
Distributed Matrix-Vector Multiplication: A
Convolutional Coding Approach

Anindya B. Das and Aditya Ramamoorthy
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50010, U.S.A.
{abd149, adityar}@iastate.edu

Abstract—Distributed computing systems are well-known to
suffer from the problem of slow or failed nodes; these are referred
to as stragglers. Straggler mitigation (for distributed matrix
computations) has recently been investigated from the standpoint
of erasure coding in several works. In this work we present a
strategy for distributed matrix-vector multiplication based on
convolutional coding. Our scheme can be decoded using a low-
complexity peeling decoder. The recovery process enjoys excellent
numerical stability as compared to Reed-Solomon coding based
approaches (which exhibit significant problems owing their badly
conditioned decoding matrices). Finally, our schemes are better
matched to the practically important case of sparse matrix-vector
multiplication as compared to many previous schemes. Extensive
simulation results corroborate our findings.

Index Terms—Distributed Computation, Stragglers, Cross Par-
ity Check Convolutional Code, Reed-Solomon Coding

I. INTRODUCTION

Distributed computation plays a major role in several prob-
lems in optimization and machine learning. For example, large
scale gradient descent often requires us to repeatedly calculate
matrix-vector products. In high-dimensional problems, time
and storage constraints necessitate the splitting of these com-
putations across multiple nodes.

Distributed systems are well known to suffer from the
issue of slow or faulty processors, which are referred to as
stragglers. Several methods have been developed recently for
straggler mitigation by using ideas from erasure coding [1]–
[4]. For example, suppose that we want to compute the product
of matrix A ∈ Rr×t and x ∈ Rt in a distributed fashion. As
proposed by [5], we can first split matrix A into submatrices
with equal number of rows as AT =

[
AT

0 AT
1

]
, and assign

three different worker nodes the jobs of computing A0x, A1x
and (A0 + A1) x so that the computational load on each of
them is half of the original. It is evident that the master node
can recover Ax, as soon as it receives results from any two
workers, i.e., the system is resilient to one straggler. This can
be generalized by using Reed-Solomon (RS) code-like ideas.
Reference [2] incorporates similar ideas also for matrix-matrix
multiplication. In both these cases, the proposed solutions have
the property that the master node can recover the final result
as soon as it receives the results from any τ workers; τ is
called the recovery threshold.

This work was supported in part by the National Science Foundation (NSF)
under grant CCF-1718470.

While these solutions for distributed matrix-vector multi-
plication are optimal with respect to the recovery threshold,
they neglect certain important issues that exist in practical
scenarios. For instance, in many machine learning problems,
the matrix A is sparse. RS based approaches require dense
linear combinations of the submatrices of A. This may cause
the computation time of the submatrix-vector products to go
up. RS based approaches also suffer from numerical stability
issues owing to the high condition number of the corre-
sponding Vandermonde matrices. A high condition number
results in the decoded value changing by a large amount
even if the computed submatrix-vector products change by
a small amount. This is especially relevant in the machine
learning context where gradient computations can often be
approximate. We note here that this issue with respect to
polynomial interpolation is well recognized in the numerical
analysis literature [6] and several papers discuss appropriate
choices of interpolation points for numerical robustness [7].
However, in the straggler mitigation context, we need to be
able to perform recovery from any large enough subset of
interpolation points. This causes the worst case condition
number to be quite bad.

In this work, we present a class of distributed matrix-vector
multiplication schemes by leveraging (binary) cross parity
check convolutional codes [8], that were originally proposed
for distributed storage systems. In our context, the generator
matrices specify the assignment of jobs to the worker nodes.

A. Main Contributions

• While the codes in [8] can result in generator matrices
that are recursive, we show that our schemes always result
in feedforward encoders for any number of stragglers. This
is important in our setting, because our underlying field of
operation is R. Furthermore, we show that in the setting when
the number of stragglers is two, then our encoder only has
coefficients in {−1, 0, 1}. When the number of stragglers is
three, we show an upper bound on the absolute value of the
coefficients.
• We demonstrate that our schemes can be decoded at the
master node by a low-complexity peeling decoder. This im-
plies that the master node can operate in iterations such that

3022978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Authorized licensed use limited to: Iowa State University. Downloaded on June 29,2020 at 17:08:21 UTC from IEEE Xplore. Restrictions apply.

in each iteration, it solves an equation where there is only one
unknown.
• Our experimental results indicate the numerical robustness
of our scheme, and also shows its advantage in computation
speed when A is sparse.

II. CROSS PARITY CHECK CONVOLUTIONAL CODES

Consider the set of real infinite sequences {cr, cr+1, . . . }
for r ∈ Z that start at some finite integer index and continue
thereafter. These sequences can be treated as elements of the
formal Laurent series [8] in indeterminate D with coefficients

from R, i.e.
∞∑
i=r

ciD
i. Let us denote the ring of formal

Laurent series over R as R((x)) under the normal addition
and multiplication of formal power series. It can be shown that
R((x)) forms a field, i.e., each non-zero element of R((x)) has
a corresponding inverse.

In this work, we will consider n infinite strips that can
be visualized as columns that start at index r = 0 and con-
tinue indefinitely downward. We denote the infinite sequence
as {c0,j , c1,j , c2,j , . . . } for each column j, and so, we can
represent the j-th strip by the formal series as

Cj(D) =
∞∑
i=0

ci,jD
i

for 0 ≤ j ≤ n − 1. These sequences obey the “geometric”
constraint

n−1∑
j=0

ci−mj,j = 0 for i ≥ 0, (1)

which indicates the lines of slope m. For each value of m =
0, 1, . . . , (n−k−1), the sequences sum to zero along the lines
of the corresponding slope. The value ci,j = 0 if i < 0 for
any j.

Let CP (n, k) denote the set of all sequences1 that satisfy
the constraints in (1). This can equivalently be expressed as

n−1∑
j=0

Cj(D)Dmj = 0 (2)

for m = 0, 1, . . . , (n− k − 1). Let

C(D) = (C0(D), C1(D), C2(D) . . . , Cn−1(D))

Then, we can express the condition succinctly as

C(D) HT
n,k(D) = 0

where Hn,k(D) is the (n − k) × n matrix (analogous to a
parity-check matrix), which can be obtained from (2) and
written as

Hn,k(D) =


1 1 1 . . . 1
1 D D2 . . . D(n−1)
...

...
...

...
1 D(s−1) D2(s−1) . . . D(n−1)(s−1)


1We will refer to this as the CP (n, k) code

∗

(A0 + A4) x

(A1 + A4 + A5) x

(A2 + A5 + A6) x

(A3 + A6 + A7) x

A7 x

− (A0 + A4) x

− (A0 + A1 + A4 + A5) x

− (A1 + A2 + A4 + A5 + A6) x

− (A2 + A3 + A5 + A6 + A7) x

− (A3 + A6 + A7) x

− A7 x

A0 x

A1 x

A2 x

A3 x

∗

∗

A4 x

A5 x

A6 x

A7 x

∗

∗

W0 W1 W2 W3

Fig. 1: Distributed Matrix-vector Multiplication embedded into a
CP (4, 2) code. The assigned jobs in W0 are downshifted and its
first job is denoted by the placeholder *. This is only to make it
easy to see that the geometric constraints are satisfied. In reality,
W0 will start executing its first job, i.e., (A0 +A4)x right away

and proceed sequentially downward. Here blue and red dotted
blocks indicate two constraint lines with slopes 1 and 0, respectively

Since every (n − k) × (n − k) submatrix of Hn,k(D) is a
Vandermonde matrix evaluated at distinct powers of the inde-
terminate D, its determinant will be a non-zero polynomial
in D and hence invertible over R((x)). Thus, C(D) can be
recovered even if any n− k columns are lost.

The key idea underlying our work is that distributed matrix
vector multiplication can be embedded into the class of
CP (n, k) codes, where a given column i represents (upon
appropriate interpretation) the computation assigned to worker
node Wi, which sequentially processes its assigned jobs from
top to bottom. The result Ax can be recovered even if any
n − k worker nodes fail. Crucially, Ax can be decoded
using a peeling decoder. This significantly reduces the overall
computation load at the master node and provides for a scheme
that enjoys excellent numerical stability.

Example 1. Let A be a large matrix that is split into
eight block-rows, A0,A1, . . . ,A7. Fig. 1 shows an example
where the distributed computation of Ax is embedded into a
CP (4, 2) code. Each cell in the figure shows the responsibility
assigned to the corresponding worker node (from top to
bottom). It can be observed that the geometric condition in
(1) is satisfied by the cell contents and that Ax can be
recovered even if any two of the worker nodes fail. Further-
more, this can be achieved by a peeling decoder with only
addition/subtraction operations.

III. EMBEDDING MATRIX-VECTOR MULTIPLICATION INTO
A CP (n, k) CODE

In this section, we outline the details of our proposed
scheme. Towards this end, we first derive the corresponding
generator matrix for the CP (n, k) code and show that it can be
expressed in feed-forward form. And then we discuss how the
distributed computation of Ax can be mapped onto a system
with n worker nodes using the CP (n, k) code.

3023

Authorized licensed use limited to: Iowa State University. Downloaded on June 29,2020 at 17:08:21 UTC from IEEE Xplore. Restrictions apply.

Let s = n− k and Ya,b be a a× b matrix such that

Ya,b(i, j) = Dij ; 0 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 1.

and Ψ be a w × w diagonal matrix such that

Ψw = diag
[
1 D D2 . . . Dw−1

]
Thus, we have

HT
n,k(D) =

 Ys,s

−−−−
Yk,sΨ

s
s

 .
Let the systematic generator matrix be

Gn,k(D) =
[
Z Ik

]
where Ik is the k × k identity matrix. Now satisfying
Gn,k(D) HT

n,k(D) = 0, we obtain

Z = − Yk,s Ψs
s Y

−1
s,s . (3)

We can express Wk,s = Yk,s Ψs
s as

Wk,s =


1 Ds D2s . . . D(s−1)s

1 Ds+1 D2(s+1) . . . D(s−1)(s+1)
...

...
...

...
1 D(s+k−1) D2(s+k−1) . . . D(s−1)(s+k−1)

 .
Suppose that {y`j} are the elements of Y−1

s,s and we define s
different polynomials in the indeterminate σ as

yj(σ) =
s−1∑
`=0

y`j σ
`

for 0 ≤ j ≤ s. Since Ys,sY
−1
s,s = I, we can write for any j,

yj(D
`) = 0 for ` 6= j

which indicates that any D` will be a root of the polynomial
yj(σ) if ` 6= j. On the other hand, yj(Dj) = 1 so that

yj(σ) =
s−1∑
`=0

y`j σ
` =

s−1∏
`=0, 6̀=j

σ −D`

Dj −D`

Now taking the product Wk,s Y
−1
s,s involves evaluating these

polynomials at Ds+i where i = 0, . . . , k− 1, and thus we get

Zij = −
s−1∏

`=0, 6̀=j

Ds+i −D`

Dj −D`
. (4)

It is unclear whether the above expression leads to a recursive
or a non-recursive Gn,k. The following theorem shows that
Zij can be simplified to express it as a polynomial, i.e., Gn,k

can be put in feed-forward form.

Theorem 1. Any term Zij , with 0 ≤ i < k and 0 ≤ j < s, can
be written as a finite polynomial in D with integer coefficients
for any s. If s = 2, the coefficients Zij ∈ {−1, 0, 1} and if
s = 3 the coefficients Zij have absolute value at most k.

Proof. The proof follows from the fact that Dq − 1 can be
expressed as a product of cyclotomic polynomials. The details
can be found in Section III in [9]. �

Example 2. When n = 4, k = 2, we can obtain G4,2(D) as

G4,2(D) =

[
D −D − 1 1 0

D2 +D −D2 −D − 1 0 1

]
(5)

where we note that all coefficients of the polynomials in
G4,2(D) belong to the set {−1, 0, 1}.

Next, we discuss the usage of Gn,k in a distributed matrix-
vector multiplication context. First we partition A row-wise
into ∆ (we assume k divides ∆) equal sized block-rows. These
are denoted A0,A1,A2, . . . ,A∆−1. Let uj = Ajx where
(0 ≤ j ≤ ∆ − 1). The next step is to form k different
polynomials with coefficients from the uj’s. These are given
by

∼
ui(D) = uiq + uiq+1D + · · ·+ u(i+1)q− 1D

q−1

for 0 ≤ i ≤ k − 1 where q = ∆
k . Now the sub-matrices

assigned to all the workers are determined by

U(D) =
[
∼
u0(D)

∼
u1(D) . . .

∼
uk−1(D)

]
Gn,k(D)

Now suppose that each worker node can store at most the
equivalent of γ fraction of the rows of A. Thus, if we assign
`j number of jobs to worker Wj , then it needs to satisfy
`i
∆ ≤ γ. The number of jobs assigned to worker node Wi,
(0 ≤ i ≤ n− 1), depends on the entries of the corresponding
column of Gn,k(D). Let di denote the difference between
the maximum and the minimum exponent of D in the i-th
column of Gn,k(D), and let λ = max

i
di. Then, for satisfying

the storage constraint we require

∆

k
+ λ ≤ γ ∆ which leads to ∆ ≥ λ

γ − 1
k

. (6)

Example 3. We consider the same scenario as mentioned in
Example 2 with n = 4 workers, and we need to develop a
scheme that is resilient to s = 2 stragglers, so k = n− s = 2.
If γ = 3

4 , then we can set ∆ = 2
3
4−

1
2

= 8, as it is divisible k.
The relevant polynomials are

∼
u0(D) = u0 + u1D + u2D

2 + u3D
3, and

∼
u1(D) = u4 + u5D + u6D

2 + u7D
3.

Forming U(D) =
[
∼
u0(D)

∼
u1(D)

]
G4,2(D), we obtain the

scheme shown in Fig. 1.

Remark 1. The above procedure demonstrates the importance
of a feed-forward Gn,k. Indeed, if Gn,k had been recursive,
the number of terms in the output would have been infinite.

IV. DECODING ALGORITHM

A major advantage of our proposed scheme is a low-
complexity decoding procedure. Note that our scheme is in
one-to-one correspondence with the CP (n, k) code. Hence,
we describe the decoding procedure for the CP (n, k) code;
the adaptation to recovering Ax follows naturally.

Recall that the symbols are denoted by ci,j where 0 ≤ i ≤
`j − 1 and 0 ≤ j ≤ n − 1. Let the indices of the straggler
nodes be 0 ≤ t0 < t1 < t2 < · · · < ts−1 ≤ n− 1.

3024

Authorized licensed use limited to: Iowa State University. Downloaded on June 29,2020 at 17:08:21 UTC from IEEE Xplore. Restrictions apply.

At each step, our decoding process in Algorithm 1 exploits
the geometric constraints in (1) to identify an equation where
there is one unknown; it continues in a systematic fashion until
all the unknowns are decoded. In the sequel, we refer to this
as decoding in a peeling decoder fashion. For instance, to start
decoding blocks from straggler t0, we can use (1) and obtain
the constraint for the line with slope s− 1 as

n−1∑
j=0

ci−(s−1)j,j = 0

which can pass through a block cα,t0 in straggler t0. So we
have the constraint as

n−1∑
j=0

c(s−1)(t0−j)+α,j = 0 (7)

In (7), if j < t0, we assumed that these blocks are known. Now
if j > t0, the elements cα,j’s are also known until a constraint
line passes through c0,t1 with the increase of j. Thus in the
extreme case, the line can pass through c−1,t1 , so we can set
j = t1 and

α+ (s− 1)(t0 − j) = −1

Thus if 0 ≤ α ≤ (s − 1)(t1 − t0) − 1, we can say that the
only unknown in (7) is cα,t0 . Thus we can obtain the first
(s − 1)(t1 − t0) block-products of straggler t0 in a peeling
decoding fashion.

Now we say that the algorithm has finished phase p, where
0 ≤ p ≤ s − 2, if it has only recovered as many symbols
as possible in a peeling decoding fashion from the stragglers
ti, i ≤ p, without recovering any symbol from stragglers tj ,
j > p. Let us denote ηp,y as the number of recovered blocks
in a peeling decoding fashion from straggler ty after finishing
phase p.

Lemma 1.

ηp,y =


p∑
i=y

(s− 1− i) (ti+1 − ti) if y ≤ p

0 otherwise
(8)

for p < s− 1.

The proof of this lemma is inductive and can be found in
Section IV in [9].

Theorem 2. The decoding procedure in Algorithm 1 allows
the recovery of all ci,j where 0 ≤ i ≤ `j−1 and 0 ≤ j ≤ n−1
in a peeling decoding fashion, as long as there are at most s
node failures.

Proof. The main idea of the proof is that we would complete
upto phase s−2 according to lemma 1, and utilize the slope 0
constraint lines to recover blocks from straggler ts−1. Details
of the proof can be found in Section IV in [9]. �

Example 4. In this example, we demonstrate how we can
recover Ax in a peeling decoding fashion for the same
scenario in Fig. 1. In this example, we have four workers,
W0,W1,W2 and W3, among which we assume that W2 and

Algorithm 1: Decoding of CP (n, k) Scheme
Input : A CP (n, k) scheme to obtain Ax and the

index of the stragglers
1 Sort the stragglers according to their index as

0 ≤ t0 < t1 < t2 < · · · < ts−1 ≤ n− 1
2 for j ← 0 to s− 2 do
3 for i← 0 to (s− 1− j)(tj+1 − tj)− 1 do
4 Set q = j ;
5 while q ≥ 0 do
6 Obtain an additional submatrix-vector block

product (until `tq) in straggler tq using
constraint line with slope s− 1− q ;

7 q ← q − 1 ;
8 end
9 end

10 end
11 for j ← 0 to `s−1 − 1 do
12 Set q = s− 1 ;
13 while q ≥ 0 do
14 Obtain an additional submatrix-vector

block-product (until `tq) in straggler tq using
constraint line with slope s− 1− q ;

15 q ← q − 1 ;
16 end
17 end

Output: All block products to obtain Ax

W3 are stragglers. According to Algorithm 1, we utilize the
slope 1 constraint lines to recover the block-products of W2

and slope 0 constraint lines to recover the block-products of
W3. For example, if we utilize the slope 1 constraint line
through the blue dotted blocks in Fig. 1, then we can recover
the first block of of W2, which is A0x. Similarly, if we utilize
the slope 0 constraint line through the red dotted blocks, then
we can also recover the first block of W3, which is A4x. Using
this same fashion, we can decode all the submatrix-vector
block products from workers W2 and W3, which completes
the job.

V. NUMERICAL RESULTS

We consider a scenario where A has dimension 8, 000 ×
10, 000 and x is of length 10, 000. Suppose that we have n = 7
workers, γ = 3

10 (storage fraction). We require the system to
be resilient to s = 3 stragglers.

For the RS based approach we can partition A in ∆ = 10
parts, and assign three submatrix-vector products to each
worker. The evaluation points for the RS code are chosen as
real numbers equally spaced in [−1, 1]; this is a better choice
than integers [10]. On the other hand, we can embed this
problem into a CP (7, 4) using our proposed approach. The
value of λ (cf. Section III) in this case is 8 and ∆ = λ

γ− 1
k

=
8

3
10−

1
4

= 160. The assignment of jobs to each worker node
can be determined by the procedure in Section III

3025

Authorized licensed use limited to: Iowa State University. Downloaded on June 29,2020 at 17:08:21 UTC from IEEE Xplore. Restrictions apply.

70 75 80 85 90 95 100 105 110 115

0

1

2

3

4

5

6

SNR (in dB)

E
rr

or
Pe

rc
en

ta
ge

at
th

e
ou

tp
ut

Reed Solomon Coding
Proposed CP(7,4) Method

Fig. 2: Comparison between our proposed method and RS coding
based method at different noise levels

In order to test the numerical stability of recovery at the
master node, we add white Gaussian noise to each submatrix-
vector product computed by the workers.

Fig. 2 presents a comparison of the RS based approach and
our proposed approach. The error percentage values at the
output are shown for different noise levels. If the correct output
is y and the recovered output by the master is ŷ, then the error
percentage is measured as ||y−ŷ||||y|| × 100%. We can see that
the error percentage for our proposed method is nearly zero,
whereas the RS based method has around 5% error even at an
SNR = 70 dB. This is due to the high condition number of the
associated real Vandermonde matrix of the RS based method.

Next, we compare the computation times of the two schemes
when the matrix A is sparse. Consider a system with n = 5
workers with γ = 3

5 . We choose A (of dimension 12, 000 ×
12, 000) to be of limited bandwidth [11], i.e., it has non-zero
values only in the β- diagonals (diagonals from top-left to
bottom-right) and β = −b,−b + 1, . . . ,−1, 0, 1, . . . , b − 1, b,
where b < 12, 000. Thus the sparsity of the matrix decreases
if b increases.

In the RS based approach, we choose ∆ = 5 and assign 3
jobs to each of the workers. For our scheme we embed the
computation into a CP (5, 2) code. The parameter λ = 4, and
∆ = λ

γ− 1
k

= 40. Note that both of the schemes are resilient
to three stragglers.

Fig. 3 shows the maximum time needed by any worker for
different approaches at different sparsity levels. It is evident
that the workers take significantly less amount of time in the
proposed method in comparison to the RS based approach. The
reason behind taking less time is that the sparsity level in the
coded jobs can be preserved more in our proposed scheme than
RS approach. For example, in our experiment, when matrix A
has 90% sparsity, the sub-matrices assigned to any worker in
RS coding approach has around 51% sparsity, whereas in our
proposed scheme, even in the worst case, a parity worker can
enjoy, on average 70% sparsity. It should be noted that the
message workers take further less time since they preserve
the same level of sparsity as matrix A.

70% 80% 90% 95%
0

50

100

150

Sparsity Levels

Ti
m

e
(i

n
m

s)

RS Coding
Proposed Method

Fig. 3: Comparison between our proposed method and RS coding
based method in terms of computation time needed by a worker

VI. CONCLUSION

In this paper, we present an approach for embedding dis-
tributed matrix-vector multiplication into the class of cross-
parity check convolutional codes towards the goal of straggler
mitigation. Our proposed scheme has significant advantages
over RS based approaches. The recovery of the intended
product is performed using a low-complexity peeling decoder
in our scheme as compared to polynomial interpolation in
RS based approaches. Unlike RS based approaches which
suffer from ill-conditioned recovery matrices, our recovery
is numerically quite stable. Finally, for the case of sparse
matrices, our scheme requires much sparser combinations of
the block rows of A, leading to faster computation at worker
nodes. Numerical examples have confirmed these results.

REFERENCES

[1] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of
Advances in Neural Information Processing Systems (NIPS), 2016, pp.
2100–2108.

[2] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Proc. of Advances in Neural Information Processing Systems (NIPS),
2017, pp. 4403–4413.

[3] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication,” preprint,
2018, [Online] Available: https://arxiv.org/abs/1804.10331.

[4] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl.
Conf. on Machine Learning (ICML), 2017.

[5] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[6] F. S. Acton, Numerical methods that (Usually) work. The Mathematical
Association of America, 1990.

[7] J.-P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,”
SIAM review, vol. 46, no. 3, pp. 501–517, 2004.

[8] T. Fuja, C. Heegard, and M. Blaum, “Cross parity check convolutional
codes,” IEEE Transactions on Information Theory, vol. 35, no. 6, pp.
1264–1276, 1989.

[9] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multipli-
cation: A convolutional coding approach,” 2019, [Online] Available:
https://arxiv.org/abs/1901.08716.

[10] L. Tang, K. Konstantinidis, and A. Ramamoorthy, “Erasure coding for
distributed matrix multiplication for matrices with bounded entries,”
IEEE Communications Letters, vol. 23, no. 1, pp. 8–11, Jan 2019.

[11] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

3026

Authorized licensed use limited to: Iowa State University. Downloaded on June 29,2020 at 17:08:21 UTC from IEEE Xplore. Restrictions apply.

