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Abstract

Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing
evidence suggests that insulin-secreting pancreatic § cells can adapt to chronic disruptions of
pulsatility to rescue this physiologically important behavior. We determined the time scale for
adaptation and examined potential ion channels underlying it. We induced the adaptation both by
chronic application of the ATP-sensitive K™ (K(ATP)) channel blocker tolbutamide and by
application of the depolarizing agent potassium chloride (KCl). Acute application of
tolbutamide without pretreatment results in elevated Ca®" as measured by fura-2AM and the loss
of endogenous pulsatility. We show that after chronic exposure to tolbutamide (12-24 h), Ca*"
oscillations occur with subsequent acute tolbutamide application. The same experiment was
conducted with potassium chloride (KCl) to directly depolarize the f cells. Once again,
following chronic exposure to the cell stimulator, the islets produced Ca®" oscillations when
subsequently exposed to tolbutamide. These experiments suggest that it is the chronic
stimulation, and not tolbutamide desensitization, that is responsible for the adaptation that
rescues oscillatory B-cell activity. This compensatory response also causes islet glucose
sensitivity to shift rightward following chronic tolbutamide treatment. Mathematical modeling
shows that a small increase in the number of K(ATP) channels in the membrane is one
adaptation mechanism that is compatible with the data. To examine other compensatory
mechanisms, pharmacological studies provide support that Kir2.1 and TEA-sensitive channels
play some role. Overall, this investigation demonstrates f-cell adaptability to overstimulation,
which is likely an important mechanism for maintaining glucose homeostasis in the face of

chronic stimulation.
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Introduction

Tight regulation of blood glucose and the body’s energy demands requires precise insulin
secretion that reflects the blood glucose concentration. This is achieved by secreting periodic
large pulses of insulin from pancreatic § cells when glucose is high following a meal and small
pulses when glucose is low during sleep or during a period of fasting (46). The periodic insulin
pulses produced at stimulatory glucose levels are due to bursting electrical activity; Ca®" entry
during each burst evokes insulin exocytosis (36). ATP-sensitive K™ (K(ATP)) channels largely
dictate the pattern of activity in 8 cells (43), and may contribute to packaging electrical impulses
into bursts (32). These channels are regulated by glucose via metabolism (4), and thus provide a
unique energy-sensing mechanism that serves as a key component in the insulin secretory

pathway.

As important as K(ATP) channels are to insulin secretion, it is not surprising that defects
in K(ATP) channels are associated with metabolic disorders. A mutation in the genes encoding
the K(ATP) channel is responsible for approximately half of all cases of diabetes developing
within the first six months of life (18, 41). Specifically, mutations in the KCNJ11 gene, which
codes for the pore-forming subunit of the K(ATP) channel (Kir6.2), or mutations in the ABCC8
gene, which codes for the sulfonylurea receptor subunits, can result in neonatal diabetes (1).
Another disorder, persistent hypoglycemic hyperinsulinemia (PHHI, also sometimes called
congenital hyperinsulinism) is due to constitutive insulin secretion (8, 23). Again, a mutation in
the K(ATP) channel is a common cause of the disorder (25). Even mutations with minor effects
on K(ATP) channel function can result in diabetes in adulthood (3). These disorders thus

highlight the importance of understanding how K(ATP) channels work in health and disease.



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

In light of these negative consequences of K(ATP) channel mutations in humans it is
surprising that, in mouse islets, mutations that eliminate functional K(ATP) channels do not
typically interfere with bursting electrical activity and the associated Ca®" oscillations (14, 42,
48). This is unexpected, since pharmacological manipulations that acutely block K(ATP)
channels convert the bursting to tonic spiking with an elevated Ca”" level (Fig. 1, and (27)). It is
indicative of a adaptation mechanism that acts to restore oscillatory islet activity. Such activity
results in the secretion of insulin pulses, and it has been demonstrated that the liver responds
better to pulsatile insulin than to insulin maintained at a constant level (31). Bursting electrical
activity, and accompanying Ca®" oscillations, are therefore beneficial from a physiological

perspective (22, 24, 46).

In this study, we examined how islets respond in vitro to persistent blockade of K(ATP)
channel activity by tolbutamide for up to 24h. In contrast to acute exposure to this S cell
stimulator, we demonstrate that islets chronically exposed to tolbutamide behave very differently
during subsequent acute exposure than do those islets without the prior chronic exposure to the
stimulator. With prior chronic tolbutamide treatment (12 to 24 h), many islets exhibit Ca*"
oscillations, rather than an elevated Ca>" level upon subsequent acute tolbutamide exposure.
Thus, the f cells adapt during the chronic tolbutamide exposure so as to rescue bursting, and this

rescue becomes evident with 12 h of tolbutamide treatment.

A previous study showed that overnight exposure of islets to high glucose (11 mM),
rather than low glucose (2.8 mM), caused a left shift in the glucose dose-response curve, and this
was attributed to decreased trafficking of K(ATP) channels to the plasma membrane (17). We
observed the opposite, a right-shifted glucose dose-response curve with overnight exposure to

tolbutamide. Using mathematical modeling, we demonstrate that an increase in the K(ATP)
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current conductance can account for our data on chronic tolbutamide exposure. The model also
predicts that this mechanism can be evoked by chronic exposure of the islets to KCI, which
directly depolarizes the f cells. This prediction was tested and, indeed, chronic exposure to KCl
evoked the adaptation mechanism so that islets exhibited Ca*" oscillations during subsequent
acute exposure to tolbutamide. Once again, the islets adapted to chronic stimulation so as to

facilitate oscillatory activity.

While mathematical modeling suggests that increased K(ATP) conductance can explain
the adaptation data, it is likely that additional ion channels are affected by the chronic
tolbutamide or KCI treatment. We tested the effects of several K™ channel blockers on islets with
and without prior chronic tolbutamide treatment and found that the responses to the Kir2.1
channel antagonist ML133 and the general voltage-dependent K -channel blocker
tetracthylammonium (TEA) were different in treated versus untreated islets. This suggests that
both Kir2.1 and TEA-sensitive currents are affected by the tolbutamide treatment, and thus

contribute to the adaptation.

Overall, our study reveals that islet S cells, when chronically stimulated, adapt so as to
restore oscillatory activity. Using tolbutamide as the stimulating agent, we found that this
adaptation process first becomes evident with 12 h of exposure, but is of greater magnitude with
longer exposure times (exposures of up to 24 h were investigated). The evidence suggests that
changes in K conductances are the ionic mechanisms for the adaptation. The findings
demonstrate that 8 cells have the adaptive capacity to restore oscillatory activity in the face of
chronic stimulation, which would be valuable for the maintenance of glucose homeostasis under

the challenge of chronic overstimulation.
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Materials and Methods.
Mice.

Adult male CD1 mice at 8-20 weeks of age were used for all studies. Mice were
purchased from Envigo (Indianapolis, IN) and housed at Ohio University until needed for
experiments. All protocols used in these studies were approved by the Ohio University

Institutional Animal Care and Use Committee.

Islet isolation

Pancreatic islets were isolated and cultured as described previously (11). Following
isolation, islets were cultured overnight in RPMI-1640 media (Invitrogen) with 11mM glucose,
10% fetal bovine serum, and 1% penicillin/streptomycin. All drug treatments or supplements
used for chronic conditions were made up in RPMI-1640, and all experiments were conducted

within 1-2 days of islet isolation.

Measurements of intracellular calcium

Islets were loaded with 1uM fura-2AM in a mixture of two modified KRB solutions: low
glucose solution = 3 mM glucose, 134.5 mM NacCl, 3 mM CaCl,, 5 mM KCIl, 2 mM MgCl,, and
10 mM HEPES (pH 7.4); high glucose solution = 28 mM glucose 122 mM NacCl, 3 mM CaCl,, 5
mM KCl, 2 mM MgCl,, and 10 mM HEPES (pH 7.4). These solutions were mixed in
proportional volumes to produce various glucose concentrations as needed. Islets were loaded for
30 min at 37 °C and 5% CO; in solutions identical to the starting solution for each recording and

then transferred to the recording chamber for an additional 10 min. Intracellular calcium (Ca™)
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was measured using the ratiometric Ca®" indicator fura-2 AM as described previously in greater
detail (16). The use of Cell Tracker Red to record control vs. treated groups of islets

simultaneously is described in (12).

Data analysis

A Fisher Exact test (2x2 contingency) was used to compare the percentages of oscillating
vs. non-oscillating islets either treated with a stimulator or untreated. For glucose dose-response
curves, a two-point moving average was used to smooth inter-recording Ca”" differences between
the two separate 3-glucose-step recordings used to form the 6-point curve. A two-tailed

Student’s t-test was used for all other comparisons unless stated otherwise.

Mathematical model

A mathematical model was used to test whether a small compensating increase in K(ATP)
channel conductance could account for the data on chronic tolbutamide exposure and to predict
the compensating effects of chronic KCI exposure. The mathematical model is based on the Dual
Oscillator Model described in (9). This includes a first module describing the cellular electrical
activity, a second module for glycolysis, and a third one for mitochondrial metabolism. Since we
have recently found evidence supporting a key role for Ca*" activation of the enzyme pyruvate
dehydrogenase (33, 34), we add this effect to the model. All equations and parameter values are
described in the computer code that can be downloaded from

http://www.math.fsu.edu/~bertram/software/islet.
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In the model, the current through K(ATP) channels is described by:
IK(ATP) = Jk(ATP)O v —Vy),

where gy 4rpis the maximum conductance, V is the plasma membrane potential, Vi is the K"
Nernst potential, and o, is the fraction of activated channels that depends on the ADP and ATP

concentrations and is given by

- —\ 2
0.08(1+2M)+0.89(M)
kad kdd

MgADP—\%( . ADP3— ATP%4~
1+ 1+ +
kad kta ket

00, (ADP, ATP) =

Here, MgADP~ = 0.165ADP, ADP3~ = 0.135ADP, and ATP*~ = 0.05ATP, while the parameters
kaa, k¢, and kqgrepresent the dissociation constants, which describe the binding equilibrium of
the various nucleotide forms. In this paper, acute tolbutamide treatment is simulated by
decreasing the constant k¢, from 1 uM to 0.91 uM to mimic an increase in the ATP affinity
caused by the addition of the drug, leading to channel closure. Chronic tolbutamide adaptation is
simulated by increasing the maximum conductance ggarp) from 19,700 pS to 21,500 pS,
reflecting either increased trafficking of K(ATP) channels to the membrane or increased gene
expression of the channels (or a combination of both). Application of 30 mM KCl is simulated

by increasing the K" Nernst potential from V = —75mV to -72 mV.

Results

Short-term exposure to tolbutamide terminates islet oscillations and is immediately reversible

Islets were acutely treated with a 30-min exposure to tolbutamide, and islet activity was
measured using fura-2AM fluorescence to measure intracellular Ca" ratiometrically (Fig. 1).

The recording began in 11 mM glucose (abbreviated 11G) to establish a baseline for normal islet
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activity. In this condition, the 12 islets were all oscillating, as is typical for islets in 11G. Upon
the addition of tolbutamide at 20 min, Ca" levels rose, and oscillations ceased. This is the result
of K(ATP) channel blockage leading to membrane depolarization. After 30 min in the
tolbutamide-treated condition, tolbutamide was washed out with 11G, Ca®" levels dropped, and
the islets resumed oscillatory activity in most cases. The effects on mean Ca*" levels during each
treatment phase are quantified in Fig. 1B. Both the peak response to tolbutamide and the mean
response in the final 20 min of treatment were significantly elevated over control and washout
(p<0.001 for each). The mean Ca*" level during the washout phase (calculated for the last 20
min) did not differ significantly from that of the 20 min control phase. Thus, our data show that

tolbutamide terminates Ca”" oscillations and is reversible on the short term.

Ca’" oscillations are restored following long-term exposure to tolbutamide

While the acute effect of tolbutamide application on islet activity has been demonstrated
previously (27), chronic effect of the drug on islet oscillations has not been systematically
studied. We approached this by incubating normal healthy islets in 11G plus tolbutamide (250
uM) for a range of durations (which we refer to as chronic tolbutamide treatment), then testing
the effects of subsequent 20 min re-exposure to 11G plus tolbutamide (acute tolbutamide
treatment). After 4 hours of chronic tolbutamide treatment (Fig. 2A), islets exhibited a steady
elevated Ca*" level during acute tolbutamide treatment. There are no oscillations while
tolbutamide is present, but oscillations soon recover in most islets upon washout with 11G alone,
as in Fig. 1. In the 20 h tolbutamide treatment group (Fig. 2B), however, the islets oscillate

despite the presence of tolbutamide and do not show the same overstimulation and heightened
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Ca’" levels that were observed in the 4-h treatment group. This demonstrates a adaptation that

occurred during the longer treatment.

To determine the adaptation time scale, a total of 200 islets were separated into groups
with different incubation durations: approximately half had chronic tolbutamide treatment and
the remaining islets were in a control group incubated with 11G alone. The fraction of islets
exhibiting Ca*" oscillations is plotted for each incubation duration in Fig. 2C. At 4 and 8 hours of
tolbutamide exposure, there is no difference between treated and untreated groups in the fraction
of islets displaying oscillations in the presence of 250 uM tolbutamide plus 11G. At 12 hours, a
separation between treated and untreated groups starts to emerge, with 33% of tolbutamide-
treated islets oscillating versus only 13% of untreated islets (p=0.04). The difference between
treated and untreated groups grows with the exposure time to chronic tolbutamide. By 20 hours,
the adaptation appears to reach its maximum with ~75% of chronic tolbutamide-treated islets

oscillating compared to 18% of untreated controls.

Modeling shows that increased K(ATP) conductance may mediate adaptation to chronic

tolbutamide treatment

The adaptation to chronic tolbutamide exposure shown in Fig. 2 could, in principle, be
due to increased K" conductance or decreased Ca®" conductance in the f cell membrane. Such
changes would decrease cell activity so that electrical bursting occurs in the presence of
tolbutamide, rather than tonic spiking. However, the adaptation must also be such that in 11G the
islet still bursts, as in Fig. 2B during washout. If adaptation increases K" conductance too much,

then the cell would be silent in the absence of tolbutamide (i.e., in 11G alone).

10
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One possibility is that adaptation is achieved by increasing the total K(ATP) channel
conductance in the cell membrane, either through increased gene expression of the K(ATP)
channel subunits or through increased K(ATP) channel trafficking. To test whether increased
K(ATP) channel conductance can both rescue bursting during the acute tolbutamide application
and allow bursting to occur in the absence of tolbutamide, we used mathematical modeling. As

described in Methods, a modification of the Dual Oscillator Model (DOM) was employed (9).

Figure 3A shows a model simulation of an acute application of tolbutamide to an
“untreated islet”. In 11G alone the model islet exhibits bursting, and the accompanying Ca**
oscillations are shown. When tolbutamide is added (simulated by decreasing the dissociation
constant k), the model islet exhibits tonic spiking, and the Ca’" concentration is pinned at an
elevated level, as in Fig. 1A. When tolbutamide is removed (parameter k returned to its baseline
value), the model islet returns to a bursting state. In the model “treated islet”, with increased
K(ATP) channel conductance, the islet is again bursting prior to acute application of
tolbutamide, and it continues to burst when the tolbutamide is applied (Fig. 3B). When
tolbutamide is removed the model islet again bursts. Therefore, increasing the total K(ATP)

conductance is a viable adaptation mechanism that is compatible with the data from Fig. 2.

Modeling suggests an experiment that excludes the possibility of tolbutamide desensitization

Another possible explanation for the data of Fig. 2 is that the islet becomes desensitized
to tolbutamide with chronic exposure. Our hypothesis, in contrast, is that the sustained activity
induced by chronic tolbutamide exposure leads to a compensatory increase in K(ATP)

conductance. If so, then this should also be the case in response to chronic exposure of the islet

11
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to KCI, which directly depolarizes the islet by reducing the gradient of K” across the plasma
membrane. This treatment excludes the possibility of tolbutamide desensitization, since
tolbutamide would only be applied acutely. But if adaptation occurs so that bursting is produced
both during acute tolbutamide application and with 11G alone, what behavior should one expect

to see if the treated islet is acutely exposed to KC1?

To answer this question, we again employed the DOM. As before, the adaptation to
chronic stimulation (here due to KCl) was simulated by increasing the K(ATP) channel
conductance (to the same level as in Fig. 3). In both treated and untreated model islets, acute
application of KCI (simulated by decreasing the K* Nernst potential) converted bursting to tonic
spiking, so that the Ca®" concentration was pinned to an elevated level (Fig. 4). However, when
the model islets were subsequently exposed to tolbutamide (and not KCl), the untreated islet still
showed a plateau Ca>" level, while the treated islet exhibited oscillations both during acute
tolbutamide treatment and after washout in 11G. Thus, the model illustrates that if stimulation
through chronic KCI exposure induces the same compensatory effects as stimulation through
chronic tolbutamide exposure, then the adaptation would be sufficient to rescue bursting during
acute tolbutamide stimulation, but insufficient to rescue bursting during KCI stimulation, which

affects the current through all K™ channels.

Chronic KCI exposure rescues Ca’" oscillations during acute tolbutamide exposure

We tested the model prediction of Fig. 4 by incubating a population of islets in 11G plus
30 mM KCI for 24 h. We then followed the stimulus protocol described in Fig. 4. In a

representative example of an untreated islet (Fig. 5A), the Ca>* concentration is elevated

12
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throughout the acute KC1 exposure. When exposed to tolbutamide in 11G, the Ca*" level
remained elevated, and oscillations occurred only once the tolbutamide was removed. A
representative islet that was pretreated for 24 h with KCI (Fig. 5B) produced similar Ca**
responses during the acute KCl application. When switched to tolbutamide, however, the treated
islet produced a substantial drop in Ca" that rebounded into oscillations throughout the acute

tolbutamide treatment. The islet continued to show Ca*" oscillations during the washout in 11G.

Responses to the stimulus protocol for the population of untreated (n=15) and 24 h KClI-
treated (n=12) islets are quantified in Fig. 5C, D. During acute KCI stimulation, the mean Ca*"
level was elevated in both treated and untreated islets (Fig. 5C) and there were no Ca>"
oscillations. With acute tolbutamide stimulation, however, the mean Ca”" level was significantly
higher in the untreated than in the treated islets. This difference was due to the activity patterns
in the two populations. Fewer than 25% of the islets in the untreated population showed any
evidence of oscillations in tolbutamide. In contrast, the vast majority of the treated islets
exhibited oscillations during acute tolbutamide exposure (Fig. 5D). When switched to 11G alone,
there was no significant difference in the percent of islets exhibiting oscillations. Thus, the
experiments support the model prediction that chronic treatment with KCl could lead to a
compensating increase in K(ATP) conductance that rescues oscillations when the treated islet is
acutely stimulated by tolbutamide, but this is masked when the greater acute KCI stimulus is
applied. Importantly, they also demonstrate that the rescue of Ca*" oscillations during acute

tolbutamide application is not due to tolbutamide desensitization.

Compensatory effects of chronic tolbutamide exposure reduces Ca’" responses to glucose

13
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Since pancreatic islets must respond to a wide range of glucose concentrations, it is
important to understand the effects that chronic tolbutamide treatment have on the response to
glucose throughout this range. We examined Ca®" responses to glucose stimulation at 4 mM
intervals from 0 to 20 mM glucose following 24 h exposure to tolbutamide. The mean Ca**
traces for both tolbutamide-treated (orange, averaged over n=13 islets) and untreated (blue,
averaged over n=9 islets) islets are shown for 0, 8, and 16 mM glucose in Fig. 6A and for 4, 12,
and 20 mM glucose in Fig. 6B (n=12 untreated and n=9 treated islets). The treated groups show
substantially lower mean Ca”" levels at glucose concentrations of 12 and 16 mM. Three
additional pairs of glucose trials were conducted and combined to form the glucose dose curve
shown in Fig. 6C. The most substantial difference between untreated and chronic tolbutamide-

treated islets is again at 12 mM glucose and 16 mM glucose.

To further characterize this change in glucose sensitivity, we examined the effective
concentration for half maximal stimulation (EC50) for each set of untreated and tolbutamide-
treated islets. Figure 6D shows that there was a shift of 0.5-2 mM glucose in the EC50 between
untreated to tolbutamide-treated islets across four separate trials. Figure 6E shows the mean
EC50 over the population of untreated islets or tolbutamide-treated islets. Chronic tolbutamide
treatment resulted in a statistically significant increase of 1.14 + 0.38 mM in the EC50 for

glucose; a right shift of the glucose dose-response curve.

Several K channel types may be involved in adaptation

Modeling has provided evidence that adaptation to chronic stimulation could be through

increased K(ATP) conductance in the  cell membrane. However, changes in the conductance

14
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level of other K" channel types could also be involved in the adaptation process. To determine if
voltage-dependent K™ channels are involved, we employed the non-specific voltage-dependent
channel blocker tetracthylammonium (TEA). If the conductance level of a voltage-dependent K"
channel is increased as a result of chronic tolbutamide treatment, then the effect of blocking this
channel should be greater in the treated islet than in the untreated islet. We tested this by

evaluating the effect of TEA on Ca”" oscillations in 11G.

In an untreated islet (Fig. 7A), TEA has minimal effect on the peak, baseline, or
amplitude of the Ca”" oscillations. In a tolbutamide-treated islet (Fig. 7B), TEA has a more
substantial effect on oscillations, noticeably increasing their amplitude. TEA was applied to sets
of untreated and sets of treated islets in two separate trials. The mean Ca>" level was computed
before and after TEA application for each set. The difference (after TEA — before TEA) is
quantified in Fig. 7C. As in the traces of Fig. 7A-B, the effect of TEA application is larger in
treated versus the untreated islets, suggesting that voltage-sensitive K" channels are involved in
the adaptation to chronic tolbutamide exposure. We tested a blocker of the A-type K™ channel, 4-
aminopyridine, but found no statistical difference between tolbutamide-treated and untreated

islets (data not shown).

Next, we employed an antagonist for inward-rectifying Kir2.1 channels, which have been
implicated in adaptation in islets with functional K(ATP) channels genetically knocked out (54).
This channel blocker, ML133, was applied to both untreated and treated islets, as in the TEA
study. In both sets of islets, there was an increase in the Ca®" oscillation amplitude when ML133
was applied, which is evident in the representative examples (Fig. 7D, E) and in the

quantification of the net change in Ca>* (Fig. 7F). However, the effect was larger in the

15



337 tolbutamide treated islets than in the untreated islets (Fig. 7F). This suggests that increased

338  Kir2.1 conductance may play a role in the adaptation to chronic tolbutamide exposure.
339
340  Discussion

341 Hormone secretion is often pulsatile. For example, luteinizing hormone, follicle

342  stimulating hormone, testosterone, glucagon, growth hormone, cortisol levels all exhibit

343  oscillations on some time scale. It is therefore of little surprise that insulin levels are also

344  oscillatory in humans and many other species (37, 46). There is evidence that this pulsatility
345  serves a physiological role (15, 29, 30, 39, 46), and is often lost in disease or during aging (26,
346 38, 40). It is perhaps more surprising that islet 3 cells are so good at adapting to manipulations

347 that interfere with the oscillatory activity that normally occurs at stimulatory glucose levels.
348  K(ATP) channels and the restoration of oscillatory Ca’*

349 The ion channels responsible for glucose sensing, K(ATP) channels, are composed of
350 four sulfonylurea-sensitive (SUR1) subunits and four pore-forming Kir6.2 subunits, and

351  functional channels require both sets of subunits (35). In SUR1 homozygous knockout mice,
352 islets typically exhibit bursting activity (14, 48) which result in Ca** oscillations (54). This is in
353  spite of the depolarizing effect that removal of these channels should have, which would lead to
354  tonic spiking in the absence of adaptation, as in the case of acute sulfonylurea application (19,

355  27). Similarly, Ca*" oscillations have been reported from islets of Kir6.2 knockout mice (42).

356 Our study was performed to determine whether oscillations could be restored following
357  chronic exposure to the stimulator tolbutamide, a drug used in the management of type 2 diabetes

358  (28). Studies using clonal BRIN-BDI11 cells found that 18 h tolbutamide exposure reduced the

16
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insulin release in response to secretagogues, including tolbutamide (5), and that chronic exposure
reduced K(ATP)-channel-independent insulinotropic actions of sulfonylureas including
tolbutamide (7). Another study showed that while overnight treatment with tolbutamide reduced
the insulin content of mouse islets, it had a mild attenuation of the mean Ca®" response to a
glucose step from 3 mM to 15 mM, which did not reach significance (2). We observed a similar
attenuation of the Ca®" response to glucose stimulation in the 12-20 mM range following chronic
tolbutamide exposure. Any Ca" oscillations in the Annello study (if they occurred), were
obscured by averaging over several islets. We found that oscillations during acute tolbutamide
exposure were often recovered following 12 h or more of chronic tolbutamide exposure (Fig. 2).
The extent of recovery was greater with longer exposure, saturating at 20 h exposure, where
~80% of the treated islets exhibited Ca*" oscillations. When the acute tolbutamide challenge was
removed, oscillations persisted (in 11G). Thus, the mechanism that rescues oscillations in

tolbutamide-stimulated islets also allows for oscillations in 11G alone.

While it is well established that tolbutamide is a potent blocker of K(ATP) channels (43),
it has other indirect effects on f cells. For example, the elevated intracellular Ca>* level that
results from acute tolbutamide exposure regulates signaling through phospholipase C, which in
turn affects insulin secretion (47). Tolbutamide has also been shown to affect CI" channels.
Whole cell patch clamp (50) and patch-clamp from excised membrane patches (51) have shown
that tolbutamide reduces the CI” current through cystic fibrosis transmembrane conductance
regulator (CFTR) channels, which are regulated by ATP. Another study showed that tolbutamide
potentiates another Cl” channel, a volume-regulated ion channel (VRAC) in rat 3 cells (10).
While such CI' channel modulation may supplement the blockage of K(ATP) channels, the net

effect is a conversion of bursting to tonic spiking with acute tolbutamide exposure and a return to
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bursting with chronic exposure. We believe that it is the resulting elevated Ca*" and loss of Ca**
oscillations that drive the adaptation during chronic tolbutamide exposure, rather than the
specific channels that are affected by tolbutamide. Evidence for this is the adaptation that occurs

with depolarization through chronic elevated KCl exposure (Fig. 5).

Tolbutamide desensitization does not appear to be a factor in restoring oscillations

One possibility is that the chronically treated islets become desensitized to tolbutamide.
To check this, we used KCl instead of tolbutamide to chronically stimulate islets, and only then
applied tolbutamide acutely. Once again, we observed a preponderance of oscillatory activity in
the treated islets during acute tolbutamide exposure, in contrast to the control islets incubated in
11G alone (Fig. 5). This supports the conclusion that it is the chronic stimulation, and not
tolbutamide desensitization, that accounts for the rescue of oscillations during acute tolbutamide
exposure. This conclusion is supported by a prior study that found that while chronic tolbutamide
exposure greatly reduced insulin secretion during a later acute tolbutamide challenge, the
membrane potential of single 3 cells was still responsive to the acute tolbutamide, arguing that

any desensitization occurs downstream of the cell’s electrical activity (44).

Multiple mechanisms to maintain pulsatility

Our mathematical modeling suggests that the adaptation mechanism could be through
increased K(ATP) channel conductance (Figs. 3, 4). This increased conductance is the reason for
a transient quiescence following acute tolbutamide exposure in the model simulations (Figs. 3,

4). This transient quiescence is sometimes seen in experimental traces, though not always. For
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example, it is present in islets with 4 h tolbutamide treatment (Fig. 2A), but not in islets with 20
h treatment (Fig. 2B). This variability likely reflects the fact that the increased K(ATP)
conductance caused by chronic stimulation would be quite small, since if the increase is too large
the cell would fail to exhibit electrical activity once the tolbutamide is removed and only glucose
remains. A prior study confirmed that the expression level of K(ATP) channel subunits is not
adversely affected by chronic tolbutamide treatment in clonal insulin-secreting BRIN-BD11 cells
(6), though the resolution of such measurements is not fine enough to pick up the small change in
expression levels that would be predicted if in fact the adaptation involved increased K(ATP)
channel subunit expression. Rather than increased channel expression, it is also possible that

adaptation could be due to increased K(ATP) channel trafficking to the membrane.

There are other potential mechanisms of adaptation to restore pulsatility under chronic
stimulation. Genetic manipulation of K(ATP)-channels to eliminate K(ATP)-channel
conductance precludes the possibility of increased channel expression or increased numbers of
these channels inserted in to the plasma membrane; nevertheless, islets are oscillatory in these
models (14, 42, 48). In SUR1 knockout mice, it has been demonstrated that there is increased
inward rectifying K* current, and mathematical modeling was used to show that an inward
rectifying Kir2.1 current would be capable of recovering bursting oscillations (54). The
upregulation of such a current could be achieved through Ca*"-sensitive gene transcription (49,
52, 53). Consistent with this view, our findings with the Kir2.1-specific inhibitor ML133 suggest
that Kir2.1 activity is also increased following ~24 h of chronic stimulation. An additional, as of
yet unidentified, TEA-sensitive K™ channel may also play a role. It is also possible that
adaptation for chronic stimulation can be achieved by a mechanism other than gene transcription.

It was shown that islets exposed overnight to stimulatory glucose levels have decreased K(ATP)
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conductance relative to those maintained in low glucose overnight, and that this is due to
decreased trafficking of K(ATP) channels to the plasma membrane rather than decreased gene

transcription (17).

Possible feedback effects of adaptation on metabolism

A result of the adaptation is a change in the glucose dose-response curve, such that islets
treated overnight with tolbutamide have a smaller response to glucose, as determined by the
mean Ca’" level, at glucose levels >8 mM (Fig. 6). Prior studies have shown that chronic
exposure of islets to sulfonylureas result in a large reduction in the glucose-stimulated insulin
release as well as release evoked by other stimulators (21, 45). This reduction is more dramatic
than the reduction in the mean Ca*" level shown in Fig. 6, and likely reflects additional negative
effects of tolbutamide downstream of Ca>" (7, 44). This reduced response is protective against
overstimulation, and is the opposite of what was seen when islets were treated overnight with 11
mM glucose, versus 2.8 mM glucose (17). With tolbutamide exposure, the direct influence is on
the cell’s electrical activity and Ca®" dynamics, and the elevated Ca®" level associated with
tolbutamide exposure likely leads to a reduction in the ATP/ADP ratio due to ATP hydrolysis by
Ca®" pumps in the plasma and endoplasmic reticulum membranes (13). Indeed, data show an
increase in ATP/ADP when the islet is hyperpolarized and Ca®" level reduced with application of
the K(ATP) channel activator diazoxide (34). In contrast, incubating an islet in a solution with
higher glucose content will lead to an increase in the ATP/ADP ratio due to increased
metabolism. It might be expected that chronic treatment with tolbutamide has the opposite effect

on the glucose dose-response curve than chronic treatment with a higher glucose level.
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Conclusions

We show that chronic stimulation of pancreatic islets triggers a compensatory
hyperpolarizing mechanism to restore normal endogenous oscillatory activity in the presence of
overstimulation. This study suggests that maintaining the ability to secrete insulin in a pulsatile
manner appears to be very important to overall function as evidenced by the drive to maintain
this function despite strong changes in physiological input. We identified several adaptive
changes, involving K(ATP) channels and additional K" channels, and a decrease in glucose
sensitivity. The net result is rescue of pulsatility, and its regulation by glucose. This rescue of
pulsatility, which facilitates the actions of the liver in reducing glucose (31), is countered by the
dramatic reduction in glucose-induced insulin secretion that has been demonstrated in previous
studies (44, 45). The net effect is a time-dependent decline in the efficacy of treatment with

antidiabetic agents (20).
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Figure Legend.

Figure 1: Acute tolbutamide application terminates Ca>" oscillations, leading to a sustained
elevated level. (A) Example of fura-2 traces of the intracellular Ca®" level from n=12 islets
starting in 11 mM glucose (11G) for 20 min and then exposed to 250 uM tolbutamide for 30 min
(plus 11G), followed by a washout back to 11G for 40 min. (B) Mean Ca*" values (340/380 nm
ratio) for 11G (control, first 20 min), peak value measured during tolbutamide treatment (peak
tolb), the mean Ca”" level during the last 20-min of tolbutamide exposure (tolb), and the last 20

min of washout (wash). ***=p<0.001 and N.S (not significant) are compared to control (11G).
p

Figure 2: Islets show a duration-dependent response to tolbutamide that restores oscillations. (A-
B) Multiple traces are shown for islets incubated in 250 uM tolbutamide and 11G for 4 h (A,
n=6) or 20 hours (B, n=8). These islets were maintained in 11G plus tolbutamide for the first 20
minutes followed by a washout into 11G. (C) The fraction of oscillating islets for multiple
tolbutamide treatment durations of 4, 8, 12, 16, and 20 h (& one hour). Untreated islets were
maintained in 11G media for the same durations and were recorded simultaneously with the
tolbutamide-treated islets. A two-tailed Chi square test was used for statistics: *=p<0.05,

*4%=p<(,001.

Figure 3: Mathematical modeling demonstrates the feasibility of increased K(ATP) conductance
as an adaptation mechanism. (A) Acute treatment with tolbutamide converts a bursting islet, with

accompanying Ca”" oscillations, into tonic spiking, in which the Ca®" concentration is pinned to
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an elevated level. (B) In a model “treated islet” (an islet treated chronically with tolbutamide),

Ca’" oscillations persist during an acute tolbutamide application.

Figure 4: Model simulation predicting how an islet exhibiting adaptation through an increase in
K(ATP) conductance at the same level as that of Fig. 3 would respond to KCI, tolbutamide, and
11G alone. (A) In an untreated islet, the Ca®" level is at an elevated plateau (reflecting tonic
spiking) when stimulated by either KCl or tolbutamide. (B) In a treated islet, the Ca®" level

plateaus during stimulation with KCl, but oscillates during acute tolbutamide stimulation.

Figure 5: Experimental data support model predictions. In all cases, 11G is present. (A)
Representative Ca”" trace for an untreated islet, exhibiting elevated Ca*" plateaus when
stimulated by either KCl or tolbutamide, but oscillating in 11G alone. (B) Representative Ca*"
trace for an islet with 24-hour treatment with 30 mM KCI. As predicted, the islet exhibits an
elevated Ca®" plateau when stimulated with KCI but oscillates when stimulated with tolbutamide
or with 11G alone. (C) Quantification of mean Ca®" levels for untreated and KCl-treated islets
for each acute treatment phase. (D) Percent of islets displaying oscillations during each treatment
phase. A two-tailed t-test was used for statistic in (C) and chi square in (D): *=p<0.05,

*#%=p<0.001, N.S. = not significant.

Figure 6: Islets incubated for 24 hours in 250 uM tolbutamide plus 11G display a glucose-
dependent reduction in Ca*" levels versus those incubated in 11G alone. (A) Averaged Ca*"

traces during three consecutive glucose exposures of 0, 8, and 16 mM for N=13 untreated (blue)
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and N=9 treated islets (orange). Averaged Ca®" traces during three consecutive glucose
exposures of 4, 12, and 20 mM for N=12 untreated (blue) and N=9 treated islets (orange). Data
in (A-B) represent one of four trials. (C) Glucose dose-response curves computed using mean
Ca”" levels over a range of glucose values for all four trials. Data were combined and two-tailed
t-tests were used at each glucose concentration: *=p<0.05, **=p<0.01. (D) EC50s for four trials
show a right shift in EC50 among tolbutamide-treated islets versus those incubated in 11G alone.

(E) Mean of the EC50s from the four individual trials *=p<0.05 determined by paired t-test.

Figure 7: Voltage-dependent K channels and Kir2.1 channels participate in adaptation to
chronic (~24 h) tolbutamide treatment. (A) In an untreated islet, the voltage-dependent K
channel blocker TEA does not affect the amplitude of Ca®" oscillations. (B) In a treated islet,
TEA increases the oscillation amplitude. (C) Mean Ca”" response to TEA between the untreated
and treated islets (n=24 for control, n=21 for tolbutamide treated). (D-E) In both untreated and
treated islets, the Kir2.1 channel blocker ML133 increases the amplitude of Ca”" oscillations. (F)
The mean Ca®" response to ML133 is larger in treated islets compared to untreated islets (n=18
for control and tolbutamide treated). A two-tailed t-test was used for statistics: *=p<0.05.

*4%=p<(,001.
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Figure 7.
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