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Abstract
Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for
solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate
functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the
infinite-dimensional setting provides powerful tools for their analysis and solution. For the last fewdecades, the reinterpretation
of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit
a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish
a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from
speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among
the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in
prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated
with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning.
Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic
and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and
demonstrate the competitiveness of three new CNN architectures using numerical experiments.

Keywords Machine learning · Deep neural networks · Partial differential equations · PDE-constrained optimization · Image
classification

1 Introduction

For the last three decades, algorithms inspired by partial dif-
ferential equations (PDE) have had a profound impact on
many processing tasks that involve speech, image, and video
data. Adapting PDE models that were traditionally used in
physics to perform image processing tasks has led to ground-
breaking contributions. An incomplete list of seminal works
includes optical flow models for motion estimation [29],
nonlinear diffusion models for filtering of images [41],
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variational methods for image segmentation [1,8,39], and
nonlinear edge-preserving denoising [45].

A standard step in PDE-based data processing is inter-
preting the involved data as discretizations of multivariate
functions. Consequently, many operations on the data can
be modeled as discretizations of PDE operators acting on
the underlying functions. This continuous data model has
led to solid mathematical theories for classical data pro-
cessing tasks obtained by leveraging the rich results from
PDEs and variational calculus (e.g., [46]). The continuous
perspective has also enabled more abstract formulations that
are independent of the actual resolution, which has been
exploited to obtain efficient multiscale and multilevel algo-
rithms (e.g., [37]).

In this paper, we establish a new PDE interpretation of
deep learning tasks that involve speech, image, and video
data as features. Deep learning is a form of machine learn-
ing that uses neural networkswithmany hidden layers [4,34].
Although neural networks date back at least to the 1950s [44],
their popularity soared a few years ago when deep neu-
ral networks (DNNs) outperformed other machine learning
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methods in speech recognition [42] and image classifica-
tion [28]. Deep learning also led to dramatic improvements
in computer vision, e.g., surpassing human performance in
image recognition [28,32,34]. These results ignited the recent
flare of research in the field. To obtain a PDE interpretation,
we use a continuous representation of the images and extend
recent works by [21,49], which relate deep learning prob-
lems for general data types to ordinary differential equations
(ODE).

Deep neural networks filter input features using several
layers whose operations consist of element-wise nonlinear-
ities and affine transformations. The main idea of convo-
lutional neural networks (CNN) [33] is to base the affine
transformations on convolution operators with compactly
supported filters. Supervised learning aims at learning the
filters and other parameters, which are also called weights,
from training data. CNNs are widely used for solving
large-scale learning tasks involving data that represent a dis-
cretization of a continuous function, e.g., voice, images, and
videos [32,33,35]. By design, each CNN layer exploits the
local relation between image information, which simplifies
computation [42].

Despite their enormous success, deep CNNs still face crit-
ical challenges including designing a CNN architecture that
is effective for a practical learning task, which requires many
choices. In addition to the number of layers, also called depth
of the network, important aspects are the number of convo-
lution filters at each layer, also called the width of the layers,
and the connections between those filters. A recent trend is to
favor deep over wide networks, aiming at improving gener-
alization, i.e., the performance of the CNN on new examples
that were not used during the training [34]. Another key
challenge is designing the layer, i.e., choosing the combina-
tion of affine transformations and nonlinearities. A practical
but costly approach is to consider depth, width, and other
properties of the architecture as hyperparameters and jointly
infer them with the network weights [26]. Our interpreta-
tion of CNN architectures as discretized PDEs provides new
mathematical theories to guide the design process. In short,
we obtain architectures by discretizing the underlying PDE
through adequate time integration methods.

In addition to substantial training costs, deep CNNs face
fundamental challenges when it comes to their interpretabil-
ity and robustness. In particular, CNNs that are used in
mission-critical tasks (such as driverless cars) face the chal-
lenge of being “explainable.”Casting the learning taskwithin
nonlinear PDE theory allows us to understand the properties
of such networks better. We believe that further research into
the mathematical structures presented here will result in a
more solid understanding of the networks and will close the
gap between deep learning and more mature fields that rely
on nonlinear PDEs such as fluid dynamics. A direct impact of
our approach can be observed when studying, e.g., adversar-

ial examples. Recent works [40] indicate that the predictions
obtained by deep networks can be very sensitive to pertur-
bations of the input images. These findings motivate us to
favor networks that are stable, i.e., networks whose output
are robust to small perturbations of the input features, similar
to what PDE analysis suggests.

In this paper, we consider residual neural networks
(ResNet) [24], a very effective type of neural networks. We
show that residual CNNs can be interpreted as a discretiza-
tion of a space-time differential equation.We use this link for
analyzing the stability of a network and for motivating new
networkmodels that bear similaritieswithwell-knownPDEs.
Using our framework, we present three new architectures.
First, we introduce parabolic CNNs that restrict the forward
propagation to dynamics that smooth image features and bear
similarities with anisotropic filtering [12,41,48]. Second, we
propose hyperbolic CNNs that are inspired by Hamiltonian
systems and finally, a third, second-order hyperbolic CNN.
As to be expected, those networks have different properties.
For example, hyperbolic CNNs approximately preserve the
energy in the system, which sets them apart from parabolic
networks that smooth the image data, reducing the energy.
Computationally, the structure of a hyperbolic forward prop-
agation can be exploited to alleviate the memory burden
because hyperbolic dynamics can be made reversible on the
continuous and discrete levels. The methods suggested here
are closely related to reversible ResNets [9,18].

The remainder of this paper is organized as follows. In
Sect. 2, we briefly introduce residual networks and their
relation to ordinary and, in the case of convolutional neu-
ral networks, partial differential equations. In Sect. 3, we
present three novel CNN architectures motivated by PDE
theory. Based on our continuous interpretation, we design
regularization functionals that enforce the smoothness of
the dynamical systems, in Sect. 4. In Sect. 5, we present
numerical results for image classification that indicate the
competitiveness of our PDE-based architectures. Finally, we
highlight some directions for future research in Sect. 6.

2 Residual Networks and Differential
Equations

The abstract goal of machine learning is to find a function
f : Rn × Rp → Rm such that f (·, θ) accurately predicts
the result of an observed phenomenon (e.g., the class of an
image or a spoken word). The function is parameterized by
the weight vector θ ∈ Rp that is trained using examples. In
supervised learning, a set of input features y1, . . . , ys ∈ Rn

and output labels c1, . . . , cs ∈ Rm are available and used
to train the model f (·, θ). The output labels are vectors
whose components correspond to the estimated probability
of a particular example belonging to a given class. As an

123



354 Journal of Mathematical Imaging and Vision (2020) 62:352–364

deer
dog

airplane
bird

tr
ue

la
b
el

H
am

ilt
on

ia
n
C
N
N

P
ar
ab

ol
ic

C
N
N

se
co

nd
-o
rd
er

C
N
N

tr
ue

la
b
el

H
am

ilt
on

ia
n
C
N
N

P
ar
ab

ol
ic

C
N
N

se
co

nd
-o
rd
er

C
N
N

tr
ue

la
b
el

H
am

ilt
on

ia
n
C
N
N

P
ar
ab

ol
ic

C
N
N

se
co

nd
-o
rd
er

C
N
N

tr
ue

la
b
el

H
am

ilt
on

ia
n
C
N
N

P
ar
ab

ol
ic

C
N
N

se
co

nd
-o
rd
er

C
N
N

car
cat

horse
monkey

ship
truck

Fig. 1 Classification results of the three proposed CNN architecture
for four test images from the STL-10 dataset [14]. The predicted and
actual class probabilities are visualized using bar plots on the right of
each image. While all networks reach an adequate prediction accuracy
between around 79.6% and 80.9% across the whole dataset, predictions
for individual images vary in some cases (Color figure online)

example, consider the image classification results in Fig. 1
where the predicted and actual labels are visualized using
bar plots. For brevity, we denote the training data by Y =
[y1, y2, . . . , ys] ∈ Rn×s and C = [c1, c2, . . . , cs] ∈ Rm×s .

In deep learning, the function f consists of a concatena-
tion of nonlinear functions called hidden layers. Each layer
is composed of affine linear transformations and pointwise
nonlinearities and aims at filtering the input features in a
way that enables learning. As a fairly general formulation,
we consider an extended version of the layer used in [24],
which filters the features Y as follows

F(θ ,Y) = K2(θ
(3))σ

(
N (K1(θ

(1))Y, θ (2))
)

. (1)

Here, the parameter vector, θ , is partitioned into three parts
where θ (1) and θ (3) parameterize the linear operatorsK1(·) ∈
Rw̃×n and K2(·) ∈ Rwout×w̃, respectively, and θ (2) are the
parameters of the normalization layer N . The parameters w̃

and wout denote the width of the layer, i.e., they correspond
to the number of input, intermediate, and output features of
this layer. The activation function σ : R → R is applied
component-wise. Common examples are σ(x) = tanh(x) or
the rectified linear unit (ReLU) defined as σ(x) = max(0, x).
A deep neural network can bewritten by concatenatingmany
of the layers given in (1).

When dealing with image data, it is common to group the
features into different channels (e.g., for RGB image data
there are three channels) and define the operatorsK1 andK2

as block matrices consisting of spatial convolutions. Typ-
ically each channel of the output image is computed as a
weighted sum of each of the convolved input channels. To

give an example, assume thatK1 has three input and two out-
put channels and denote by K(·,·)

1 (·) a standard convolution
operator [23]. In this case, we can write K1 as

K1(θ) =
(
K(1,1)

1 (θ (1,1)) K(1,2)
1 (θ (1,2)) K(1,3)

1 (θ (1,3))

K(2,1)
1 (θ (2,1)) K(2,2)

1 (θ (2,2)) K(2,3)
1 (θ (2,3))

)
,

(2)

where θ (i, j) denotes the parameters of the stencil of the (i, j)-
th convolution operator.

A common choice forN in (1) is the batch normalization
layer [30]. This layer computes the empirical mean and stan-
dard deviation of each channel in the input images across the
spatial dimensions and examples and uses this information
to normalize the statistics of the output images. While the
coupling of different examples is counter-intuitive, its use
is widespread and motivated by empirical evidence show-
ing a faster convergence of training algorithms. The weights
θ (2) represent scaling factors and biases (i.e., constant shifts
applied to all pixels in the channel) for each output channel
that are applied after the normalization.

ResNets have recently improved the state-of-the-art in
several benchmarks including computer vision contests on
image classification [28,32,34]. Given the input features
Y0 = Y, a ResNet block with N layers produces a filtered
version YN as follows

Y j+1 = Y j + F(θ ( j),Y j ), for j = 0, 1, . . . , N − 1, (3)

where θ ( j) are the weights (convolution stencils and biases)
of the j th layer. To emphasize the dependency of this process
on the weights, we denote YN (θ).

Note that the dimension of the feature vectors (i.e., the
image resolution and the number of channels) is the same
across all layers of a ResNets block, which is limiting in
many practical applications. Therefore, implementations of
deep CNNs contain a concatenation of ResNet blocks with
other layers that can change, e.g., the number of channels
and the image resolution; see, e.g., [9,24] and Fig. 2.

In image recognition, the goal is to classify the output
of (3), YN (θ), using, e.g., a linear classifier modeled by a
fully connected layer, i.e., an affine transformation with a
dense matrix. To avoid confusion with the ResNet blocks,
we denote these transformations as WYN (θ) + (BWμ)e�

s ,
where the columns of BW represent a distributed bias and
es ∈ Rs is a vector of all ones. The parameters of the network
and the classifier are unknown and have to be learned. Thus,
the goal of learning is to estimate the network parameters,
θ , and the weights of the classifier, W,μ, by approximately
solving the optimization problem

min
θ ,W,μ

1

2
S(WYN (θ) + (BWμ)e�

s ,C) + R(θ ,W,μ), (4)
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where S is a loss function, which is convex in its first argu-
ment, and R is a convex regularizer discussed below. Typical
examples of loss functions are the least-squares function in
regression and logistic regression or cross-entropy functions
in classification [19].

The optimization problem in (4) is challenging for sev-
eral reasons. First, it is a high-dimensional and non-convex
optimization problem. Therefore one has to be content with
local minima. Second, the computational cost per example
is high, and the number of examples is large. Third, very
deep architectures are prone to problems such as vanishing
and exploding gradients [5] that may occur when the discrete
forward propagation is unstable [21].

2.1 Residual Networks and ODEs

We derived a continuous interpretation of the filtering pro-
vided by ResNets in [21]. Similar observations were made
in [10,49]. The ResNet in (3) can be seen as a forward Euler
discretization (with a fixed step size of δt = 1) of the initial
value problem

∂tY(θ, t) = F(θ(t),Y(t)), for t ∈ (0, T ]
Y(θ , 0) = Y0.

(5)

Here, we introduce an artificial time t ∈ [0, T ]. The depth
of the network is related to the arbitrary final time T and
the magnitude of the matrices K1 and K2 in (1). This obser-
vation shows the relation between the learning problem (4)
and parameter estimation of a system of nonlinear ordinary
differential equations. Note that this interpretation does not
assume any particular structure of the layer F.

The continuous interpretation of ResNets can be exploited
in severalways.One idea is to accelerate training by solving a
hierarchy of optimization problems that gradually introduce
new time discretization points for the weights, θ [22]. Also,
new numerical solvers based on optimal control theory have
been proposed in [36]. Another recent work [11] presents an
optimize-discretize approach with sophisticated time inte-
grators to solve the forward propagation and the adjoint
problem (in this context commonly calledback-propagation),
which is needed to compute derivatives of the objective func-
tion with respect to the network weights.

2.2 Convolutional ResNets and PDEs

In the following, we consider learning tasks involving fea-
tures given by speech, image, or video data. For these
problems, the input features,Y, can be seen as a discretization
of a continuous function Y (x). We assume that the matrices
K1 ∈ Rw̃×win and K2 ∈ Rwout×w̃ in (1) represent convolu-
tion operators [23].

Wenow show that a particular class of deep residual CNNs
can be interpreted as nonlinear systems of PDEs. For ease of
notation, we first consider a one-dimensional convolution of
a feature with one channel and then outline how the result
extends to higher space dimensions and multiple channels.

Assume that the vector y ∈ Rn represents a one-
dimensional grid function obtained by discretizing y :
[0, 1] → R at the cell-centers of a regular grid with n cells
and a mesh size h = 1/n, i.e., for i = 1, 2, . . . , n

y = [y(x1), . . . , y(xn)]� with xi =
(
i − 1

2

)
h.

Assume, e.g., that the operatorK1 = K1(θ) ∈ Rn×n in (1) is
parameterized by the stencil θ ∈ R3. Applying a coordinate
change, we see that

K1(θ)y = [θ1 θ2 θ3] ∗ y

=
(

β1

4
[1 2 1] + β2

2h
[−1 0 1] + β3

h2
[−1 2 − 1]

)
∗ y.

Here, the weights β ∈ R3 are given by

⎛
⎜⎝

1
4 − 1

2h − 1
h2

1
2 0 2

h2
1
4

1
2h − 1

h2

⎞
⎟⎠

⎛
⎝

β1
β2
β3

⎞
⎠ =

⎛
⎝

θ1
θ2
θ3

⎞
⎠ ,

which is a non-singular linear system for any h > 0. We
denote by β(θ) the unique solution of this linear system.
Upon taking the limit, h → 0, this observation motivates
one to parameterize the convolution operator as

K1(θ) = β1(θ) + β2(θ)∂x + β3(θ)∂2x .

The individual terms in the transformationmatrix correspond
to reaction, convection, diffusion and the bias term in (1) is a
source/sink term, respectively. Note that higher-order deriva-
tives can be generated by multiplying different convolution
operators or increasing the stencil size.

This simple observation exposes the dependence of
learned weights on the image resolution, which can be
exploited in practice, e.g., by multiscale training strate-
gies [22]. Here, the idea is to train a sequence of networks
using a coarse-to-fine hierarchy of image resolutions (often
called image pyramid). Since both the number of operations
and the memory required in training is proportional to the
image size, this leads to immediate savings during training
but also allows one to coarsen already trained networks to
enable efficient evaluation. In addition to computational ben-
efits, ignoring fine-scale features when training on the coarse
grid can also reduce the risk of being trapped in an undesir-
able local minimum, which is an observation also made in
other image processing applications.
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Our argument extends to higher spatial dimensions. In 2D,
e.g., we can relate the 3 × 3 stencil parametrized by θ ∈ R9

to

K1(θ) = β1(θ) + β2(θ)∂x + β3(θ)∂y

+ β4(θ)∂2x + β5(θ)∂2y + β6(θ)∂x∂y

+ β7(θ)∂2x ∂y + β8(θ)∂x∂
2
y + β9(θ)∂2x ∂

2
y .

To obtain a fully continuous model for the layer in (1), we
proceed the same way with K2. In view of (2), we note that
when the number of input and output channels is larger than
one,K1 andK2 lead to a systemof coupled partial differential
operators.

Given the continuous space-time interpretation of CNN,
we view the optimization problem (4) as an optimal control
problemand, similarly, see learning as a parameter estimation
problem for the time-dependent nonlinear PDE (5). Develop-
ing efficient numerical methods for solving PDE-constrained
optimization problems arising in optimal control and param-
eter estimation has been a fruitful research endeavor and
led to many advances in science and engineering; for recent
overviews see, e.g., [6,7,27]. Using the theoretical and algo-
rithmic framework of optimal control in machine learning
applications has gained some traction only recently; see, e.g.,
[9,11,21,36,49].

3 Deep Neural Networks Motivated by PDEs

It is well-known that not every time-dependent PDE is stable
with respect to perturbations of the initial conditions [2].
Here, we say that the forward propagation in (5) is stable if
there is a constant M > 0 independent of T such that

‖Y(θ , T ) − Ỹ(θ , T )‖F ≤ M‖Y0 − Ỹ0‖F , (6)

where Y and Ỹ are the solutions of (5) for the initial val-
ues Y0, Ỹ0, respectively, and ‖ · ‖F is the Frobenius norm.
The stability of the forward propagation depends on the val-
ues of the weights θ that are chosen by solving (4). In the
context of learning, the stability of the network is critical
to provide robustness to small perturbations of the input
images. In addition to image noise, perturbations could also
be added deliberately to mislead the network’s prediction
by an adversary. There is some recent evidence showing the
existence of such perturbations that reliably mislead deep
networks by being barely noticeable to a human observer;
see, e.g., [20,38,40]. Networks that satisfy (6) are Lipschitz
continuouswith aLipschitz constant that is independent of T .
Lipschitz continuity has been recently shown to be important
for generalization and robustness of deep neural networks;
see, e.g., [13,15,16] and references therein.

To ensure the stability of the network for all possible
weights, we propose to restrict the space of CNNs. As exam-
ples of this general idea, we present three new types of
residual CNNs that are motivated by parabolic and first- and
second-order hyperbolic PDEs, respectively. The construc-
tion of our networks guarantees that under some assumptions
the networks are stable forward and, for the hyperbolic net-
work, stable backward in time.

Though it is common practice to model K1 and K2 in (1)
independently, we note that it is, in general, hard to show
the stability of the resulting network. This is because, the
Jacobian of F(θ ,Y) with respect to the features has the form

JYF = K2(θ) diag(σ ′(K1(θ)Y)) K1(θ),

where σ ′ denotes the derivatives of the pointwise nonlinear-
ity and for simplicity we assume N (Y) = Y. Even in this
simplified setting, the spectral properties of JY, which impact
the stability, are unknown for arbitrary choices ofK1 andK2.

As one way to obtain a stable network, we introduce a
symmetric version of the layer in (1) by choosingK2 = −K�

1
in (1). To simplify our notation, we drop the subscript of the
operator and define the symmetric layer

Fsym(θ ,Y) = −K(θ)�σ (N (K(θ)Y, θ)) . (7)

It is straightforward to verify that this choice leads to a nega-
tive semi-definite Jacobian for any non-decreasing activation
function. As we see next, this choice also allows us to link
the discrete network to different types of PDEs.

3.1 Parabolic CNN

We define the parabolic CNN by using the symmetric layer
from (7) in the forward propagation, i.e., in the standard
ResNet we replace the dynamic in (5) by

∂tY(θ, t) = Fsym(θ(t),Y(t)), for t ∈ (0, T ]. (8)

Note that (8) is equivalent to the heat equation if σ(x) = x ,
N (Y) = Y and K(t) = ∇. This motivates us to refer to this
network as a parabolic CNN. This is not the only possible
interpretation, e.g., for other cases in which K is constant in
time (8) can be seen as a gradient flow. Nonlinear parabolic
PDEs are widely used, e.g., to filter images [12,41,48] and
our interpretation implies that the networks can be viewed as
an extension of such methods.

The similarity to the heat equation motivates us to intro-
duce a new normalization layer motivated by total variation
denoising. For a single example y ∈ Rn that can be grouped
into c channels, we define
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Ntv(y) = diag

(
1

A�√
(Ay)2 + ε

)
y, (9)

where the operator A ∈ R
n
c ×n computes the sum over

all c channels for each pixel, the square, square root, and
the division are defined component-wise, and the constant
0 < ε 
 1 is fixed. As for the batch norm layer, we imple-
ment Ntv with trainable weights corresponding to global
scaling factors and biases for each channel. In the case that
the convolution is reduced to a discrete gradient, Ntv leads
to the regular dynamics in TV denoising.

Stability Parabolic PDEs have a well-known decay prop-
erty that renders them robust to perturbations of the initial
conditions. For the parabolic CNN in (8), we can show the
following stability result.

Theorem 1 If the activation function σ is monotonically
non-decreasing, then the forward propagation through a
parabolic CNN satisfies (6).

Proof For ease of notation, we assume that no normalization
layer is used, i.e., N (Y) = Y in (8). We then show that
Fsym(θ(t),Y) is a monotone operator. Let Y and Ỹ be the
solutions of (5) for the initial values Y0, Ỹ0, respectively.

Note that for all t ∈ [0, T ]

−
(
σ(K(t)Y) − σ(K(t)Ỹ),K(t)(Y − Ỹ)

)
≤ 0.

Where (·, ·) is the standard inner product and the inequal-
ity follows from the monotonicity of the activation function,
which shows that

∂t‖Y(t) − Ỹ(t)‖2F ≤ 0.

Integrating this inequality over [0, T ]yields stability as in (6).
The proof extends straightforwardly to cases when a normal-
ization layer with scaling and bias is included. ��

One way to discretize the parabolic forward propaga-
tion (8) is using the forward Euler method. Denoting the
time step size by δt > 0 this reads

Y j+1 = Y j+δtFsym(θ(t j ),Y j ), j = 0, 1, . . . , N−1, (10)

where t j = jδt . For a linear dynamic ∂ty(t) = Jy(t), the
forward Euler method is stable if δt satisfies

max
i=1,2,...,n

|1 + δtλi (J)| ≤ 1

and accurate if δt is chosen small enough to capture the
dynamics of the system. Here, λi (J) denotes the i th eigen-
value of J; see, e.g., [2,3]. A rigorous stability analysis of

the discrete forward propagation in (10) is more complicated
since the underlying PDE is nonlinear and time-dependent.
However, the result above provides some intuition. Here,
we can linearize the forward propagation using the Jacobian
J(t j ) = (∇yFsym)� at the j th time point t j . Assuming, for
simplicity, that no normalization layer is used, this reads

J(t j ) = −K�(θ (1)(t j )) D(t j )K(θ (1)(t j )),

with D(t) = diag
(
σ ′ (K(θ (1)(t))y(t)

) )
.

If the activation function is monotonically non-decreasing,
then σ ′(·) ≥ 0 everywhere. In this case, all eigenvalues of
J(t j ) are real and bounded above by zero since J(t j ) is also
symmetric. Thus, there is an appropriate δt that renders the
linearized discrete forward propagation stable. To achieve
stability of the linear problem, we limit the magnitude of
elements in K by using Tikhonov regularization and impos-
ing bound constraints to the optimization problem (4). Also,
to minimize the difference between the linearized forward
propagation and the actual dynamics, we penalize large tem-
poral changes through regularization; see Sect. 4.

3.2 Hyperbolic CNNs

Different types of networks can be obtained by consider-
ing hyperbolic PDEs. In this section, we present two CNN
architectures that are inspired by hyperbolic systems. A
favorable feature of hyperbolic equations is their reversibil-
ity. Reversibility allows us to avoid storage of intermediate
network states, thus achieving higher memory efficiency.
Reversibility is particularly important for very deep networks
where memory limitation can hinder training; see [18] and
[9].
Hamiltonian CNNs Introducing an auxiliary variable Z, we
consider the dynamics

∂tY(t) = Fsym(θ (1)(t),Z(t)), Y(0) = Y0

∂tZ(t) = −Fsym(θ (2)(t),Y(t)), Z(0) = Z0.

The dimensions and the values of Z0 can be chosen in dif-
ferent ways, e.g., by partitioning the channels of the original
features intoY0 andZ0. This approach is used in our numeri-
cal experiments inwhichwe split the number of channels into
two. We showed in [9] that the eigenvalues of the associated
Jacobian are imaginary. When assuming that θ (1) and θ (2)

are constant in time, stability as defined in (6) is obtained. A
more precise stability result can be established by analyzing
the kinematic eigenvalues of the forward propagation [3].
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We discretize the dynamic using the symplectic Verlet
integration (see, e.g., [2] for details)

Y j+1 = Y j + δtFsym(θ (1)(t j ),Z j ),

Z j+1 = Z j − δtFsym(θ (2)(t j ),Y j+1),
(11)

for j = 0, 1, . . . , N − 1 using a fixed step size δt > 0. This
dynamic is reversible, i.e., given YN ,YN−1 and ZN ,ZN−1

it can also be computed backwards

Z j = Z j+1 + δtFsym(θ (2)(t j ),Y j+1)

Y j = Y j+1 − δtFsym(θ (1)(t j ),Z j ),

for j = N − 1, N − 2, . . . , 0. These operations are numeri-
cally stable for the Hamiltonian CNN; see [9] for details.
Second-order CNNs An alternative way to obtain hyperbolic
CNNs is by using a second-order dynamics

∂2t Y(t) = Fsym(θ(t),Y(t)),

Y(0) = Y0, ∂tY(0) = 0.
(12)

The resulting forward propagation is associated with a non-
linear version of the telegraph equation [43], which describes
the propagation of signals through networks. Hence, one
could claim that second-order networks better mimic bio-
logical networks and are therefore more appropriate than
first-order networks for approaches that aim at imitating the
propagation through biological networks.

Wediscretize the second-order networkusing theLeapfrog
method. For j = 0, 1, . . . , N − 1 and δt > 0 fixed this reads

Y j+1 = 2Y j − Y j−1 + δ2t Fsym(θ(t j ),Y j ).

We set Y−1 = Y0 to denote the initial condition. As the
symplectic integration in (11), this scheme is reversible under
similar conditions.

We show that the second-order network is stable in the
sense of (6) when we assume stationary weights. In our
experiments, we use regularization to limit the magnitude
of ∂tθ(t) and ideally obtain piecewise constant weights. A
rigorous analysis for the general case is more complicated
and an item of future work.

Theorem 2 Let θ(t) be constant in time and assume that the
activation function satisfies |σ(x)| ≤ |x | for all x. Then,
the forward propagation through the second-order network
satisfies (6).

Proof For brevity, we denote K = K(θ(t)) and consider the
forward propagation of a single example. Let y : [0, T ] →
Rn be a solution to (12) and consider the energy

E(t) = 1

2

(
(∂ty(t))�∂ty(t) + (Ky(t))�σ(Ky(t))

)
. (13)

Given that |σ(x)| ≤ |x | for all x by assumption, this energy
can be bounded as follows

E(t) ≤ Elin(t)
= 1

2

(
(∂tu(t))�∂tu(t) + (Ku(t))�(Ku(t))

)
,

where Elin is the energy associated with the linear wave-like
hyperbolic equation

∂2t u(t) = −K�Ku(t), u(0) = y0, ∂tu(0) = 0.

Since by assumption K is constant in time, we have that

∂tElin(t) = ∂tu(t)�
(
∂2t u(t) + K�Ku(t)

)
= 0.

Thus, the energy of the hyperbolic network in (13) is positive
and bounded from above by the energy of the linear wave
equation. Applying this argument to the initial condition y0−
ỹ0, we derive (6) and thus the forward propagation is stable.

4 Regularization

The proposed continuous interpretation of the CNNs also
provides new perspectives on regularization. To enforce sta-
bility of the forward propagation, the linear operatorK in (7)
should not change drastically in time. This suggests adding
a smoothness regularizer in time. In [21], a H1-seminorm
was used to smooth kernels over time to avoid overfitting. A
theoretically more appropriate function space consists of all
kernels that are piecewise constant in time. To this end, we
introduce the regularizer

R(θ ,W,μ) = α1

∫ T

0
φτ (∂tθ(t))dt

+ α2

2

(∫ T

0
‖θ(t)‖2dt + ‖W‖2F + ‖μ‖2

)
,

(14)

where the function φτ (x) = √
x2 + τ is a smoothed 
1-

norm with conditioning parameter τ > 0. The first term of
R can be seen as a total variation [45] penalty in time that
favors piecewise constant dynamics. Here, α1, α2 ≥ 0 are
regularization parameters that are assumed to be fixed.

A second important aspect of stability is to keep the time
step sufficiently small. Since δt can be absorbed inK we use
the box constraint −1 ≤ θ (1)(t j ) ≤ 1 for all j , and fix the
time step size to δt = 1 in our numerical experiments.
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A. STL-10 architecture
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B. CIFAR-10/100 architectures
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Fig. 2 Overview of network architectures for the STL-10 (top row) and
CIFAR-10/100 (bottom row) image classification problems. The archi-
tectures consist of ResNet blocks (red) that represent the parabolic,
Hamiltonian, and second-order dynamics, respectively. The networks

also contain an opening layer and several connector layers (blue) that
increase the number of channels and reduce the image resolution (Color
figure online)

5 Numerical Experiments

We demonstrate the potential of the proposed architectures
using the common image classification benchmarks STL-
10 [14], CIFAR-10, and CIFAR-100 [31]. Instead of beating
state-of-the-art results on these competitive datasets, our cen-
tral goal is to show that, despite their modeling restrictions,
our new network types achieve competitive results. We use
our basic architecture for all experiments, do not excessively
tune hyperparameters individually for each case, and employ
a simple data augmentation technique consisting of random
flipping and cropping.
Network Architecture Our architecture is similar to the ones
in [9,24] and contains an opening layer, followed by several
blocks each containing a few time steps of a ResNet and a
connector that increases the width of the CNN and coarsens
the images. Our focus is on the different options for defining
the ResNet block using parabolic and hyperbolic networks.
To this end, we choose the same basic components for the
opening and connecting layers. The opening layer increases
the number of channels from three (for RGB image data) to
the number of channels of the first ResNet using convolution
operators with 3×3 stencils, a batch normalization layer and
a ReLU activation function. We build the connecting layers
using 1 × 1 convolution operators that increase the number
of channels, a batch normalization layer, a ReLU activation,
and an average pooling operator that coarsens the images
by a factor of two. Finally, we obtain the output features
Y(θ) by averaging the features of each channel to ensure
translation-invariance. The ResNet blocks use the symmetric

layer (7) including the total variation normalization (9) with
ε = 10−3. The network architectures are illustrated in Fig. 2.
The classifier is modeled using a fully connected layer, a
softmax transformation, and a cross-entropy loss.
Training Algorithm In order to estimate the weights, we use
a standard stochastic gradient descent (SGD) method with a
momentum of 0.9. We use a piecewise constant step size (in
this context also called learning rate). We choose an initial
learning rate of 0.05 and divided it by a factor of 1.5 at a
priori specified epochs, after every 10th epoch for CIFAR-10
and STL-10 and after every 20th epoch for CIFAR-100. The
training is stopped when the training loss drops below 0.01
(indicating overfitting), or a maximum number of epochs is
reached (180 for STL-10 and CIFAR-10 and 340 for CIFAR-
100). In all examples, the SGD steps are computed using
mini-batches consisting of 32 randomly chosen examples.

For data augmentation, we apply a random horizontal flip
(50% probability), pad the images by a factor of 1/16 with
zeros into all directions and randomly crop the image by 1/8
of the pixels, counting from the lower-left corner. The train-
ing is performed using the open-source software Meganet on
a workstation running Ubuntu 16.04 and MATLAB 2018b
with two Intel(R) Xeon(R) CPU E5-2620 v4 and 64 GB of
RAM. We use a NVIDIA Titan X GPU for accelerating the
computation through the frameworksCUDA9.1 andCuDNN
7.0. This package is designed as an academic and teaching
tool and not optimized for efficiency. Running up to three
instances on the same device, the average time to complete
an epoch is about 1.5 minutes for STL-10 and 5 minutes for
the CIFAR examples.
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A. Convergence for STL-10
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Fig. 3 Performance of the training algorithm for the three proposed
architectures applied to the STL-10 (left), CIFAR-10 (middle) and
CIFAR-100 (right) datasets. We use randomly choose 80% of the train-
ing images to update the weights using SGD. The plots show the

validation accuracy computed using the remaining images after every
epoch. In these examples, we did not observe considerable overfitting
and note that the weights from the final epoch led to adequate validation
accuracies (Color figure online)

We demonstrate the effectiveness of this strategy using
a simple cross-validation approach that updates the weights
using 80% of the training data and monitors the loss com-
puted using 20% of the training data until no significant
overfitting is observed; we plot the performance of the net-
works on the validation data after each epoch in Fig. 3. In the
STL-10 experiment (left subplot), the iterationswere stopped
after around 100 epochs since the training loss was low,
whereas for the CIFAR-10/100 experiments (middle, right
subplots) the maximum number of epochs was reached. In
all cases, the weights at the final epoch are nearly optimal
with respect to the validation datasets, which indicates that
the learning rate schedule and stopping criteria are adequate
to prevent overfitting.
Results for STL-10 The STL-10 dataset [14] contains 13,000
digital color images of size 96 × 96 that are evenly divided
into ten categories, which can be inferred from Fig. 1. The
dataset is split into 5,000 training and 8,000 test images. The
STL-10 data is a popular benchmark test for image classifi-
cation algorithms and challenging due to the relatively small
number of training images.

For each dynamic, the network uses four ResNet blocks
with 16, 32, 64, and 128 channels and image sizes of
96 × 96, 48 × 48, 24 × 24, 12 × 12, respectively. Within
each ResNet block, we perform five time steps with a step
size of δt = 1 and include a total variation normalization
layer andReLUactivation. This architecture leads to 521,594
trainable weights for theHamiltonian network and 1,011,194
weights for the parabolic and second-order network, respec-
tively. The reversibility of the Hamiltonian and second-order
network can be used to reduce the memory consumption
of the ResNet blocks during training, e.g., by re-computing
the features and activations at the second, third, and fourth
layer. This would result in an approximately 60% reduction
of memory required in those blocks. Additional savings can
be realized by avoiding duplicate storage with connecting
layers. As these savings become more drastic and important
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Fig. 4 Improvement of the test accuracywhen increasing the number of
training images in the STL-10 dataset (from 10% to 80% in increments
of 10%). We first train the weights of the three proposed architectures
and plot the test accuracy of the final iterate. Here, we do not use any
data augmentation. Expectedly, the generalization improves as more
images are used for all architectures (Color figure online)

for very deep architectures (see [9]), we do not exploit the
reversibility in our experiments.

We note that our networks are smaller than commonly
used ResNets, e.g., the architectures in [9] contain about two
million parameters. Reducing the number of parameters is
essential during training and, e.g., when trained networks
have to bedeployedondeviceswith limitedmemory.Another
difference to networks in this work is the use of the total vari-
ation normalization instead of the batch normalization in the
ResNet layers. This removes the coupling between different
examples in a batch that is introduced by the batch norm and
increases the potential for parallelization. The regularization
parameters are α1 = 4 · 10−4 and α2 = 1 · 10−4.

To show how the generalization improves asmore training
data becomes available, we train the networkwith an increas-
ing number of examples that we choose randomly from the
training dataset. We also randomly sample 1000 examples
from the remaining training data to build a validation set,
which we use to monitor the performance after each full
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Fig. 5 Confusion matrices for classifiers obtained using the three pro-
posed architectures (row-wise) for an increasing number of training
data from the STL-10 dataset (column-wise). The (i, j)th element of

the 10 × 10 confusion matrix counts the number of images of class i
for which the predicted class is j . We use the entire test data set, which
contains 800 images per class (Color figure online)

epoch. We use no data augmentation in this experiment. In
all cases, the training accuracy was close to 100%. After the
training, we compute the accuracy of the networks parame-
terized by the weights that performed best on the validation
data for all the 8000 test images; see Fig. 4. The predictions
of the three networks may vary for single examples without
any apparent pattern; see also Fig. 1. However, overall their
performance and convergence are comparable which leads
to similarities in the confusion matrices; see Fig. 5.

To show the overall performance of the networks, we
train the networks using all 5000 training images and no
cross-validation. For data augmentation, we use horizontal
flipping and random cropping. Our training strategy found
weights that almost perfectly fit the training data (defined
by a loss of less than 0.01) after 97, 91, and 106 epoch
for the parabolic, Hamiltonian, and second-order CNN,
respectively. After the training, we compute the loss and
classification accuracy for all 8000 test images. For this
example, the parabolic and Hamiltonian network perform
slightly superior to the second-order network 80.9% and
80.4% versus 79.6% test classification accuracy, respec-
tively. It is important to emphasize that the Hamiltonian
network uses only about half as many trainable weights as
the other two networks. These results are competitive with
the results reported, e.g., in [17,50] and slightly inferior of
the ones we achieved with a larger architecture and the use
of batch norm in [9]. Our results could possibly be further
improvedbyfine-tuningof hyperparameters such as step size,
number of time steps, and width of the network may achieve
additional improvements for each dynamic.
Results for CIFAR-10/100 For additional comparison of the
proposed architectures, we use the CIFAR-10 and CIFAR-
100 datasets [31]. Each of these datasets consists of 60,000
labeled RGB images of size 32 × 32 that are chosen from
the 80 million tiny images dataset [47]. In both cases, we

use 50,000 images for training and validation and keep the
remaining 10,000 to test the generalization of the trained
weights.While CIFAR-10 consists of ten categories, CIFAR-
100 contains 100 categories, which renders the classification
problem more challenging.

Our architectures contain three blocks of parabolic or
hyperbolic networks betweenwhich the image size is reduced
from 32×32 to 8×8. For the simpler CIFAR-10 problem, we
use a narrower network with 32, 64, 112 channels while for
CIFAR-100weusemore channels (32, 64, and 128) and add a
final connecting layer that increases the number of channels
to 256. This leads to networks whose number of trainable
weights vary between 264,106 and 502,570; see also Table
1. As regularization parameters, we use α1 = 2 · 10−4 and
α2 = 2 · 10−4, which is similar to [9].

As for the STL-10 data set, the three proposed architec-
tures achieved comparable results on these benchmarks; see
convergence plots in Fig. 3 and test accuracies in Table 1. In
our experiments, the optimization is stopped after the max-
imum number of epochs (180 for CIFAR-10 and 340 for
CIFAR-100). Additional tuning of the learning rate, regular-
ization parameter, and other hyperparameters may further
improve the results shown here. Using similar networks
and the less interpretable batch normalization in the ResNet
blocks, we achieved about 5% higher accuracy on CIFAR-10
and 9% higher accuracy on CIFAR-100 in [9].

6 Discussion and Outlook

In this paper, we establish a link between deep residual
convolutional neural networks and PDEs. The relation pro-
vides a general framework for designing, analyzing, and
training those CNNs. It also exposes the dependence of
learned weights on the image resolution used in training.
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Table 1 Summary of numerical results for the STL-10, CIFAR-10, and CIFAR-100 datasets

STL-10 CIFAR-10 CIFAR-100

Number of
weights (M)

Test data
(8000) accu-
racy %(loss)

Number of
weights (M)

Test data
(10,000)
accuracy
%(loss)

Number of
weights (M)

Test data
(10,000)
accuracy
%(loss)

Parabolic 1.01 80.9% (0.726) 0.50 90.5% (0.316) 0.65 67.4% (1.185)

Hamiltonian 0.52 80.4% (0.770) 0.26 90.7% (0.334) 0.36 67.1% (1.208)

Second-order 1.01 79.6% (0.770) 0.50 90.6% (0.329) 0.65 66.9% (1.281)

Hamiltonian [9] 1.28 85.5% (n/a) 0.43 92.8% (n/a) 0.44 71.0% (n/a)

Leapfrog [9] 2.44 84.6% (n/a) 0.50 91.9% (n/a) 0.51 69.1% (n/a)

ResNet-110 [25] 1.7 93.4% (n/a) 1.7 74.8% (n/a)

Wide ResNet [51] 0.6 93.2% (n/a) 0.6 69.1% (n/a)

Using the hyperparameters chosen by cross-validation, we train the networks on the entire training data. After training, we compute and report the
classification accuracy and the value of cross-entropy loss (in brackets where reported) for the test data. To this end, we use the weights from the
final epoch of SGD. We also report the number of trainable weights for each network and for comparison state results from the literature achieved
with similarly sized or larger architectures

Exemplarily, we derive three PDE-based network architec-
tures that are forward stable (the parabolic network) and
forward-backward stable (the hyperbolic networks) under
some assumptions.

It is well known that different types of PDEs have different
properties. For example, linear parabolic PDEs have decay
properties, while linear hyperbolic PDEs conserve energy.
Hence, it is common to choosedifferent numerical techniques
for solving and optimizing different kinds of PDEs. The type
of the underlying PDE is not known a priori for a standard
convolutional ResNet as it depends on the trained weights.
This renders ensuring the stability of the trained network
and the choice of adequate time integrationmethods difficult.
These considerationsmotivate us to restrict the convolutional
ResNet architecture a-priori to discretizations of nonlinear
PDEs that are stable.

In our numerical examples, our new architectures lead to
an adequate performance despite the constraints on the net-
works. In fact, using only networks of relatively modest size,
we obtain results that are close to those of state-of-the-art
networks. This may not hold in general, and future research
will show which types of architectures are best suited for
a learning task at hand. Our intuition is that, e.g., hyper-
bolic networks may be preferable over parabolic ones for
image extrapolation tasks to ensure the preservation of edge
information in the images. In contrast to that, we anticipate
parabolic networks to perform superior for tasks that require
filtering, e.g., image denoising. Another important direction
is to quantitatively compare the architectures proposed here
to existing ones with respect to aspects other than classifica-
tion accuracy, e.g., robustness to adversarial attacks.

We note that our view of CNNs mirrors the developments
in PDE-based image processing in the 1990s. PDE-based
methods have since significantly enhanced our mathemati-

cal understanding of image processing tasks and opened the
door to many popular algorithms and techniques. We hope
that continuous models of CNNs will result in similar break-
throughs and, e.g., help streamline the design of network
architectures and improve training outcomes with less trial
and error.
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