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First principles analysis of surface dependent
segregation in bimetallic alloys†

Lida Farsi and N. Aaron Deskins *

Stability is an important aspect of alloys, and proposed alloys may be unstable due to unfavorable

atomic interactions. Segregation of an alloy may occur preferentially at specific exposed surfaces, which

could affect the alloy’s structure since certain surfaces may become enriched in certain elements. Using

density functional theory (DFT), we modeled surface segregation in bimetallic alloys involving all

transition metals doped in Pt, Pd, Ir, and Rh. We not only modeled common (111) surfaces of such alloys,

but we also modeled (100), (110), and (210) facets of such alloys. Segregation is more preferred for early

and late transition metals, with middle transition metals being most stable within the parent metal. We find

these general trends in segregation energies for the parent metals: Pt 4 Rh 4 Pd 4 Ir. A comparison of

different surfaces suggests no consistent trends across the different parent hosts, but segregation energies

can vary up to 2 eV depending on the exposed surface. We also developed a statistical model to predict

surface-dependent segregation energies. Our model is able to distinguish segregation at different surfaces

(as opposed to generic segregation common in previous models), and agrees well with the DFT data. The

present study provides valuable information about surface-dependent segregation and helps explain why

certain alloy structures occur (e.g. core–shell).

1. Introduction
Platinum group metals, such as Pt, Pd, Rh, and Ir often display
high catalytic activity for catalytic reactions. These metals can
be expensive, so alloys are often used to decrease the amount of
expensive metal being used, while also achieving high catalytic
activity. Alloys have been investigated for instance in hydrogen
generation,1,2 dehydrogenation,3–5 reforming processes,6,7 and
fuel cells.8–11 In order to design viable alloy catalysts, the
materials should have high catalytic activity, but should also
be stable. Depending on how well the two metals mix, different
alloy structures may form.12 For instance, an alloy may form a
homogeneous structure for metals that mix well, while separa-
tion into distinct particles or core–shell particles may occur for
metals that prefer to segregate.

Surface segregation leads to the surface of an alloy particle/
crystal having a different alloy composition than the bulk.
Surface segregation can influence many processes such as
adsorption, wetting, crystal growth, oxidation, corrosion, and
catalysis.13,14 Several tools, computational and experimental, can
be used to study and identify alloy segregation.15 Depending on
the application of interest, surface segregation can be beneficial

or detrimental.16,17 For instance, segregation of Pt atoms to the
surface of a Pt75Ni25 alloy enhanced the catalytic activity for the
oxygen reduction reaction (ORR).18–20 On the other hand,
possible segregation of an element M in M (core)–Pt (shell)
structures may decrease the stability of these alloys in acidic
medium.16,21 Different parameters have been used to explain
surface segregation. Atom size and surface energy difference
between the host metal and the impurity element have been
investigated.16,22,23 Elastic energy release,24 heat of solution for the
alloy,24 composition of the elements in the alloy,16 and cohesive
energy23 are other properties tied to surface segregation.

Thermodynamics may drive what type of structure forms in
an alloy (or nanoalloy for nanoparticles), and modeling can be
used to predict such structures.25 Segregation has already been
studied in previous reports using tools such as density func-
tional theory (DFT). Ruban et al.26–28 for instance calculated
segregation energies of single impurity atoms in several low-
index surfaces.26–28 Segregation behavior for the (111) surfaces
of platinum,16,29,30 palladium,22,31,32 and iridium21 has been
investigated. Segregation behavior can be surface dependent,
meaning that it can depend on what surface is exposed. Ruban
et al.28 reported that the segregation energy is related to the
nature of d-bands which vary across the different transition
metals. Other DFT work indicates that the core metal in core/
shell structures can affect surface adsorption, and choice of
core determines alloy stability.33 Other work modeling Pt3M
alloys shows that metal choice M affects alloy segregation and
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surface reactivity for the oxygen reduction reaction.34 Surface
segregation at the (111),20,35–42 (110),20,35–38,40–42 and (100)20,35–43

surfaces of Pt has been studied. Surface segregation at the
(111),38,44–46 (110),38,45,46 and (100)38,43–46 surfaces of Pd has
also been investigated. Besides DFT, other models have been
developed to predict alloy structures, such as coordination-
dependent models to predict structure and segregation in a
Pt–Pd particle and Pt–Rh(111) surface,39 or other bimetallic
surfaces/particles.47

Such studies have shown that segregation behavior can
occur differently at various surfaces. A potential shortcoming
in existing studies is the limited number of impurities that
have been considered. For instance, several of these studies
only considered binary Pt–Ni20,35,36,40,42 and Pt–Pd44–46 alloys.
The segregation energy, a measure of how much an impurity
element prefers to segregate from a parent element, can be a
good indicator of the alloy’s stability.21,22 While published
literature has determined segregation energies for select metals
in select surfaces, a comparison of many different surface facets
(e.g. open and closed) is not currently available. Furthermore,
the most comprehensive collection27,28 of segregation energies
in the literature uses the local density approximation (LDA),
while in the present study, we performed DFT calculations using
generalized gradient approximation (GGA) functionals, which
are more common for modeling metals.

We have performed a systematic study of the (111), (110),
(100), and (210) surfaces using Pt, Pd, Rh, and Ir as host metals.
We considered all transition metals as dopants, and investigated
how segregation compares for the different surface facets. It is
important to note that segregation energy also depends on the
alloy’s composition and depending on how many atoms are
being segregated, different segregation energies can be obtained.
In the present study, we considered dilute alloys. Specifically we
modeled a single impurity (dopant) in the host metal. We also
addressed how different types of segregation (sub-surface to
surface versus bulk to surface) affect segregation energy results.
Finally, we present models that may explain these surface
segregation processes, and can be used to make predictions of
alloy segregation.

2. Methodology
2.1. Simulation parameters

Density functional theory (DFT) calculations were performed
using the CP2K package48–52 which uses the Gaussian and
plane waves (GPW) method.50 Electron densities were treated
by plane waves and electronic orbitals were treated by double-
zeta Gaussian basis sets.53 Core electrons were represented
by Goedecker–Teter–Hutter (GTH) pseudopotentials.54,55 All
calculations were spin-polarized. CP2K uses periodic boundary
conditions and samples reciprocal space only at the G point.
To compensate for any error associated with small k-point
sampling, large cells have been used. We performed several
calculations to assess the effect of using different parameters
for the calculations, and discuss this in more detail in the ESI.†

These calculations indicate that the chosen parameters (cell
size, exchange correlation functional, basis set) are adequate
for the current study. We also used similar simulation para-
meters in our previous work,56 where we showed the approach
to give similar results to common DFT plane wave calculations.

The Perdew, Burke, and Ernzerhof (PBE) exchange correlation
functional57 was used throughout the present study. A short-
coming of this functional is that other less-common functionals
may give slightly better surface energies or lattice parameters.58

Other methods, such as based on wavefunctions rather than
electron density, may also give better descriptions59 (albeit
at increased computational time). Nonetheless DFT and the
PBE functional has been used widely to model metal systems
because they provide reasonable accuracy60,61 without protracted
computational times.

2.2. Surface models

In order to build surfaces, first we calculated lattice parameters
of bulk metals that were used as alloy hosts: 3.86 Å (Ir), 3.96 Å
(Pt), 3.95 Å (Pd), and 3.84 Å (Rh). These values match well
with other density functional theory studies: 3.86 to 3.89 Å for
Ir,62,63 3.99 Å for Pt,63,64 3.93 to 3.96 Å for Pd,63,65–69 and 3.80 Å
to 3.86 Å for Rh.63,70–72 Next we modeled surfaces using
periodic boundary conditions, or the slab approach. For (111)
and (100) surfaces, 6 ! 6 super cells were used. Both (111)
and (100) surfaces were 5 atomic layers thick consisting of
180 atoms. For (110) surfaces, 4 ! 6 super cells with 7 atomic
layers consisting of 168 atoms were used. For (210) surfaces,
2 ! 4 supercells with 5 atomic layers consisting of 160 atoms
were used. All atoms were allowed to relax in the various slabs.
The corresponding slab models are depicted in Fig. 1. We
investigated how the number of layers affected our results.
We also examined how freezing the bottom layers compared to
not freezing the bottom layers affected our results. We discuss
these aspects in the ESI.†

2.3. Segregation definition

In order to model segregation, we considered a dopant atom in the
first (top) surface layer, in a sub-surface layer, or in a larger bulk
structure. The bulk structure was of size 5 ! 5 ! 5 and had
500 atoms. The dopant atom may transfer from the sub-surface
layer to the first surface layer, or from the bulk to the first surface
layer. Both segregation processes were considered in this work. The
positions of a dopant in the alloy for the (111) surface and bulk are
depicted in Fig. 2. We show other dopant positions in Fig. S1 (ESI†).
There are several possible sub-surface sites that could be considered,
but we modeled those depicted in Fig. S1 (ESI†). The segregation
energy, Eseg-1-sub, is defined as the total energy difference of the alloy
with dopant in the first layer and sub-layer. An alternative
definition, Eseg-1-bulk, is defined as the total energy difference of
the alloy with dopant in the first layer and bulk structure. The
segregation energy is calculated by eqn (1) and (2):

Eseg-1-sub = E1st layer " Esub layer (1)

Eseg-1-bulk = Epure bulk + E1st layer " Eimpurity in bulk " Epure surface
(2)
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In these equations Eseg is the calculated segregation energy,
E1st layer is the total energy of the alloy with the dopant in the
first layer, and Esub layer is the total energy of the alloy with the
dopant in the sub-layer. The bulk energies, Epure bulk and
Eimpurity in bulk, are the total energies of a dopant-free bulk cell
and the bulk structure with a single atom dopant. A negative
segregation energy indicates that the dopant prefers to segre-
gate towards the surface, while positive segregation energy
indicates the dopant does not prefer to segregate towards the
surface. Unless noted in the text, when we refer to segregation
energy, this indicates the Eseg-1-bulk value. We also mention
that we only focus on the thermodynamics of segregation in
this paper. Certainly kinetics may play an important role in
hindering the segregation of two metals, but addressing
kinetics is beyond the scope of the current paper.

3. Results and discussion
3.1. Comparison of Segregation on (111) Surfaces

We first examined segregation of transition metals at the (111)
surfaces. Calculated segregation energies (Eseg-1-bulk) are given
in Fig. 3. The segregation energy curves have a characteristic
U shape, where early and late transition metals have the most
negative segregation energies while middle transition metals

have the most positive segregation energies. This is similar to
previous work, such as Ruban et al.,28 Chelikowsky,73 and
Mukherjee et al.74 However, there is anomalous segregation
behavior for 3d metals, especially middle metals like Cr, Mn,
and Fe. The segregation energy curve for the 3d metals does not
have a full U shape, but rather dips for the middle transition
metals, in contrast to the 4d and 5d metals. A similar anom-
alous dip was predicted by others.28 3d metals have anomalous
behavior compared to 4d and 5d, due to stronger magnetic
effects arising from narrow d bands.75 This dip for mid transi-
tion metals occurring in the 3d row can be observed for
other properties, such as surface enthalpy73 or DFT-calculated
cohesive energies (which agree well with experimental cohesive
energies also showing this dip).76 DFT may not be able to fully
describe such magnetic effects, and multireference methods
may be needed to better describe such metals, but DFT is able
to reasonably capture these magnetic effects.77 Our results
for 3d metals are consistent with experimental work showing
that middle 3d metals display anomalous behavior compared
to 4d and 5d metals.

We calculated the average segregation energies in the different
host metals Pt, Pd, Ir, and Rh to be 0.99, 0.52, "0.24, and 0.55 eV,
respectively. Ranges of segregation energies in the host
metals were as follows: Pt ("0.77 to 2.26 eV), Pd ("0.56 to
1.97 eV), Ir ("3.10 to 1.30 eV), and Rh ("1.40 to 2.15 eV).

Fig. 1 Slab models used in the present study. For each surface, the left image shows the top view of the surface, while the right image shows the side
view of the surface.

Fig. 2 Illustration of different dopant positions within parent metals in slab and bulk structures. Side views of the slabs and bulk are shown.
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The segregation energies in general follow this trend:
Pt4 Rh4 Pd4 Ir for 4d and 5d dopants. That is, the segregation
energies in the Pt(111) surface tend to be most positive, while the
segregation energies in the Ir(111) surface tend to be most
negative. Thus, segregation is least likely to occur within Pt and
most likely to occur within Ir. For 3d transition metals however,
Pd and Ir possess the least segregation energy values among
other hosts. Due to oscillatory behavior of surface segregation in
3d transition metals, it is hard to report a monotonic segregation
trend as was done for 4d and 5d dopants.

One factor affecting surface segregation is the metal atomic
size. When the dopant atom is bigger than the host metal,
strain occurs. In order for this strain to be released, the dopant
could segregate to the surface and leave the metal lattice. For a
given dopant, the bigger the host metal, the less likely segrega-
tion occurs due to strain. Pt has the largest van der Waals
radius among the four host metals, while Rh and Ir have the
smallest radii. As a result, surface segregation is least likely to
occur in Pt, and more likely to occur in other hosts. As we show
in Section 3.5, there are also other factors affecting surface
segregation. Therefore, our results cannot be interpreted merely
by metal atomic size.

As can be seen in Fig. 3, segregation energies are most
negative for early and late transition metals and most positive
for the middle transition metals. In other words, early and late
transition metals are most likely to segregate from the parent
metal. Chelikowsky et al.73 used Miedema78 theory to examine
such trends. Chelikowsky showed that the segregation energy is
proportional to the cohesive energy of the metal. As discussed
by Sutton,75 a transition metal’s cohesive energy can be estimated

from the number of d electrons (nd) based on a Friedel model
approximation. The maximum cohesive energy occurs for when
nd = 5, or for middle transition metals. Thus, middle transition
metals have the largest cohesive energies and correspondingly
the largest segregation energies. Brejnak and Modrak79

attempted to explain segregation based on number of d elec-
trons, and suggest that for host metals with nd-host 4 5,
segregation will occur when nd-dopant 4 nd-host. We do observe
favorable segregation for metals having nd-dopant 4 nd-host, as
seen in Fig. 3, but favorable segregation also occurs for some
early transition metals, in contrast to the predictions of Brejnak
and Modrak.79

3.2. Comparison of segregation in the (111), (100), (110), and
(210) Surfaces of Pt

Surface segregation can be surface dependent, meaning that it
may depend on what parent surface the segregation is occurring
at. For instance, Duan et al.45 studied surface segregation with
Pt–Pd alloyed nanoparticles and observed different segregation
tendencies for (100), (110) and (111) surfaces of these particles.
To demonstrate this point, we show surface segregation energies
for Pt(111), (100), (110), and (210) surfaces in Fig. 4. For some
dopants, there is a large segregation energy difference between
the Pt surfaces. For instance, several dopants (e.g. Co, Ti, V, Sc)
have large segregation energy differences (0.6 to 0.9 eV) between
the (110) and (100) surfaces. In general the lowest segregation
energies occur for the (110) surface, while the highest segrega-
tion energies occur for the (100) surface. Other metals (e.g. Pd,
Os, Ir, Au) have much smaller differences (E0.1 eV) between
the (110) and (100) surfaces. The average segregation energies

Fig. 3 Calculated segregation energies (Eseg-1-bulk) of single transition metal atoms within the (111) surfaces of Pt, Pd, Ir, and Rh.
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are 1.2, 1.1, 1.0, and 0.7 eV for the Pt(100), (111), (210), and
(110) surfaces, respectively, or (100) 4 (111) 4 (210) 4 (110).

An examination of the different dopantmetals provides details on
segregation. Surface-dependent segregation is most pronounced for
the 3d transition metals. The average segregation energy difference
between (100) and (110) surfaces for 3d metals was calculated to be
0.6 eV. The average segregation energy differences between (100) and
(110) surfaces for 4d and 5d transition metals was calculated to be
0.3 eV for both cases. The relative order of segregation energies across
the various surfaces were different for the 3d, 4d, and 5dmetals. For
3dmetals the segregation energies were generally as follows: (100)4
(111)4 (210)4 (110). For a few later transition metals (Ni, Cu, Zn),
however, the (111) segregation energies are higher than the (100)
segregation energies. The segregation energies of many middle 4d
and 5d transition metals follow this trend: (100)E (210)4 (111)4
(110). For early and late transition 4d and 5d metals, however the
segregation energies across the different surfaces become closer, and
it becomes difficult to distinguish surface-dependent segregation.
For instance, segregation energies of 5dmetals in the (100) and (210)
surfaces are very close, with a mean absolute difference of 0.04 eV
between the two surfaces. Of note is that segregation energies of 4d
and 5d metals have a much greater range ("0.8 to 2.3 eV) than the
range of the 3d segregation energies (0.2 to 1.9 eV). 3dmetals behave
differently than 4d and 5d metals due to their unique magnetic
properties as discussed before.75

3.3. Surface segregation in Pt, Ir, Pd, and Rh

Segregation energy comparisons between different surfaces of
Pt, Ir, Pd, and Rh are shown in Fig. 4. In the case of Pt and Pd as

host, segregation energies for (111), (100), (110), and (210)
surfaces converged to almost the same value at the start and
the end of the transition metal series. For Ir and Rh, this is not
the case. For Ir as host, the values of segregation energies at the
beginning and the end of transition metals differ the most for
(111), (100), (110), and (210) surfaces (compared with Pt, Pd,
and Rh as hosts). The segregation energies with Ir as host are
between "3.10 and 1.30 eV. The corresponding ranges for Pt,
Pd, and Rh surfaces as hosts are "0.77 to 2.26, "0.56 to 1.97,
and "1.40 to 2.15 eV, respectively. The most positive segrega-
tion energies occurred with Pt as the host. Pt had the highest
segregation energy, at 2.26 eV for W in the (210) surface. The
lowest segregation energy value occurred with Ir, at "3.10 eV
for Y in the (210) surface. The average segregation energies
for Pt, Ir, Pd, and Rh are 0.99, "0.24, 0.52, and 0.55 eV,
respectively. The segregation energy trends are thus roughly
Pt 4 Rh 4 Pd 4 Ir when considering all the (111), (100), (110),
and (210) surfaces. Full results for the (111) surfaces are shown
in Fig. S5 in the ESI.†

As evident from Fig. 4, segregation energies appear to be
surface dependent. For Pt and Ir as host, the 3d dopant
segregation energies depended strongly on the surface, meaning
that there is up to a 1.4 eV energy difference between segregation
of 3d dopants when different facets occur in the parent Ir or Pt
metals. In the case of Pd as a host, there is up to a 1.0 eV energy
difference in segregation for 4d and 5d dopants within different
facets of Pd. For Rh as host the surface dependent segregation is
most pronounced for 5d transition metals with about an 0.8 eV
energy difference between difference facets. From Fig. 4 it can be

Fig. 4 Segregation energy (Eseg-1-bulk) comparisons between difference surfaces of Pt, Ir, Pd, and Rh.
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observed that there is not a consistent trend in preferred
surface dependent segregation. For example, with Pt as host
and 3d transition metals as dopants the segregation energies
follow this trend: (100) 4 (111) 4 (210) 4 (110). On the other
hand with Rh as host and 5d transition metals as dopants this
trend occurs: (210) 4 (100) 4 (110) 4 (111). In some cases,
such as Pd as host and 3d transition metals as dopants, there is
not an obvious trend in surface dependent segregation energy. In
order to further explain such trends, we have developed a model
to predict surface dependent segregation energies, as discussed in
Section 3.5.

3.4. Bulk versus sub-layer segregation

We next address segregation from sub-surface sites to the
surface compared to segregation from the bulk to surface.
Both processes have been studied in the literature.16,22,24,28

Fig. 5 shows the calculated segregation energies using eqn (1)
(sub-surface to surface segregation) and eqn (2) (bulk to surface
segregation) with Pt as the host. A clear trend in the results is
that sub-surface segregation energies are lower than bulk segre-
gation energies, indicating that bulk segregation is harder. This
would suggest that as the dopant metal gets closer and closer to
the surface, it becomes less stable relative to the bulk, until at
the surface it may or may not reach a stable state. The plots all
have similar shapes indicating that the segregation energies are
largely just shifted relative to each other. The mean absolute
differences between bulk and sub-surface segregation energies
are 0.49 eV (111), 0.54 eV (100), 0.60 eV (110), and 0.82 eV (210),
with standard deviations of 0.35 eV (111), 0.38 eV (100), 0.42 eV
(110), and 0.58 eV (210). The corresponding graphs for Ir, Pd,
and Rh as hosts are depicted in Fig. 6–8. For Ir and Pd as host,
the two segregation processes have similar segregation energies,

as evident in Fig. 6 and 7. The mean absolute difference between
bulk and sub-surface segregation energies for Ir was 0.24 eV,
while the similar value for Pd was 0.13 eV. The differences are
more noticeable for Rh (Fig. 8), but the trends are similar
between the two segregation processes.

3.5. Explanation and analysis of results

We next sought to develop a mathematical model that could
explain and predict surface segregation. Such a model could be
used to quickly screen potential alloys without having to run
more time-intensive DFT calculations. For instance, many of
our DFT calculations took about 18–24 hours to converge, while
some calculations took several days to converge. A statistical
model would be able to calculate segregation energies in a
fraction of this time. Several models have already been pub-
lished to predict segregation energies. Brejnak and Modrak79

developed a model to predict segregation energies using prop-
erties of pure metals, such as lattice structure, d-band center,
d-bandwidth, d-band filling, and atomic volume. They dis-
cussed that the sign of the product of DNas determines whether
a dopant atom would segregate to the surface. In the above
product, DN is the difference between number of d-electrons
for alloy components (solute and the solvent) and as denotes
the surface potential. They used d-band properties of the
surface and the bulk simultaneously in order to predict
surface segregation, although they did not distinguish between
different surfaces. Motivated by this, we also calculated the
d-band filling, d-band center, and d-bandwidth for the different
surfaces of our host metals that we studied. These results are
tabulated in Table S8 in the ESI.† We plotted d-band properties
of Pt along with segregation energy of vanadium as dopant as
an example to see if there is a correlation between d-band

Fig. 5 Calculated segregation energies in a Pt host metal involving sub-surface to surface segregation and also bulk to surface segregation. Segregation
energies were calculated with eqn (1) and (2).
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properties and segregation energy. As it can be seen in Fig. S6
in the ESI,† there is no direct correlation between d-band
properties of the host and segregation energies in (111),
(100), (110), and (210) surfaces of Pt. This suggests that other
properties of the dopants and hosts may be needed for a more
complete prediction of segregation energies.

Ruban et al.28 used Friedel’s rectangular state density model80,81

to predict segregation energies in transition metal alloys.
In their paper they directly compared surface segregation

energies of 4d metals calculated using both DFT and their
model. Comparing their DFT data with their model indicates
how closely the two match. We analyzed their data to calculate
an R2 value of 0.53 between the two data sets, and a root mean
square error (RMSE) between the two data sets of 0.41 eV.
However, Ruban et al.28 acknowledged that their model is
limited in how it considers the structure of surfaces. A more
robust model is needed to better consider segregation behavior
between different surfaces.

Fig. 6 Calculated segregation energies in a Ir host metal involving sub-surface to surface segregation and also bulk to surface segregation. Segregation
energies were calculated with eqn (1) and (2).

Fig. 7 Calculated segregation energies in a Pd host metal involving sub-surface to surface segregation and also bulk to surface segregation. Segregation
energies were calculated with eqn (1) and (2).
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Another model, based on universal tight-binding (TB) and
Friedel’s model, developed by Wang and Johnson23 was used to
predict segregation in alloy particles. Wang and Johnson com-
pared segregation energies obtained from their model to their
DFT segregation energies in their work. Their model captured
the general segregation trends correctly, but there was up to a
3 eV energy difference between their DFT and model results.
The R2 and root mean square error (RMSE) from comparing
their DFT data and model were 0.19 and 0.93 eV respectively.

Yu et al.24 developed a model to predict segregation energies
based on the surface energy, elastic energy, and heat of solution
of the impurity and the host metal. Unlike the two previous
models which used Friedel’s model and tight-binding theory
without any regression to fit their data, Yu et al.,24 took
advantage of linear regression to find coefficients for their
utilized parameters. They only modeled Ni(111) as a host metal.
We refitted their parameters to our own DFT data (including all
host surfaces), and calculated a RMSE of 0.60 eV, R2 of 0.61, and
an adjusted R2 of 0.61 when using their model (with refitted
parameters) compared to our DFT data. The drawback of this
model however is that it does not predict surface dependent
segregation energies since it uses generic experimental surface
energies. When we used DFT-calculated surface energies (for
the host metals), the RMSE and R2 were calculated to be 0.50 eV
and 0.73, respectively, which was a slight improvement. Unlike
a previous model,28 which predicted segregation energies to
follow an exact parabola for each facet of Pt with the trend of
(210) 4 (110) 4 (100) 4 (111) (contradictory to DFT results),
this modified version of Yu et al.’s model captured segregation
trends much more realistically. It even captured the oscillatory
behavior of the 3d dopants. Segregation energies using this model
for Pt as host are plotted in Fig. S7 in the ESI.† This model

distinguishes between the (111) surface of Pt and the other
surfaces and predicts segregation trends to be (111) 4 (100) E
(110) E (210). However DFT predicts the following order of
segregation energies: (100) 4 (111) 4 (210) 4 (110). Therefore,
similar to previous segregation models, the Yu et al.24 model did
not fully capture surface dependent segregation energies.

We therefore developed our own model to predict surface-
dependent segregation energies. We took common features of
previous models to derive the model shown in eqn (3). Our
model uses d-bandwidth (WB), d-band filling of the dopant (NB),
coordination number in the surface (Zs) and in the bulk (Zb), a

term representing the elastic energy release
rB
rA

! "3

"1

" #2

rA3

0

@

1

A,

and surface energy difference of the host and the dopant
(EBsurface " EAsurface). This model takes elements of Ruban et al.28

(coordination numbers and d-band properties), but also adds in
features from Yu et al.24 (difference in surface energies and
elastic energy). The model also includes adjustable parameters,
which allows more flexibility. This model was directly fitted to all
our DFT data (all Pt, Ir, Pd, Rh host surfaces), and is given in
eqn (3), where the b coefficients are the fitted parameters. The
model gave a RMSE of 0.43 eV and an adjusted R2 of 0.77. The
exact parameters of the model can be found in the ESI.†

EB!A
segregation ¼ b0 þ b1W

B þ b2NB þ b3 EB
surface " EA

surface

# $

þ b4
rB
rA

! "3

"1

" #2

rA
3 þ b5 1" Zb

Zs

! "1
2

2

4

3

5
(3)

Further explanation of all the parameters and how we
developed this model can be found in the ESI.† Fig. 9 shows

Fig. 8 Calculated segregation energies in a Rh host metal involving sub-surface to surface segregation and also bulk to surface segregation. Segregation
energies were calculated with eqn (1) and (2).
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how our DFT data compares to our model. Table 1 shows a
summary of how our model compares to our DFT data, as well
as some other models in the literature. Overall, our model
captures the features of the DFT model quite well.

The large adjusted R2 value of 0.77 and low RMSE of 0.43 eV
indicate the accuracy of our model. The largest difference
between the DFT data and our model belongs to Ir as the host
with a difference of 1.62 eV. The comparison between segrega-
tion energies calculated with DFT and our model for (111),
(100), (110), and (210) surfaces of Pt is depicted in Fig. 9. As is
evident from the figure, our model mirrors the DFT results well.
Our model is able to describe surface-dependent segregation, a
feature previously not included in segregation models. The
corresponding figures for Ir, Pd, and Rh can be found in
Fig. S8–S10 (ESI†). Our model takes into account d-band
properties of the dopant (d-band filling and d-occupation
number), surface energy of the host and dopant, atomic radii
of the host and dopant, and also coordination numbers in the

bulk and at the surface. All these parameters combined give
a surface dependent segregation model that agrees well with
DFT. Previous models did not consider all these parameters at
the same time and as a result were not able to achieve such
good agreement with DFT, especially for different surfaces.

One particular danger is using a model for predictions that
the model was not intended for or incapable of making. To test
our model we compared DFT calculations of the Pt(211) surface
with predictions of our model to determine how our model may
perform for surfaces outside the training set. Table S10 (ESI†)
shows such results, and indicates that our model does very well
in predicting segregation energies for this surface. Thus our
model is robust in making predictions for other surfaces of the
host metals. We will acknowledge that the b parameters were
fitted using a select number of transition metal hosts, and that
different hosts may require re-fitting to determine relevant
parameters. We expect however that the same features (e.g. d-band
properties, surface energies, etc.) will be relevant for such hosts.

Our model shows good agreement with DFT calculations,
but such a model should be more than just a highly fitted
model with non-relevant features. The model should reflect the
chemistry and physics of segregation processes, and materials
involved. The model should also help explain what underlying
physical features determine segregation phenomena. Our model
includes several features; interplay between the various forces/
influences that these features represent determines to which
degree segregation will occur between two metals. The model
includes d-band filling and d-occupation number. The electronic
properties of the dopantmetal are surely important for segregation,

Fig. 9 Comparison between segregation energies of various dopants in the (111), (100), (110), and (210) surfaces of Pt obtained with DFT and our
developed model.

Table 1 Comparison between various models to predict surface segre-
gation and DFT data. In the case of Ruban et al.28 and Wang et al.23 the
models were compared with the DFT data in the original papers, while for
Yu et al.24 and our model our own DFT data was used for comparison

Model R2
Adjusted
R2

RMSE
(eV)

Largest
difference (eV)

Smallest
difference (eV)

Ruban et al.28 0.53 — 0.41 1.32 0.01
Wang et al.23 0.19 — 0.93 3.16 0.00
Yu et al.24 0.61 0.61 0.60 1.74 0.00
Our model 0.77 0.77 0.43 1.62 0.00
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as the electronic structure determines the strength on bonding
interactions between the dopant metal and host metal. Metals
with wide d-bands and larger number of d electrons have more
opportunities to form favorable bonds with the host metal. The
surface energy difference between the host and dopant metal is
also one of the parameters. The surface energy difference is
important because it indicates the relative preference for such
metals to form structures with undercoordinated atoms, i.e.
surfaces. When the dopant metal more readily forms a surface
than the host metal (EBsurface 4 EAsurface), this is indicative that such
dopant metals are more stable in undercoordinated environ-
ments, and in the host metal may more readily migrate to the
surface, or may segregate. Surface energy is related to the number
of unfilled orbitals: early and late transition metals tend to have
lower surface energies than mid transition metals24 which reflects
the number of unfilled d orbitals, and hence the desire of such
atoms for forming bonds.

The relative atomic radii of both the host and dopant metal
are also part of the model. If the host metal is much smaller
than the dopant metal (rB/rA large), this adds strain to the alloy
and favors segregation, which our model reflects. The relative
coordination numbers of the host metal in the surface and at the
surface are also included in the model. The model includes the
term 1 " (Zb/Zs)

1/2. Different surfaces will have different coordina-
tion numbers, and segregation is less likely to occur at surfaces
with smaller coordination numbers since any dopant atoms on
the surface would be less stable, having less coordination than in
the bulk. In summary, the size, coordination, and electronic
properties of the host/dopants all play important roles in deter-
mining whether segregation will occur, as reflected by our model.

4. Conclusions
We calculated segregation energies using DFT for alloys invol-
ving Pt, Pd, Ir, and Rh as host and transition metals as dopants.
Segregation energies may very well depend on the exposed
surface, which is what we show in our results. For instance,
with Pt as the host and 3d transition metals as dopants the
segregation energies follow the trend of: (100)4 (111)4 (210)4
(110). However, for Pt as the host and 4d and 5d transition metals
as dopants the following trend was observed: (100) E (210) 4
(111) 4 (110). In general, early and late transition metals
segregate more and have more negative segregation energies,
while mid-transition metals possess positive segregation energies
and do not tend to segregate. An oscillatory segregation behavior
is observed in 3d transitionmetals. We also calculated segregation
energies in other hosts including Ir, Rh, and Pd. When consider-
ing all the (111), (100), (110), and (210) surfaces, the general trend
in the segregation energies for the various hosts is Pt 4 Rh 4
Pd 4 Ir. We also compared bulk and sub-surface segregation
energies (segregation from the bulk or from the sub-layer) and
found the segregation trends to be very similar between the two
segregation processes.

We further developed a statistical model which predicts
segregation of the transition metal dopants. This model used

several parameters, including d-bandwidth and d-band filling
of the dopant, surface energies of the host and impurity, an
elastic energy release term, and coordination number. This
model is able to predict surface-dependent segregation, and
is in good agreement with the DFT data. Our model is an
improvement on previous models in that it can distinguish
segregation at different host surfaces, and has high accuracy.
Such results are important for predicting and understanding
the stability of different metal alloy crystals/particles, and will
allow for faster screening of potential alloys.
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