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Abstract

Insulin is secreted by pancreatic β-cells that are electrically coupled into micro-organs called
islets of Langerhans. The secretion is due to the influx of Ca2+ ions that accompany electrical
impulses, which are clustered into bursts. So-called “medium bursting” occurs in many β-
cells in intact islets, while in other islets the β-cells exhibit “slow bursting”, with a much
longer period. Each burst brings in Ca2+ that, through exocytosis, results in insulin secretion.
When isolated from an islet, β-cells behave very differently. The electrical activity is much
noisier, and consists primarily of trains of irregularly-timed spikes, or fast or slow bursting.
Medium bursting, so often seen in intact islets, is rarely if ever observed. In this study,
we examine what the isolated cell behavior can tell us about the mechanism for bursting
in intact islets. A previous mathematical study concluded that the slow bursting observed
in isolated β-cells, and therefore most likely in islets, must be due to intrinsic glycolytic
oscillations, since this mechanism for bursting is robust to noise. It was demonstrated
that an alternate mechanism, phantom bursting, was very sensitive to noise, and therefore
could not account for the slow bursting in single cells. We re-examine these conclusions,
motivated by recent experimental and mathematical modeling evidence that slow bursting
in intact islets is, at least in many cases, driven by the phantom bursting mechanism and not
endogenous glycolytic oscillations. We employ two phantom bursting models, one minimal
and the other more biophysical, to determine the sensitivity of medium and slow bursting to
electrical current noise. In the minimal model, both forms of bursting are highly sensitive to
noise. In the biophysical model, while medium bursting is sensitive to noise, slow bursting
is much less sensitive. This suggests that the slow bursting seen in isolated β-cells may be
due to a phantom bursting mechanism, and by extension, slow bursting in intact islets may
also be driven by this mechanism.



Introduction

Insulin is responsible for glucose uptake and utilization by muscle, liver, and adipose cells,

and its secretion by pancreatic β-cells is regulated by blood glucose and various hormones

and neurotransmitters [28]. The blood insulin level is pulsatile in non-diabetic humans and

animals, and this pulsatility is an important factor in glucose homeostasis [18, 29]. The

oscillatory insulin level is known to reflect pulses of insulin secretion from islet β-cells, and

is due to bursting electrical activity [2, 3]. Each burst of electrical impulses brings Ca2+

into the cell through Ca2+ channels, evoking Ca2+-mediated exocytosis of insulin-containing

granules. Thus, bursting produces periodic elevations in the intracellular Ca2+ concentration,

resulting in pulses of insulin secretion.

Many electrical and Ca2+ recordings from islets have been published over several decades.

In the vast majority of cases, islets exposed to stimulatory levels of glucose exhibit either

“medium bursting” with period of roughly 15 sec [1, 11], or “slow bursting” with longer

periods of up to 5 min [37, 40]. Interestingly, islets from the same mouse tend to have similar

burst periods, either all medium or all slow [26]. The mechanism for these oscillations has

been under investigation since the 1970’s, aided by mathematical modeling since the first-

published model in 1983 [9]. One mechanism for both forms of bursting, “phantom bursting”,

involves the actions of two slow processes with very different time scales, acting together

on the cell’s membrane potential to package electrical impulses into bursts. Bursting can

be produced with a period that is close to either time constant, or anything in between,

depending on key parameter values, and so there is a wide range of burst periods. This

provides a great deal of flexibility, and variation of a single ion channel conductance can
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produce bursts with periods ranging from tens of seconds to several minutes [4].

For slow bursting, a second mechanism has been postulated by Tornheim in 1991 [34],

and is based on the ability of a key allosteric enzyme in the glycolytic pathway to produce

oscillations with a period similar to that of slow bursting and pulsatile insulin secretion.

This enzyme, phosphofructokinase (PFK), was shown to produce oscillations in its substrate

(fructose 6-phosphate, F6P) and in its product (fructose 1,6-bisphosphate, FBP) in muscle

extracts [35, 36]. The same M-type isoform is prevalent in β-cells [39]. This “glycolytic

mechanism” for slow bursting was later incorporated into a biophysical β-cell model, the

Dual Oscillator Model (DOM) [6], as the basis for slow bursting as well as “compound

bursting”, which consists of episodes of fast bursts clustered together into episodes [10, 14]

by the glycolytic oscillator .

With these two potential driving mechanisms for slow bursting, a natural question is

which, if either, is correct. This was addressed in a novel way by examining how each of

the mechanisms holds up to noise [27]. In vivo, the β-cells are coupled together by gap

junctions into pancreatic islets of Langerhans; because of this electrical coupling the cells

act as a syncytium, all cells sharing their combined membrane and oscillating together. In

this physiological network, channel noise has little impact on the membrane potential since

the membrane (and number of channels) is so large [31]. However, in single β-cells that

are isolated from an islet, the very small cells (∼ 10 µm in diameter) exhibit a very noisy

voltage time course, reflecting the much smaller membrane area [16, 40]. Pedersen showed

that a simple model for phantom bursting was very vulnerable to noise, so that medium

bursting in the deterministic model was replaced by noisy “fast bursting” (with period of a

few seconds). Slow bursting with the phantom bursting model was not examined, but slow
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bursting driven by glycolytic oscillations was shown to be robust to noise [27]. These results

are important, since they show why medium bursting is never observed in single cells, and

they suggest that any slow bursting or slow Ca2+ oscillations observed in single cells are due

to glycolytic oscillations [27]. One can also extrapolate from this that slow bursting and

Ca2+ oscillations in intact islets is likely due to glycolytic oscillations.

In this report we re-examine the question of whether phantom bursting is sensitive to

noise. This is motivated by a recent experimental study that used a FRET (Föster Resonance

Energy Transfer) sensor along with Ca2+ imaging to show that the FBP time course in islets

that exhibit slow Ca2+ oscillations has the shape of a triangle wave [23]. This is contrary

to what would be expected if intrinsic glycolytic oscillations were occurring, where the FBP

concentration would exhibit pulses [20]. It is, however, consistent with a phantom bursting

mechanism [19]. Given this, one would expect that at least in some cases the slow Ca2+

oscillations and slow electrical bursting observed in isolated β-cells should be driven by a

phantom mechanism, contrary to the conclusion of [27].

We begin by examining a minimal model for phantom bursting [4], and demonstrate that

both medium and slow bursting produced by this model are sensitive to electrical current

noise (which reflects the stochastic gating of ion channels). We then progress to a more recent,

and more biophysical, model called the Integrated Oscillator Model (IOM) [17]. As with the

minimal model, medium bursting produced by the IOM is sensitive to noise. However, slow

bursting driven by a phantom mechanism in the model is much less sensitive. To understand

these findings we employ fast-slow analysis and examine the fast-subsystem properties in the

phase plane. We conclude that the slow electrical bursting and Ca2+ oscillations observed in

single β-cells, where the environment is inherently noisy, could be driven by either a phantom
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bursting mechanism or, as proposed in[27], by intrinsic glycolytic oscillations.

Medium and slow bursting are sensitive to noise in a

minimal phantom bursting model

The minimal phantom bursting model was developed specifically to demonstrate how a model

of cell electrical activity with two slow processes operating on very different time scales can

produce a wide range of burst periods [4]. It consists of a differential equation for the

membrane potential or voltage (V ), another for the fraction of activated delayed-rectifier-

type K+ channels (n), and two slower activation variables (s1 and s2) for two additional

types of K+ channels. The differential equations are:

dV

dt
= −(ICa + IK + Is1 + Is2 + IL + Inoise)/Cm (1)

dn

dt
=

n∞(V )− n
τn(V )

(2)

ds1
dt

=
s1∞(V )− s1

τs1
(3)

ds2
dt

=
s2∞(V )− s2

τs2
. (4)

The three activation variables change on very different time scales: τn(V ) < 10 ms,

τs1 = 1 s, and τs2 = 2 min, so τn � τs1 � τs2. The n variable dynamics are responsible for

the downstroke of action potentials, while s1 and s2 package action potentials into bursts

[4]. With the exception of Inoise, expressions for the ionic currents and other functions are

identical to those given in [4], and the computer code can be downloaded from www.math.
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fsu.edu/~bertram/software/islet. Brownian noise is added to the voltage through the

current

Inoise = σw
√
dt (5)

where w is a Wiener variable and σ is an amplitude parameter. When noise is present, we

set σ = 300 fA, and otherwise σ = 0. The differential equations are solved numerically using

the Euler method with time step ∆t = 0.1 ms.

The s1 current is critical to setting the burst period, so we give it here:

Is1 = gs1s1(V − VK) (6)

where gs1 is the maximal conductance of the current and VK is the K+ Nernst potential.

When gs1 is large the s1 current is of sufficient size to drive bursting, so the bursting is

fast. When gs1 is small, the s1 current is insufficient to terminate spiking and there must

be a substantial contribution from the s2 current (the size of the contribution has an inverse

relationship with the size of gs1 [38]). Since s2 changes on a much slower time scale, bursting

in this case is much slower. Thus, by varying the parameter gs1 one can readily vary the

burst period over a wide range of values. The flexibility of burst periods exhibited by the

minimal model is illustrated in Fig. 1. In panel A, the burst period is a few seconds (fast

bursting), in panel C it is approximately 15 sec (medium bursting), and in panel E it is

approximately 80 sec (slow bursting).

The introduction of noise brings about significant changes. The fast bursting remains

fast (panel B), but the burst periods for medium (panel D) and slow bursting (panel F)

are significantly reduced. Apparently, both of these forms of bursting are sensitive to noise.
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Figure 1: Bursting produced by the minimal phantom bursting model for β-cell activity.
(A) Fast bursting, with gs1 = 20 pS. (B) There is little change in the fast bursting when
noise is added. (C) Medium bursting, with gs1 = 7 pS. (D) The burst period is substantially
reduced when noise is added. (E) Slow bursting, with gs1 = 3 pS. (F) The burst period is
again substantially reduced when noise is added.
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This is quantified in Fig. 2. Panels A and B are histograms characterizing 100 active phase

durations (A) and silent phase durations (B) computed using the model with noise. These

durations are normalized by the active (silent) phase duration of the burst attractors of the

deterministic model. The histograms for what would be medium bursting in the deterministic

case are shown in blue, while those for slow bursting are in red. These illustrate that many

noisy bursts have active and silent phase durations less than half as long as the deterministic

bursts, for both medium and slow bursting. These data are used to compute cumulative

probability distributions that are shown in panels C and D. In panel C, for example, the

fraction of active phases in the noisy model simulation with relative duration (i.e., relative

to the deterministic case) less than X is plotted for a sampling of X ≤ 1. For both medium

and slow bursting, roughly 80% of the active phases are less than half the duration of the

deterministic active phases. For the silent phases, roughly 40% are less than half as long as

the deterministic silent phases for medium bursting, while the percentage is closer to 70%

for slow bursting.

This analysis indicates that both medium and slow bursting are sensitive to noise, though

slow bursting appears to be somewhat more sensitive (bars in Fig. 2B, D are more left shifted

for slow busting than for medium bursting). Since both forms of bursting are produced

through a phantom bursting mechanism, i.e., they require significant changes in both s1 and

s2 to achieve the bursting pattern, this result is consistent with the prior study that used a

different minimal phantom bursting model [27].
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Figure 2: Quantification of the effects of noise on medium and slow bursting in the minimal
phantom bursting model. (A) Histogram of 100 events showing the active phase duration
relative to that of the deterministic model. Medium bursting is shown in blue, while slow
bursting is shown in red. The effects of noise on the active phase duration are similar in both
types of bursting. (B) Histogram of 100 events showing the silent phase duration relative
to that of the deterministic model. The effects of noise on the silent phase duration are
similar in both types of bursting. (C-D) Data from panels A and B plotted as cumulative
probability distributions.
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Slow bursting is only moderately sensitive to noise in a

biophysical β-cell model

The Integrated Oscillator Model (IOM) was developed over a period of many years based

on a number of key experimental findings [7], and includes modules for electrical activity,

intracellular Ca2+ handling, and metabolism. In this model, fast and medium bursting are

driven by Ca2+ feedback onto Ca2+-activated K+ channels; in the case of medium bursting

significant variation in the Ca2+ concentration in the endoplasmic reticulum (ER) is also

required, as described in [8]. Slow bursting can be produced in one of two ways. In one

case, there are active metabolic oscillations due to positive feedback onto the allosteric en-

zyme phosphofructokinase in glycolysis. This substrate depletion mechanism for oscillations

drives the oscillations in electrical activity and Ca2+ through the action of ATP-sensitive

K+ channels (K(ATP) channels). These channels are deactivated when the ratio of adeno-

sine triphosphate (ATP) to adenosine diphosphate (ADP) is increased; active oscillations

in glycolysis lead to ATP/ADP oscillations, which cause slow bursting oscillations via ionic

current through the K(ATP) channels. This was the mechanism for slow bursting studied

in a previous report, and shown to be relatively insensitive to noise [27].

The other mechanism for slow bursting in the IOM occurs when the flux out of glycol-

ysis is sufficiently small [17]. This flux is set by the maximum catalytic rate of pyruvate

dehydrogenase (vPDH). With a small value of vPDH the metabolic oscillations are purely pas-

sive, slaved to oscillations in the intracellular Ca2+ concentration. These Ca2+ oscillations

influence the ATP/ADP ratio through positive feedback onto metabolism (increasing ATP

production) and negative feedback through the hydrolysis needed to power Ca2+ pumps (in-
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creasing ATP consumption) [7, 20, 17]. It has been shown that this form of slow bursting,

with passive metabolic oscillations, is due to a phantom bursting mechanism involving the

ATP concentration and the Ca2+ concentration in the ER [19].

As with the minimal phantom bursting model, changes in a single conductance param-

eter are sufficient to convert the bursting between fast, to medium, to slow. This is the

conductance for Ca2+-activated K+ channels, gK(Ca), in the ionic current equation

IK(Ca) = gK(Ca)q∞(c)(V − VK) (7)

where

q∞(c) =
c2

k2d + c2
(8)

and c is the free cytosolic Ca2+ concentration. The full model is described in [17] and

computer code can be downloaded from www.math.fsu.edu/~bertram/software/islet.

Examples of fast, medium, and slow bursting generated by the IOM are shown in Fig. 3.

The fast bursting is generated using a large value of gK(Ca), while slower forms of bursting

use smaller values of the parameter. The slow bursting does not involve an active glycolytic

oscillator; metabolic oscillations are slaved to Ca2+ oscillations and are passive. With the

addition of noise in the V differential equation, the period of all forms of bursting is reduced.

However, the effect of noise on medium bursting appears to be more extreme than that on

slow bursting.

The effects of noise on medium and slow bursting in the IOM is quantified in Fig. 4.

Panels A and B indicate that the noise shortens both active and silent phases of medium

bursting to a substantially greater degree than it does the active and silent phases of slow
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Figure 3: Bursting produced by the Integrated Oscillator Model for β-cell activity. (A)
Fast bursting, with gK(Ca) = 800 pS. (B) Some bursts are converted to single spikes, and
there is a reduction in the burst silent phase. The burst active phase is less affected by the
noise. (C) Medium bursting, with gK(Ca) = 500 pS. (D) The burst period is substantially
reduced when noise is added, yielding shorter silent and active phases. (E) Slow bursting,
with gK(Ca) = 100 pS. (F) The noise has little effect on the burst period. In all cases, the
pyruvate dehydrogenase parameter is set at vPDH = 0.002 µM/ms and noise is introduced
by setting σ = 300 fA.
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bursting. There is a clear separation in the histograms for the two types of bursting, unlike

the case with the minimal model (Fig. 2). In the cumulative probability panel C, we see

that for medium bursting approximately half of the noisy active phases have duration less

than 25% that of the deterministic model, while for slow bursting all active phases are

greater than 25% of that of the deterministic model and most are greater than 50% that

of the deterministic model. The difference is even more striking for silent phases. For

medium bursting, approximately half of the noisy silent phases are less than 40% that of the

deterministic model, while for slow bursting all noisy silent phase are greater than half of

that of the deterministic model, and most are greater than 75% of the deterministic model.

This quantification is consistent with Fig. 3, indicating that medium bursting with the IOM

is more sensitive to the effects of noise than is slow bursting.

A phase plane explanation of the differential effects of

noise on bursting

In both β-cell models discussed above, the variables can be partitioned into those that evolve

on a fast time scale and those that evolve on a slower time scale. This partitioning is the

first step in a fast-slow analysis that is often used to understand multi-timescale systems [5].

The evolution of the slow variables carries orbits through the asymptotic regimes of the fast

subsystem, and determines whether the system is in a spiking state or at rest. Periodicity

of the values of the slow variables produces bursting. Another key feature of both models

is bistability of the fast subsystem between a stable equilibrium and a stable limit cycle for

most values of the slow variables taken on during bursting. This is illustrated in Fig. 5, which
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Figure 4: Quantification of the effects of noise on medium and slow bursting in the Integrated
Oscillator Model. (A) Histogram of 100 events showing the active phase duration relative
to that of the deterministic model. Medium bursting is shown in blue, while slow bursting
is shown in red. The effects of noise on the active phase duration of medium bursting are
greater than for slow bursting. (B) Histogram of 100 events showing the silent phase duration
relative to that of the deterministic model. The effects of noise on the silent phase duration
of medium bursting are greater than for slow bursting. (C-D) Data from panels A and B
plotted as cumulative probability distributions.
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Figure 5: Fast subsystem phase plane of the minimal model. The V -nullcline (yellow) and
n-nullcline (green) intersect to form three equilibria. Equilibrium E1 is a stable node, E2 is a
saddle point, and E3 is an unstable focus. The limit cycle (red) is stable. The two branches
of the stable manifold of E2 form the separatrix between the basins of attraction of the two
stable structures. The values of the slow variables s1 and s2 are those taken on 20% of the
way through the active phase of medium bursting: s1 = 0.63 and s2 = 0.60, with gs1 = 7 pS.
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shows structures for the fast subsystem (the V and n variables) in the minimal (deterministic)

phantom bursting model. The values of the slow variables, s1 and s2, are chosen as those

taken on 20% through the active phase of a medium burst. The V -nullcline (yellow) and

n-nullcline (green) intersect at three locations. The first of these, E1, is a stable node, while

E2 is a saddle point and E3 is an unstable focus. Surrounding the focus is a stable limit cycle

(red). Also shown are the two branches of the stable manifold (dashed blue) of the saddle

that act as a separatrix between the two attractors. The limit cycle reflects spiking solutions

of the subsystem, while the stable equilibrium reflects the state of the system during the

burst silent phase. Since noise enters through the V differential equation, it directly affects

the fast subsystem dynamics, causing upward or downward deflections in the trajectory. If

the phase point is in the basin of attraction of the limit cycle, as it would be during the

burst active phase, then if noise kicks the trajectory across the separatrix it will prematurally

terminate the active phase. If the phase point is in the basin of attraction of E1, as it would

be during the burst silent phase, then if noise kicks the trajectory across the separatrix it

will prematurally terminate the silent phase. Thus, one can understand the effects of noise

in terms of the two stable structures and their distance from the separatrix.

Figure 6 shows, for the minimal phantom bursting model, structures of the fast subsystem

phase plane for both medium (blue) and slow (red) bursting. Panel A shows the separatrices

and action potential limit cycles with s1 and s2 values chosen 20% through a burst active

phase (these values are different for medium and slow bursting). It is evident that, in both

cases, the spiking limit cycle is close to the separatrix. In fact, the vertical distance between

these structures during slow bursting is similar to that during medium bursting. (It is the

vertical distance that is important since noise acts directly on the V variable.) It is for this
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Figure 6: Phase planes of the fast subsystem explain why medium and slow bursting have
similar sensitivities to noise in the minimal phantom bursting model. (A) Limit cycles
reflecting spiking orbits during the active phases of medium (solid blue) and slow (solid red)
bursting are superimposed, along with separatrices (i.e., stable manifolds of E2) for each
(dashed). The distance between the limit cycle and separatix is similar for medium and slow
bursting. Equilibria are not shown. In both cases, s1 and s2 are chosen at values 20% through
the burst active phase. Medium bursting: s1 = 0.63 and s2 = 0.60, with gs1 = 7 pS. Slow
bursting: s1 = 1 and s2 = 0.63, with gs1 = 3 pS. (B) Nullclines, equilibria, and separatrices
at values of the slow variables 20% through a burst silent phase. The distance from E1 to
the separatrix is similar for medium and slow bursting. Medium bursting: s1 = 0.26 and
s2 = 0.63, with gs1 = 7 pS. Slow bursting: s1 = 0.01 and s2 = 0.72, with gs1 = 3 pS.
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reason that the noise sensitivity of the active phase is similar in both forms of bursting. Panel

B shows nullclines, separatrices, and equilibria with s1 and s2 values chosen 20% through a

burst silent phase. In the case of medium (blue) and slow (red) bursting, the phase point

is at or near equilibrium E1 during the silent phase and the silent phase is prematurally

terminated by noise if the noise displaces the phase point above the separatrix. The distance

between E1 and the separatrix is very similar in medium and slow bursting, so again the

expectation is that sensitivity to noise of the silent phase is similar in both forms of bursting.

The fast subsystem of the IOM model again consists of the variables V and n, and Fig. 7

shows fast subsystem structures with slow variables set to their values 20% through the active

phase of medium bursting. (The slow variables that directly affect the fast subsystem are

cytosolic Ca2+ concentration, c, and ADP level, ADP.) The fast variable nullclines are similar

to those of the minimal model, and again cross to form three labeled equilibria.The single

stable equilibrium, E1, coexists with a stable limit cycle (solid blue), and the separatrix for

the basins of attraction is formed by the two branches of the stable manifold of E2 (dashed

blue). The similarity to Fig. 5 illustrates that the fast subsystem structure for the two

models is qualitatively similar.

The spiking orbit 20% through the active phase of medium bursting (solid blue) is shown

superimposed with that 20% through slow bursting (solid red) in Fig. 8A. The separatrices

are also shown, as dashed curves. It is evident that the spiking orbit is closer to the separatrix

during medium bursting than during slow bursting. This suggests that noise will be more

likely to prematurally terminate an active phase during medium bursting than it would

during slow bursting. Indeed, Fig. 4 shows that approximately 30% of the noisy medium

bursts had active phases that were 20% or less of their deterministic duration, while few if
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Figure 7: Fast subsystem phase plane for the IOM. The V -nullcline (yellow) and n-nullcline
(green) intersect to form three equilibria. Equilibrium E1 is a stable node, E2 is a saddle
point, and E3 is an unstable focus. The limit cycle (solid blue) is stable. The two branches of
the stable manifold of E2 (dashed blue) form the separatrix between the basins of attraction
of the two stable structures. The values of the slow variables are those taken on 20% of
the way through the active phase of medium bursting: c = 0.11 µM and ADP = 807 µM,
with gK(Ca) = 500 pS. Here and in subsequent phase plane figures the range of n extends to
negative values. This is for visualization purposes only; for appropriate initial conditions, n
only takes on values from 0 to 1.
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any of the noisy slow burst active phases were 20% or less of their deterministic duration.

Figure 8B shows the nullclines and equilibria 20% through the silent phase of medium (blue)

and slow (red) bursting. In these cases, both E1 and E2 are nearly at the same values of n,

so if noise perturbs the phase point to a V value greater than that of E2 the silent phase will

be prematurally terminated. It is evident that E1 and E2 are much closer together for the

case of medium bursting than for the case of slow bursting. For this reason, the silent phase

of medium bursting is more sensitive to noise than is that of slow bursting. In summary,

Fig. 8 demonstrates why in the IOM medium bursting is more sensitive to noise than is slow

bursting, as shown by the histograms in Fig. 4.

At which point on the spiking limit cycle is it most likely that noise will push the tra-

jectory across the separatrix into the basin of attraction of E1, terminating a burst active

phase? From Fig. 7 it appears that this might be along the top portion of the limit cycle,

which is closest to the separatrix and is the peak of an action potential. To investigate

whether this is true, we superimpose a noisy fast subsystem trajectory onto the fast subsys-

tem phase plane diagram in Fig. 9 (using parameter values and values of c and ADP from

Fig. 7). This noisy spiking trajectory (shown in black) moves away from the limit cycle with

each revolution, due to the effects of the noise. It crosses the separatrix not at the top of

the limit cycle, but in the bottom portion, denoted by a green dot. Nineteen additional

stochastic spiking trajectories were computed, and the location at which each crosses the

separatrix is indicated with a orange dot in the figure. (Each dot is the location where a

stochastic spiking trajectory leaves the basin of attraction of the limit cycle and does not

return.) It is evident that in only one instance did the trajectory escape the spiking basin

of attraction near the top of the limit cycle; in all other instances the escape occurred near
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Figure 8: Fast subsystem phase plane for the IOM. (A) Spiking limit cycles for medium
(solid blue) and slow (solid red) bursting are superimposed, along with separatrices for each
(dashed). The distance between the limit cycle and separatix is less for medium bursting
than for slow bursting. In both cases, the slow variables c and ADP are chosen at values
20% through the burst active phase. Equilibria are not shown. Medium bursting: c = 0.11
µM and ADP = 807 µM, with gK(Ca) = 500 pS. Slow bursting: c = 0.16 µM and ADP = 842
µM, with gK(Ca) = 100 pS. (B) Nullclines and equilibria at values of the slow variables 20%
through a burst silent phase. The distance from E1 to the threshold E2 is smaller for medium
bursting than for slow bursting. Medium bursting: c = 0.08 µM and ADP = 812 µM, with
gK(Ca) = 500 pS. Slow bursting: c = 0.11 µM and ADP = 872 µM, with gK(Ca) = 100 pS.
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the bottom of the limit cycle, during the repolarized phase of the action potential. In fact,

the escape often occurred close to the saddle point, E2.

Figure 9: Superposition of a fast subsystem stochastic spiking trajectory (black curve) onto
the fast subsystem phase plane for the IOM 20% through the active phase of medium bursting
(c = 0.08 µM and ADP = 812 µM, with gK(Ca) = 500 pS). After several revolutions, the
trajectory crosses the separatrix at the green dot. The orange dots show crossing points for
19 other stochastic spiking trajectories that leave the basin of attraction of the limit cycle
and don’t return.

Why does a noisy trajectory usually escape the spiking basin of attraction near the

bottom of the limit cycle rather than the top? To answer this, we first consider the proximal

effect of a noisy current (in contrast to long-term effects which can cause the phase point

to switch basins of attraction) on the membrane potential. The voltage time derivative is

proportional to the sum of the ionic currents, which we denote as Iion, plus the noisy current,
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Inoise. The effect of noise on dV
dt

is thus determined by the size of Inoise relative to the total

current, the sum of Iion and Inoise. We therefore define the relative noise as

η =
|Inoise|

|Iion + Inoise|
(9)

and examine how this varies throughout the fast subsystem phase plane.

The current noise can either be depolarizing, causing an upward deflection in V , or

repolarizing, causing a negative deflection. We consider each case separately. Figure 10A

shows a heat map of log10(η) applied at points throughout the V -n phase plane where the

noise is depolarizing (positive). At each point in the V -n plane, we set Inoise to be the mean

of the positive noise values calculated over a stochastic spiking trajectory. The relative noise

is greatest in the green and blue regions of the diagram, which take on the cubic shape of

the V nullcline (where Iion = 0), although this nullcline is located slightly to the right in the

green-yellow region. Although the relative positive noise is large near the peak of the action

potential (largest value of V ) and is of the correct sign to push the trajectory across the

separatrix, this only happens rarely (1 of the 20 stochastic simulations performed, shown as

a blue point in upper portion of the diagram). At the bottom portion of the action potential

limit cycle the positive current noise pushes the trajectory away from the separatrix, so will

not contribute to the resetting.

Figure 10B shows a heat map of log10(η) where the noise is repolarizing (negative). Most

of the 20 points at which noisy spiking trajectories crossed through the separatrix (blue

points on the dashed white separatrix) occur in a region where the relative noise is large.

This region is located primarily near the bottom of the limit cycle, and it is in this region
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that repoarizing noise is most effective at perturbing the trajectory down and away from

the limit cycle. From a biophysical perspective, this is not surprising, since the repolarized

phase of the action potential is when most ion channels are deactived, so noise (or any other

input) will have the largest effect on the membrane potential.

Why were there so few resettings with depolarizing current noise near the peak of the

action potential? To answer this, the limit cycle is depicted not as a solid curve in Fig. 10,

but as points plotted at equally spaced times. It is evident that the points accumulate near

the bottom of the limit cycle, indicating that the trajectory is moving more slowly here. The

slower the trajectory is moving, the greater the opportunity for noise to push the trajectory

across the separatrix, so the explanation for the minimal effect of depolarizing noise during

the top portion of the action potential is simply that the trajectory is moving quickly through

this portion of the limit cycle (and this is reflected by the fixed stepsize numerical scheme

that we use for the differential equations).

Taken together, these factors explain why the noisy spiking trajectory typically crosses

the separatrix near the bottom of the limit cycle. From this, we can make a more precise

statement regarding noise sensitivity during the active phase of medium and slow bursting: if

the distance between the bottom portion of the spiking limit cycle is closer to the separatrix

in one form of bursting than another, then the former is more sensitive to current noise.

The remainder of the limit cycle is much less important. We see from Fig. 8A that, by this

criterion, medium bursting is more sensitive to noise than is slow bursting in the IOM, as

was determined in Fig. 4A,C.
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Figure 10: (A) Heat map of log10(η) with depolarizing (positive) current noise, and with
superimposed phase plane structure of the fast subsystem for the IOM, 20% of the way
through the active phase of medium bursting (c = 0.08 µM and ADP = 812 µM, with
gK(Ca) = 500 pS). The blue dots show crossing points for the 20 stochastic spiking trajectories
through the separatrix (dashed white). The limit cycle is shown as white points, with equal
spacing of ∆t = 2.5 ms. (B) Heat map of log10(η) with repolarizing (negative) current noise.
Most resettings occur near the lower portion of the limit cycle where the relative repolarizing
noise is large and the speed of passage is low.24



Noise reduces the burst plateau fraction

Pancreatic β-cells respond to changes in the blood glucose level by changing the burst plateau

fraction, defined as the active phase duration divided by the full burst period (sum of the

active and silent phase durations). In a bursting islet, increases in the glucose level cause the

plateau fraction to increase, eventually reaching a value of 1 when the bursting is converted

to tonic spiking [21, 25]. Higher plateau fractions result in higher mean Ca2+ levels and

increased insulin secretion [2]. How does noise affect the plateau fraction in the two β-cell

models? Figure 11A shows histograms of the plateau fraction for the medium and slow

bursting in the minimal β-cell model. The dashed lines represent the plateau fraction for the

deterministic cases (blue for medium bursting and red for slow bursting). It is evident that,

with this model, the addition of noise results in a significant reduction in the plateau fraction

for both forms of bursting. Figure 11B shows plateau fraction histograms for medium and

slow bursting in the IOM, along with deterministic values. Again, the addition of noise

decreased the plateau fraction in both forms of bursting. That noise induces a reduction in

the plateau fraction in all cases reflects the greater sensitivity of the active phase of bursting

to noise than the silent phase in both models.

Slow bursting driven by an active metabolic oscillator

is only moderately sensitive to noise

Pedersen showed that slow bursting driven by active metabolic oscillations produced in the

Dual Oscillator Model is only moderately sensitive to noise [27]. A similar type of slow
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Figure 11: Histograms of plateau fraction for noisy medium (blue) and slow (red) bursts,
along with values for the deterministic cases (dashed). The plateau fraction is typically
smaller for a noisy burst than for a deterministic one. (A) Histograms for the minimal β-cell
model with parameter values as in Fig. 1. (B) Histograms for the IOM with parameter values
as in Fig. 3.
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bursting, driven by an active glycolytic oscillator, is produced by the IOM in a large region

of parameter space [17]. Indeed, by increasing the parameter vPDH from 0.002 µM/ms (used

in all previous IOM simulations) to 0.03 µM/ms, the system produces intrinsic glycolytic

oscillations and slow bursting with gK(Ca) = 100 pS. This slow bursting is characterized by

pulses of the metabolite FBP (Fig. 12A), in contrast to the slow bursting analyzed above

where the FBP timecourse has a triangle shape (Fig. 12B). (See [19] for a description of the

mechanisms driving these different types of oscillations.) This allows us to compare the effects

of noise on slow bursting in the IOM driven by active metabolic oscillations to the effects

in the same model, but where the slow bursting is driven by Ca2+ feedback and metabolic

oscillations are passive. The effects of noise with passive metabolic oscillations have been

shown earlier, in Fig. 4. For comparison, the effects of the same level of noise on the IOM with

the larger vPDH value is shown in Fig. 13. We see that, in both cases, active and silent phase

durations are much less affected by noise during slow bursting than medium bursting. This

is in spite of the fact that slow bursting is produced through a phantom bursting mechanism

in Fig. 4 and intrinsic glycolytic oscillations in Fig. 13. (Medium bursting is driven by a

phantom bursting mechanism in both cases.) Thus, we conclude that the existence of slow

bursting in a noisy environment does not distinguish between slow burst mechanisms.

Discussion

We have demonstrated that slow bursting generated by the Integrated Oscillator Model for

pancreatic β-cells in phantom bursting mode is much less sensitive to current noise than

is medium bursting generated by the same model. This is in contrast to a much simpler
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Figure 12: Two different types of FBP oscilllations reflect different oscillation mechanisms
[19]. (A) FBP exhibits pulses when there is an active glycolytic oscillator. Produced when
vPDH = 0.03 µM/ms and gK(Ca) = 100 pS. (B) The FBP timecourse has a triangle shape
when metabolic oscillations are driven by Ca2+ feedback. Produced when vPDH = 0.002
µM/ms and gK(Ca) = 100 pS.
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Figure 13: Quantification of the effects of noise on medium and slow bursting in the Inte-
grated Oscillator Model in which the slow bursting is due to intrinsic glycolytic oscillations.
(A) Histogram of 100 events showing the active phase duration relative to that of the deter-
ministic model. Medium bursting is shown in blue, while slow bursting is shown in red. (B)
Histogram of 100 events showing the silent phase duration relative to that of the determinis-
tic model. (C-D) Data from panels A and B plotted as cumulative probability distributions.
In both cases, vPDH = 0.03 µM/ms and noise is introduced by setting σ = 300 fA. For
medium bursting gK(Ca) = 500 pS and for slow bursting gK(Ca) = 100 pS.
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phantom bursting model, where current noise affects both types of bursting about equally.

There are important biological ramifications of this finding, since it tells us that the slow

bursting observed in single β-cells could be due to a phantom bursting mechanism. It has

been demonstrated previously that the slow bursting in single β-cells could also be due to

intrinsic glycolytic oscillations; in such a case the bursting is very robust to noise [27]. Taken

together, one can conclude that there are at least two very different dynamical mechanisms

that are consistent with slow bursting in the presence of noise, and thus consistent with the

slow bursting of noisy single β-cells. Why is this important, when single β-cells are only

found in the laboratory? In vivo, β-cells are clustered together into islets of Langerhans,

with β-cells coupled to neighbors by gap junctions that provide electrical coupling, and for

this reason the islet acts as a syncytium and the voltage trace of a β-cell in an islet is much

less noisy than that from a β-cell removed from an islet [16, 40]. However, slow bursting

in single β-cells, as reported in [15, 40, 30, 32], is still relevant because it is likely that the

biological mechanism for these oscillations is the same in intact islets. Therefore, our work

and that of [27] together suggest that slow bursting in islets could be due to either a phantom

bursting mechanism or to intrinsic glycolytic oscillations. (They could of course also be due

to a mechanism not examined in either study.)

There is a great deal of heterogeneity among single β-cells, in terms of gene expression

[12], electrical activity [16], Ca2+ dynamics [40], and insulin secretion [24]. Coupling the cells

together with gap junctions reduces the functional heterogeneity [33], and a recent study

showed that the glucose dose response curve for an islet is sharper than that for dispersed

cells from an islet of the same mouse [30]. The same study showed that the plateau fraction

of single β-cells is smaller than that of intact islets over the full range of glucose levels for
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which oscillations are produced [30]. This agrees with the prediction made with both the

minimal phantom bursting model and the IOM (Fig. 11).

Phantom bursting refers to bursting in which the period is influenced by more than

one slow variable, so that the burst period is not set by the time constant of any one

variable [4]. In the minimal phantom bursting model used here the two slow variables are

activation variables of K+ channels whose properties were specified so as to produce a wide

range of burst periods [4]. A more biophysical model was developed later, which had three

slow variables, the cytosolic Ca2+ concentration, the Ca2+ concentration in the endoplasmic

reticulum (ER), and a phenomenological variable for the ratio of the nucleotide adenosine

diphosphate (ADP) to adenosine triphosphate (ATP) [8]. We have examined the effect of

current noise on medium and slow bursting produced by this model, and found that the

noise dramatically shortens the medium bursting and has a more moderate effect on slow

bursting (results not shown). The IOM builds on this model, and includes more biophysical

elements such as a module for ATP production and consumption [6], and we have shown

here that slow bursting produced by the IOM is much less sensitive to noise than is medium

bursting. Thus, a second result of our study is that the way in which the phantom bursting

mechanism is implemented (i.e., the biophysical elements involved in the burst production)

has a significant effect on the sensitivity of slow bursting to noise.

The IOM can produce slow bursting through two different mechanisms, depending on

the choice of parameter values [17]. In the first mode, analyzed in detail in [19], the slow

oscillations are due to phantom bursting, with key roles played by the slow variation of ADP

and the ER Ca2+ concentration, both of which reflect activity-dependent variation in the

cytosolic Ca2+ concentration. In this mode metabolic oscillations are passive, responding
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to the rise and fall of cytosolic Ca2+ that occurs during bursting [7]. This is the mode

primarily examined in the current study. In the second mode, there are intrinsic oscillations

in glycolysis, which we refer to as active metabolic oscillations. This mode was the basis of

slow oscillations in the Dual Oscillator Model that was used in the earlier study of noise by

Pedersen [27], which showed that noise had only a moderate effect on slow bursting. We

found similar results in the IOM with parameters set to produce active metabolic oscillations;

noise only moderately shortens the slow burst active and silent phases (Fig. 13), much like

the effect of noise on slow bursting with passive metabolic oscillations (Fig. 4).

Given these two distinct mechanisms for slow bursting in β-cells, how can one determine

which is valid? This question is the focus of ongoing investigations, and as of yet there

is no definitive answer. One experimental study used a sensor for an enzyme activated

by the glycolytic metabolite fructose 1,6-bisphosphate, and found that the sensor levels

oscillated in a triangle-wave pattern during slow bursting. This provides evidence for slow

bursting driven by passive metabolic oscillations [20, 23]. However, other experimental

studies showed that metabolic oscillations can occur even when the cell’s cytosolic Ca2+

level is not oscillating [13, 22], pointing to active metabolic oscillations that could be due to

oscillations in glycolysis. Indeed, it may be naive to expect that there is a unique mechanism

for slow bursting in β-cells, given that slow insulin oscillations are normally found in non-

diabetic humans as well as in dogs, rats, and mice. These oscillations facilitate the function

of the liver in maintaining glycemic control [18, 29]. Given the ubiquity and importance of

slow insulin oscillations, which are driven by slow bursting oscillations, it should probably

be expected that there are redundant mechanisms for their generation. The current study,

together with [27], suggests that at least two mechanisms for slow bursting are consistent
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with studies of bursting in single β-cells.
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Appendix A: The minimal phantom bursting model

The minimal phantom model is described in detail in [4]. Here, we give equations and refer

the reader to [4] for a complete model description. The model is composed of four differential

equations:

dV

dt
= −(ICa + IK + Is1 + Is2 + IL + Inoise)/Cm (10)

dn

dt
=
n∞(V )− n
τn(V )

(11)

ds1
dt

=
s1∞(V )− s1

τs1
(12)

ds2
dt

=
s2∞(V )− s2

τs2
. (13)

The ionic currents driving the dynamics of V are:

ICa = gCam∞(V )(V − VCa) (14)

IK = gKn(V − VK) (15)

Is1 = gs1s1(V − VK) (16)

Is2 = gs1s2(V − VK) (17)

IL = gL(V − VL) . (18)
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The equilibrium activation and inactivation functions are:

m∞(V ) =
1

1 + exp ((νm − V )/Sm)
(19)

n∞(V ) =
1

1 + exp ((νn − V )/Sn)
(20)

s1,∞(V ) =
1

1 + exp ((νs1 − V )/Ss1)
(21)

s2,∞(V ) =
1

1 + exp ((νs2 − V )/Ss2)
(22)

and the V -dependent time constant for n is:

τn =
τn,max

1 + exp ((V + ντn)/Sτn)
. (23)

In the body of the manuscript, we used a comparison of time constants for the model

variables to justify the classification of V and n as fast variables and s1 and s2 as slow

variables. Another way to do this would be to plot the derivatives of the variables and

compare their magnitudes over a burst orbit. We do this in Fig. 14 for the case of slow

bursting. The maximum derivatives of V and n are at least 10 times larger than those for s1

and s2, consistent with the classification of V and n as fast variables and s1 and s2 as slow

variables.
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Parameter Value Parameter Value

Cm 4524 fF νm −22 mV

gCa 280 pS νn −9 mV

gK 1300 pS νs1 −40 mV

gL 25 pS νs2 −42 mV

gs1 varies pS Sm 7.5 mV

gs2 32 pS Sn 10 mV

VCa 100 mV Ss1 0.5 mV

VK −80 mV Ss2 0.4 mV

VL −40 mV τn,max 8.3 sec

τs1 1 sec ντn 9 mV

τs2 2 min Sτn 10 mV

Table 1: Parameters in the minimal phantom model.
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Figure 14: Time-dependent derivatives of the four model variables during one slow burst
(with gs1 = 3 pS). The derivatives for the V and n variables are much larger than those for
the s1 and s2 variables, consistent with the classification of V and n as fast variables and s1
and s2 as slow variables.
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Appendix B: The Integrated Oscillator Model (IOM)

The IOM is described in detail in [17]. We give the model equations here, but refer the

reader to [17] for a full description. The model consists of eight differential equations:

dV

dt
= −(ICa + IK + IK(Ca) + IK(ATP))/Cm (24)

dn

dt
=
n∞(V )− n

τn
(25)

dc

dt
= fCa(Jmem − Jm − Jer) (26)

dcm
dt

= fCaσmJm (27)

dcer
dt

= fCaσerJer (28)

dF6P

dt
= 0.3 (JGK − JPFK) (29)

dFBP

dt
= JPFK −

1

2
JPDH (30)

dADP

dt
=

{
ATP− exp

[(
1 + 2.2 JPDH

0.05+JPDH

) (
1− c

0.35

)]
ADP

}
τa

. (31)

Ionic currents are:

ICa = gCam∞(V )(V − VCa) (32)

IK = gKn(V − VK) (33)

IK(Ca) = gK(Ca)q∞(c)(V − VK) (34)

IK(ATP) = gK(ATP)o∞(ADP,ATP)(V − VK) . (35)
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The equilibrium activation and inactivation functions are:

m∞(V ) =
1

1 + exp[(νm − V )/sm]
(36)

q∞(c) =
c2

k2d + c2
(37)

o∞(ADP,ATP) =
0.08 + 0.89

(
MgADP
kdd

)2
+ 0.16

(
MgADP
kdd

)
(

1 + MgADP
kdd

)2 (
1 + ATP4−

ktt
+ ADP3−

ktd

) (38)

s∞(cm) =
cm

KPDH + cm
. (39)

Here, MgADP = 0.165ADP, ADP3− = 0.135ADP, and ATP4− = 0.05ATP. The ADP and

ATP concentrations are related by:

ATP =
1

2

[
Atot +

√
−4ADP2 + (Atot − ADP)2 − ADP

]
(40)

and Atot is the total nucleotide concentration. Flux densities and reaction equations are:

Jmem = −
[
α

Vcyt
ICa + kPMCAc

]
(41)

Jer = kSERCAc− pleak(cer − c) (42)

Jm = kunic− kNaCa(cm − c) (43)

JPFK = vPFK
w1110 + kPFK

∑
i,j,l∈{0,1}wij1l∑

i,j,k,l∈{0,1}wijkl
(44)

JPDH = vPDHs∞(cm)
√

FBP (45)
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where the wijkl are weights, given by:

wijkl = (AMP/K1)
i(FBP/K2)

j(F6P/K3)
k(ATP/K4)

l

f ik13f
jk
23 f

il
41f

jl
42f

kl
43

(46)

where AMP = ADP2

ATP
.
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Parameter Value Parameter Value

Cm 5300 fF pleak 2× 10−4 ms−1

gCa 1000 pS kuni 0.4 ms−1

gK 2700 pS kNaCa 0.001 ms−1

gK(Ca) varies pS σm 100

gK(ATP) 25000 pS σer 31

VCa 25 mV JGK 0.001µM ms−1

VK −75 mV vPFK 0.01µM ms−1

νm −20 mV kPFK 0.06

sm 12 mV K1 30µM

νn −16 mV K2 1µM

sn 5 mV K3 5× 104 µM

τn 20 ms K4 103 µM

kd 0.5 µM f13 0.02

kdd 17 µM f23 0.2

ktt 1 µM f41 20

ktd 26 µM f42 20

fCa 0.01 f43 20

α 5.18×10−18 µmol fA−1 ms−1 vPDH varies µM ms−1

Vcyt 1.15× 10−12 l KPDH 200µM

kPMCA 0.2 ms−1 τa 300000 ms

kSERCA 0.4 ms−1 Atot 3000µM
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Table 2: Parameters used in the IOM.
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