Pignatelli, A., Kobayashi, K., Okano, H., and Belluzzi, O. (2005). Functional properties of
1122 dopaminergic neurones in the mouse olfactory bulb. *J. Physiol.* 564(2): 501-514. doi:
1123 10.1113/jphysiol.2005.084632.

1124 Pinching, A.J., and Powell, T.P. (1971). The neuron types of the glomerular layer of the
1125 olfactory bulb. *J. Cell. Sci.* 9: 305-345.

1126 Ponsen, M.M., Stoffers, D., Booij, J., van Eck-Smit, Wolters, B.L.F., and Berendse, H.W.
1127 (2004). Idiopathic hyposmia as a preclinical sign of Parkinson's disease. *Ann. Neurol.* 56:
1128 173-181. doi: 10.1002/ana.20160.

1129 Puopolo, M., Bean, B.P., and Raviola, E. (2005). Spontaneous activity of isolated dopaminergic
1130 periglomerular cells of the main olfactory bulb. *J. Neurophysiol.* 94: 3618-3627. doi:
1131 10.1152/jn.00225.2005.

1132 Puopolo, M., and Belluzzi, O. (1998). Functional heterogeneity of periglomerular cells in the rat
1133 olfactory bulb. *Eur. J. Neurosci.* 10(3): 1073-1083. doi: 10.1046/j.1460-
1134 9568.1998.00115.x.

1135 Ross, G.W., Petrovich, H., Abbott, R.D., Tanner, C.M., Popper, J., Masaki, K., et al. (2008).
1136 Association of olfactory dysfunction with risk for future Parkinson's disease. *Ann.*
1137 *Neurol.* 63(2): 167-173. doi: 10.1002/ana.21291.

1138 Ross, M.T., Flores, D., Bertram, R., Johnson, F., and Hyson, R.L. (2017). Neuronal intrinsic
1139 physiology changes during development of a learned behavior. *eNeuro.* 4(5): e0297-
1140 17.2017 1-16. doi: 10.1523/ENEURO.0297-17.2017.

1141 Sengupta, B., Faisal, A.A., Laughlin, S.B., and Niven, J.E. (2013). The effect of cell size and
1142 channel density on neuronal information encoding and energy efficiency. *J. Cereb.*
1143 *Blood. Flow. Metab.* 33(9): 1465-1473. doi: 10.1038/jcbfm.2013.103.

1144 Shepherd, G.M. (1972). Synaptic organization of the mammalian olfactory bulb. *Physiol. Rev.*
1145 52: 864-917. doi: 10.1152/physrev.1972.52.4.864.

1146 Shepherd, G.M., Greer, C.A., Mazzarello, P., and Sasse-Pognetto, M. (2011). The first images
1147 of nerve cells: Golgi on the olfactory bulb 1875. *Brain. Res. Rev.* 66(1-2): 92-105. doi:
1148 10.1016/j.brainresrev.2010.09.009.

1149 Suaud-Chagny, M.F. (2004). In vivo monitoring of dopamine overflow in the central nervous
1150 system by amperometric techniques combined with carbon fibre electrodes. *Methods.*
1151 33(4): 322-329. doi: 10.1016/j.ymeth.2004.01.009.

1152 Suaud-Chagny, M.F., Chergui, K., Chouvet, G., and Gonon, F. (1992). Relationship between
1153 dopamine release in the rat nucleus accumbens and the discharge activity of
1154 dopaminergic neurons during local in vivo application of amino acids in the ventral
1155 tegmental area. *Neuroscience.* 49(1): 63-72. doi: 10.1016/0306-4522(92)90076-e.

1156 Tillerson, J.L., Caudle, W.M., Parent, J.M., Gong, C., Schallert, T., and Miller, G.W. (2006).
1157 Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2
1158 dopamine receptor. *Beh. Brain. Res.* 172(1): 97-105. doi: 10.1016/j.bbr.2006.04.025.

1159 Trimmer, J.S., and Rhodes, K.J. (2004). Localization of voltage-gated ion channels in
1160 mammalian brain. *Annu. Rev. Physiol.* 66: 477-519. doi:
1161 10.1146/annurev.physiol.66.032102.113328.

1162 Vaaga, C.E., Yorhason, J.T., Williams, J.T., and Westbrook, G.L. (2017). Presynaptic gain
1163 control by endogenous cotransmission of dopamine and GABA in the olfactory bulb. *J.*
1164 *Neurophysiol.* 117: 1163-1170. doi: 10.1152/jn.00694.2016.

1165 Wahl-Schott, C., and Biel, M. (2009). HCN channels: structure, cellular regulation and
1166 physiological function. *Cell. Mol. Life. Sci.* 66(3): 470-494. doi: 10.1007/s00018-008-
1167 8525-0.

1168 Wei, C.J., Linster, C., and Cleland, T.A. (2006). Dopamine D(2) receptor activation modulates
1169 perceived odor intensity. *Behav. Neurosci.* 120(2): 393-400. doi: 10.1037/0735-
1170 7044.120.2.393.

1171 Wilson, D.A., and Sullivan, R.M. (1995). The D2 antagonist spiperone mimics the effects of
1172 olfactory deprivation on mitral/tufted cell odor response patterns. *J. Neurosci.* 15(8):
1173 5574-5581.

1174 Zengel, J.E., Reid, S.A., Sypert, G.W., and Munson, J.B. (1985). Membrane electrical properties
1175 and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. *J.*
1176 *Neurophysiol.* 53(5): 1323-1344. doi: 10.1152/jn.1985.53.5.1323.

1177 Zhang, H., and Sulzer, D. (2004). Frequency-dependent modulation of dopamine release by
1178 nicotine. *Nat. Neurosci.* 7(6): 581-582. doi: 10.1038/nn1243.

1179 Zhang, L., Doyon, W.M., Clark, J.J., Phillips, P.E., Dani, J.A. (2009). Controls of tonic and
1180 phasic dopamine transmission in the dorsal and ventral striatum. *Mol. Pharmacol.* 76(2):
1181 396-404. doi: 10.1124/mol.109.056317.

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192 **Figure captions**

1193 **Figure 1**

1194 Rat OB and its endogenous DA neurons. **(A)**. A horizontal OB slice with green fluorescent TH-
1195 GFP neurons localized to the GL. Discrete layers – ONL, GL, EPL, MCL, and GCL – deep to
1196 the GL were also emphasized with propidium iodide (red). Scale bar represents 200 μm . **(B)**. A
1197 higher magnification of another OB slice with fluorescent DA neurons localized mostly to the
1198 GL, but also some neurons in the EPL, MCL, and GCL. Scale bar represents 100 μm . **(C)**. A
1199 single spherical glomerulus with fluorescent DA neurons around its circumference. Scale bar
1200 represents 50 μm .

1201 *Dimensions of figure: 1476 pixels by 3300 pixels.*

1202

1203 **Figure 2**

1204 Comparison of membrane properties between OB DA neurons based on their localization in the
1205 GL and neuronal area. **(A)**. Top, red neurons = closer to ONL; Bottom, blue neurons = closer to
1206 the EPL. **(B)**. Large, green neurons = 3390 to 4890 μm^2 ; Small, pink neurons = 1589 to 2610
1207 μm^2 . All data represented as mean \pm SEM. **(C)**. For membrane resistances (in $\text{M}\Omega$), there was
1208 no significant difference ($n = 64$, $p = 0.4181$, **Ci**) between neurons based on their glomerular
1209 localization, but there was a significant difference ($n = 48$, $p = 0.0001^{**}$, **Cii**) based on neuronal
1210 area. **(D)**. For membrane capacitance (in pF), there was no significant difference ($n = 64$, $p =$
1211 0.2979, **Di**) between neurons based on their glomerular localization, but there was a significant
1212 difference ($n = 48$, $p < 0.0001^{****}$, **Dii**) based on neuronal area. **(E)**. For neuronal areas (in
1213 μm^2), like capacitance, there was no significant difference ($n = 64$, $p = 0.2979$, **Ei**) based on
1214 glomerular localization. **(F)**. For time constants (in ms), there was no significant difference ($n =$
1215 64, $p = 0.4153$, **Fi**) between neurons based on their glomerular localization, and no significant
1216 difference ($n = 48$, $p = 0.8786$, **Fii**) between neurons based on neuronal area. **(G)**. For action
1217 potential thresholds (in pA), there was no significant difference ($n = 20$, $p = 0.1792$, **Gi**) between
1218 neurons based on their glomerular localization, but there was a significant difference ($n = 14$, $p <$
1219 0.0001 **** , **Gii**) between neurons based on area. **(H)**. Frequency distribution of neuronal areas
1220 of DA neurons ($2996 \pm 94.72 \mu\text{m}^2$, $n = 73$). Pink and green dashed borders are used to
1221 distinguish Small and Large neurons, respectively.

1222 Dimensions: 180 mm (2 columns) by 82.1 mm.

1223

1224 **Figure 3.**

1225 Action potential spiking properties of OB DA neurons. **(A)**. There was no recorded spontaneous
1226 action potential activity (generated without stimulus input) in rat OB DA neurons. This recording
1227 shows synaptic activity, represented by EPSPs. **(B)**. DA neurons fire a single action potential
1228 when stimulated with a sufficiently large depolarizing current. After firing an action potential,
1229 they go into depolarization block for the duration of the stimulus. These recordings resulted from
1230 incremental 10 pA steps, ranging from -10 to 80-pA. **(C)**. A single trace from Figure 3B, which
1231 shows a single action potential generated from an 80-pA stimulus. **(D)**. An example of a trace
1232 from a mitral cell (red trace), showing tonic firing in response to a 200-pA stimulus. **(E)**. Some
1233 OB DA neurons fire multiple spikes when stimulated with a weaker stimulus (blue trace), but
1234 tend to fire a single spike with increasing stimulus strength (red trace). Each voltage trace is a
1235 response to incremental 25 pA stimuli, from -25 to 200 pA. **(F)**. Example traces from Figure 3E,
1236 which show that a weak stimulus (25 pA in this example, blue trace) produced tonic action
1237 potential spiking, while a stronger stimulus (150 pA in this example, red trace) produced
1238 decaying spikes followed by a depolarization block. **(G)**. To gauge if DA neurons have different
1239 spiking activity based on their glomerular localization and/or neuronal area, dummy variables
1240 were assigned to each spiking neuron (0 = no more than one spike at any depolarizing stimulus;
1241 1 = multiple spiker at lower depolarizing stimuli only). There was no significant difference in
1242 average number of spikes between neurons based on their glomerular localization ($n = 36$, $p =$
1243 0.7472, **Gi**), but there was a significant difference ($n = 27$, $p = 0.0083^{**}$, **Gii**) between neurons
1244 based on neuronal area. Data represented as mean \pm SEM

1245 Dimensions: 180 mm (2 columns) by 163.75 mm.

1246

1247 **Figure 4.**

1248 The voltage-gated I_{Na} in OB DA neurons. All recordings were performed in the presence of Cs
1249 and Cd. **(A)**. Example of a group of I_{Na} from a DA neuron. These currents were activated by
1250 progressively depolarizing 200-ms 10 mV voltage steps, from -10 to 80 mV. Capacitance
1251 artifacts were manually blanked. **(B)**. The current-voltage relationship (derived from 11 neurons)

1252 showing peaks of I_{Na} . The largest peak amplitudes were produced when the membrane was
1253 depolarized between -20 and 0 mV. (C). An example of the protocol used to derive the
1254 inactivation/ h_∞ curve in E. 50 ms pre-pulse voltage steps ranged from -90 to -30 mV in 10 mV
1255 steps. Test 100 ms test pulse was 80 mV. Each color of the protocol trace is coordinated with the
1256 color of the current trace. (D). An example of the protocol used to derive the removal of
1257 inactivation/interpulse interval curve in H. Neurons received paired voltage steps, depolarizing
1258 the membrane to 60 mV, with increasing subsequent interpulse intervals (.5, 1, 3, 5, 7.5, 10,
1259 12.5, 15, and 50 ms). (E). The I_{Na} h_∞ inactivation curve (derived from 23 neurons). Half of I_{Na} is
1260 inactive when the membrane is depolarized to -49 mV. (F). To gauge if I_{Na} inactivation
1261 properties differ between DA neurons based on their glomerular localization and/or neuronal
1262 area, their membrane voltages at 50% inactivation were compared. There was no significant
1263 difference between neurons based on localization ($n = 23$, $p = 0.2149$, **Fi**) or area ($n = 13$, $p =$
1264 0.4645, **Fii**). (G). Inactivation curves were also compared between Top and Bottom (**Gi**) and
1265 Large and Small (**Gii**) neurons. For the membrane potentials of -70 and -60 mV, there were no
1266 significant differences between Top and Bottom neurons (-70 mV: $n = 23$, $p = 0.1500$; -60 mV: n
1267 = 23, $p = 0.067$), while there were significant differences between Large and Small neurons (-70
1268 mV: $n = 13$, $p = 0.0032^{**}$; -60 mV: $n = 13$, $p = 0.0258^*$). (H). The I_{Na} IPI curve (derived from
1269 25 neurons). Currents were activated with two 60-mV, 20-ms depolarizing steps. The activation
1270 time constant ($\tau = 63\%$ of the channels are activated) is 13 ms. (I). To gauge if I_{Na} reactivation
1271 properties differ between DA neurons based on their glomerular localization and/or neuronal
1272 area, the average τ were compared. There was no significant difference between neurons based
1273 on localization ($n = 25$, $p = 0.9710$, **IIi**) or area ($n = 12$, $p = 0.2913$, **IIIi**). (J). Individual IPI curves
1274 were also constructed for Top and Bottom (**Ji**) and Large and Small (**Jii**) DA neurons. These two
1275 sets of curves were similar. Data points are represented as mean \pm SEM.
1276 *Dimensions: 180 mm (2 columns) by 270 mm.*

1277

1278 **Figure 5.**

1279 The hyperpolarization-activated, non-specific cation I_H in OB DA neurons is identified by
1280 upward voltage sags during hyperpolarization, afterhyperpolarization depolarization, and
1281 (sometimes) an action potential following hyperpolarizing stimuli. (A). An example of a DA

1282 neuron showcasing these three properties of I_H during three hyperpolarizing current (-25, -50,
1283 and -75 pA) injections. **(B)**. Representative hyperpolarizing traces of each of the four groups of
1284 DA neurons from this study (red = Top, blue = Bottom, green = Large, pink = Small). All traces
1285 are scaled to the scale on the bottom left of the figure. **(C)**. A comparison of voltage sag ratios of
1286 DA neurons based on their glomerular localization and neuronal area. There was no significant
1287 difference between DA neurons based on their glomerular localization, either when the neurons
1288 received a -25-pA stimulus (“at -25 pA,” n = 34, p = 0.4500, **Ci**) or when receiving a
1289 combination of -25, -50, -75 pA, or all three hyperpolarizing currents (“at all currents,” n = 26, p
1290 = 0.5904, **Cii**). There were significant differences between DA neurons based on the neuronal
1291 area, both when receiving only a -25-pA stimulus (n = 26, p = 0.0061**, **Ciii**) and when
1292 receiving the combination of hyperpolarizing currents (n = 18, p = 0.0067**, **Civ**). **(D)**. Voltage
1293 sag ratios of DA neurons were compared at starting membrane potentials positive to -120 mV.
1294 There was no significant difference between neurons based on glomerular localization (n = 49
1295 sags, p = 0.6784, **Di**), but Small DA neurons had a significantly greater voltage sag ratio than
1296 Large neurons (n = 30 sags, p < 0.0001****, **Dii**). **(E)**. Voltage sag ratios of DA neurons were
1297 also compared at membrane potentials negative to -120 mV. Again, there was no significant
1298 difference between neurons based on glomerular localization (n = 90 sags, p = 0.2576, **Ei**), but
1299 Small DA neurons had a significantly greater voltage sag ratio than Large neurons (n = 63 sags,
1300 p = 0.0432*, **Eii**). All data represented as mean \pm SEM.

1301 *Dimensions: 180 mm (2 columns) by 185 mm.*

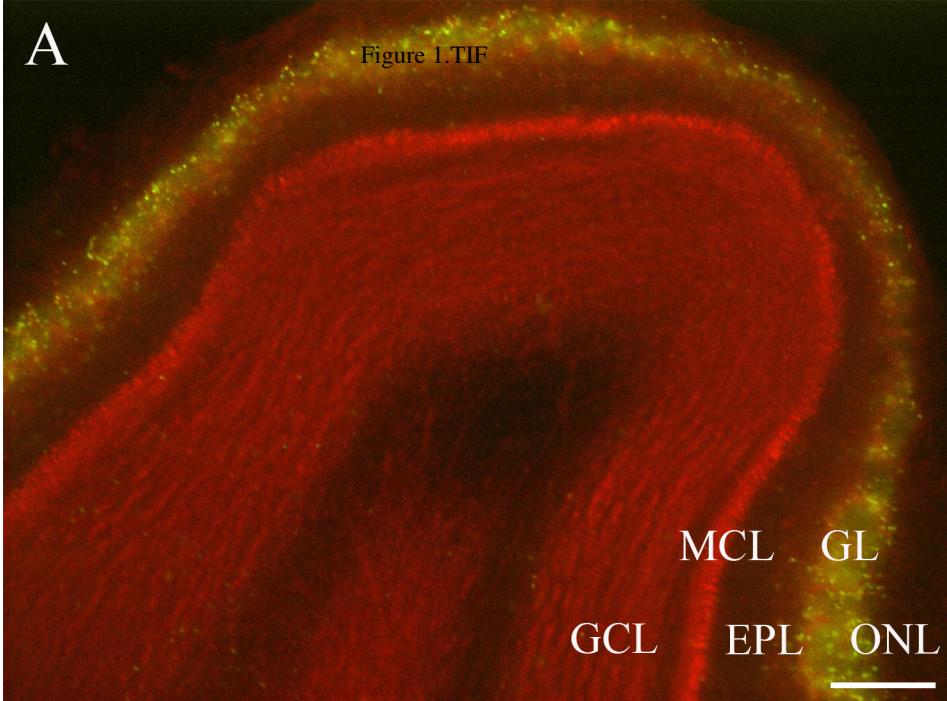
1302

1303 **Figure 6.**

1304 Analysis of the effects of ramp slopes (in pA/ms) on the ON and OFF currents of OB DA
1305 neurons. **(A)**. Example of a ramp protocol (bottom) and a resulting voltage trace (top). The traces
1306 and their corresponding ramps were used to determine the ON (black circles) and OFF (white
1307 circles) currents. This figure also shows an example of how spike frequencies are derived from
1308 traces of ramp protocols (data shown in **Fig. 7**). Of the 42 ramps used, some ramps had identical
1309 slopes (e.g., the slope of 2 pA/ms can include ramps of 200 pA for 50 ms, 400 pA for 100 ms,
1310 etc.). For different ramp protocols with the same slopes, the ON and OFF currents and the spike
1311 frequencies and number of action potentials in the next figure were averaged. **(B)** Averaged ON

1312 and OFF current responses to ramp slopes (derived from 19 neurons). Increasing the slope
1313 increases the ON and OFF current of all neurons, but the largest effect is on the OFF current.
1314 This also indicates a decrease in duration of spiking with increasing ramp slopes. **(C)**. A
1315 comparison of ON and OFF currents of DA neurons based on their glomerular localization. After
1316 transforming these power functions into log-log plots (see Materials and Methods), there was no
1317 significant difference between the increasing ON ($n = 19$, $p = 0.3405$) and OFF currents ($n = 19$,
1318 $p = 0.5368$) with increasing ramp slopes between Top and Bottom neurons. **(D)**. Same
1319 comparison between DA neurons based on their neuronal areas. There were no significant
1320 differences in the increasing ON current ($n = 10$, $p = 0.7680$) with increasing ramp slopes, but
1321 there was a difference in the increasing OFF currents ($n = 10$, $p = 0.0402^*$) between Large and
1322 Small neurons. All data represented as mean \pm SEM.

1323 *Dimensions: 85 mm (1 columns) by 185.31 mm.*


1324

1325 **Figure 7.**
1326 Analysis of the effects of ramp slopes on the spike frequencies and the number of spikes of OB
1327 DA neurons. **(A)**. The frequency responses (in Hz) of neurons ($n = 13$) that spiked more than
1328 once per ramp stimulus increase with increasing ramp slopes. **(B)**. After transforming these
1329 power functions into log-log plots (see Materials and Methods), there was no difference ($n = 13$,
1330 $p = 0.3544$) in the increasing spike frequencies with increasing ramp slopes between Top and
1331 Bottom DA neurons. **(C)**. The increasing spike frequencies with increasing ramp slopes was
1332 significantly higher ($n = 7$, $p < 0.0043^{**}$) in Small than Large neurons. **(D)**. Number of spikes
1333 produced with increasing ramp slopes of neurons ($n = 13$) drops dramatically, particularly
1334 between 0 and 2 pA/ms ramps **(E)**. Top DA neurons produced a significantly greater decrease in
1335 spikes across increasing ramp slopes than did Bottom neurons ($n = 13$, $p = 0.0009^{***}$). **(G)**.
1336 There was an even greater decrease in spikes across increasing ramp slopes in Large compared to
1337 Small DA neurons ($n = 7$, $p < 0.0001^{****}$).


1338 *Dimensions: 180 mm (2 columns) by 143.42 mm.*

A

Figure 1.TIF

B

C

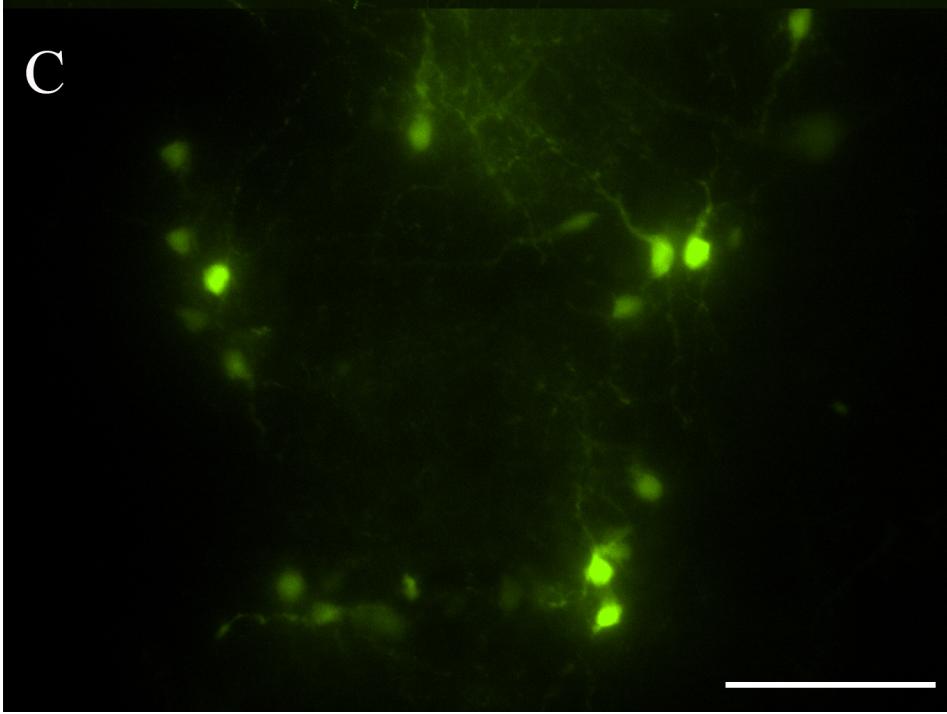


Figure 2.TIF

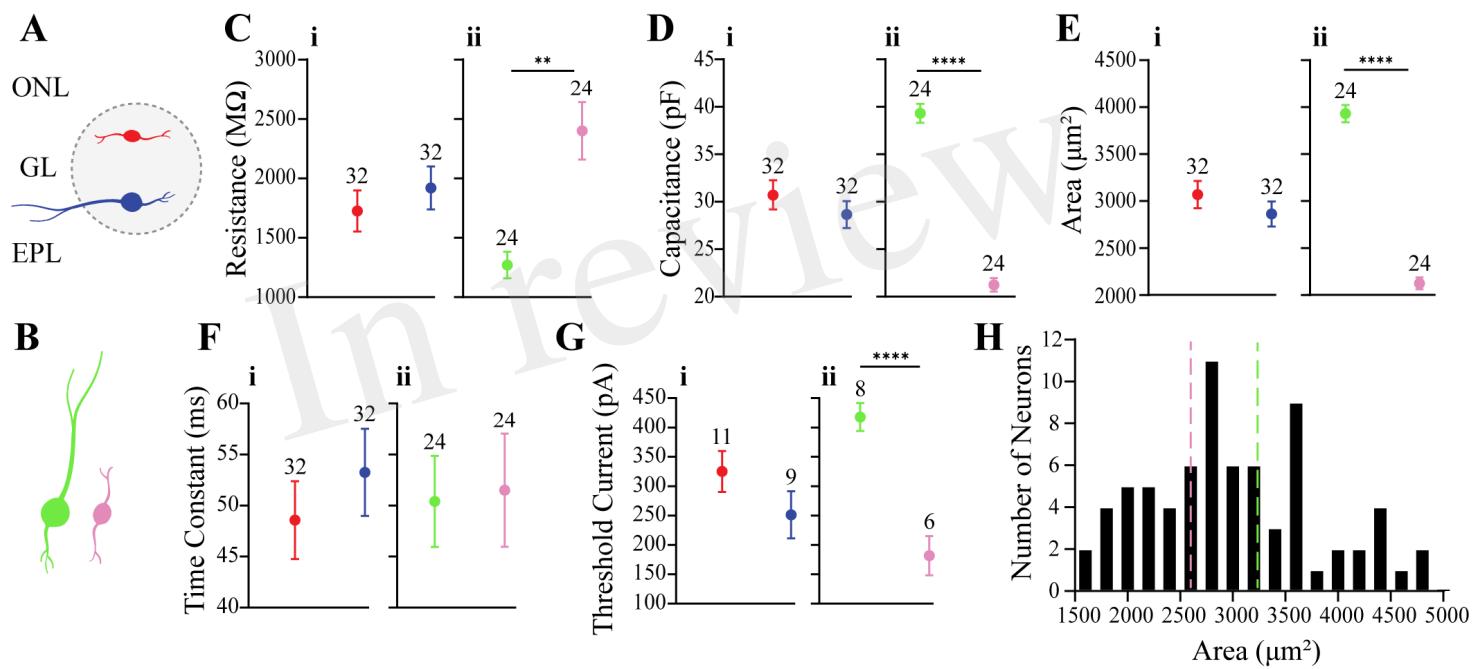


Figure 3.TIF

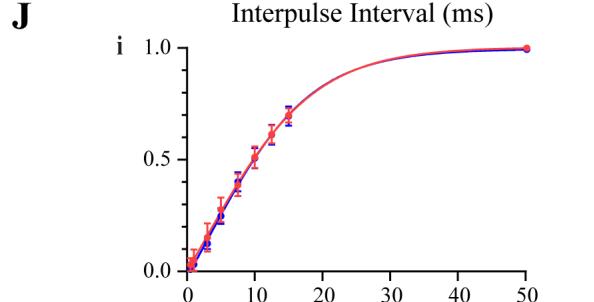
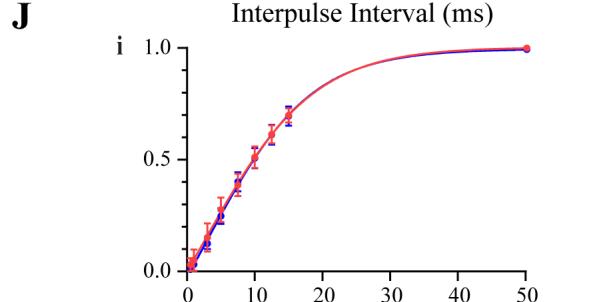
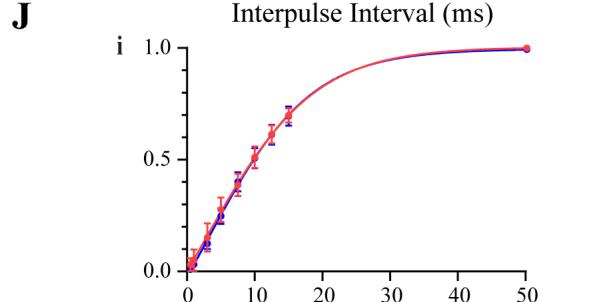
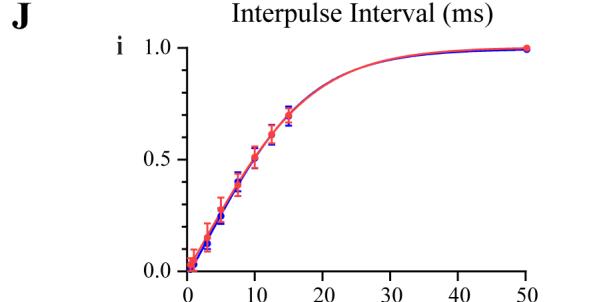
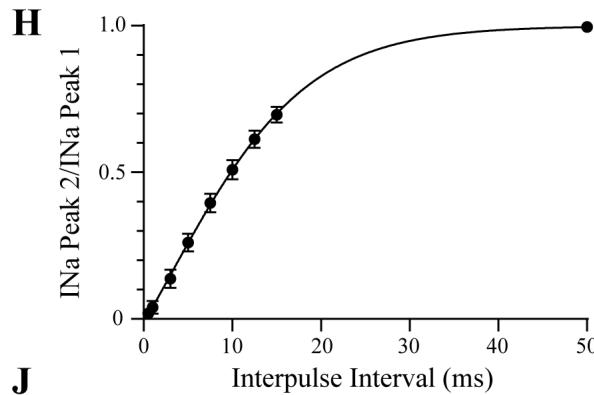
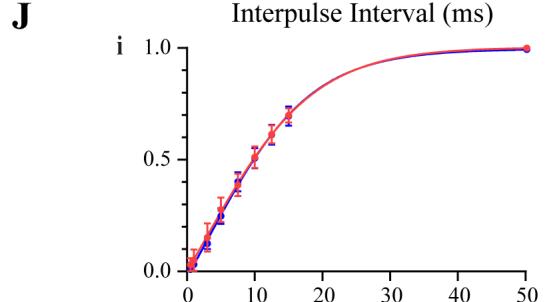
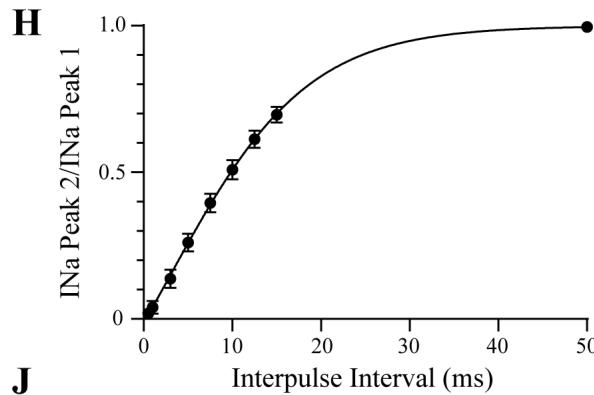
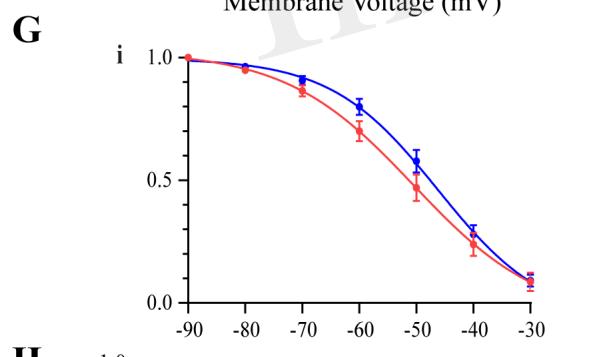
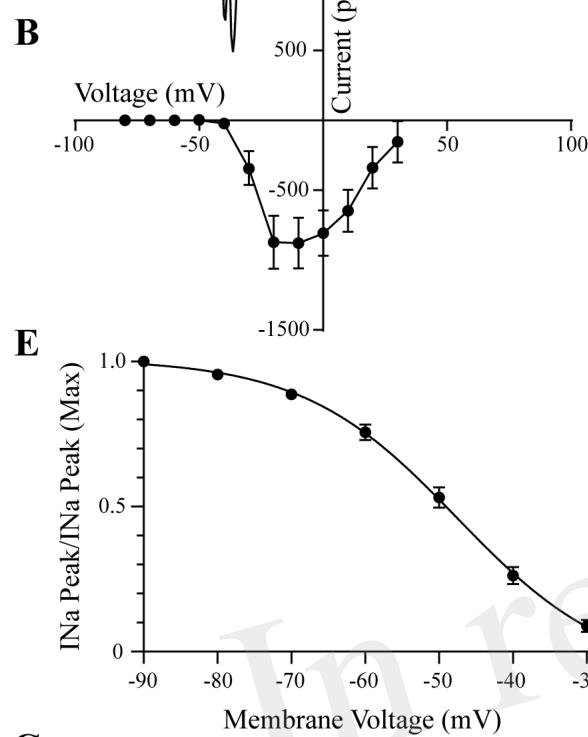
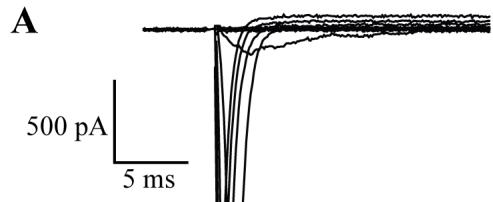
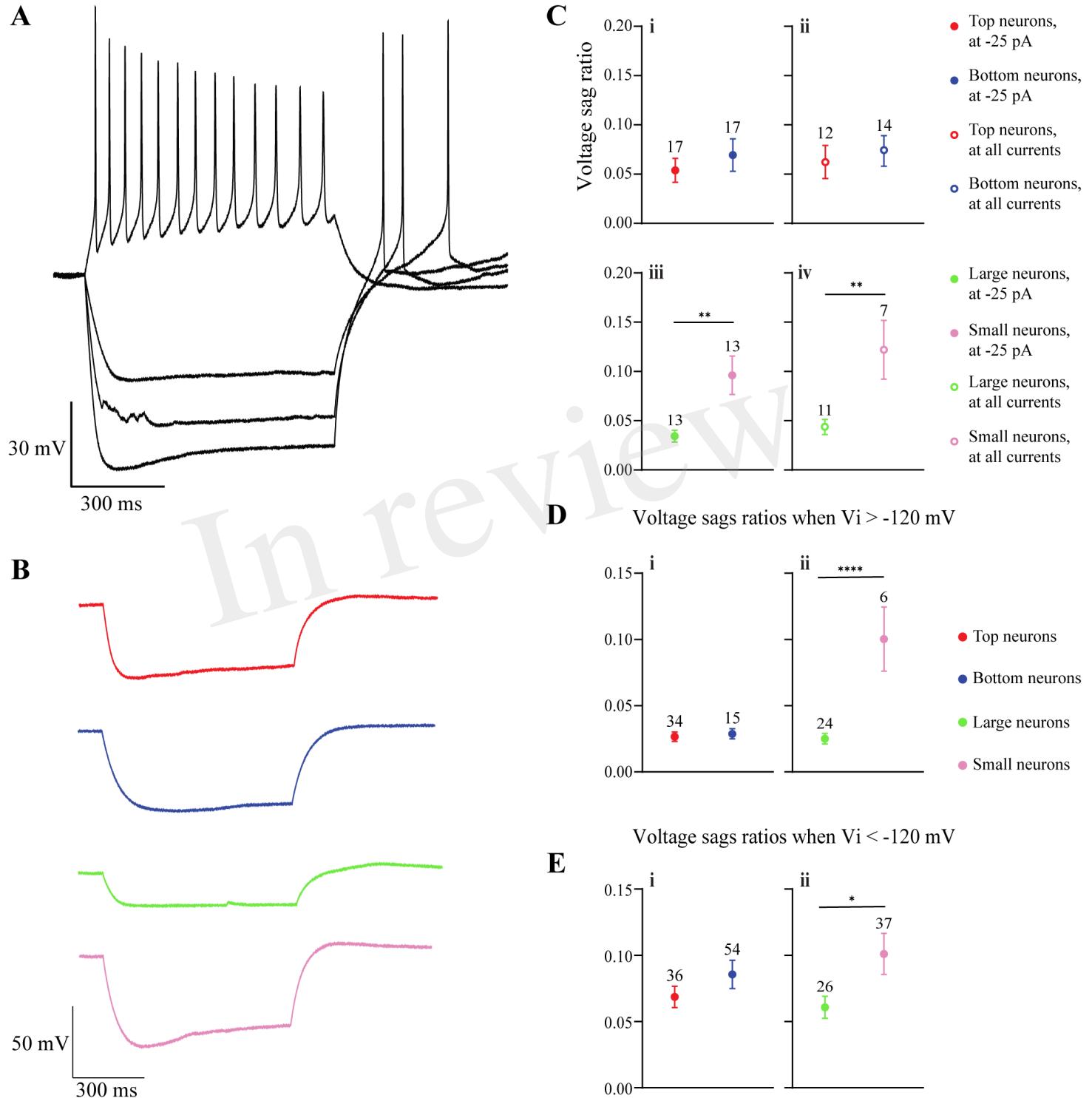












Figure 5.TIF

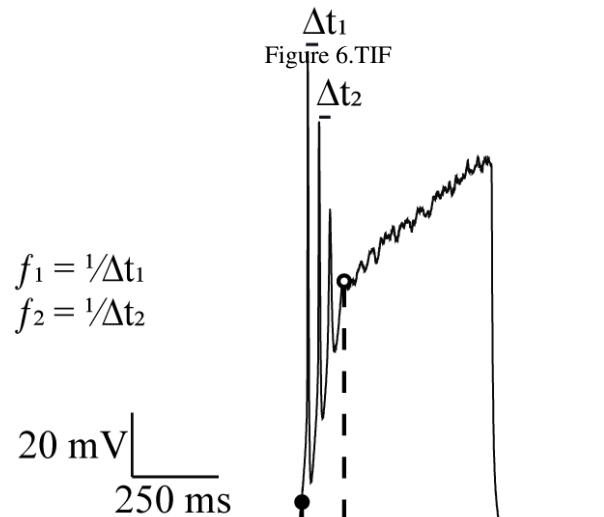
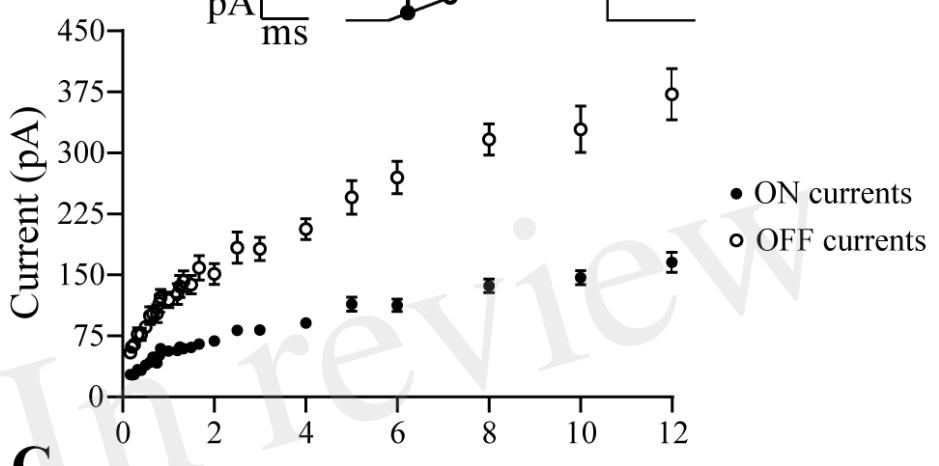
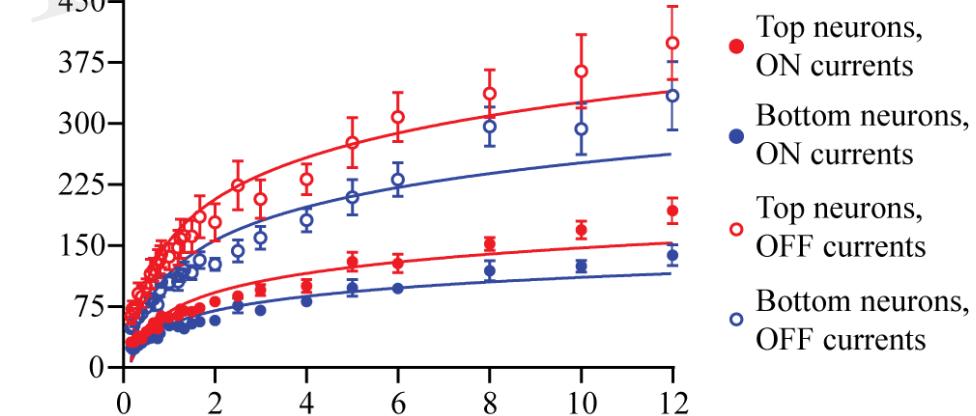
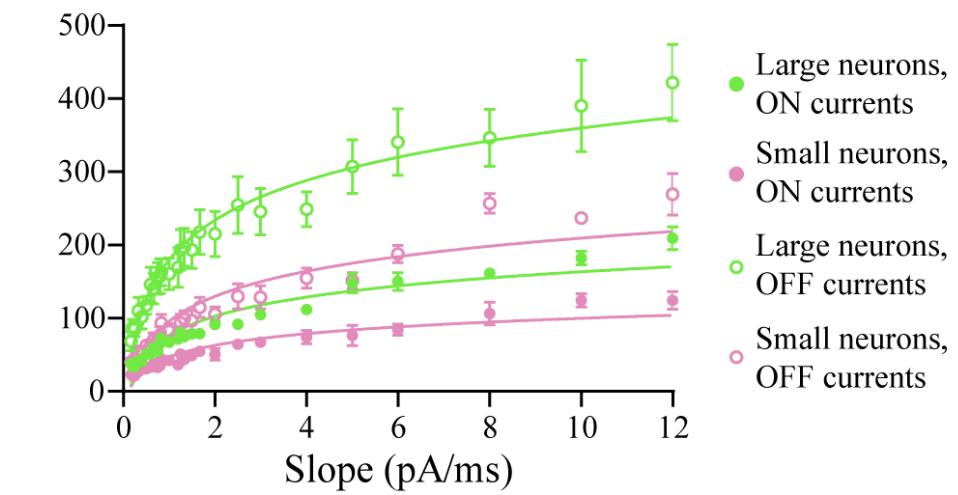
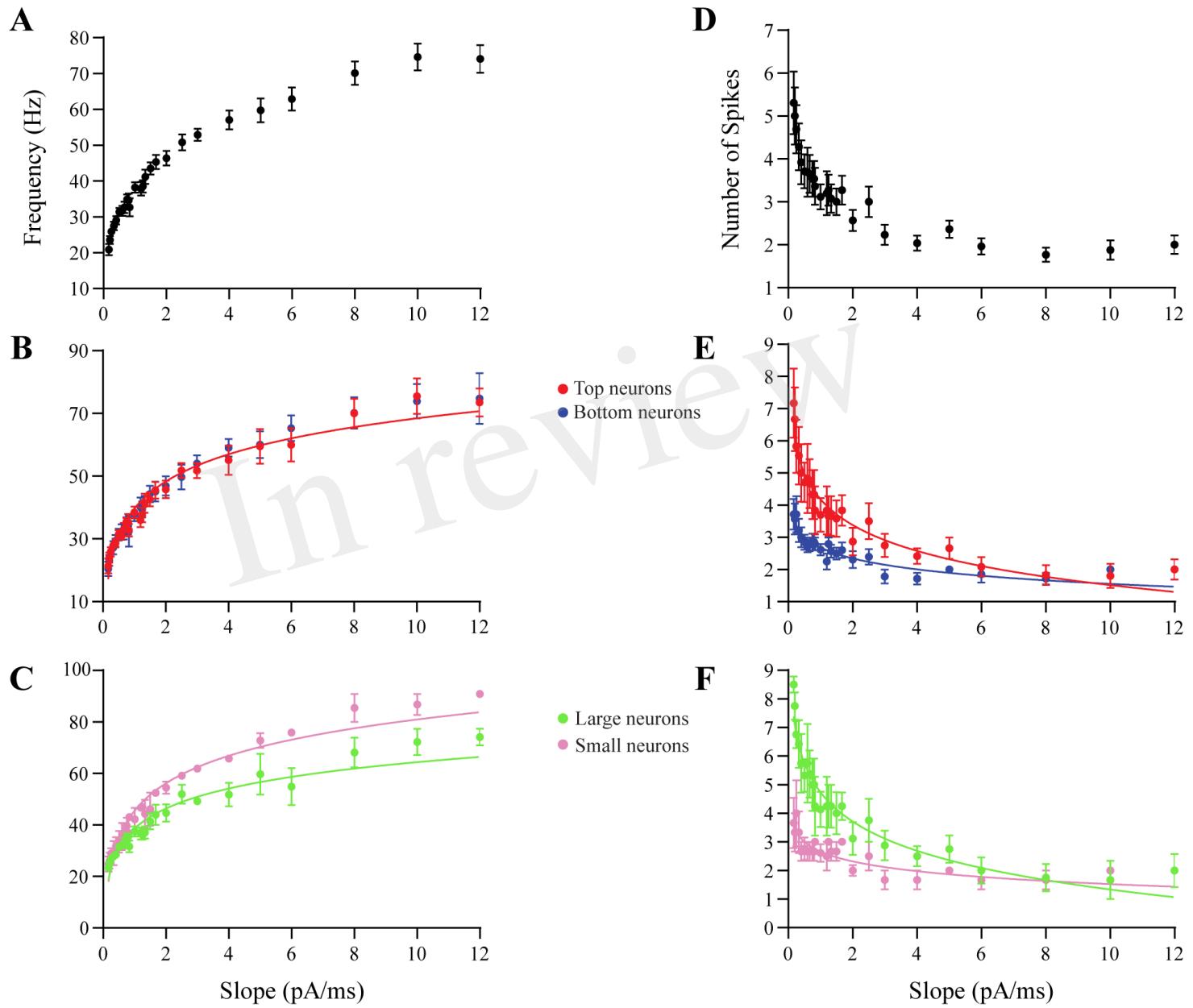





A**B****C****D**

Figure 7.TIF

