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GOOD AND SEMI-STABLE REDUCTIONS OF

SHIMURA VARIETIES

by Xuhua He, Georgios Pappas & Michael Rapoport

Abstract. — We study variants of the local models constructed by the second author and Zhu
and consider corresponding integral models of Shimura varieties of abelian type. We determine
all cases of good, resp. of semi-stable, reduction under tame ramification hypotheses.

Résumé (Bonne réduction et réduction semi-stable de variétés de Shimura)
Nous étudions des variantes des modèles locaux introduits par le deuxième auteur et Zhu,

et les modèles intégraux correspondants des variétés de Shimura de type abélien. Nous déter-
minons tous les cas de bonne réduction, resp. de réduction semi-stable, sous des hypothèses de
ramification modérée.
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1. Introduction

The problem of the reduction modulo p of a Shimura variety has a long and com-
plicated history, perhaps beginning with Kronecker. The case of the modular curve
(the Shimura variety associated to GL2) is essentially solved after the work of Igusa,
Deligne, Drinfeld and Katz-Mazur. In particular, it is known that the modular curve
has good reduction at p if the level structure is prime to p. If the level structure
is of Γ0(p)-type (in addition to some level structure prime to p), then the modular
curve has semi-stable reduction (one even has a global understanding of the reduction
modulo p, as the union of two copies of the modular curve with level structure prime
to p, crossing transversally at the set of supersingular points). Are there other level
structures such that the reduction modulo p is good, resp. is semi-stable?

This is the question addressed in the present paper, in the context of general
Shimura varieties. The question can be interpreted in two different ways. One can
ask whether there exists some model over SpecZ(p) which has good, resp. semi-stable
reduction. In the case of the modular curve, one can prove that, indeed, the two
examples above exhaust all possibilities (this statement has to be interpreted correctly,
by considering the natural compactification of the modular curve). This comes down
to a statement about the spectral decomposition under the action of the Hecke algebra
of the ℓ-adic cohomology of modular curves. Unfortunately, the generalization of this
statement to other Shimura varieties seems out of reach at the moment.

The other possible interpretation of the question is to ask for good, resp. semi-
stable, reduction of a specific class of p-integral models of Shimura varieties. Such
a specific class has been established in recent years for Shimura varieties with level
structure which is parahoric at p, the most general result being due to M.Kisin and
the second author [26]. The main point of these models is that their singularities
are modeled by their associated local models, cf. [35]. These are projective varieties
which are defined in a certain sense by linear algebra, cf. [18, 42]. More precisely, for
every closed point of the reduction modulo p of the p-integral model of the Shimura
variety, there is an isomorphism between the strict henselization of its local ring
and the strict henselization of the local ring of a corresponding closed point in the
reduction modulo p of the local model. Very often every closed point of the local
model is attained in this way. In this case, the model of the Shimura variety has good,
resp. semi-stable, reduction if and only if the local model has this property. Even when
this attainment statement is not known, we deduce that if the local model has good,
resp. semi-stable, reduction, then so does the model of the Shimura variety. Therefore,
the emphasis of the present paper is on the structure of the singularities of the local
models and our results determine local models which have good, resp. semi-stable
reduction.

Let us state now the main results of the paper, as they pertain to local models. See
Section 3 for corresponding results for Shimura varieties, and Section 4 for results on
Rapoport-Zink spaces. Local models are associated to local model triples. Here a LM
triple over a finite extension F of Qp is a triple (G, {µ},K) consisting of a reductive
group G over F , a conjugacy class of cocharacters {µ} of G over an algebraic closure
J.É.P.—M., 2020, tome 7



Good and semi-stable reductions of Shimura varieties 499

of F , and a parahoric group K of G. We sometimes write G for the affine smooth
group scheme over OF corresponding to K. It is assumed that the cocharacter {µ} is
minuscule (i.e., any root takes values in {0,±1} on {µ}). The reflex field of the LM
triple (G, {µ},K) is the field of definition of the conjugacy class {µ}. One would like
to associate to (G, {µ},K) a local model Mloc

K (G, {µ}), a flat projective scheme over
the ring OE of integers in the corresponding reflex field E, with action of GOE . Also,
one would like to characterize uniquely this local model.

At this point a restrictive hypothesis enters. Namely, we have to impose throughout
most of the paper that the group G splits over a tamely ramified extension. Indeed,
only under this hypothesis, X. Zhu and the second author define local models [41]
which generalize the local models defined earlier in the concrete situations considered
by Arzdorf, de Jong, Görtz, Pappas, Rapoport-Zink, Smithling, comp. [40]. Our first
main result is that the result of the construction in [41] is unique, i.e., is independent of
all auxiliary choices. This independence issue was left unexamined in loc. cit. In fact,
we slightly modify here the construction in [41] and define Mloc

K (G, {µ}) in such a way
that it always has reduced special fiber, a property that is stable under base change.
In [41] this reducedness property for the local models of [41] was established only
when π1(Gder) has order prime to p (in which case the local model of [41] coincides
with Mloc

K (G, {µ})). This then also implies that the definition of Mloc
K (G, {µ}) is well-

posed. Here, we need uniqueness after base-changing to an unramified extension to
even make unambiguous sense of our classification of local models which are smooth
or semi-stable. We show:

Theorem 1.1. — Let (G, {µ},K) be an LM triple such that G splits over a tamely ram-
ified extension of F . The local model Mloc

K (G, {µ}) is independent of all choices made
in its construction. Its generic fiber is GE-equivariantly isomorphic to the projective
homogeneous space X{µ}, and its geometric special fiber Mloc

K (G, {µ})⊗OE k is reduced
and is G ⊗OF k-equivariantly isomorphic to the {µ}-admissible locus AK(G, {µ}) in
an affine partial flag variety over k.

We refer to the body of the text for undefined items. We conjecture that the proper-
ties in Theorem 1.1 uniquely characterize the local model Mloc

K (G, {µ}), cf. Conjecture
2.13.

Local models should exist even without the tameness hypothesis. Levin [30] has
achieved some progress on this front by extending the Pappas-Zhu construction to
some wild cases. Scholze [45] considers the general case and defines a diamond local
model over OE attached to the LM triple (G, {µ},K). Furthermore, he proves that
there is at most one local model whose associated “v-sheaf” is the diamond local
model. Unfortunately, the existence question is still open. Hence in the general situa-
tion, Scholze does not have a construction of a local model but has a characterization;
under our tameness hypothesis, we have a construction but no characterization. In
the case of classical groups, the situation is somewhat better: under some additional
hypothesis, we then show that the local models of [41] satisfy Scholze’s characterizing
property, cf. Corollary 2.17.

J.É.P.—M., 2020, tome 7



500 X. He, G. Pappas & M. Rapoport

Our second main result gives a characterization of all cases when Pappas-Zhu
local models have good reduction. In its statement, F̆ denotes the completion of the
maximal unramified extension of F .

Theorem 1.2. — Let (G, {µ},K) be a LM triple over F such that G splits over a
tamely ramified extension of F . Assume that p ̸= 2. Assume that Gad is F -simple,
µad is not the trivial cocharacter, and that in the product decomposition over F̆ ,
Gad ⊗F F̆ = Ğad,1 × · · · × Ğad,m, each factor Ğad,i is absolutely simple. Then the
local model Mloc

K (G, {µ}) is smooth over SpecOE if and only if K is hyperspecial or
(G,µ,K) is an LM triple of exotic good reduction type.

Here the first alternative, that K be hyperspecial, is the natural generalization of
the case of the modular curve with level structure prime to p. There are two cases
of the second (“exotic”) alternative: The first is a striking discovery of T. Richarz,
cf. [1, Prop. 4.16]. He proved that the local model associated to an even, resp. odd,
ramified unitary group G, the cocharacter {µ} = (1, 0, . . . , 0), and the parahoric
subgroup which is the stabilizer of a π-modular, resp. almost π-modular, lattice has
good reduction (the case of a π-modular lattice is much easier and was known earlier,
cf. [39, 5.3]). The second case, which is a new observation of the current paper, is that
of the local model associated to an even ramified quasi-split orthogonal group G,
the cocharacter {µ} that corresponds to the orthogonal Grassmannian of isotropic
subspaces of maximal dimension, and the parahoric K given by the stabilizer of an
almost selfdual lattice. We therefore see that in the statement of the theorem both
implications are interesting and non-trivial.

Let us comment on the hypotheses in this theorem. The hypothesis that Gad be
F -simple is just for convenience. However, the hypothesis that each factor Ğad,i be
absolutely simple is essential to our method. It implies that the translation element
associated to {µ} in the extended affine Weyl group for Ğad,i is not too large and
this limits drastically the number of possibilities of LM triples with associated local
models of good reduction. Note that the tameness assumption on G is automatically
satisfied for p ! 5 under these hypotheses. We refer to the passage after the statement
of Theorem 5.1 for a description of the structure of the proof of Theorem 1.2. Roughly
speaking, we eliminate most possibilities by various combinatorial considerations and
calculations of Poincaré polynomials. Ultimately, we reduce to a few cases that can
be examined explicitly, and a single exceptional case (for the quasi-split ramified
triality 3D4) which is handled by work of Haines-Richarz [19].

Our third main result gives a characterization of all cases when Pappas-Zhu local
models have semi-stable reduction.

Theorem 1.3. — Let (G, {µ},K) be a LM triple over F such that G splits over a
tamely ramified extension of F . Assume p ̸= 2. Assume that Gad is absolutely simple.
Then the local model Mloc

K (G, {µ}) has semi-stable, but non-smooth, reduction over
SpecOE if and only if its enhanced Tits datum appears in the table of Theorem 5.6.

J.É.P.—M., 2020, tome 7
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Again, let us comment on the hypothesis in this theorem. We are limited in the
hypotheses of this theorem by the same constraints as in the criterion for good
reduction—but we have to avoid the product of semi-stable varieties since these are no
longer semi-stable: this explains why we make the assumption that Gad be absolutely
simple. The enhanced Tits datum of an LM triple is defined in Definition 5.3. In the
situation of Theorem 1.3, the enhanced Tits datum determines the LM triple over F
up to central isogeny and up to a scalar extension to an unramified extension of F .

Again, as with Theorem 1.2, both implications in Theorem 1.3 are interesting and
non-trivial. The semi-stability in the case of the LM triple (PGLn, (1, 0, . . . , 0),K),
where K is an arbitrary parahoric subgroup has been known for a long time, due
to the work of Drinfeld [10]. The case of the LM triple (PGLn, (1(r), 0(n−r)),K),
where r is arbitrary and where K is the parahoric subgroup stabilizing two adjacent
vertex lattices appears in the work of Görtz [15], although the significance of this case
went unnoticed. Related calculations also appear in work of Harris and Taylor [21].
Another interesting case is when G is the adjoint group of a symplectic group with
its natural Siegel cocharacter and K is the simultaneous stabilizer of a selfdual vertex
lattice and an adjacent almost selfdual vertex lattice. This subgroup K is the so-called
“Klingen parahoric” and the semi-stability in this case has been shown by Genestier
and Tilouine [13, 6.3]. The case that triggered our interest in the classification of
semi-stable local models is the case recently discovered by Faltings [12]. Here G is the
adjoint group of the split orthogonal group of even size 2n, the minuscule coweight is
the one which leads to the hermitian-symmetric space given by a quadric, and K is
the parahoric subgroup simultaneously stabilizing the selfdual and the selfdual up to
a scalar vertex lattices. Faltings’ language is different from ours, and it could take the
reader some effort to make the connection between our result and his. However, our
point of view allows us to view Faltings’ result as a corollary of the general results
of [26]; see Example 3.7. The list of Theorem 5.6 contains two more cases of LM
triples with semi-stable associated local models, both for orthogonal groups, which
seem to be new. Let us note here that the corresponding integral models of Shimura
varieties are “canonical” in the sense of [36]. In almost all of these cases of smooth or
semi-stable reduction, these integral models can also be uniquely characterized more
directly using an idea of Milne [32] and results of Vasiu-Zink [48], see Theorem 3.6.

We refer to the end of Section 5 for a description of the proof of Theorem 1.3. As a
consequence of the proof, we obtain the following remarkable fact.

Corollary 1.4. — Let (G, {µ},K) be a LM triple over F such that G splits over
a tamely ramified extension of F . Assume p ̸= 2. Assume that G is adjoint and
absolutely simple. Then the local model Mloc

K (G, {µ}) has semi-stable reduction if and
only if Mloc

K (G, {µ}) has strictly pseudo semi-stable reduction.

We refer to Definition 6.1 for what it means that a scheme over the spectrum of a
discrete valuation ring has strictly pseudo semi-stable reduction. It is a condition that

J.É.P.—M., 2020, tome 7



502 X. He, G. Pappas & M. Rapoport

only involves the reduced special fiber; the above corollary shows that in the case at
hand it implies that the total scheme Mloc

K (G, {µ}) is regular.
Let us now explain the lay-out of the paper. In Section 2, we recall the local models

constructed in [41] and show that they are independent (in a sense to be made precise)
of the auxiliary data used in their construction; we also introduce the modification of
this construction that has reduced special fiber, and compare it with the hypothetical
construction of Scholze [45]. In Section 3 we explain the relation between Shimura
varieties and local models. Section 4 does the same for Rapoport-Zink spaces. Section 5
contains the statements of the main results on local models. In Section 6 we introduce
the concepts of (rationally) strictly pseudo semi-stable reduction and the component
count property (CCP condition), and prove that the former condition implies the
latter. In Section 7, we give a complete list of all enhanced Coxeter data for which the
CCP condition is satisfied. In Section 8, we exclude from this list the cases that do not
have rationally strictly pseudo semi-stable reduction. At this point, we have all tools
available to prove Theorem 1.2, and this is the content of Section 9. In Section 10,
we use Kumar’s criterion to eliminate all cases that do not have strictly pseudo semi-
stable reduction. At this point, we have all tools available to prove one implication of
Theorem 1.3, and this is the content of Section 11, where we also prove Corollary 1.4.
In the final long Section 12, we prove the other implication of Theorem 1.3.

Notation. — For a local field F , we denote by F̆ the completion of its maximal un-
ramified extension (in a fixed algebraic closure). We denote by κF the residue field
of F and by k the algebraic closure of κF which is the residue field of F̆ . We always
denote by p the characteristic of κF .

For a reductive group G, we denote by Gder its derived group, by Gsc the simply-
connected covering of Gder, and by Gad its adjoint group. If G is defined over the local
field F , we denote by B(G,F ) the extended Bruhat-Tits building of G(F ); if S ⊂ G is
a maximal F -split torus of G, we denote by A(G,S, F ) ⊂ B(G,F ) the corresponding
apartment. A parahoric subgroup K of G(F ) is, by definition, the connected stabilizer
of a point x ∈ B(G,F ); by [5], there is a smooth affine group scheme Gx over OF with
generic fiber G and connected special fiber such that K = Gx(OF ).

We often write the base change X ×SpecR SpecR′ as X ⊗R R′, or simply as XR′ .

Acknowledgements. — We thank P. Deligne, G. Faltings, U. Görtz, T. Haines, V. Pil-
loni, T. Richarz, P. Scholze and B. Smithling for helpful discussions, and W. M. Mc-
Govern for interesting e-mail exchanges. We also thank the referee for his work.

2. Local models

In this section, we discuss the theory of local models, as used in the paper.

2.1. Local model triples. — Let F be a finite extension of Qp, with algebraic clo-
sure F . A local model triple (LM triple) over F is a triple (G, {µ},K) consisting of
a connected reductive group G over F , a conjugacy class {µ} of cocharacters of GF ,
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and a parahoric subgroup K of G(F ). It is assumed that {µ} is a minuscule cochar-
acter. We denote by G = GK the extension of G to a smooth group scheme over OF

corresponding to K. Then G has connected fibers and satisfies K = G(OF ). We set
K̆ = G(OF̆ ). Sometimes we also write (G, {µ},G) for the LM triple.

Two LM triples (G, {µ},K) and (G′, {µ′},K ′) are isomorphic if there exists an
isomorphism G → G′ which takes {µ} to {µ′} and K̆ to a conjugate of K̆ ′. More
generally, a morphism

φ : (G, {µ},K) −→ (G′, {µ′},K ′)

of LM triples is a group scheme homomorphism φ : G→ G′ such that {µ′} = {φ ◦ µ}
and φ(K̆) ⊂ g′K̆ ′g′−1, for some g′ ∈ G′(F̆ ).

Let E be the field of definition of {µ} inside the fixed algebraic closure F of F ,
with its ring of integers OE . We denote by k the algebraic closure of its residue field
κE . Denote by X{µ} the partial flag variety over E of GE associated to {µ}.

2.2. Group schemes. — Let G be a reductive group over F that splits over a tame
extension of F . Choose a uniformizer π of F . The theory of [41] starts with the
construction of a reductive group scheme G over OF [u±] := OF [u, u−1] which induces
by specialization (OF [u±]→ F, u )→ π) the group G over F . Let G′ be the reductive
group induced by G by specialization along (OF [u±]→ κF ((u)),π )→ 0).

By [41, Th. 4.1], there exists a smooth affine group scheme G over OF [u] with
connected fibers which restricts to G over OF [u±] and which induces the parahoric
group scheme G under the specialization (OF [u] → OF , u )→ π). It also induces a
parahoric group scheme G′ under the specialization (OF [u]→ κF [[u]],π )→ 0), with an
identification

(2.1) G⊗OF ,π #→0 k = G′ ⊗κF [[u]],u #→0 k.

We denote by Ğ, resp. Ğ, the group schemes over OF̆ [u
±], resp. OF̆ [u], obtained by

base change OF → OF̆ .
Let us recall some aspects of the construction of these group schemes. The reader

is referred to [41] for more details. For simplicity we abbreviate O = OF , Ŏ = OF̆ .
Denote by H (resp. G∗) the corresponding split (resp. quasi-split) form of G over O

(resp. F ). These forms are each unique up to isomorphism.
Fix, once and for all, a pinning (H,TH , BH , eO) defined over O. As in [41], we

denote by ΞH the group of automorphisms of the based root datum corresponding to
(H,TH , BH).

Pick a maximal F -split torus A ⊂ G. By [5, 5.1.12], we can choose an F -rational
maximal F̆ -split torus S in G that contains A and a minimal F -rational parabolic
subgroup P which contains ZG(A). In [41], a triple (A,S, P ) as above, is called a
rigidification of G. Since by Steinberg’s theorem, the group Ğ = G ⊗F F̆ is quasi-
split, T = ZG(S) is a maximal torus of G which is defined over F .

As in [41, 2.4.2], the indexed root datum of the group G over F gives a ΞH -
torsor τ over Spec(F ). Then, by [41, Prop. 2.3], we obtain a pinned quasi-split group

J.É.P.—M., 2020, tome 7



504 X. He, G. Pappas & M. Rapoport

(G∗, T ∗, B∗, e∗) over F and, by the identification of tame finite extensions of F with
étale finite covers of O[u±] given by u )→ π, a pinned quasi-split group (G∗, T ∗, B∗, e∗)
over O[u±] (see loc. cit., 3.3). As in [41], we denote by S∗ the maximal split subtorus
of T ∗. We have an identification
(2.2) (G∗, T ∗, B∗, e∗)⊗O[u±],u #→π F = (G∗, T ∗, B∗, e∗).

Remark 2.1

(a) The base change (G∗, T ∗, B∗, e∗)⊗O[u±] Ŏ[u±] is independent of the choice of
uniformizer π of F . This follows by the above, since the identification of the tame
Galois group of F̆ with Z′(1) =

∏
ℓ ̸=p Zℓ(1), given by γ )→ γ(π1/m)/π1/m, does not

depend on the choice of the uniformizer π.
(b) It is not hard to see, using [41, 3.3.2], that the Picard group of every finite

étale cover of O[u±] is trivial. The argument in the proof of [8, Prop. 7.2.12], then
shows that, up to isomorphism, a quasi-split reductive group scheme over O[u±] is
uniquely determined by a corresponding ΞH -torsor over O[u±] and therefore obtained
by the above construction. In fact, any quasi-split reductive group scheme over O[u±]
is determined, up to isomorphism, by its base change along O[u±] → F , given by
u )→ π.

As in [41], we obtain from (2.2) identifications of apartments
(2.3) A(G∗, S∗, F̆ ) = A(G∗

κ((u)), S
∗
κ((u)),κ((u))),

for both κ = F̆ , k. Given x∗ ∈ A(G∗, S∗, F̆ ) ⊂ B(G∗, F̆ ), Theorem 4.1 of [41],
produces a smooth connected affine group scheme

G∗ := G∗
x∗

over Ŏ[u] which extends G∗ ⊗O[u±] Ŏ[u±]. Using Remark 2.1 we see that G∗
x∗ does

not depend on the choice of the uniformizer. (Notice that G∗
x∗ might not descend over

O[u] since x∗ is not necessarily F -rational.)
Now, given x ∈ B(G,F ) which corresponds to K, choose a rigidification (A,S, P )

of G over F , such that x ∈ A(G,S, F ).
Since Ğ = G⊗F F̆ and G∗⊗F F̆ are both quasi-split and inner forms of each other,

we can choose an inner twist, i.e., a Gal(F̆ /F )-stable G∗
ad(F̆ )-conjugacy class of an

isomorphism
ψ : G⊗F F̆

∼−→ G∗ ⊗F F̆ .

Then the class [gσ] of the 1-cocycle σ )→ Int(gσ) = ψσψ−1σ−1 in H1(Ẑ, G∗
ad(F̆ ))

maps to the class in H1(Ẑ,Aut(G∗)(F̆ )) that gives the twist G of G∗. The orbit of
[gσ] under the natural action of Out(G∗)(F ) on H1(Ẑ, G∗

ad(F̆ )) only depends on the
isomorphism class of G. In [41], it shown that there is a choice of ψ that depends on
the rigidification (A,S, P ) such that the inclusion

B(G,F ) ⊂ B(G, F̆ )
ψ∗−−−→ B(G∗, F̆ )

J.É.P.—M., 2020, tome 7



Good and semi-stable reductions of Shimura varieties 505

identifies A(G,S, F̆ ) with A(G∗, S∗, F̆ ); set x∗ := ψ∗(x). In loc. cit. the group
scheme G

x
over O[u] is then constructed such that ψ extends to isomorphisms

ψ : Ğ = G
x
⊗O[u] Ŏ[u±]

∼−→ Ğ∗, ψ : Ğ
x

∼−→ G∗
x∗ .

A priori, the group scheme G
x
depends on several choices, in particular of G and of

the uniformizer π. However, we now show:

Proposition 2.2
(a) Up to isomorphism, the group scheme Ğ = G ⊗O[u±] Ŏ[u±] depends only on

Ğ = G⊗F F̆ .
(b) Up to isomorphism, the group scheme Ğ

x
= G

x
⊗O[u] Ŏ[u] depends only on

G⊗F F̆ and the Gad(F̆ )-orbit of x ∈ B(G, F̆ ).
(c) For any a ∈ O×, the group scheme G

x
⊗O[u] Ŏ[u] supports an isomorphism

Ra : a∗(G
x
⊗O[u] Ŏ[u])

∼−→ G
x
⊗O[u] Ŏ[u].

that lifts the isomorphism given by u )→ a · u.

Proof. — By the construction, as briefly recalled above, there are isomorphisms
ψ : Ğ

∼−→ Ğ
∗
, ψ : Ğ

x

∼−→ G∗
x∗ .

Hence, it is enough to show corresponding independence statements for Ğ∗ and G∗
x∗ .

First we notice that by Remark 2.1, Ğ∗ only depends onG⊗F F̆ and so part (a) follows.
Now using the argument in [41, 4.3.1], we see that changing the rigidification (A,S, P )
of G, changes the point x∗ to another point x′∗ of A(G∗, S∗, F̆ ) in the same G∗

ad(F̆ )-
orbit, hence in the same orbit under the adjoint Iwahori-Weyl group W̃G∗

ad
. However,

each element w of W̃G∗
ad

lifts to an element n of G∗
ad(Ŏ[u±]) that normalizes S∗.

Acting by Int(n) gives an isomorphism between the group schemes G∗
x∗ and G∗

x′∗ . This
implies statement (b). To see (c), we first observe that Remark 2.1 implies that there
is an isomorphism over Ŏ[u±]

Ra : a∗(Ğ
∗
)

∼−→ Ğ
∗

that lifts u )→ a · u. To check that this extends to an isomorphism over Ŏ[u] it is
enough to check the statement for the corresponding parahoric group scheme over
F̆ [[u]]. This follows by an argument as in the proof of [51, Lem. 5.4]. "

Remark 2.3. — Suppose that G = G∗ is quasi-split over F . Then, by Remark 2.1 (b),
the extension G = G∗ over O[u±] is determined by G as the unique, up to iso-
morphism, quasi-split group scheme that restricts to G after u )→ π. However, the
restriction G∗ ⊗O[u±] F , by u )→ π′, where π′ = a · π is another choice of uniformizer,
is not necessarily isomorphic to G. For example, suppose G = ResL/Qp

(Gm), with
L = Qp(p1/2), p odd. Suppose π = p. Then,

G = ResZp[u±][X]/(X2−u)/Zp[u±](Gm).

Specializing this by u )→ π′ = −p, gives ResL′/Qp
(Gm), with L′ = Qp((−p)1/2) which

is a different torus than G if p ≡ 3 mod 4.
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Therefore, the extension G∗ depends on both G and π. When we need to be more
precise, we will denote it by G∗

π. By the above, we have an isomorphism

R♮
a : a∗(G∗

π)
∼−−−→ G∗

π′ ,

where a : Spec(O[u±])→ Spec(O[u±]) is given by u )→ a ·u, which descends Ra above.

2.3. Weyl groups and the admissible locus. — We continue with the set-up of the
last subsection. The group scheme Ğ admits a chain of tori by closed subgroup schemes
S̆ ⊂ T̆ which extend S and T and correspond to S̆

∗, T̆ ∗ via ψ. These define maximal
split, resp. maximal, tori in the fibers Ğ = G ⊗F F̆ and Ğ′ = G′ ⊗κF ((u)) k((u))

of Ğ. By the above constructions, we obtain identifications of relative Weyl groups,
resp. Iwahori Weyl groups,

(2.4) W0(Ğ, T̆ ) = W0(Ğ
′, T̆ ′), W̃ (Ğ, T̆ ) = W̃ (Ğ′, T̆ ′),

cf. [42, §2]. Assume now that we have a conjugacy class {µ} of a minuscule geometric
cocharacter of G, so that (G, {µ},K) is a local model triple over F . Then the above
give identifications of {µ}-admissible sets in the Iwahori Weyl groups

(2.5) Adm({µ}) = Adm′({µ}),

cf. [42, §3]. Denoting by K̆ ′ the parahoric subgroup of G′(k((u))
)
defined by G′, with

corresponding group scheme Ğ′, we also obtain an identification of {µ}-admissible
subsets in the double coset spaces (cf. [42, §3]),

(2.6) AdmK̆({µ}) = Adm′
K̆′({µ}) ⊂WK̆\W̃/WK̆ = WK̆′\W̃ ′/WK̆′ .

We define a closed reduced subset inside the loop group flag variety F′ = LĞ′/L+Ğ′

over k, as the reduced union

(2.7) AK(G, {µ}) =
⋃

w∈Adm′
K̆′ ({µ})

Sw.

Here Sw denotes the L+Ğ′-orbit corresponding to w ∈ WK̆′\W̃ ′/WK̆′ . We note that,
since {µ} is minuscule, the action of L+Ğ′ on AK(G, {µ}) factors through G′⊗κF [[u]] k.
Via (2.1), we obtain an action of G⊗OF k on AK(G, {µ}).

Corollary 2.4. — Up to isomorphism, the group Ğ′ over k((u)) and its parahoric
subgroup K̆ ′ are independent of the choice of the uniformizer π and of G. The iso-
morphism can be chosen compatibly with the identification (2.1), and the identifica-
tions (2.4) of Weyl groups and (2.6) of admissible sets. As a consequence, the affine
partial flag variety F′ over k and its subscheme AK(G, {µ}) with action of G ⊗OF k
is independent of the choice of the uniformizer π and of G.

Proof. — Follows from Proposition 2.2, its proof and the definition of the {µ}-admis-
sible set. "
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2.4. Descent. — We continue with the set-up of the previous subsection; we will
apply a form of Weil-étale descent from Ŏ to O. The following result is not needed
for the proof of Theorems 1.2 and 1.3 about local models with smooth or semi-stable
reduction, see Remark 2.8. However, it is an important part of the argument for the
independence result of Theorem 1.1.

Proposition 2.5
(a) The group scheme G

x
⊗O[u] O[[u]] depends, up to isomorphism, only on G, the

uniformizer π and the Gad(F )-orbit of x ∈ B(G,F ). We denote it by G
x,π
⊗O[u]O[[u]].

(b) If π′ = a · π is another choice of a uniformizer with a ∈ O×, then there is an
isomorphism of group schemes

R♮
a : a∗(G

x,π
⊗O[u] O[[u]])

∼−→ G∗
x,π′ ⊗O[u] O[[u]]

where a : SpecO[[u]]→ SpecO[[u]] is given by u )→ a · u.

Proof. — We first show (a). For this we fix the uniformizer π. By Proposition 2.2, the
base change G

x
⊗O[u] Ŏ[[u]] depends only on G and the Gad(F )-orbit of x ∈ B(G,F ).

We will now use descent. By the construction, the group G
x
in [41] is given by a

(σ-semilinear) Weil descent datum
Int(g) · σ : G∗

x∗ −−→ G∗
x∗ .

Here g ∈ G∗
ad(Ŏ[u±]); this depends on various choices made in [41]. The action of σ

is with respect to the rational structure given by the O[u±]-group G∗
π; this depends

on our fixed choice of π, see Remark 2.3. We start the proof by giving:

Lemma 2.6. — The automorphism group A ∗ = Aut(G∗
x∗ ⊗Ŏ[u] Ŏ[[u]]) of the group

scheme G∗
x∗ ⊗Ŏ[u] Ŏ[[u]] has the following properties:

(i) It contains the normalizer N ∗ of G∗
x∗(Ŏ[[u]]) in G∗

ad(Ŏ((u))).
(ii) The homomorphism A ∗ → Aut(G∗

x∗) given by u )→ π is surjective. We have

ker(A ∗ −→ Aut(G∗
x∗)) = ker(G∗

ad,x∗(Ŏ[[u]])
u→ π−−−−−−→ G∗

ad,x∗(Ŏ))

and this kernel is pro-unipotent.

Proof. — Let us first study Aut(G∗
x∗): Passing to the generic fiber gives an injection

Aut(G∗
x∗) ⊂ Aut(Ğ∗).

There is also ([8, Prop. 7.2.11]) a (split) exact sequence
1 −→ G∗

ad(F̆ ) −→ Aut(Ğ∗) −→ Out(Ğ∗) −→ 1.

This gives
1 −→ G∗

ad(F̆ )x∗ −→ Aut(Ğ∗)x∗ = Aut(G∗
x∗) −→ Out(Ğ∗)x∗ −→ 1

where the subscript x∗ denotes the subgroup that fixes x∗ ∈ B(G∗, F̆ ).
Notice here that G∗

ad(F̆ )x∗ is the normalizer in G∗
ad(F̆ ) of the parahoric subgroup

G∗
x∗(Ŏ) = G∗(F̆ )0x∗ . (Indeed, by [5, 5.1.39], the normalizer of the stabilizer of any facet
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in the Bruhat-Tits building has to also stabilize the facet; this last statement easily
follows from that.) We also have

1 −→ G∗
ad(F̆ )0x∗ −→ G∗

ad(F̆ )x∗ −→ ∆x∗ −→ 1

where ∆x∗ is the finite abelian group given as the group of connected components of
the “stabilizer of x∗” Bruhat-Tits group scheme for G∗

ad over Ŏ.
Similarly, we have an injection A ∗ ⊂ Aut(Ğ

∗
). The quasi-split G∗ carries the

pinning (T ∗, B∗, e∗) and we can use this to identify Out(Ğ
∗
) = Out(Ğ∗) with a

subgroup of the group ΞH of “graph” automorphisms. By [8, Prop. 7.2.11], we have

(2.8) Aut(Ğ
∗
) = G∗

ad(Ŏ((u)))!Out(Ğ
∗
).

We first show (i), i.e., that every g ∈ N ∗ ⊂ G∗
ad(Ŏ((u))) naturally induces an

automorphism Int(g) of G∗ ⊗Ŏ[u] Ŏ[[u]]. (For simplicity, we omit the subscript x∗

below.) The adjoint action of g ∈ N ∗ gives an ind-group scheme homomorphism
Int(g) : LG∗ → LG∗ which preserves L+G∗(Ŏ). Using the fact L+G∗ is pro-algebraic
and formally smooth over Ŏ, we can easily see that the set of points L+G∗(F̆ ) with F̆
as residue field is dense in L+G∗. Since L+G∗ is a reduced closed subscheme of the ind-
scheme LG∗ = LG∗ over Ŏ, it follows that g induces a group scheme homomorphism

Int(g) : L+G∗ −→ L+G∗.

In particular, g also normalizes L+G∗(F̆ ) = G∗(F̆ [[u]]). Since G∗ ⊗Ŏ[u] F̆ ((u)) is quasi-
split and residually split, the F̆ -valued points are dense in the fiber G∗ ⊗Ŏ[u] F̆ over
u = 0. Hence, we obtain by [5, 1.7.2] that Int(g) induces an automorphism of the group
scheme G∗⊗Ŏ[u] F̆ [[u]]. Since G∗ is smooth over Ŏ[[u]] and Int(g) gives an automorphism
of G∗ ⊗Ŏ[u] Ŏ((u)), we see that Int(g) extends to an automorphism of G∗ ⊗Ŏ[u] Ŏ[[u]]

as desired. This proves (i).
Let us show that A ∗ satisfies (ii). Sending u )→ π gives a homomorphism

A ∗ −→ Aut(G∗
x∗).

This restricts to N ∗ → G∗
ad(F̆ )x∗ : To see this we use that L+G∗(Ŏ) → G∗(Ŏ) =

G∗(F̆ )0x∗ given by u )→ π is surjective (by smoothness and Hensel’s lemma) and that
G∗

ad(F̆ )x∗ is the normalizer of G∗(F̆ )0x∗ in G∗
ad(F̆ ). We obtain a commutative diagram

with exact rows

(2.9)
1 !! N ∗ !!

""

A ∗ !!

""

Out(Ğ
∗
)x∗ !!

""

1

1 !! G∗
ad(F̆ )x∗ !! Aut(G∗

x∗) !! Out(Ğ∗)x∗ !! 1.

We will show that the left vertical arrow is a surjection with kernel equal to K ∗ :=
ker(G∗

ad,x∗(Ŏ[[u]])
u→π−−−−→ G∗

ad,x∗(Ŏ)) and that the right vertical arrow is an isomor-
phism. This would imply part (ii).
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The subgroup G∗
ad,x∗(Ŏ[[u]]) ⊂ G∗

ad(Ŏ((u))) is contained in N ∗. Mapping u )→ π
followed by taking connected component gives a homomorphism

δ : N ∗ −→ G∗
ad(F̆ )x∗ −−→ ∆x∗ .

We will show that the sequence

(2.10) 1 −→ G∗
ad,x∗(Ŏ[[u]]) −→ N ∗ δ−−−→ ∆x∗ −→ 1

is exact. Since G∗
ad,x∗(Ŏ[[u]])

u #→π−−−−→ G∗
ad,x∗(Ŏ) = G∗

ad(F̆ )0x∗ is surjective (by smoothness
and Hensel’s lemma) this would show that u )→ π gives a surjective

N ∗ −→ G∗
ad(F̆ )x∗ −→ 1

with kernel equal to K ∗ := ker(G∗
ad,x∗(Ŏ[[u]])

u→π−−−−→ G∗
ad,x∗(Ŏ)).

Let us show the exactness of (2.10). The subgroup G∗
ad,x∗(Ŏ[[u]]) lies in the kernel

of δ and we can see that it is actually equal to that kernel: Let g ∈ N ∗ with δ(g) = 1.
Since g also normalizes G∗(F̆ [[u]]), we see as above, that g lies in G∗

ad(F̆ ((u)))x∗ . Using
the identification of apartments (2.2) we now see that since δ(g) = 1, g is actually in
the connected stabilizer G∗

ad(F̆ ((u)))0x∗ = G∗
ad,x∗(F̆ [[u]]). Since g is also in G∗

ad(Ŏ((u))),
we have

g ∈ G∗
ad,x∗(F̆ [[u]]) ∩ G∗

ad,x∗(Ŏ((u))) = G∗
ad,x∗(Ŏ[[u]]).

Therefore, ker(δ) = G∗
ad,x∗(Ŏ[[u]]). It remains to show that δ is surjective. By

[5, Prop. 4.6.28 (ii)], for each y ∈ ∆x∗ , there is an element n ∈ Nad(F̆ ) that fixes x∗

in the building so that δ(n) = y. By the identification of the apartments (2.3), we
can lift n to n ∈ Nad(Ŏ((u))) which fixes the point x∗ considered in the building over
F̆ ((u)). Then n normalizes L+G∗(F̆ ) ∩G∗(Ŏ((u))) = L+G∗(Ŏ) so n is in N ∗.

It remains to show that Out(Ğ
∗
)x∗ → Out(Ğ∗)x∗ given by u )→ π is an isomor-

phism. The corresponding map Out(Ğ
∗
) → Out(Ğ∗) is an isomorphism by the con-

struction of Ğ∗ from Ğ∗. Hence, it is enough to show that Out(Ğ
∗
)x∗ → Out(Ğ∗)x∗

is surjective. By definition, γ ∈ Out(Ğ∗)x∗ is given by an automorphism of Ğ∗ pre-
serving the pinning (T̆ ∗, B̆∗, ĕ∗), such that γ(x∗) = Int(g)(x∗), for some g ∈ G∗

ad(F̆ ).
Since γ(x∗) and x∗ both lie in the apartment for S̆∗ ⊂ T̆ ∗, this implies that γ(x∗) =
Int(n)(x∗), for some N∗

ad(F̆ ). As above, we can lift n to n ∈ N∗
ad(Ŏ((u))). Using the

identification of apartments (2.3) we see that γ is in Out(Ğ
∗
)x∗ . "

We can now resume the proof of Proposition 2.5. We will show that G
x
⊗O[u] O[[u]]

is independent, up to isomorphism, of additional choices. Suppose as above that
g′ ∈ G∗

ad(Ŏ[u±]) is a second cocycle giving a group scheme G′
x
; then G′

x
is a form

of G
x
. The twisting is obtained by the image of the cocycle given by

c = g′ · g−1 ∈ G∗
ad(Ŏ[u±]).

(This is a cocycle for the twisted σ-action on G∗
ad(Ŏ[u±]) given by Int(g).) Notice that

the restriction of c along u = π preserves x∗. Hence, c also preserves x∗ considered as a
point in the building over F̆ ((u)). It follows that c lies in the normalizer of the parahoric

J.É.P.—M., 2020, tome 7



510 X. He, G. Pappas & M. Rapoport

G∗
x∗(F̆ [[u]]). Using Ŏ((u)) ∩ F̆ [[u]] = Ŏ[[u]], we see that c lies in the normalizer N ∗ of

G∗
x∗(Ŏ[[u]]) and it gives a cocycle for the twisted σ-action. The isomorphism class

of the form G′
x
⊗O[u] O[[u]] is determined by the class [c] in H1(Ẑ,A ). Here A =

Aut(G
x
⊗Ŏ[u] Ŏ[[u]]) which is A ∗ but with the twisted σ-action. By Lemma 2.6 (ii),

K ∗ and therefore also the kernel K = ker(A → Aut(Gx)) is pro-unipotent. Using
this, a standard argument as in the proof of Lemmas 1 and 2, p. 690, of [6], gives
that H1(Ẑ,K ) = 0. Since the specialization of the form G′

x
at u = π is isomorphic

to Gx, the image of the class c in H1(Ẑ,Aut(Gx)) is trivial. Hence, by the exact
sequence for cohomology, the class [c] in H1(Ẑ,A ) is trivial. Therefore, we obtain
G′
x
⊗O[u]O[[u]] ≃ G

x
⊗O[u]O[[u]], where in both, the choice of π remains the same. This

proves part (a).
To prove part (b), suppose that π′ = a ·π, a ∈ O×, is another choice of uniformizer.

By Proposition 2.2 (c), the group scheme G∗
x∗ ⊗Ŏ[u] Ŏ[[u]] supports an isomorphism

Ra : a∗(G∗
x∗ ⊗Ŏ[u] Ŏ[[u]])

∼−→ G∗
x∗ ⊗Ŏ[u] Ŏ[[u]].

We would like to show that Ra descends to an isomorphism

R♮
a : a∗(G

x,π
⊗O[u] O[[u]])

∼−→ G
x,π′ ⊗O[u] O[[u]].

Consider the descent datum Φ := Int(g) · σ for G
x,π

and its “rotation” given as

Ra(Φ) := Ra(a
∗ Int(g))σ(Ra)

−1 · σ

for G
x,π′ . Consider also a descent datum Φ′ := Int(g′) · σ for G

x,π′ . It is enough to
show that Φ′ and Ra(Φ) are cohomologous, i.e., that there is an automorphism h of
G∗
x∗ ⊗Ŏ[u] Ŏ[[u]] such that h−1Ra(Φ) = Φ′ · σ(h)−1. Then we can set R♮

a = h−1Ra

which descends. To show the existence of h, note that Ra is the identity on the
maximal reductive quotient of the fiber of G∗

x∗⊗Ŏ[u]Ŏ[[u]] over the point (u,π). We have
G
x,π
≃ G

x,π′ modulo (u,π) since they both are isomorphic to Gx modulo π. Hence, Φ′

and Ra(Φ) are cohomologous when considered modulo a (connected) pro-unipotent
group. An argument similar to the one in the proof of part (a) above then shows the
result. "

2.5. Pappas-Zhu local models. — Let (G, {µ},K) be a local model triple over F
such that G splits over a tamely ramified extension of F . Again we set O = OF .

In [41], there is a construction of a “local model” MG,µ. The Pappas-Zhu local
model MG,µ is a flat projective OE-scheme equipped with an action of GOE such that
its generic fiber is GE-equivariantly isomorphic to X{µ}. By definition, MG,µ is the
Zariski closure of X{µ} ⊂ GrG ⊗O[u] E in GrG,O ⊗O OE , where GrG is the Drinfeld-
Beilinson (global) Grassmannian over O[u] for G and GrG,O = GrG⊗O[u] O is its base
change to O by u )→ π. A priori, MG,µ depends on the group scheme G over O[u] and
the choice of the uniformizer π.

Theorem 2.7. — The GOE -scheme MG,µ over OE, depends, up to equivariant isomor-
phism, only on the local model triple (G, {µ},K).
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Proof. — We first observe that MG,µ can be constructed starting only with {µ}, the
base change G ⊗O[u] O[[u]], and the ideal (u − π) in O[[u]]. Indeed, we first see that
GrG,O only depends on G ⊗O[u] O[[u]], and the ideal (u − π) in O[[u]]. Set t = u− π.
The base change GrG,O = GrG ⊗O[u] O by u )→ π has R-valued points for an O-
algebra R given by the set of isomorphism classes of G-torsors over R[t] with a triv-
ialization over R[t, 1/t]. By the Beauville-Laszlo lemma (in the more general form
given for example in [41, Lem. 6.1, Prop. 6.2]), this set is in bijection with the set
of isomorphism classes of G ⊗O[u] R[[t]]-torsors over R[[t]] = R[[u]] together with a
trivialization over R((t)) = R[[u]][(u − π)−1]. To complete the proof we use Propo-
sition 2.5. It gives that G ⊗O[u] O[[u]] only depends on the local model triple and π,
hence GrG,O only depends on the local model triple and π; for clarity, denote it by
GrG,O,π. Part (b) of Proposition 2.5 with the above then gives that pulling back of
torsors along a : SpecR[[u]]→ SpecR[[u]], given by u )→ a · u, gives an isomorphism

GrG,O,π
∼−−−−→ GrG,O,π′ .

Hence, by the above GrG,O depends, up to equivariant isomorphism, only on G and K.
The result then follows from the definition of MG,µ. "

Remark 2.8. — We can obtain directly the independence of the base change
MG,µ ⊗OE ŎE via the same argument as above, by using the simpler Proposition 2.2
in place of Proposition 2.5.

2.6. Local models: A variant of the Pappas-Zhu local models. — It appears that
the Pappas-Zhu local models MG,µ are not well behaved when the characteristic p
divides the order of π1(Gder). For example, in this case, their special fiber is sometimes
not reduced (see [19], [20]). Motivated by an insight of Scholze, we employ z-extensions
to slightly modify the definition of [41]. Suppose that (G, {µ},K) is an LM triple
over F such that G splits over a tame extension of F . Choose a z-extension over F
(2.11) 1 −→ T −→ G̃ −→ Gad −→ 1.

In other words, G̃ is a central extension of Gad by a strictly induced torus T and
the reductive group G̃ has simply connected derived group, G̃der = Gsc (see for
example, [33, Prop. 3.1]). (Here, we say that the torus T over F is strictly induced
if it splits over a finite Galois extension F ′/F and the cocharacter group X∗(T ) is
a free Z[Gal(F ′/F )]-module.) We can assume that G̃, and then also T , split over a
tamely ramified extension of F . By [33, Applic. 3.4], we can choose a cocharacter µ̃
of G̃ which lifts µad and which is such that the reflex field Ẽ of {µ̃} is equal to the
reflex field Ead of {µad}. Let K̃ be the unique parahoric subgroup of G̃ which lifts
Kad. Then the corresponding group scheme G̃ fits in a fppf exact sequence of group
schemes over OF ,

1 −→ T −→ G̃ −→ Gad −→ 1,

which extends the z-extension above, comp. [26, Prop. 1.1.4]. We set
Mloc

K (G, {µ}) := M
G̃,µ̃ ⊗OEad

OE

J.É.P.—M., 2020, tome 7



512 X. He, G. Pappas & M. Rapoport

which is, again, a flat projective OE-scheme equipped with an action of GOE (factor-
ing through Gad,OE ) with generic fiber GE-equivariantly isomorphic to X{µ}. Indeed,
the action of G̃OE on M

G̃,µ̃ factors through the quotient Gad,OE = G̃OE/TOE (be-
cause it does so on the generic fiber). Since G → Gad extends to a group scheme
homomorphism G→ Gad, we also obtain an action of GOE on Mloc

K (G, {µ}).

Remark 2.9
(1) By [41, Th. 9.1], M

G̃,µ̃ has reduced special fiber. Therefore, the same is true for
the base change Mloc

K (G, {µ}) = M
G̃,µ̃ ⊗OEad

OE . By [41, Prop. 9.2], it follows that
Mloc

K (G, {µ}) is a normal scheme.
(2) If p does not divide the order of π1(Gder) then we have an equivariant isomor-

phism M
G̃,µ̃ ⊗OEad

OE ≃MG,µ, cf. [26, Prop. 2.2.7].(1) Therefore, in this case

Mloc
K (G, {µ}) ≃MG,µ.

(3) Suppose that G̃′ → Gad is another choice of a z-extension as in (2.11) and let µ̃′

be a cocharacter that also lifts µad with reflex field E = Ead. Then the fibered product
H = G̃×Gad G̃

′ → G is also a similar z-extension with kernel the direct product T×T ′

of the kernels of G̃→ Gad and G̃′ → Gad. We have a cocharacter µH = (µ̃, µ̃′) which
also has reflex field E. The parahoric group scheme for H corresponding to G is
H = G̃×Gad G̃′. We obtain MH,{µH} as in [41]. By construction, we obtain

MH,{µH}
∼−→M

G̃,{µ̃}, MH,{µH}
∼−→M

G̃′,{µ̃},

both HOE -equivariant isomorphisms. Hence, we obtain an isomorphism M
G̃,{µ̃}

∼−→
M

G̃′,{̃µ} which is Gad,OE -equivariant. As a result, Mloc
K (G, {µ}) is independent of

the choice of the z-extension. We can now easily deduce from Theorem 2.5, that
Mloc

K (G, {µ}) also only depends on the local model triple (G, {µ},K).
(4) (Suggested by the referee) In fact, one can give an alternative proof that

Mloc
K (G, {µ}) is independent (up to isomorphism) of the choice of z-extension, by

noting that it can be identified with the normalization of MGad,{µad} ⊗OEad
OE . In-

deed, by (1) above, Mloc
K (G, {µ}) is normal and, by its construction, it affords a map

to MGad,{µad} ⊗OEad
OE which is finite and birational.

Definition 2.10. — The projective flat OE-scheme Mloc
K (G, {µ}) with its GOE -action

is called the local model of the LM triple (G, {µ},K).

Theorem 2.11. — The geometric special fiber Mloc
K (G, {µ}) ⊗OE k is reduced and is

G⊗OF k-equivariantly isomorphic to AK̃(G̃, {µ̃}).

Proof. — This follows from the construction and [41, Th. 9.1, Th. 9.3]. "

Note that this implies that the reduced k-scheme AK̃(G̃, {µ̃}) is independent of the
choice of z-extension and only depends on (G, {µ},K). (This fact can be also seen

(1)In loc. cit. F = Qp, but the result holds for general F .

J.É.P.—M., 2020, tome 7



Good and semi-stable reductions of Shimura varieties 513

more directly using Corollary 2.4 and [38, §6].) We call this the µ-admissible locus of
the local model triple (G, {µ},K) and denote it by AK(G, {µ}).

Remark 2.12. — It follows from [38, 6.a, 6.b] that Ğ′ → Ğ′
ad and ˘̃

G′ → Ğ′
ad induce

equivariant morphisms

AK(G, {µ}) −→ AKad(Gad, {µad}), AK̃(G̃, {µ̃}) −→ AKad(Gad, {µad})

which both induce bijections on k-points. As a result, we have equivariant bijections

AK(G, {µ})(k) = AK(G, {µ})(k) = AKad(Gad, {µad})(k).

The following conjecture would characterize the local model Mloc
K (G, {µ}) uniquely.

Conjecture 2.13. — Up to equivariant isomorphism, there exists a unique flat pro-
jective OE-scheme M equipped with an action of GOE and the following properties.

(a) Its generic fiber is GE-equivariantly isomorphic to X{µ}.
(b) Its special fiber is reduced and there is a G ⊗OF k-equivariant isomorphism of

k-schemes
M⊗OE k ≃ AK(G, {µ}).

The local models constructed above have the following properties.

Proposition 2.14. — The following hold.
(i) If K is hyperspecial, then Mloc

K (G, {µ}) is smooth over OE.
(ii) If F ′/F is a finite unramified extension, then

(2.12) Mloc
K (G, {µ})⊗OE OE′

∼−→Mloc
K′(G⊗F F ′, {µ⊗F F ′}).

Note that here the reflex field E′ of (G⊗F F ′, {µ⊗F F ′}) is the join of E and F ′.
(iii) If (G, {µ},K) = (G1, {µ1},K1)× (G2, {µ2},K2), then

(2.13) Mloc
K (G, {µ}) =

(
Mloc

K1
(G1, {µ1})⊗OE1

OE

)
×

(
Mloc

K2
(G2, {µ2})⊗OE2

OE

)
.

Note that here the reflex field E of (G, {µ}) is the join of the reflex fields E1 and E2.
(iv) If φ : (G, {µ},K) → (G′, {µ′},K ′) is a morphism of local model triples such

that φ : G → G′ gives a central extension of G′, there is a GOE -equivariant isomor-
phism

(2.14) Mloc
K (G, {µ}) ∼−→Mloc

K′(G′, {µ′})⊗OE′ OE .

Proof. — When K is hyperspecial, we can choose the extension G̃ over OF [u] to be
reductive; then Mloc

K (G, {µ}) is smooth as required in property (i). By choosing the
extension G̃′ = G̃⊗OF [u]OF ′ [u], we easily obtain (ii). For (iii), we choose the extension
G̃ = G̃

1
× G̃

2
over OF [u]. Finally, (iv) follows by the construction since Gad = G′

ad. "

J.É.P.—M., 2020, tome 7



514 X. He, G. Pappas & M. Rapoport

2.7. Scholze local models. — Under special circumstances, we can relate the local
models above to Scholze local models and give in this way a characterization of them
different from Conjecture 2.13. In particular, this gives a different way of proving
the independence of all choices in the construction of local models. Recall Scholze’s
conjecture [45, Conj. 21.4.1] that there exists a flat projective OE-scheme Mloc,flat

G,µ

with generic fiber X{µ} and reduced special fiber and with an equivariant closed
immersion of the associated diamond, Mloc,flat,⋄

G,µ ↪→ GrG,SpdOE . Scholze proves that
Mloc,flat

G,µ is unique if it exists, cf. [45, Prop. 18.3.1]. Note that Scholze does not make
the hypothesis that G split over a tame extension. We are going to exhibit a class
of LM triples (G, {µ},K) (with G split over a tame extension) such that the local
models Mloc

K (G, {µ}) defined above satisfy Scholze’s conjecture.
We will say that a pair (G, {µ}), consisting of a reductive group over F and a

geometric conjugacy class of minuscule coweights is of abelian type when there is a
similar pair (G1, {µ1}) with E1 ⊂ EF̆ and with a central isogeny φ : G1,der → Gder

which induces an isomorphism (G1,ad, {µ1,ad}) ≃ (Gad, {µad}) and is such that there
exists a faithful minuscule representation ρ1 : G1 ↪→ GLn over F such that ρ1 ◦ µ1

is a minuscule cocharacter µd of GLn. Here by a minuscule representation we mean
a direct sum of irreducible minuscules (i.e., with all weights conjugate by the Weyl
group). In this case, we call such a pair (G1, {µ1}) a realization of the pair (G, {µ})
of abelian type.

Theorem 2.15. — Let (G, {µ},K) be a LM triple over F such that G splits over a
tame extension of F , for which there is an unramified finite extension F ′/F such
that the base change (G, {µ}) ⊗F F ′ is of abelian type, with realization (G1, {µ1})
such that p " |π1(G1,der)|. Then the local model Mloc

K (G, {µ}) defined above satisfies
Scholze’s conjecture [45, Conj. 21.4.1].

Proof. — We already checked that the flat projective scheme Mloc
K (G, {µ}) has re-

duced special fiber. To show the conjecture it remains to show that the associated
diamond Mloc

K (G, {µ})⋄ over Spd(OE) embeds via an equivariant closed immersion in
GrG,Spd(OE) such that its generic fiber identifies with X⋄

{µ}.
Using étale descent along F ′/F and property (ii) of Proposition 2.14, we see that it

is enough to show the conjecture for (G, {µ})⊗F F ′; so, we can assume that (G, {µ})
is of abelian type to begin with. Let (G1, {µ1}) be a realization. In fact, we can also
assume that E1 ⊂ E. Observe that by using φ, we obtain a parahoric subgroup K1

of G1 which corresponds to K. By [26, Prop. 1.3.3], ρ1 : G1 ↪→ GLn extends to a
closed immersion

ρ1 : G′
1 ↪−→ GL,

where G′
1 is the stabilizer (possibly non connected) of a point in the building of

G1(F ) that corresponds to K1 and where GL is a certain parahoric group scheme for
GLn. In fact, by replacing ρ1 by a direct sum ρ⊕m

1 we can assume that GL is GLn

overOF ; we will do this in the rest of the proof. By [45, Prop. 21.4.3],GrG′
1,Spd(OE),µ1

=
GrG1,Spd(OE),µ1

, where G1 = (G′
1)

◦. This gives a closed immersion GrG1,Spd(OE),µ1
↪→
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GrGL,Spd(OE). By [26, Prop. 2.3.7], ρ1 : G′
1 ↪→ GL induces

MG1,{µ1} ↪−→ (MGLn,{µd})OE1
= Gr(d, n)OE1

,

which is also an equivariant closed immersion. (Here the local model MGLn,{µd} is
the Grassmannian Gr(d, n) over OF .) By the assumption p " |π1(G1,der)|, Remark 2.9
above gives that Mloc

K (G, {µ}) ≃MG1,µ1 ⊗OE1
OE . This allows us to reduce the result

to the case of GLn which is dealt with by [45, Cor. 21.5.10]. "

We view Theorem 2.15 as evidence for the following conjecture.

Conjecture 2.16. — For all local model triples (G, {µ},K) with G split over a tame
extension, the local model Mloc

K (G, {µ}) defined in the last subsection satisfies Scholze’s
Conjecture [45, Conj. 21.4.1].

It has in any case the following concrete consequence.(2)

Corollary 2.17. — Suppose that (G, {µ},K) is an LM triple with G adjoint and
classical such that G splits over a tame extension of F . Assume that there exists a
product decomposition over F̆ , G ⊗F F̆ = Ğ1 × · · · × Ğm, where each factor Ği is
absolutely simple. If there is a factor for which (Ği, {µi}) ⊗F̆ F is of type (Dn,ω∨

n)
with n ! 4 (i.e., of type DH

n in Deligne’s notation [9, Tables 1.3.9, 2.3.8]), also assume
that p is odd. Then the local model Mloc

K (G, {µ}) defined above satisfies Scholze’s
conjecture [45, Conj. 21.4.1].

Proof. — We will show that such a LM triple (G, {µ},K) is, after an unramified ex-
tension, of abelian type. Using our assumption, we can easily reduce to the case that G
is absolutely simple, quasi-split and residually split. The possible pairs (G, {µ}) with
such G and {µ}minuscule, are listed in the first two tables in Section 4. A case-by-case
check gives that, when G is a classical group, we can find a realization (G1, {µ1}) of
(G, {µ}) as a pair of abelian type such that G1,der is simply connected—except when
the type of GF is Dn. (See [9, Rem. 3.10].) In the latter case we can find a realiza-
tion with G1,der simply connected in the case (Dn,ω∨

1 ) (i.e., of type DR
n in Deligne’s

notation), and a realization where π1(G1,der) has order 2 in the case (Dn,ω∨
n) (i.e.,

of type DH
n in Deligne’s notation). (For types An, Cn and DH

n , the minuscule rep-
resentation ρ1 is given over F by a sum of corresponding standard representations,
for types Bn and DR

n , is given by a sum of spin representations.) In all cases, we can
pick µ1 so that E1 = E. The result follows from Theorem 2.15. "

3. Shimura varieties

3.1. Consequences for Shimura varieties. — Let (G,X) be a Shimura datum.
We fix a prime p > 2 such that G := G ⊗Q Qp splits over a tamely ramified
extension of Qp. We consider open compact subgroups K of G(Af ) of the form

(2)We were recently informed that a similar result, which also covers cases of wildly ramified
groups, was obtained by J. Lourenco (forthcoming Bonn thesis).
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K = Kp · Kp ⊂ G(Ap
f ) × G(Qp), where K = Kp is a parahoric subgroup of G(Qp)

and Kp is sufficiently small. Let E be the reflex field of (G,X). Fixing an embedding
Q→ Qp determines a place p of E over p. Let E = Ep. Then E is the reflex field of
(G, {µ}), where {µ} is the conjugacy class of cocharacters over Qp associated to X.
We denote by the same symbol ShK(G,X) the canonical model of the Shimura
variety over E and its base change over E.

Theorem 3.1
(a) ([26]) Assume that (G,X) is of abelian type. Then there exists a scheme

SK(G,X) over OE with right G(Ap
f )-action such that:

(1) Any sufficiently small open compact Kp ⊂ G(Ap
f ) acts freely on SK(G,X),

and the quotient SK(G,X) := SK(G,X)/Kp is a scheme of finite type over OE

which extends ShK(G,X). Furthermore
SK(G,X) = lim←−KpSKpK(G,X),

where the limit is over all such Kp ⊂ G(Ap
f ).

(2) For every closed point x of SK(G,X), there is a closed point y of Mloc
K (G, {µ})

such that the strict henselizations of SK(G,X) at x and of Mloc
K (G, {µ}) at y are

isomorphic.
(3) The scheme SK(G,X) has the extension property: For every discrete valuation

ring R ⊃ OE of characteristic (0, p) the map
SK(G,X)(R) −→ SK(G,X)(R[1/p])

is a bijection.
(b) ([26]) Assume that (G,X) is of Hodge type, that K is the stabilizer of a point in

the Bruhat-Tits building of G, and that p does not divide |π1(Gder)|. Then the model
SK(G,X) of (a) above admits a G(Ap

f )-equivariant local model diagram over OE,

(3.1)

S̃K(G,X)

π

##

ϕ̃

$$

SK(G,X) Mloc
K (G, {µ}),

in which π is a torsor under the group scheme GOE , and ϕ̃ is a GOE -equivariant and
smooth morphism of relative dimension dimG.

(c) ([49, Th. 8.2], [22, Th. 4.1]) Under the assumptions of (b) above, the mor-
phism ϕ̃ in the local model diagram (3.1) is surjective. "

Remark 3.2. — Part (a2) appears as [26, Th. 0.2], but is stated there for the original
local models of [41], and under the assumption p " |π1(Gder)|. The statement above is
for the modified local models of this paper and can be deduced by the results in [26].
Part (b) follows from [26, Th. 4.2.7] and Remark 2.9 (2).

Definition 3.3. — Let O be a discrete valuation ring and suppose that X is a locally
noetherian scheme over O.
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(1) X is said to have good reduction over O if X is smooth over O.
(2) X is said to have semi-stable reduction over O if the special fiber is a normal

crossings divisor in the sense of [46, Def. 40.21.4].
Both properties are local for the étale topology around each closed point of X and

imply that X is a regular scheme with reduced special fiber.

Corollary 3.4. — Assume that (G,X) is a Shimura datum of abelian type. If the
local model Mloc

K (G, {µ}) has good, resp. semi-stable, reduction over OE, then so does
SK(G,X). If (G,X) is of Hodge type and satisfies the assumptions of Theorem
3.1 (b), then the converse also holds.

Proof. — The first assertion follows from Theorem 3.1 (a). The second assertion fol-
lows from (b) and (c). "

3.2. Canonical nature of integral models. — By the main result of [36], the integral
models SK(G,X) constructed in [26] are, under the assumptions of Theorem 3.1 (b),
independent of the choices in their construction. In fact, they are “canonical” in
the sense that they satisfy the characterization given in [36]. In this paper, we are
dealing with models that have smooth or semi-stable reduction. Then, and under some
additional assumptions, we can give a simpler characterization of the integral models
using an idea of Milne [32] and results of Vasiu and Zink ([48]). More precisely, we
have:

Corollary 3.5. — Assume that (G,X) is a Shimura datum of abelian type. Suppose
that Mloc

K (G, {µ}) has good or semi-stable reduction over OE, that E/Qp is unramified,
and that the geometric special fiber Mloc

K (G, {µ})⊗OE k has no more than 2p− 3 irre-
ducible components. Then SK(G,X) is, up to isomorphism, the unique OE-faithfully
flat G(Ap

f )-equivariant integral model of ShK(G,X) that satisfies (a1), (a2) and the
following stronger version of (a3): The bijection

SK(G,X)(R)
∼−→ SK(G,X)(R[1/p])

holds for R any OE-faithfully flat algebra which is either a dvr, or a regular ring which
is healthy in the sense of [48].

Proof. — Note that under our assumption, by [48, Th. 3, Cor. 5] (see also loc. cit.,
p. 594), the scheme Mloc

K (G, {µ}) is regular healthy, when the maximum number of
transversely intersecting smooth components of its special fiber is # 2p− 3. Then, by
Theorem 3.1 (a), the same is true for SK(G,X). By the construction of SK(G,X)
in [26] and [48], it then follows that the limit SK(G,X) also satisfies the extension
property not just for dvr’s but for all regular healthy schemes. The uniqueness part
of the statement then also follows (see also [32], [26]). "

Consider the cases of smooth or semi-stable reduction covered by the results in
this paper, see Theorems 1.2 and 1.3, for F = Qp: it turns out that the number r
of geometric irreducible components of the special fiber of Mloc

K (G, {µ}) is # 2 in all
cases, except in the first case of Theorem 5.6 (the Drinfeld case). In the latter case,
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this number r is equal to the number of lattices in the primitive part of the periodic
lattice chain. Since we assume that p is odd to begin with, we obtain:

Theorem 3.6. — Assume that (G,X) is a Shimura datum of abelian type such that
the corresponding LM triple (G, {µ},K) satisfies the hypothesis of either Theorem 1.2
or Theorem 1.3, with F = Qp. Then, unless (G, {µ},K) corresponds to the “Drinfeld
case” of Theorem 5.6, the model SK(G,X) is canonical, i.e., it satisfies the conclusion
of Corollary 3.5. If (G, {µ},K) corresponds to the Drinfeld case of Theorem 5.6, then
SK(G,X) is canonical, provided that K is the connected stabilizer of a facet in the
building of PGLn that is of dimension # 2p− 4. "

Example 3.7. — Consider the group G = GSpin(V ), where V is a (non-degenerate)
orthogonal space of dimension 2n ! 8 over Q of signature (2n− 2, 2) over R. Take

X = {v ∈ V ⊗Q C | ⟨v, v⟩ = 0, ⟨v, v⟩ < 0}/C∗.

(Here ⟨ , ⟩ is the corresponding symmetric bilinear form.) The group G(R) acts on X
via G→ SO(V ) and (G,X) is a Shimura datum of Hodge type.

Suppose that there exists a pair (Λ0,Λn) of Zp-lattices in V ⊗QQp, with Λ∨
0 = Λ0,

Λ∨
n = pΛn, and pΛn ⊂ Λ0 ⊂ Λn. Let Kp ⊂ G(Qp) be the parahoric subgroup

which corresponds to the connected stabilizer of this lattice chain. By combining
Theorem 5.6 and the above, we obtain that, for small enough Kp, the Shimura variety
ShK(G,X) has a canonical Zp-integral model with semi-stable reduction. In fact,
we can see, using the calculations in Section 12.8, that the integral model is locally
smoothly equivalent to Zp[x, y]/(xy−p). This integral model was found by Faltings [12]
as an application of his theory of MF-objects over semi-stable bases.

4. Rapoport-Zink spaces

We consider RZ-spaces of EL-type or PEL-type, cf. [44]. We place ourselves in the
situation described in [43, §4].

4.1. The formal schemes. — In the EL-case, we start with rational RZ data of EL-
type

D = (F,B, V,G, {µ}, [b]).
Here F is a finite extension of Qp, B is a central division algebra over F , V is a finite-
dimensional B-module, G = GLB(V ) as algebraic group over Qp, {µ} is a conjugacy
class of minuscule cocharacters of G, and [b] ∈ A(G, {µ}) is an acceptable σ-conjugacy
class in G(Q̆p). Let E = E{µ} be the corresponding reflex field inside Qp. In addition,
we fix integral RZ data DZp , i.e., a periodic lattice chain of OB-modules Λ• in V . This
lattice chain defines a parahoric group scheme G over Zp with generic fiber G.

In the PEL-case, we start with rational RZ data of PEL-type
D = (F,B, V, ( , ), ∗, G, {µ}, [b]).

Here F , B and V are as in the EL-case, ( , ) is a non-degenerate alternating Qp-bilinear
form on V , ∗ is an involution on B, G = GSpB(V ) as algebraic group over Qp, and {µ}
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and [b] are as before. We refer to [43] for the precise conditions these data have to
satisfy. In addition, we fix integral RZ data DZp , i.e., a periodic self-dual lattice chain
of OB-modules Λ• in V . In the PEL case we make the following assumptions.

– p ̸= 2.
– G is connected.
– The stabilizer group scheme G is a parahoric group scheme over Zp.

Then in all cases (G, {µ},G) is a LM triple over Qp. As in Section 2, we sometimes
write the LM triple as (G, {µ},K) with K = G(Zp).

Let OĔ be the ring of integers in Ĕ (the completion of the maximal unramified
extension of E). In either EL or PEL case, after fixing a framing object X over k
(the residue field of OĔ), we obtain a formal scheme locally formally of finite type
over Spf OĔ which represents a certain moduli problem of p-divisible groups on the
category Ni‘pOĔ

. We denote this formal scheme by Mnaive
DZp

. The reason for the upper
index is that we impose only theKottwitz condition on the p-divisible groups appearing
in the formulation of the moduli problem. In particular, Mnaive

DZp
need not be flat over

Spf OĔ .
Analogously, associated toDZp , there is the local modelMnaive

DZp
, a projective scheme

over OE equipped with an action of GOE = G ⊗Zp OE . Furthermore, there is a local
model diagram of morphisms of formal schemes over Spf OĔ ,

(4.1)
M̃naive

DZp
π

%%

ϕ̃
&&

Mnaive
DZp

(Mnaive
DZp

)∧,

in which π is a torsor under the group scheme GOE , and ϕ̃ is a GOE -equivariant and
formally smooth morphism of relative dimension dimG. Here (Mnaive

DZp
)∧ denotes the

completion of Mnaive
DZp

⊗OE OĔ along its special fiber.

Lemma 4.1. — Assume that the group G attached to the rational RZ-data D splits over
a tame extension of Qp. Then the modified PZ-local model Mloc

K (G, {µ}) of Section 2.6
attached to the LM triple (G, {µ},G) is a closed subscheme of Mnaive

DZp
, with identical

generic fiber.

Proof. — Notice that under our assumptions, since this is always true in the EL
case, G is connected. We can see that, under our assumptions, p does not divide
|π1(Gder)|. Indeed, this is clear in the EL case since then (Gder)Qp

is a product of
special linear groups SL. In the PEL case, (Gder)Qp

is the product of groups of types
SL, Sp, SO, and our assumptions include that p is odd. It follows from 2.9 (2) that
Mloc

K (G, {µ}) ≃MG,µ. By [41, (8.3)], under the above assumptions again (in particular,
the fact that G is connected is used), the local model MG,µ agrees with the flat closure
of the generic fiber of the naive local model Mnaive

DZp
. The result follows. "
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We now use the local model diagram (4.1) to define a closed formal subscheme
MDZp of Mnaive

DZp
, defined by an ideal sheaf killed by a power of the uniformizer of OE .

Indeed, consider the ideal sheaf on Mnaive
DZp

defining Mloc
K (G, {µ}). It defines, after

completion and pullback under ϕ̃ an ideal sheaf on M̃naive
DZp

which descends along π
to Mnaive

DZp
. We therefore obtain a local model diagram

(4.2)
M̃DZp

π
%%

ϕ̃

$$

MDZp (Mloc
K (G, {µ}))∧,

where we have recycled the notation from (4.1). Again, the left oblique arrow is a torsor
under GOE , and the right oblique arrow is GOE -equivariant and formally smooth of
relative dimension dimG.

Corollary 4.2. — Assume that the group G attached to the rational RZ-data D splits
over a tame extension of Qp. If the local model Mloc

K (G, {µ}) has good, resp. semi-
stable, reduction over OE, then so does MDZp .

Proof. — This follows by descent from the local model diagram. "

Remark 4.3. — In contrast to Corollary 3.4, the converse does not hold in general
because the morphism ϕ̃ is not always surjective. However, the converse holds if the
RZ data D are basic, i.e., [b] is basic.

Proposition 4.4. — Assume that D is basic and that the group G attached to D

splits over a tame extension of Qp. If the RZ space MDZp has good, resp. semi-stable,
reduction over OE, then so does the local model Mloc

K (G, {µ}).

Proof. — Indeed, MDZp can be identified with the formal completion of an open and
closed subset of a Shimura variety of Hodge type along its basic stratum. But this
closed stratum is contained in the closed subset of non-smooth, resp. non-semi-stable
points (if these are non-empty). Therefore the assertion follows from Corollary 3.4. "

Proposition 4.5. — Assume that the group G attached to the rational RZ-data D

splits over a tame extension of Qp. Then the formal scheme MDZp is flat over
Spf OĔ and normal. Furthermore, it only depends on DZp through the quadruple
(G, {µ},G, [b]). Finally,

(4.3) MDZp (k) =
⋃

w∈AdmK̆({µ})
Xw(b).

Here AdmK̆({µ}) ⊂ WK̆\W̃/WK̆ denotes the admissible set. Also Xw(b) denotes for
w ∈WK̆\W̃/WK̆ the affine Deligne-Lusztig set

Xw(b) = {g ∈ G(Q̆p)/K̆ | g−1bσ(g) ∈ K̆wK̆}

where b is a fixed representative of [b].
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Proof. — Flatness and normality follows via the local model diagram from the cor-
responding properties of Mloc

K (G, {µ}), cf. Remark 2.9 (1). The uniqueness statement
follows from [45, Cor. 25.1.3]. The final statement follows from [45, Cor. 25.1.3] and
Theorem 2.11 together with (2.6) and the definition [45, Def. 25.1.1] of the v-sheaf
Mint

(G,µ,b) by observing the following: In the definition of Mint
(G,µ,b) we can take, by

Corollary 2.17, the local model Mloc
K (G, {µ}) to give the “diamond” local model v-

sheaf Mloc
G,µ used there. "

4.2. The RZ tower. — We now pass to the RZ-tower of rigid-analytic spaces(
MK ,K ⊂ G(Qp)

)
, cf. [43, §4.15]. For its formation, we can start with Mnaive

DZp
for an

arbitrary integral RZ datum DZp for D; in particular, we need not assume that G is
tamely ramified.

Proposition 4.6. — The RZ-tower (MK) depends only on the rational RZ datum D

through the triple (G, {µ}, [b]). Furthermore, if it is non-empty, then [b] ∈ B(G, {µ}).
The converse holds if G splits over a tamely ramified extension of Qp.

Proof. — The first assertion follows from [45, Cor. 24.3.5]. The second assertion is
[43, Prop. 4.19]. To prove the converse, using flatness of MDZp , it suffices to prove
MDZp (k) ̸= ∅. Via the identification (4.3), this follows from [23]. "

Remark 4.7. — The uniqueness statement is conjectured in [43, Conj. 4.16] without
the tameness assumption. The converse statement is conjectured in [43, Conj. 4.21],
again without the tameness assumption.

5. Statement of the main results

5.1. Good reduction. — In the following, we call the LM triple (G, {µ},K) of
exotic good reduction type if p ̸= 2 and if the corresponding adjoint LM triple
(Gad, {µad},Kad) is isomorphic to the adjoint LM triple associated to one of the
following two LM triples.

(1) (Unitary exotic reduction)
– G = ResF ′/F G′. Here F ′/F is an unramified extension, and G′ = U(V ), with V

a F̃ ′/F ′-hermitian vector space of dimension ! 3, where F̃ ′/F ′ is a ramified quadratic
extension.

– {µ} = {µϕ}ϕ : F ′→F , with {µϕ} = (1, 0, . . . , 0) or {µϕ} = (0, 0, . . . , 0), for any ϕ.
– K = ResOF ′/OF

(K ′), with K ′ = Stab(Λ), where Λ is a π-modular or almost π-
modular vertex lattice in V , i.e., Λ∨ = π−1

F̃ ′ Λ if dimV is even, resp. Λ ⊂ Λ∨ ⊂1 π−1
F̃ ′ Λ

if dimV is odd.
(2) (Orthogonal exotic reduction)
– G = ResF ′/F G′. Here F ′/F is an unramified extension, andG′ = GO(V ), with V

an orthogonal F ′-vector space of even dimension 2n ! 6.
– {µ} = {µϕ}ϕ : F ′→F , with {µad,ϕ} = (1(n), 0(n))ad or {µad,ϕ} = (0, 0, . . . , 0), for

any ϕ.
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– K = ResOF ′/OF
(K ′), with K ′ = Stab(Λ), where Λ is an almost selfdual vertex

lattice in V , i.e., Λ ⊂1 Λ∨ ⊂ π−1
F ′ Λ.

Theorem 5.1. — Let (G, {µ},K) be a triple over F such that G splits over a tame
extension of F . Assume p ̸= 2. Assume that Gad is F -simple, that in the product
decomposition over F̆ ,

Gad ⊗F F̆ =
∏

i
Ğad,i

each factor is absolutely simple, and that µad is not trivial. Then the local model
Mloc

K (G, {µ}) is smooth over SpecOE if and only if K is hyperspecial or (G,µ,K) is
a triple of exotic good reduction type.(3)

We are going to use the following dévissage lemma.

Lemma 5.2
(a) Let F ′/F be a finite unramified extension contained in F̆ . Let

(G, {µ},K)⊗F F ′ =
∏

i
(Gi, {µi},Ki),

where (Gi, {µi},Ki) are LM triples over F ′. Then Mloc
K (G, {µ}) is smooth over

SpecOE if and only if Mloc
Ki

(Gi, {µi}) is smooth over SpecOEi for all i.
(b) Let (G′, {µ′},K ′) → (G, {µ},K) be a morphism of triples such that G′ → G

gives a central extension. Then Mloc
K (G, {µ}) is smooth over SpecOE if and only

Mloc
K′(G′, {µ′}) is smooth over SpecOE′ .

Proof. — This follows from properties (ii)–(iv) of Proposition 2.14. "

The lemma implies that, in order to prove Theorem 5.1, we may assume that
Gad is absolutely simple and that µad is not trivial. That Mloc

K (G, {µ}) is smooth
over SpecOE when K is hyperspecial is property (i) of Proposition 2.14. The case of
unitary exotic good reduction is treated in [1, Prop. 4.16], comp. [40, Th. 2.27 (iii)].
The case of orthogonal exotic good reduction is discussed in Section 12.11.

The proof of the converse proceeds in three steps. In a first step, we establish a list
of all cases in which the special fiber of Mloc

K (G, {µ}) is irreducible, i.e., AK(G, {µ}) is
a single Schubert variety in the corresponding affine partial flag variety. This is done
in Section 7. In a second step, we go through this list and eliminate the cases when K
is not a special maximal parahoric by showing that in those cases the special fiber is
not smooth (in fact, not even rationally smooth, in the sense explained in Section 6).
This is done in Section 8. Finally, we deal with the cases when K is a special maximal
parahoric; most of these can be also dealt with by the same methods. In a few cases,
we need to refer to certain explicit calculations of the special fibers given in [39], [1],
and, in one exceptional type, appeal to the result of Haines-Richarz [19].

(3)Haines-Richarz [19] gives an alternative explanation for the smoothness of Mloc
K (G, {µ}) in the

case of exotic good reduction type for the even unitary case and the orthogonal case: in these cases,
the special fiber of Mloc

K (G, {µ}) can be identified with a Schubert variety attached to a minuscule
cocharacter in the twisted affine Grassmannian corresponding to the special maximal parahoric K.
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5.2. Weyl group notation. — Recall that simple adjoint groups Ğ over F̆ are classi-
fied up to isomorphism by their associated local Dynkin diagram,(4) cf. [47, §4]. Recall
that to a local Dynkin diagram ∆̃ there is associated its Coxeter system, cf. [3], which
is of affine type. The associated Coxeter group is the affine Weyl group Wa. We denote
by W̃ its extended affine Weyl group. Both Wa and W̃ are extensions of the finite
Weyl group W0 by translation subgroups, i.e., finitely generated free Z-modules. We
denote by X∗ the translation subgroup of W̃ .

Definition 5.3
(1) An enhanced Tits datum is a triple (∆̃, {λ}, K̃) consisting of a local Dynkin

diagram ∆̃, a W0-conjugacy class {λ} of elements in X∗, and a non-empty subset K̃
of the set S̃ of vertices of ∆̃.

(2) An enhanced Coxeter datum is a triple
(
(Wa, S̃), {λ}, K̃

)
consisting of a Coxeter

system (Wa, S̃) of affine type, a W0-conjugacy class {λ} of elements in X∗, and a non-
empty subset K̃ of S̃.

Note that the Coxeter system (Wa, S̃) is given by its associated Coxeter diagram,
cf. [3, Chap.VI, §4, Th. 4]. The Coxeter diagram associated to a local Dynkin diagram
is obtained by disregarding the arrows in the local Dynkin diagram. An enhanced
Tits datum determines an enhanced Coxeter datum. The natural map from the set
of enhanced Tits data to the set of enhanced Coxeter data is not injective.

Let (G, {µ},K) be a LM triple over F such that G is adjoint and absolutely simple.
We associate as follows an enhanced Tits datum to (G, {µ},K). The local Dynkin
diagram ∆̃ is that associated to Ğ = G ⊗F F̆ . Let T̆ be a maximal torus of Ğ
contained in a Borel subgroup B̆ containing T̆ . We may choose a representative µ
of {µ} in X∗(T̆ ) which is dominant for B̆. There is a canonical identification of X∗
with X∗(T̆ )Γ0 (co-invariants under the inertia group). The second component of the
enhanced Tits datum is the image λ of µ in X∗. It is well-defined up to the action
of W0 (this follows, since W0 is identified with the relative Weyl group of Ğ and any
two choices of B̆ are conjugate under the relative Weyl group). The third component
of the enhanced Tits datum is the subset K̃ of vertices of ∆̃ which describes the
conjugacy class under Ğ(F̆ ) of the parahoric subgroup K̆ of Ğ(F̆ ) determined by K.

Given a LM triple, one may compute its associated enhanced Tits datum as follows.
First, if G is a split group, with associated Dynkin diagram ∆, then the local Dynkin
diagram ∆̃ is simply the associated affine Dynkin diagram, cf. [4, VI, §2]. See Table 1.

Now let G be quasi-split and residually split. Then the affine root system is calcu-
lated following the recipe in [39, §2.3]. This gives the list in Table 2. In the column
“Local Dynkin diagram”, there are two rows associated to each group: the first row
gives the local Dynkin diagram of the group G over a (ramified) field extension F̆ ′

of F̆ such that G splits over F̆ ′; the second row gives the local Dynkin diagram of

(4)Note that only the first batch of cases on Tits’ list is relevant since Ğ is automatically residually
split.
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Name (Index) Local Dynkin diagram Minuscule coweights

An (1A(1)
n,n) for n ! 2 ◦

1
◦
n

◦
2

◦
n− 1

◦ 0

{ω∨
i }, 1 # i # n

A1 (1A(1)
1,1) ◦

1
◦
0

{ω∨
1 }

Bn (Bn,n) for n ! 3 ◦
n

◦
n− 1

◦
n− 2

◦
2

◦1

◦0

{ω∨
1 }

Cn (C(1)
n,n) for n ! 2 ◦

0
◦
1

◦
2

◦
n− 1

◦
n

{ω∨
n}

Dn (1D(1)
n,n) for n ! 4

◦1

0◦
◦
2

◦
3

◦
n− 2

◦n− 1

◦n
{ω∨

1 ,ω
∨
n−1,ω

∨
n}

E6 (1E0
6,6) ◦

0
◦
2

◦
4

◦
3

◦
5

◦1

◦6

{ω∨
1 ,ω

∨
6 }

E7 (E0
7,7) ◦

0
◦
1

◦
3

◦
4

◦
5 6

◦ ◦
7

◦2
{ω∨

7 }

Table 1.

the group G over F̆ . In the column “Coweights”, there are two rows: the first row for
the minuscule coweight µ; the second row for the corresponding λ realized as a trans-
lation element of the associated extended affine Weyl group. Here we put minuscule
coweights between braces if they determine the same λ which appears directly below.
We follow the notation in [47].

From this list we deduce the following statement.

Lemma 5.4. — Two LM triples (G, {µ},K) and (G′, {µ′},K ′) over F , with G and G′

absolutely simple adjoint, define the same enhanced Tits datum if and only if they
become isomorphic after scalar extension to an unramified extension of F . "

Suppose that G and G′ are absolutely simple adjoint such that G⊗F F̆ ≃ G⊗F F̆ .
The isomorphism classes of G and G′ are distinguished by considering the correspond-
ing action of the automorphism F of the local Dynkin diagram ∆̃ of Ğ ≃ Ğ′ ≃ G∗⊗F F̆
given by Frobenius (see [47], [17]). In [17] one can find a very useful list of all possible
such actions and of the corresponding forms of the group. The parahoric subgroups
K, K ′ correspond to non-empty F -stable subsets K̃ of the vertices of ∆̃.

Example 5.5. — Consider the enhanced Tits data defined by LM triples of exotic
good reduction type, cf. beginning of Section 5.1. Assume that G⊗F F̆ is absolutely
simple and adjoint. There are two cases:
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Name (Index) Local Dynkin diagram Coweights

B-Cn

(2A(1)
2n−1,n)

◦
1

◦
2n− 1

◦
2

◦
2n− 2

◦ 0

{ω∨
i ,ω

∨
2n−i}, 1 # i # n

for n ! 3 ◦
n

◦
n− 1

◦
n− 2

◦
2

◦1

◦0
ω∨
i

C-BCn

(2A(1)
2n,n)

◦
1

◦
2n

◦
2

◦
2n− 1

◦ 0

{ω∨
i ,ω

∨
2n+1−i}, 1 # i < n {ω∨

n ,ω
∨
n+1}

for n ! 2 ◦
0

◦
1

◦
2

◦
n− 1

◦
n

ω∨
i 2ω∨

n

C-BC1 (2A(1)
2,1)

◦
1

◦
2

◦ 0

{ω∨
1 ,ω

∨
2 }

◦
1

◦
0

2ω∨
1

C-Bn

(2D(1)
n+1,n)

◦1

0◦
◦
2

◦
3

◦
n− 1

◦n

◦n+ 1

ω∨
1 {ω∨

n ,ω
∨
n+1}

for n ! 2 ◦
0

◦
1

◦
2

◦
n− 1

◦
n

ω∨
1 ω∨

n

F 1
4 (2E2

6,4)
◦
0

◦
2

◦
4

◦
3

◦
5

◦1

◦6

{ω∨
1 ,ω

∨
6 }

◦
0

◦
1

◦
2

◦
3

◦
4

ω∨
1

G1
2

◦1

0◦
◦
2

◦3

◦4

{ω∨
1 ,ω

∨
3 ,ω

∨
4 }

(3D4,2 or
6D4,2)

◦
0

◦
2

◦
1

ω∨
2

Table 2.

(1) G is the adjoint group of U(V ), where V is the F̃ /F -hermitian vector space for
a (tamely) ramified quadratic extension F̃ of F . If dimV = 2m ! 4 is even, then the
corresponding enhanced Tits datum is (B-Cm, ω∨

1 , {0}) form ! 3 and (C-B2, ω∨
2 , {0})

for m = 2. If dimV = 2m+1 ! 3 is odd, then the corresponding enhanced Tits datum
is (C-BCm, ω∨

1 , {0}) for m ! 2 and (C-BC1, 2ω∨
1 , {0}) for m = 1.

(2) G is the adjoint group of SO(V ) where V is an orthogonal F -vector space of
dimension 2m+ 2 ! 6. Then V has Witt index m and non-square discriminant. The
corresponding enhanced Tits datum is (C-Bm, ω∨

m, {0}).

5.3. Semi-stable reduction. — In the classification problem of all triples (G, {µ},K)
such that Mloc

K (G, {µ}) has semi-stable reduction, Lemma 5.2 points to two problems.
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First, the product of semi-stable schemes is semi-stable only when all factors except
at most one are smooth. And we can consider the problem of classifying the good
reduction cases as solved by Theorem 5.1. Second, the extension of scalars of a semi-
stable scheme is again semi-stable only if the base extension is unramified. Therefore,
we will consider in the classification problem of semi-stable reduction only triples
(G, {µ},K) such that G is an absolutely simple adjoint group.

Lemma 5.4 justifies classifying local models Mloc
K (G, {µ}) with semi-stable reduc-

tion by the enhanced Tits datum associated to (G, {µ},K). Indeed, for F ′/F unrami-
fied,Mloc

K (G, {µ})⊗OEOE′ ≃Mloc
K′(G′, {µ′}), where G′ = G⊗F F ′ and {µ′} andK ′ are

induced from {µ} and K, cf. Proposition 2.14 (ii). Furthermore, Mloc
K (G, {µ})⊗OEOE′

has semi-stable reduction if and only if Mloc
K (G, {µ}) has semi-stable reduction (this

follows because the reflex field E′ is an unramified extension of E).
Now we can state the classification of local models with semi-stable reduction.

Theorem 5.6. — Let (G, {µ},K) be a LM triple over F such that G splits over a tame
extension of F . Assume p ̸= 2. Assume also that the group G is adjoint and absolutely
simple. The local model Mloc

K (G, {µ}) has semi-stable but not smooth reduction over
Spec(OE) if and only if the enhanced Tits datum corresponding to (G, {µ},K) appears
in the first column of Table 3.

Enhanced Tits datum Linear algebra datum Discoverer

◦
×

◦◦ ◦
"

All vertices are hyperspecial
#K̃ ! 2

Split SLn, r = 1

arbitrary chain of lattices of length ! 2

Drinfeld

• ◦• ◦
"

All vertices are hyperspecial
µ is any minuscule coweight

Split SLn with n ! 4

r arbitrary, (Λ0,Λ1)

Görtz

• ◦ ◦ ◦
$hs

◦hs
×

Split SO2n+1 with n ! 3, r = 1, (Λ0,Λn) new

$ • ◦ ◦ ◦hshs
× Split Sp2n with n ! 2, r = n, (Λ0,Λ1) Genestier-Tilouine

$hs

hs◦
◦ ◦ ◦

•hs

◦hs
×

Split SO2n with n ! 4, r = 1, (Λ0,Λn) Faltings

$hs

hs•
◦ ◦ ◦

◦ hs

◦hs
×

Split SO2n with n ! 5, r = n,Λ1 new

Table 3.

In the second column, we list the linear algebra data that correspond(5) to the LM
triple (G, {µ},K)⊗F F̆ .

(5)By definition, this means that the corresponding parahoric subgroup is the connected stabi-
lizer of the listed lattices. Note that in the last row, the connected stabilizer of the lattice Λ1 also
stabilizes Λ0.
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In the diagrams above, if not specified, hyperspecial vertices are marked with an hs.
In order to also show the coweight {λ}, a special vertex is specified (marked by a
square)(6) so that the extended affine Weyl group appears as a semi-direct product
of W0 and X∗. Then {λ} is equal to the fundamental coweight of the vertex marked
with ×. The number r is the labeling of this special vertex. Finally, the subset K̃ is
the set of vertices filled with black color.

Note that there are some obvious overlaps between the first two rows.

Remark 5.7. — Starting with the table in Theorem 5.6 above, one can also easily
list all LM triples (G, {µ},K) over F , with G adjoint and absolutely simple such
that G splits over a tame extension of F and with Mloc

K (G, {µ}) having semi-stable
reduction over OE (provided p ̸= 2). These are given by listing the possible conjugacy
classes of Frobenius automorphisms in the group Aut(∆̃, K̃) of automorphisms of the
corresponding local Dynkin diagram ∆̃ that preserve the black subset K̃. B. Gross [17]
gives a convenient enumeration of possible Frobenius conjugacy classes in Aut(∆̃).

For example, in the first case of our list, there could be several possible Frobenius
actions on the n-gon that stabilize K̃ depending on that set; the corresponding groups
are the adjoints of either unitary groups or of SLm(D), where D are division algebras
and m|n (see [17, p. 15-16]).

In the second case, there is only one possibility of a non-trivial Frobenius action on
the n-gon that stabilizes the set of two adjacent vertices: A reflection (F of order 2).
Then G is the adjoint group of U(V ) where V is a non-degenerate Hermitian space for
an unramified quadratic extension of F . Furthermore, when n = 2m is even, F cannot
fix a vertex so V does not contain an isotropic subspace of dimension m ([17, p. 16]).

In the third and fourth cases, there are no non-trivial automorphisms F that pre-
serve the subset K̃ and so G is split.

In the fifth case, there is also only one possible non-trivial Frobenius action that
stabilizes K̃, up to conjugacy in the group Aut(∆̃, K̃). The corresponding group is
the adjoint group of U(W ) where W is a non-degenerate anti-Hermitian space over
the quaternion division algebra over F ; the center of the Clifford algebra is F ×F if n
is even and the quadratic unramified extension L/F if n is odd ([17, p. 18–20]).

In the sixth case, there are three possibilities of a non-trivial Frobenius action
that stabilizes K̃, up to conjugacy in the group Aut(∆̃, K̃). In the one case, the
group is the adjoint group of SO(V ) where V is a non-degenerate orthogonal space
of dimension 2n, discriminant 1 and Witt index n− 2. In the other two, the group is
the adjoint group of the unramified quasi-split but not split SO(V ) ([17, p. 18–20]).

In all these cases, we can realize K as the parahoric stabilizer of a suitable lattice
chain.

Remark 5.8. — We note thatMloc
K (G, {µ}) has semi-stable reduction if and only if the

base changeMloc
K (G, {µ})⊗OE ŎE has strictly semi-stable reduction, i.e., the geometric

(6)Note that the local Dynkin type C-BCn does not occur here so that all special vertices are
conjugate; hence this specification plays no role.
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special fiber is a strict normal crossings divisor, in the sense of [46, Def. 40.21.1]:
Indeed, both Mloc

K (G, {µ}) ⊗OE ŎE and all the irreducible components of its special
fiber are normal [41], hence unibranch at each closed point x. From this we deduce that
each intersection of a subset of irreducible components of the geometric special fiber in
the strict henselization of Mloc

K (G, {µ}) at x (i.e., of “branches”), is isomorphic to the
strict henselization of the intersection of a corresponding subset of global irreducible
components at x. Therefore, if the geometric special fiber is (étale locally) a normal
crossings divisor, it is in fact (globally) a strict normal crossings divisor.

Remarks 5.9. — Let us compare this list with the local models investigated in ear-
lier papers. We always assume p ̸= 2. We use the terminology rationally smooth,
strictly pseudo semi-stable reduction, rationally strictly pseudo semi-stable reduction
introduced in the next section.

(i) Let us consider the LM triples whose first two components are G = GU(V )
where V is a split F ′/F -hermitian space of dimension 3 relative to a ramified qua-
dratic extension F ′/F , and where {µ} = (1, 0, 0). We identify E with F ′. We use the
notation for the parahoric subgroups as in [40]. Since G is not unramified, there are
no hyperspecial maximal parahoric subgroups. If K is the stabilizer of the self-dual
vertex lattice Λ0, then K is a special maximal parahoric and the special fiber is ir-
reducible, normal with an isolated singularity which is a rational singularity, comp.
[40, Th. 2.24]. The special fiber occurs in the list in [19] of rationally smooth Schubert
varieties in twisted affine Grassmannians. The blow-up of Mloc

K (G, {µ}) in the unique
singular point of the special fiber has semi-stable reduction, cf. [34, Th. 4.5], [27]. This
is an example of a local model which does not have semi-stable reduction but where
the generic fiber has a different model which has semi-stable reduction.

If K is the stabilizer of the non-selfdual vertex lattice Λ1, then Mloc
K (G, {µ}) is

smooth over SpecOF ′ : this case is of exotic good reduction type.
Finally, if K is an Iwahori subgroup, then the local model does not have rationally

strictly pseudo semi-stable reduction, comp. [40, Th. 2.24, (iii)]. And, indeed, this case
is eliminated in Section 8.13.

(ii) Let us consider G = GU(V ), where V is a split F ′/F -hermitian space of
arbitrary dimension n ! 2 relative to a ramified quadratic extension F ′/F . Let us
consider the LM triple (G, {µ},K), where {µ} = (1, 0, . . . , 0), and where K is the
parahoric stabilizer of a self-dual lattice Λ (except when n = 2, K is the full stabilizer
of Λ, cf. [39, 1.2.3]). If n = 2, then Mloc

K (G, {µ}) has semi-stable reduction, cf. [40,
Rem. 2.35]. If n ! 3, the special fiber of Mloc

K (G, {µ}) is irreducible and has a unique
isolated singular point, cf. [34, Th. 4.5]. Generalizing the previous example, the blow-
up of this singular point has semi-stable reduction, cf. [34, 27].

For n > 3 with n = 2m + 1 odd, the associated local Dynkin diagram is of type
C-BCm and the parahoric subgroup K corresponds to the special vertex m in the
local Dynkin diagram. The special fiber of the local model is a Schubert variety that
occurs in the list in [19] of rationally smooth Schubert varieties in twisted affine
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Grassmannians. Remarkably, Zhu [52, Cor. 7.6] has shown in this case that the Weil
sheaf defined by the complex of nearby cycles is the constant sheaf Qℓ, even though
the special fiber is singular. In particular, as shown previously by Krämer [27, Th. 5.4],
the semi-simple Frobenius trace function is constant equal to 1 on the special fiber.

For n = 2m ! 4 even, the associated local Dynkin diagram is of type B-Cm

and the parahoric subgroup K corresponds to the non-special vertex m in the local
Dynkin diagram if m ! 3, or C-B2 and the non-special vertex 1, if m = 2. By §8.8.2,
resp. Section 8.7, the associated Poincaré polynomial is not symmetric and hence the
special fiber is not rationally smooth, cf. Lemma 6.2. In this case, Krämer [27, Th. 5.4]
has shown that the semi-simple Frobenius trace function is not constant equal to 1
on the special fiber, but rather has a jump at the singular point.

(iii) Let us consider G = ResF ′/F (GLn), where F ′/F is a totally ramified (possi-
bly wildly) extension. This is excluded from the above considerations (both for the
classification of good reduction and of semi-stable reduction); still, it is interesting to
compare this case with the above lists. Let K = GLn(OF ′) and

{µ} =
(
(1(rϕ), 0(n−rϕ))ϕ : F ′→F

)
.

The singularities of the special fiber are analyzed in [37] by relating the special fiber
Mloc

K (G, {µ}) ⊗OE κE with a Schubert variety in the affine Grassmannian for GLn.
More precisely, the special fiber is irreducible and reduced and there is an isomorphism
of closed reduced subschemes

Mloc
K (G, {µ})⊗OE κE ≃ Ot.

Here Ot is the Schubert variety associated to the dominant coweight t = r∨ dual to
r = (rϕ)ϕ, i.e.,

t1 = #{ϕ | rϕ ! 1}, t2 = #{ϕ | rϕ ! 2}, . . . .

By [19] (cf. also [31] for the analogue over a ground field of characteristic zero, and
[11], [50] for the analogue over C), Ot is smooth if and only if t is minuscule, i.e.,
t1− tn # 1. This holds if and only if there is at most one ϕ such that rϕ /∈ {0, n}. We
conclude that Mloc

K (G, {µ}) is smooth only in the trivial case when at most one rϕ is
not 0 or n.

(iv) Very similarly to the case above, we can also consider G = ResF ′/F (H),
where F ′ is a totally ramified (possibly wildly) extension, and H is unramified over F ′

(i.e., quasi-split and split over an unramified extension of F ′). Then H extends to a
reductive group scheme over OF ′ which is unique up to isomorphism and which we
will also denote by H. Take K = H(OF ′), let {µ} =

(
(µϕ)ϕ : F ′→F

)
, and consider the

LM triple (G, {µ},K).
When F ′/F is wildly ramified, the theory of [41] does not apply to (G, {µ},K).

However, Levin [30] has extended the construction of [41] to such groups obtained
by restriction of scalars and has defined local models Mloc

K (G, {µ}) for such triples.
Assume that p does not divide |π1(Hder)|. Then, by [30, Th. 2.3.5], the geometric
special fiber Mloc

K (G, {µ}) ⊗OE k is reduced and can be identified with a Schubert
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variety GrH,λ of the affine Grassmannian for H over k. Here, λ is given by the sum∑
ϕ µϕ of the minuscule coweights µϕ. By [19], (or [31] for the analogue over a ground

field of characteristic zero), GrH,λ is smooth if and only if λ is minuscule. Therefore,
Mloc

K (G, {µ}) is smooth over OE if and only if at most one of the coweights µϕ,ad is
not trivial.

The proof of Theorem 5.6 proceeds in four steps. In a first step, we establish a list
of all cases which satisfy the component count property condition (CCP), cf. Section 7.
This condition is implied by strictly pseudo semi-stable reduction. This last condition,
concerns only the special fiber and entails in particular that all irreducible components
are smooth, with their intersections smooth of the correct dimension, cf. Section 6.
By weakening the condition of smoothness to rational smoothness, we arrive at the
notion of rationally strictly pseudo semi-stable reduction, cf. Section 6. The second
step consists in eliminating from the CCP-list all cases which do not have ratio-
nally strictly pseudo semi-stable reduction, cf. Section 8. In a third step, we eliminate
all cases which have rationally strictly pseudo semi-stable reduction but not strictly
pseudo semi-stable reduction, cf. Section 10. In the final step we prove that in all the
remaining cases strictly pseudo semi-stable reduction implies semi-stable reduction.
This last step is a lengthy case-by-case analysis through linear algebra and occupies
Section 12.

6. Strictly pseudo semi-stable reduction and the CCP condition

Definition 6.1
(a) A scheme over the spectrum of a discrete valuation ring is said to have strictly

pseudo semi-stable reduction (abbreviated to SPSS reduction) if all irreducible com-
ponents of the reduced geometric special fiber are smooth and of the same dimension,
and the reduced intersection of any i irreducible components is smooth and irreducible
and of codimension i− 1.

(b) A scheme over the spectrum of a discrete valuation ring is said to have ratio-
nally strictly pseudo semi-stable reduction if all irreducible components of the reduced
geometric special fiber are rationally smooth and of the same dimension, and the re-
duced intersection of any i irreducible components is rationally smooth and irreducible
and of codimension i− 1.

Here we recall that an irreducible variety Y of dimension d over an algebraically
closed field k is said to be rationally smooth(7) if for all closed points y of Y the
relative ℓ-adic cohomology (for some ℓ ̸= char k) satisfies

dimQℓ H
i(Y, Y $ {y},Qℓ) =

{
0 i ̸= 2d

1 i = 2d.

(7)A priori, this definition depends on ℓ. However, as we will see from the proof, the schemes we
consider in this paper will be either rationally smooth for all ℓ or non rationally smooth for any ℓ.
We will simply use the terminology “rationally smooth” instead of “ℓ-rationally smooth”.
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When k = C, this definition (for singular cohomology with coefficients in Q) appears
in [25], cf. also [4, 28, 2].

We note that both notions, that of SPSS reduction and that of rationally SPSS
reduction, only depend on the geometric special fiber. For instance, they do not imply
that the scheme is regular.

Lemma 6.2. — Let Y be a proper irreducible variety of dimension d over an alge-
braically closed field. If Y is rationally smooth, then the Poincaré polynomial

P (t) =
∑2d

i=0
ait

i,

of cohomology with Qℓ-coefficients (ℓ ̸= char k) is symmetric, i.e., ai = a2d−i, for
all i. "

Remark 6.3. — By [19, Prop. 2.1], if the irreducible variety Y is rationally smooth,
then the intersection complex ICY is isomorphic to Qℓ[d]. Thus the cohomology groups
with Qℓ-coefficients satisfy Poincaré duality. Also, in the applications in this paper,
the varieties involved are unions of affine spaces and thus the polynomials P (t) can
be computed by counting rational points on the varieties.

Remark 6.4. — It is proved in [7] that for Schubert varieties in the finite and affine
flag varieties for split groups, the converse is true. Namely, in this context, a Schu-
bert variety is rationally smooth if and only if its Poincaré polynomial formed with
Qℓ-coefficients is symmetric. Something analogous holds in the Kac-Moody context,
cf. [29, 12.2 E(2)].

Notation 6.5. — In the rest of this section and also in Sections 7, 8 and 10 we consider
the enhanced Tits datum (∆̃, {λ}, K̃) obtained, as in §5.2, from a local model triple
(G, {µ},K) with G adjoint and absolutely simple.

On the other hand, the enhanced Tits datum (∆̃, {λ}, K̃) also corresponds to an
adjoint, absolutely simple group G♭ over k((u)), a G♭(k((u))sep)-conjugacy class of a
minuscule cocharacter, and a conjugacy class of a parahoric subgroup K♭ = G♭(k[[u]]).
In terms of the identifications of §2.3, we have G♭ = Ğ′, K♭ = K̆ ′, G♭ = G⊗O[u] k[[u]],
and the class of the cocharacter is the one that corresponds to {µ}.

By Theorem 2.11, and the above discussion, the geometric special fiber of
Mloc

K (G, {µ}) can be identified (up to a radicial morphism) with the union, over the
set AdmK̃({λ}), of Schubert varieties in the partial flag variety LG♭/L+G♭. In what
follows, to ease the notation, we will denote this partial flag variety by G♭/K♭ and
its Schubert varieties as K♭wK♭/K♭.

Below, and also in Sections 7, 8 and 10, we will employ various combinatorial
arguments in the extendedWeyl group W̃ which only involve (∆̃, {λ}, K̃); for example,
which use cosets for the subgroup WK̃ . For these arguments, we will often omit the
tilde from the notation. For example, we will simply write WK instead of WK̃ ; in any
case, this subgroup ultimately only depends on the conjugacy class of the parahoric
subgroup K̆ ⊂ G(F̆ ).
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Let us first make Lemma 6.2 explicit in the case of interest for us, namely for affine
Schubert varieties in the partial flag variety G♭/K♭. Note that for any w ∈ W̃ , we
have the projection map

I♭vI♭/I♭ −→ K♭wK♭/K♭,

where v = max(WKwWK). This map is a locally trivial fiber bundle (for the étale
topology) with fibers isomorphic to the smooth projective variety K♭/I♭. Hence
K♭wK♭/K♭ is rationally smooth if and only if I♭vI♭/I♭ is rationally smooth. Thus we
may use the Poincaré polynomial of I♭vI♭/I♭ to determine if K♭wK♭/K♭ is rationally
smooth.

We denote by W̃K the set of elements w ∈ W̃ that are of minimal length in their
coset wWK . For any translation element λ in W̃ , we set
(6.1) W!λ,K = {v ∈ W̃K | v # max{WKtλWK}}.

The set W!λ,K contains a unique maximal element, which we denote by wλ,K . For
any w ∈W!λ,K , we define the colength of w to be ℓ(wλ,K)−ℓ(w), where ℓ(w) denotes
the length of w.

We have K♭λK♭/K♭ =
⊔

v∈W!λ,K
I♭vK♭/K♭. The associated Poincaré polynomial

P (t) for K♭λK♭/K♭ is obtained from counting the rational points on K♭λK♭/K♭. Set
q = t2. Then P (t) equals to
(6.2) P!λ,K(q) =

∑
v∈W!λ,K

qℓ(v).

On the other hand, set v1 = max(WKtλWK). Then
I♭v1I♭/I♭ =

⊔
v!W!λ,K

⊔
x∈WK

I♭vxI♭/I♭.

The associated Poincaré polynomial is∑

v∈W!λ,K

x∈WK
qℓ(vx)

= P!λ,K(q)
∑

x∈WK

qℓ(x).

As
∑

x∈WK
qℓ(x) is symmetric, we deduce that P!λ,K(q)

∑
x∈WK

qℓ(x) is symmetric if
and only if P!λ,K(q) is symmetric. By Lemma 6.2, we have

Proposition 6.6. — If the Schubert variety K♭λK♭/K♭ is rationally smooth, then
P!λ,K(q) is symmetric.

Definition 6.7. — The LM triple (G, {µ},K) has the component count property
(CCP condition) if the following inequality is satisfied,

#{extreme elements of AdmK̃({λ})} # #K̃.

Proposition 6.8. — If the local model Mloc
K (G, {µ}) has rationally SPSS reduction

over OE, then the CCP condition holds for the triple (G, {µ},K).

Proof. — Let (∆̃, {λ}, K̃) be the associated enhanced Tits datum. As λ is not central,
there exists λ′ ∈W0 · λ such that ⟨λ′,α⟩ ≠ 0 for some root α of K.

By Theorem 2.11, K♭λ′K♭/K♭ is an irreducible component of the geometric spe-
cial fiber of Mloc

K (G, {µ}). Thus if Mloc
K (G, {µ}) has rationally SPSS reduction, then
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K♭λ′K♭/K♭ is rationally smooth. Therefore by Lemma 6.2, the Poincaré polynomial of
K♭λ′K♭/K♭ is symmetric. But this coincides with the Poincaré polynomial ofW!λ′,K ,
cf. (6.2), which is therefore symmetric.

Any length one element in W!λ′,K ⊂ W̃K is of the form τs for some s ∈ K̃,
where τ is the unique length-zero element in W̃ with tλ

′ ∈ Waτ . Thus there are at
most #K̃ length one elements in W!λ′,K . Hence there are also at most #K̃ colength
one elements of W!λ′,K .

Now list the irreducible components of the geometric special fiber as X1 =
K♭λ′K♭/K♭, X2, . . . , Xℓ. By the definition of rationally SPSS reduction, for any i

with 2 # i # ℓ, the intersection X1 ∩ Xi is of the form K♭wiK♭/K♭, where
wi ∈ W!λ′,K with dim(K♭wiK♭/K♭) = dim(K♭λ′K♭/K♭) − 1. In particular, wi

is a colength one element in W!λ′,K . As the intersection of any three irreducible
components of the geometric special fiber is of codimension 2, we have wi ̸= wj for
i ̸= j. In particular, {w2, w3, . . . , wℓ} ⊂W!λ′,K is a subset of colength one elements.

Next we construct another colength one element ofW!λ′,K . Recall that wλ′,K is the
unique maximal element of W!λ′,K . Let s /∈ K̃. Then swλ′,K ∈WKtλ

′
WK . Therefore,

we have either swλ′,K < wλ′,K , or swλ′,K > wλ′,K and swλ′,K = wλ′,Ks′ for some
s′ /∈ K̃.

If swλ′,K > wλ′,K for all s /∈ K, then WKwλ′,K = wλ′,KWK . Since wλ′,K ∈
WKtλ

′
WK , we get WKtλ

′
= tλ

′
WK . This contradicts the assumption that ⟨λ′,α⟩ ≠ 0

for some α ∈ ΦK .
Therefore there exists s /∈ K such that swλ′,K < wλ′,K . Since wλ′,K ∈ W̃K , we have

swλ′,K ∈ W̃K . Hence swλ′,K ∈W!λ′,K is a colength one element. AsK♭(swλ′,K)K♭ =
K♭wλ′,KK♭ = K♭λ′K♭, we have swλ′,K ̸= wi for any i.

We now have found at least ℓ distinct colength one elements in W!λ′,K , namely
swλ′,K and w2, . . . , wℓ. Thus we have ℓ # #K̃. The proposition is proved. "

7. Analysis of the CCP condition

7.1. Statement of the result. — The purpose of this section is to determine for
which enhanced Tits data the CCP condition is satisfied. Note that the CCP condition
only depends on the associated enhanced Coxeter datum.

Theorem 7.1. — Assume that G is adjoint and absolutely simple. The enhanced Cox-
eter data satisfying the CCP condition are the following (up to isomorphism):

(1) Irreducible cases:
(a) The parahoric subgroup corresponding to K̃ is maximal special;
(b) The triple (B̃n,ω∨

r , {n}) with n ! 3 and 1 # r # n− 1;
(c) The triple (C̃n, ℓω∨

n, {i}) with n ! 2, ℓ = 1 or 2 and 1 # i # n− 1;
(d) The triple (F̃4,ω∨

1 , {4}).
(e) The triple (G̃2,ω∨

2 , {1}).
(2) Reducible cases:
(a) The triple (Ã1, 2ω∨

1 , {0, 1});
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(b) The triple (Ãn−1,ω∨
1 , K̃) with arbitrary K̃ of cardinality ! 2;

(c) The triple (Ãn−1,ω∨
i , {0, 1}) with n ! 4 and 2 # i # n− 2;

(d) The triple (B̃n,ω∨
1 , {0, n}) with n ! 3;

(e) The triple (B̃n,ω∨
n, {0, 1}) with n ! 3;

(f) The triple (C̃n,ω∨
1 , {0, n}) with n ! 2;

(g) The triple (C̃n, ℓω∨
n, {i, i+ 1}) with n ! 2, ℓ = 1 or 2 and 0 # i # n

2 − 1;
(h) The triple (D̃n,ω∨

1 , {0, n}) with n ! 4;
(i) The triple (D̃n,ω∨

n, {0, 1}) with n ! 5.
Here “irreducible” and “reducible” refer to the components in the special fiber.

7.2. Classical types. — We first study the classical types. Let E = Rn with the
canonical basis (ε1, . . . , εn). We equip E with the scalar product such that this basis
is orthonormal and we identify E with E∗.

We regard the Weyl group W (Bn) of type Bn (and also Cn) as the group of
permutations σ on {±1, . . . ,±n} such that σ(−i) = −σ(i) for 1 # i # n. The Weyl
group W (An−1) of type An−1 is the subgroup of W (Bn) consisting of permutations σ
with σ(i) > 0 for all 1 # i # n. We haveW (An−1) ∼= Sn, the group of permutations on
{1, 2, . . . , n}. The Weyl group W (Dn) of type Dn is the subgroup of W (Bn) consisting
of permutations σ such that #{i; 1 # i # n,σ(i) < 0} is an even number.

7.3. Type Ãn−1. — One may consider the extended affine Weyl group Zn ! Sn in-
stead. In this case, one may use the coweight (1r, 0n−r) instead of the fundamental
coweight ω∨

r .
It is easy to see that the triple (Ã1, 2ω∨

1 , K̃) with K̃ arbitrary satisfies the CCP
condition. Now we assume that λ = ω∨

r for some r.
By applying an automorphism, we may assume that 0 ∈ K̃. It is easy to see that

the case K̃ = {0} satisfies the CCP condition. Now we assume that #K̃ ! 2. Then
K̃ = {0, i1, . . . , iℓ−1} with ℓ ! 2 and i1 < · · · < iℓ. Then the action of WK on
{1, 2, . . . , n} stabilizes the subsets {1, . . . , i1}, {i1 + 1, . . . , i2}, . . . , {iℓ−1 + 1, . . . , n}.
So for λ = (1r, 0n−r), the number of extreme elements equals the number of partitions
r = j1 + · · · + jℓ, where 0 # jm # im − im−1 for any m. Here by convention, we set
i0 = 0 and iℓ = n. Now the statement of Theorem 7.1 for type Ã follows from the
following result.

Proposition 7.2. — Let ℓ ! 2 and n, r, n1, . . . , nℓ, be positive integers with n = n1 +
· · ·+ nℓ and r < n. Set

X = {(j1, . . . , jℓ) | r = j1 + · · ·+ jℓ, 0 # ji # ni for all i}.

Then #X ! ℓ and equality holds if and only if r = 1, or ℓ = 2 and n1 or n2 equals 1.

Proof. — Without loss of generality, we may assume that r # n/2 and n1 ! n2 !
· · · ! nℓ. Let t ∈ Z>0 such that n1+ · · ·+nt−1 < r # n1+ · · ·+nt. Note that if t = ℓ,
then n− r < nℓ # n1 # r, which contradicts our assumption that r # n/2. Therefore
t < ℓ.
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We have x0 = (n1, . . . , nt−1, r − n1 − · · · − nt−1, 0, . . . , 0) ∈ X. For any 1 # i1 #
t, t+ 1 # i2 # ℓ, we obtain a new element in X from the element x0 by subtracting 1
in the i1-th factor and adding 1 in the i2-th factor. In this way, we construct 1+t(ℓ−t)
elements in X. Note that t(ℓ − t) ! ℓ − 1 and the equality holds if and only if t = 1
or t = ℓ− 1. Therefore, #X ! ℓ.

Moreover, if #X = ℓ, then t = 1 or t = ℓ − 1, and the elements we constructed
above are all the elements in X.

Case (i): t = 1. In this case, x0 = (r, 0, . . . , 0). By our construction, there is
no element of the form (r − 2, j2, . . . , jℓ) in X. This happens only when r = 1 or
n2 + · · ·+ nℓ = 1. In the latter case ℓ = 2 and n2 = 1.

Case (ii): t = ℓ− 1. In this case, x0 = (n1, . . . , nℓ−2, r− n1 − · · ·− nℓ−1, 0). By our
construction,

(1) there is no element in X with 2 in the last factor;
(2) there is no element in X with r − n1 − · · ·− nℓ−1 + 1 in the ℓ− 1 factor.

Note that (1) happens only when r = 1 or nℓ = 1 and (2) happens only when ℓ = 2 or
r = n1 + · · ·+ nℓ−1. However, if r = n1 + · · ·+ nℓ−1 and nℓ = 1, then, since r # n/2,
we must have n = 2 and r = 1. Hence both (1) and (2) happen only when r = 1 or
ℓ = 2 and n2 = 1. "

7.4. Type B̃n. — By applying a suitable automorphism, we may assume that if 1 ∈ K̃,
then 0 ∈ K̃. Let ε = #({0, n} ∩ K̃).

We have {i1, . . . , iℓ} ⊂ K̃ ⊂ {0, i1, . . . , iℓ, n}, where 1 # i1 < · · · < iℓ # n − 1.
Then

WK
∼= W1 × Si2−i1 × · · ·× Siℓ−iℓ−1 ×W2,

W1 =

{
W (Di1), if 0 /∈ K̃

Si1 , if 0 ∈ K̃
and W2 =

{
W (Bn−iℓ), if n /∈ K̃

Sn−iℓ , if n ∈ K̃.
where

Case (i): ℓ = 0.
In this case K̃ ⊂ {0, n}.
If K̃ = {0}, then K is maximal special and there is a unique extreme element.
If K̃ = {n}, then p(WK) is of type Dn and p(WK)\W0 has cardinality 2. Thus λ

is the only extreme element if and only if p(WK)Wλ = W0, i.e., Wλ % p(WK). This
happens exactly when λ = ω∨

r with r < n.
If K̃ = {0, n}, then WK

∼= Sn. In this case, the number of extreme elements
equals 2r, where λ = ω∨

r . Thus the CCP condition is satisfied exactly when r = 1.
Case (ii): ℓ ! 1.
Case (ii)(a): ℓ ! 1 and r < n.
By Proposition 7.2, the number of extreme elements with nonnegative entries is at

least ℓ+ 1.
Note that for any m with 2 # m # ℓ, if λ′ = (c′1, . . . , c

′
n) is an extreme element,

then λ′′ = (c′′1 , . . . , c
′′
n) is another extreme element, where c′′k = −c′im+im−1+1−k for

any k with im−1 + 1 # k # im, and c′′k = c′k for all other k’s.
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In particular, there exists an extreme element with some negative entries among
the {im−1+1, . . . , im}-th entries, and with all the other entries nonnegative. If 0 ∈ K̃
(resp. n ∈ K̃), then there exists an extreme element with some negative entries among
the {1, . . . , i1}-th entries (resp. {iℓ+1, . . . , n}-th entries), and with all the other entries
nonnegative. In this way, we construct ℓ− 1 + ε extreme elements.

Therefore the number of extreme elements is at least ℓ+1+ ℓ− 1+ ε > ℓ+ ε. The
CCP condition does not hold in this case.

Case (ii)(b): ℓ ! 1 and r = n.
Note that if ε = 2, then {0, n} ⊂ K̃ and there are 2n ! n > ℓ extreme elements

and the CCP condition does not hold in this case.
Now assume that ε # 1. It is easy to see there are at least 2ℓ extreme elements,

whose entries are ±1, and there are at most one −1 entry in the {im−1+1, . . . , im}-th
entries for 1 # m # ℓ (if 0 ∈ K̃), or 2 # m # ℓ+ 1 (if n ∈ K̃). Here we set i0 = 0 and
iℓ+1 = n. Thus if the CCP condition is satisfied, then 2ℓ # ℓ + ε # ℓ + 1. Therefore
ℓ = 1 and ε = 1. Hence K̃ = {0, i} or K̃ = {i, n} for some 1 # i # n− 1.

For K̃ = {0, i}, there are 2i extreme elements. Thus the CCP condition is satisfied
if and only if i = 1. For K̃ = {i, n}, there are 2n−i+1 ! 4 extreme elements and the
CCP condition does not hold in this case.

7.5. Type C̃n. — By applying a suitable automorphism, we may assume that if n ∈ K̃,
then 0 ∈ K̃. We have {i1, . . . , iℓ} ⊂ K̃ ⊂ {0, i1, . . . , iℓ, n}, where 1 # i1 < · · · < iℓ #
n− 1. Then

WK
∼= W1 × Si2−i1 × · · ·× Siℓ−iℓ−1 ×W2,

W1 =

{
W (Bi1), if 0 /∈ K̃

Si1 , if 0 ∈ K̃
and W2 =

{
W (Bn−iℓ), if n /∈ K̃

Sn−iℓ , if n ∈ K̃.
where

Case (i): ℓ = 0.
If K̃ = {0}, then K is maximal special and the number of extreme elements is 1.
If K̃ = {0, n}, then WK

∼= Sn. In this case, the number of extreme elements equals
to 2r, where λ = ω∨

r . Thus the CCP condition is satisfied exactly when r = 1.
Case (ii): ℓ ! 1.
Let ε = #({0, n} ∩ K̃). By the same argument as in Section 7.4, if the CCP

condition is satisfied, then we must have λ = ω∨
n or 2ω∨

n, and ε # 1.
Case (ii)(a): ℓ ! 1 and ε = 0.
Similarly to the argument in Section 7.4, there are at least 2ℓ−1 extreme elements.

If the CCP condition is satisfied, then 2ℓ−1 # ℓ and hence ℓ # 2. If ℓ = 1, then
K̃ = {i} for some 1 # i # n − 1 and there is only one extreme element, i.e., the
element λ. If ℓ = 2, then K̃ = {i1, i2} for some 1 # i1 < i2 # n. The number of
extreme elements is 2i2−i1 . In this case, the CCP condition is satisfied if and only if
i2 = i1 + 1.

Case (ii)(b): ℓ ! 1 and ε = 1.
By our assumption, 0 ∈ K̃. Similarly to the argument in Section 7.4, there are at

least 2ℓ extreme elements. If the CCP condition is satisfied, then 2ℓ # ℓ+1 and hence
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ℓ = 1. Thus K̃ = {0, i} for some 1 # i # n − 1. In this case, there are 2i extreme
elements and the CCP condition is satisfied exactly when i = 1.

7.6. Type D̃n. — By applying a suitable automorphism, we may assume that if 1 ∈ K̃,
then 0 ∈ K̃, and if n− 1 ∈ K̃, then n ∈ K̃, and if n ∈ K̃, then 0 ∈ K̃.

We have {i1, . . . , iℓ} ⊂ K̃ ⊂ {0, i1, . . . , iℓ, n}, where 1 # i1 < · · · < iℓ # n − 1.
Then

WK
∼= W1 × Si2−i1 × · · ·× Siℓ−iℓ−1 ×W2,

W1 =

{
W (Di1), if 0 /∈ K̃

Si1 , if 0 ∈ K̃
and W2 =

{
W (Dn−iℓ), if n /∈ K̃

Sn−iℓ , if n ∈ K̃.
where

Case (i): ℓ = 0.
If K̃ = {0}, then K is maximal special and the number of extreme element is 1.
If K̃ = {0, n}, then WK

∼= Sn. In this case, the number of extreme elements equals
to 2r. Thus the CCP condition is satisfied exactly when r = 1.

Case (ii): ℓ ! 1.
Similarly to the argument in Section 7.4, if the CCP condition is satisfied, then

λ = ω∨
n or ω∨

n−1.
Let ε = #({0, n}∩K̃). If ε = 2, then there are 2n−1 extreme elements. Since n ! 4,

we have 2n−1 ! n > ℓ. Thus the CCP condition does not hold.
If ε # 1, then similarly to the argument in Section 7.4, there are at least 2ℓ extreme

elements. If the CCP condition is satisfied, then 2ℓ # ℓ + ε. Hence ℓ = ε = 1. Thus
K̃ = {0, i} for some 1 # i # n − 1. In this case, the number of extreme elements
is 2i. Thus in this case, the CCP condition is satisfied if and only if K̃ = {0, 1}.
Note that ω∨

n and ω∨
n−1 are permuted by an outer automorphism of the finite Dynkin

diagram of Dn, which preserves {0, 1}.

7.7. Exceptional types. — For exceptional types, we argue in a different way.
Suppose that the extreme elements are λ1 = λ,λ2, . . . ,λk. Then we have W0 · λ =⊔k

i=1 WK · λi. We denote by Wλ ⊂W0 the isotropy group of λ and WK,λi ⊂WK the
isotropy group of λi. Then we have

(7.1) #W0/Wλ =
k∑

i=1

#WK/WK,λi .

The trick here is that in most cases, we do not need to compute explicitly the
coweights λi. Instead, we list the possible cardinalities #WK/WK,λi . We then check
that, in most cases, #W0/Wλ does not equal to the sum of at most #K̃ such numbers.
Thus the CCP condition is not satisfied in these cases.

7.8. Type G̃2. — Note that λ = ω∨
2 and #W0/Wλ = 6. Suppose that the CCP condi-

tion is satisfied. If #K̃ = 1, then #WK ! 6. This implies that K̃ = {0} or K̃ = {1}.
One may check directly that these two cases satisfy the CCP condition. If #K̃ = 2,
then #WK ! 3, which is impossible.
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7.9. Type F̃4. — Note that λ = ω∨
1 . We refer to [3, Plate VIII] for the explicit de-

scription of the root system of type F4. In particular, we have ω∨
1 = ε∨1 + ε∨2 . Below is

the list of maximal parahoric subgroups K and #WK/#WK,λ.

K̃ #WK/WK,λ

{0} 24

{1} 2

{2} 6

{3} 12

{4} 24

Thus the CCP condition is satisfied if K̃ = {0} or {4}.
(a) Now suppose that#K̃ = 2 and the CCP condition is satisfied. Then the (linear)

action WK on W0 · λ has exactly two orbits: the orbit of λ and the orbit of another
element λ′ with λ′ ∈ W0 · λ. Then #WK/WK,λ + #WK/WK,λ′ = #W0/Wλ = 24.
In particular, 24−#WK/WK,λ divides #WK . This condition fails if 1 ∈ K̃ or 2 ∈ K̃,
since in both cases #WK/WK,λ # 6. Thus K̃ must be {3, 4}, or {0, 4}, or {0, 3}.

If K̃ = {3, 4}, then we take λ′ = ε∨1 − ε∨2 . By direct computation #WK/WK,λ +
#WK/WK,λ′ = 12 + 6 ̸= 24.

If K̃ = {0, 4}, then we take λ′ = −ε∨1 + ε∨2 . By direct computation #WK/WK,λ +
#WK/WK,λ′ = 6 + 6 ̸= 24.

If K̃ = {0, 3}, then #WK/WK,λ = 3 and 24− 3 = 21 does not divide #WK .
(b) Now suppose that #K̃ = 3. If the CCP condition is satisfied, then #WK !

24/3 = 8 and thus K̃ = {0, 1, 4}. However, in this case WK = WK,λ and thus for
any λ′,λ′′, we have #WK/WK,λ + #WK/WK,λ′ + #WK/WK,λ′′ < 24. That is a
contradiction.

(c) If #K̃ ! 4, then #K̃ ·#WK # 5 · 2 = 10 < 24. So the CCP condition is not
satisfied in this case.

7.10. Type Ẽ6. — By the definition of a minuscule coweight, λ is conjugate by an
element of WK to the trivial coweight or a minuscule coweight λ′ of WK .

In Table 4 below, we list all the numbers #WK/WK,λ′ , where λ′ is either trivial
or a minuscule coweight of WK . A direct product of Coxeter groups of type A like
An1 × · · · × Ank is abbreviated as An1,...,nk . We use a double line to separate the
subsets K̃ with different cardinalities.

One may check case-by-case that if 27 equals the sum of #K̃ elements in the list
of #WK/WK,λ′ from Table 4, then WK is of type E6.

7.11. Type Ẽ7. — In Table 5 below, we list all the numbers #WK/WK,λ′ , where λ′
is either trivial or a minuscule coweight of WK .

One may check case-by-case that, if 56 equals the sum of #K̃ elements in the list
of #WK/WK,λ′ from Table 5, then WK is of type E7, A7, E6 or A6.

If WK is of type A7, then #WK/WK,λ = 8 ̸= 56.
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Type of WK #WK/WK,λ′ Type of WK #WK/WK,λ′ Type of WK #WK/WK,λ′

E6 27, 1 A5,1 20, 15, 6, 2, 1 A2,2,2 3, 1

D5 16, 10, 1 A5 20, 15, 6, 1 A4,1 10, 5, 2, 1

A3,1,1 6, 4, 2, 1 A2,2,1 3, 2, 1

D4 8, 1 A4 10, 5, 1 A3,1 6, 4, 2, 1

A2,2 3, 1 A2,1,1 3, 2, 1

A3 6, 4, 1 A2,1 3, 2, 1 A1,1,1 2, 1

A2 3, 1 A1,1 2, 1

A1 2, 1

Table 4.

If WK is of type E6, then #WK/WK,λ = 1 and thus there is no λ′ with
#WK/WK,λ +#WK/WK,λ′ = 56.

If WK is of type A6, then #WK/WK,λ = 7 or 1. Thus there is no λ′ with
#WK/WK,λ +#WK/WK,λ′ = 56.

Type of WK #WK/WK,λ′ Type of WK #WK/WK,λ′ Type of WK #WK/WK,λ′

E7 56, 1 A7 70, 56, 28, 8, 1 D6 ×A1 32, 12, 2, 1

A5,2 20, 15, 6, 3, 1 A3,3,1 6, 4, 2, 1

E6 27, 1 D6 32, 12, 1 A6 35, 21, 7, 1

D5 ×A1 16, 10, 2, 1 A5,1 20, 15, 6, 2, 1 D4 ×A1 ×A1 8, 2, 1

A4,2 10, 5, 3, 1 A3,3 6, 4, 1 A3,2,1 6, 4, 3, 2, 1

A3,1,1,1 6, 4, 2, 1 A2,2,2 3, 1

D5 16, 10, 1 A5 20, 15, 6, 1 D4 ×A1 8, 2, 1

A4,1 10, 5, 2, 1 A3,2 6, 4, 3, 1 A3,1,1 6, 4, 2, 1

A2,2,1 3, 2, 1 A2,1,1,1 3, 2, 1 A1,1,1,1,1 2, 1

D4 8, 1 A4 10, 5, 1 A3,1 6, 4, 2, 1

A2,2 3, 1 A2,1,1 3, 2, 1 A1,1,1,1 2, 1

A3 6, 4, 1 A2,1 3, 2, 1 A1,1,1 2, 1

A2 3, 1 A1,1 2, 1

A1 2, 1

Table 5.

8. Rationally strictly pseudo semi-stable reduction

In this section, we exclude the cases from the list in Theorem 7.1 that do not have
rationally SPSS reduction. By Lemma 6.2, we check if the Poincaré polynomial is
symmetric. As we have seen, the Poincaré polynomial depends only on the enhanced
Coxeter datum, not the enhanced Tits datum. We start the elimination process with
the exceptional types.

J.É.P.—M., 2020, tome 7



540 X. He, G. Pappas & M. Rapoport

8.1. The case (G̃2,ω∨
2 , {1}). — Here tλ = s0s2s1s2s1s2 and the unique maximal

element in W!λ,K is wλ,K = s2s0s2s1s2s1. The set W!λ,K has a unique element
of length 1, which is s1, but has two elements of length 5, which are s2wλ,K and
s0wλ,K . Therefore the Poincaré polynomial is not symmetric and K♭λK♭/K♭ is not
rationally smooth.

8.2. The case (F̃4,ω∨
1 , {4}). — Here tλ = s0s1s2s3s4s2s3s1s2s3s4s1s2s3s2s1 and the

unique maximal element in W!λ,K is wλ,K = s1s2s3s2s1s0s1s2s3s4s2s3s1s2s3s4. The
set W!λ,K has a unique element of length 2, which is s3s4, but has at least two
elements of colength 2, which are s2s1wλ,K and s0s1wλ,K . Therefore the Poincaré
polynomial is not symmetric and K♭λK♭/K♭ is not rationally smooth.

8.3. The case (F̃4,ω∨
1 , {0}) (special parahoric). — Here the unique maximal element

in W!λ,K is wλ,K = t−λ = w{0,1}
0 w{n}

0 s0, where wK′

0 is the longest element in WK′

for K ′ = {0} or {0, 1}. Thus

P!λ,K = 1 + q

∑
x∈W{0}

qℓ(x)
∑

x∈W{0,1}
qℓ(x)

.

Note that (
∑

x∈W{0}
qℓ(x))(

∑
x∈W{0,1}

qℓ(x))−1 is a symmetric polynomial and not all
the coefficients are equal to 1. Thus P!λ,K is not symmetric and K♭λK♭/K♭ is not
rationally smooth.

8.4. The classical types. — Now we consider the cases where W̃ is of classical type.
Let Φaf be the affine root system of a split group whose associated affine Weyl group
is Wa. Let Φ be the set of finite roots. As Φaf comes from a split group,

Φaf = {a+ nδ | a ∈ Φ, n ∈ Z}.

The positive affine roots are
{a+ nδ | a ∈ Φ+, n ∈ Z>0} 3 {−a+ nδ | a ∈ Φ+, n ∈ Z"0}.

In other words, the element tλ ∈ W̃ acts on the apartment by the translation −λ.
We have the following formula on the length function of an element in W̃ (see [24]).

Lemma 8.1. — For w ∈W0 and α ∈ Φ, set

δw(α) =

{
0, if wα ∈ Φ+;

1, if wα ∈ Φ−.

Then for any x, y ∈Wa and any translation element tλ′ in W̃ ,
ℓ(xtλ

′
y−1) =

∑

α∈Φ+

|⟨λ′,α⟩+ δx(α)− δy(α)|.

We also have the following well-known facts on the Bruhat order in W̃ .

Lemma 8.2. — Let w ∈ W̃ . If α ∈ Φaf is positive, and w−1(α) is positive
(resp. negative), then sαw > w (resp. sαw < w).
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Remark 8.3. — In particular, if K = {0}, then t−λ ∈ W̃K for any dominant λ.

Lemma 8.4. — Let w ∈ W̃K and s ∈ S̃. If sw < w, then ℓ(sw) = ℓ(w) − 1 and
sw ∈ W̃K .

The following result on the maximal element wλ,K of W!λ,K will also be useful in
this section.

Lemma 8.5. — The maximal element wλ,K in W!λ,K is tλ
′ , where λ′ is the unique

element in WK · λ such that ⟨λ′,α⟩ ! 0 for any affine simple root α not in K̃.

Proof. — Let wK
0 be the longest element in WK .

Claim. — The element tλ′
wK

0 is the maximal element in WKtλ
′
WK = WKtλWK .

Let α be a simple affine root that is not in K̃. Then

(tλ
′
wK

0 )−1(α) = (wK
0 )−1(α− ⟨λ′,α⟩δ) = (wK

0 )−1(α)− ⟨λ′,α⟩δ

is a negative affine root. Hence by Lemma 8.2, sαtλ
′
wK

0 < tλ
′
wK

0 . Similarly,
(tλ

′
wK

0 )(α) = tλ
′
(wK

0 (α)) = wK
0 (α) + ⟨λ′, wK

0 (α)⟩δ. Note that wK
0 (α) equals to −β

for some simple affine root β that is not in K̃. Hence (tλ
′
wK

0 )(α) is a negative affine
root. By Lemma 8.2, tλ′

wK
0 sα < tλ

′
wK

0 . The claim is proved.
Note that by the assumption on λ′, tλ′

(α) is a positive affine root for any simple
affine root α that is not in K̃. Therefore tλ

′ ∈ W̃K .
Since tλ′ is the unique element contained in both (tλ

′
wK

0 )WK and W̃K , and tλ
′
wK

0

is the maximal element in WKtλWK , tλ′ is the unique maximal element in W!λ,K .
The statement is proved. "

With these facts established, we can now continue our elimination process.

8.5. The case (B̃n,ω∨
i , {0}) (special parahoric). — Here n ! 3 and 2 # i # n− 1.

Note that the setW!λ,K has a unique element of length 2, which is τs2s0. Here τ , as
usual, is the unique length-zero element in W̃ with tλ ∈Waτ . By Lemma 8.2, sit−λ <
t−λ and si−1sit−λ, si+1sit−λ < sit−λ. By Lemma 8.4, sit−λ is a colength-1 element
in W!λ,K and si−1sit−λ, si+1sit−λ are colength-2 elements in W!λ,K . Hence the set
W!λ,K has at least two elements of colength 2. Therefore the Poincaré polynomial is
not symmetric and K♭λK♭/K♭ is not rationally smooth.

8.6. The case (C̃n,ω∨
i , {0}) (special parahoric). — Here n ! 3 and 2 # i # n− 1.

Note that the set W!λ,K has a unique element of length 2, which is s1s0.
By Lemma 8.2, sit−λ < t−λ and si−1sit−λ, si+1sit−λ < sit−λ. By Lemma 8.4, sit−λ

is a colength-1 element in W!λ,K and si−1sit−λ, si+1sit−λ are colength-2 elements
in W!λ,K . Hence the set W!λ,K has at least two elements of colength 2. Therefore
the Poincaré polynomial is not symmetric and K♭λK♭/K♭ is not rationally smooth.
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8.7. The case (C̃n, ℓω∨
n, {i}). — Here n ! 2, ℓ = 1 or 2 and 1 # i # n− 1.

By Lemma 8.5, wλ,K = tλ
′ , where the first i entries of λ′ are ℓ/2 and the last n− i

entries of λ′ are −ℓ/2. Note that the set W!λ,K has a unique element of length 1,
which is τsi. Here τ , as usual, is the unique length-zero element in W̃ with tλ

′ ∈Waτ .
By Lemma 8.2, s0tλ

′
< tλ

′ . By Lemma 8.4, s0tλ
′ is a colength-1 element in W!λ,K .

Similarly, sntλ
′ is a colength-1 element in W!λ,K . Thus the set W!λ,K has at least

two elements of colength 1. Therefore the Poincaré polynomial is not symmetric and
K♭λK♭/K♭ is not rationally smooth.

8.8. The case (B̃n,ω∨
r , {n}). — Here n ! 3 and 1 # r # n− 1.

By Lemma 8.5, wλ,K = tλ
′ , where the first n− r entries of λ′ are 0 and the last r

entries of λ′ are −1.

8.8.1. The case 2 # r # n − 2. — Note that the set W!λ,K has a unique element of
length 2, which is τsn−1sn, where again τ is the unique length-zero element in W̃
with tλ

′ ∈Waτ .
By Lemma 8.2, srtλ

′
< tλ

′ and sr−1srtλ
′
, sr+1srtλ

′
< srtλ

′ . By Lemma 8.4, srtλ
′

is a colength-1 element in W!λ,K and sr−1srtλ
′
, sr+1srtλ

′ ∈ W!λ,K are colength-2
elements in W!λ,K . Hence the set W!λ,K has at least two elements of colength 2.
Therefore the Poincaré polynomial is not symmetric and K♭λK♭/K♭ is not rationally
smooth.

8.8.2. The case r = 1. — By direct computation,

wλ,K = τ(sn−1sn−2 · · · s2)(s0s1 · · · sn)

and the Poincaré polynomial is (1+q+ · · ·+q2(n−1))q+qn+1 which is not symmetric.
Thus K♭λK♭/K♭ is not rationally smooth.

8.8.3. The case r = n− 1. — The set W!λ,K has a unique element of length 1 which
is τsn, but has at least two elements of colength 1, namely s1wλ,K and s0wλ,K . The
Poincaré polynomial is not symmetric and K♭λK♭/K♭ is not rationally smooth.

8.9. The case (C̃n, 2ω∨
n, {i, i+ 1}) with 0 # i # n/2− 1. — Here n ! 2.

By Lemma 8.5, wλ,K = tλ
′ , where the first i+1 entries of λ′ is 1 and the last n−i−1

entries of λ′ is −1. In this case, W!λ,K has exactly two elements of length 1 which
are si and si+1. Similarly to the argument in §8.7, sntλ

′ and s0tλ
′ are colength 1

elements in W!λ,K . By Lemma 8.2, s2ei+1+2δtλ
′
= (i + 1,−(i + 1))tλ

′′
< tλ

′ and
s2e1+2δtλ

′ ∈ W̃K . Here the first i-entries of λ′′ is 1 and the last n − i-entries of λ′′
is −1. By Lemma 8.1, ℓ(s2ei+1+2δtλ

′
) = ℓ(tλ

′
)− 1. Hence s2ei+1+2δtλ

′ is a colength-1
element in W!λ,K . Therefore W!λ,K contains at least three elements of colength 1
and the Poincaré polynomial of W!λ,K is not symmetric.
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8.10. The case (C̃n,ω∨
n, {i, i+ 1}) with 1 # i # n/2− 1. — Here n ! 2.

By Lemma 8.5, wλ,K = tλ
′ , where the first i + 1 entries of λ′ is 1/2 and the last

n−i−1 entries of λ′ is −1/2. In this case, W!λ,K has exactly two elements of length 1

which are τsi and τsi+1, where again τ is the unique length-zero element in W̃ with
tλ

′ ∈ Waτ . Similarly to the argument in Section 8.7, sntλ
′ and s0tλ

′ are colength 1
elements in W!λ,K . By Lemma 8.2, s2ei+1+δtλ

′
= (i + 1,−(i + 1))tλ

′′
< tλ

′ and
s2e1+δtλ

′ ∈ W̃K . Here the first i-entries of λ′′ is 1/2 and the last n − i-entries of λ′′
is −1/2. By Lemma 8.1, ℓ(s2ei+1+δtλ

′
) = ℓ(tλ

′
)− 1. Hence s2ei+1+δtλ

′ is a colength-1
element in W!λ,K . Therefore W!λ,K contains at least three elements of colength 1
and the Poincaré polynomial of W!λ,K is not symmetric.

8.11. The case (B̃n,ω∨
n, {0, 1}). — Here n ! 3.

By Lemma 8.5, wλ,K = tλ
′ , where λ′ = (1,−1,−1, . . . ,−1). In this case, W!λ,K

has exactly 3 elements of length 2 which are τs0s1, τs2s0 and τs2s1. Similarly to the
argument in Section 8.9, sntλ

′ and sε1+δtλ
′
= (1,−1)t−ω∨

n are colength-1 elements in
W!λ,K .

By Lemma 8.2, sn−1sntλ
′
< sntλ

′ and snsε1+δtλ
′
< sε1+δtλ

′ . By Lemma 8.4,
sn−1sntλ

′ and snsε1+δtλ
′ are colength-2 elements inW!λ,K . The next lemma produces

two more elements of colength 2.

Lemma 8.6. — The elements sε1+δtλ
′
sε1−εn and sε1−εn+δsε1+δtλ

′ are colength 2 ele-
ments in W!λ,K .

Proof. — We have
sε1+δt

λ′
· (ε1 − εn) = (1,−1) · (ε1 − en) = −ε1 − εn.

Thus sε1+δtλ
′
sε1−εn < sε1+δtλ

′ . Note that sε1+δtλ
′
sε1−εn = (1,−1)(1, n)t−ω∨

n .
For 2 # i # n− 2, we have

sε1+δt
λ′
sε1−εn · (εi − εi+1) = (1,−1)(1, n) · (εi − εi+1) = εi − εi+1.

We have
sε1+δt

λ′
sε1−εn · (εn−1 − εn) = (1,−1)(1, n) · (εn−1 − εn) = ε1 + εn−1.

We have
sε1+δt

λ′
sε1−εn · εn = (1,−1)(1, n)(εn − δ) = −ε1 − δ.

Therefore sε1+δtλ
′
sε1−εn ∈ W̃K .

Finally, by Lemma 8.1, we have
ℓ(sε1+δt

λ′
sε1−εn) = ℓ(tλ

′
)− 2.

Therefore sε1+δtλ
′
sε1−εn is a colength 2 element in W!λ,K .

Similarly, we have
(sε1+δt

λ′
)−1 · (ε1 − εn + δ) = −ε1 − εn − δ.

Thus sε1−εn+δsε1+δtλ
′
< sε1+δtλ

′ . Note that
sε1−εn+δsε1+δt

λ′
= (1, n)(1,−1)t(0,−1,...,−1,0).
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For 2 # i # n− 2, we have
sε1−εn+δsε1+δt

λ′
· (εi − εi+1) = εi − εi+1.

We have
sε1−εn+δsε1+δt

λ′
· (εn−1 − εn) = (1, n)(1,−1) · (εn−1 − εn − δ) = εn−1 − ε1 − δ.

We have
sε1−εn+δsε1+δt

λ′
· εn = ε1.

Therefore sε1+δtλ
′
sε1−εn ∈ W̃K .

Finally, by Lemma 8.1, we have
ℓ(sε1−εn+δsε1+δt

λ′
) = ℓ(tλ

′
)− 2.

Therefore sε1+δtλ
′
sε1−εn is a colength 2 element in W!λ,K . "

Therefore W!λ,K contains at least 4 elements of colength 2 and the Poincaré poly-
nomial of W!λ,K is not symmetric.

8.12. The case (C̃n,ω∨
1 , {0, n}). — This case is more complicated than the cases

we have discussed earlier. In fact, the geometric special fiber has two irreducible
components and the Poincaré polynomials of the irreducible components are both
symmetric. However, the Poincaré polynomial of their intersection is not symmetric.

Let λ = (1, 0, . . . , 0) and λ′ = (0, 0, . . . , 0,−1). The irreducible components of the
geometric special fibers are K♭λK♭/K♭ and K♭λ′K♭/K♭.

We set w1 = max(WKtλWK) and w2 = max(WKtλ
′
WK). By direct computation,

w1 = (sn−1sn−2 · · · s0)(s1s2 · · · sn)wK
0 , w2 = (s1s2 · · · sn)(sn−1sn−2 · · · s0)wK

0 ,

where wK
0 is the longest element in WK . Moreover, the set

{w′ ∈ W̃ ;w′ # w1, w
′ # w2}

contains a unique maximal element wwK
0 , where

w = (s1s2 · · · sn−1)(sn−2sn−3 · · · s1)s0sn ∈ W̃K .

Set W!w,K = {v ∈ W̃K ; v # w}. The intersection of K♭λK♭/K♭ and K♭λ′K♭/K♭ is
K♭wK♭/K♭ and the associated Poincaré polynomial is

P!w,K(q) =
∑

v∈W!w,K

qℓ(v).

We have W!w,K = {1, v1s0, v2sn, v3s0sn}, where

v1 ∈W{0,n} ∩W {0,1,n} = {1, s1, s2s1, . . . , sn−1sn−2 · · · s1},

v2 ∈W{0,n} ∩W {0,n−1,n} = {1, sn−1, sn−2sn−1, . . . , s1s2 · · · sn−1},

v3 ∈W{0,n} ∩W {0,1,n−1,n}.
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Note that W{0,n} ∩ W {0,1,n−1,n} = W (An−1){1,n−1}, where W (An−1) is the finite
Weyl group of type An−1. Thus

∑

v3∈W{0,n}∩W{0,1,n−1,n}

qℓ(v3) =

∑
v∈W (An−1)

qℓ(v)
∑

v∈W (An−3)
qℓ(v)

= (1+q+· · ·+qn−2)(1+q+· · ·+qn−1).

Hence

P!w,K = 1 + 2(1 + q + · · ·+ qn−1)q + (1 + q + · · ·+ qn−2)(1 + q + · · ·+ qn−1)q2

= (1 + 2q + · · ·+ nqn−1 + (n+ 1)qn) + ((n− 1)qn+1

+ (n− 2)qn+2 + · · ·+ q2n−1).

Note that the coefficient of qn−1 is n and the coefficient of qn is n + 1. Therefore
P!w,K is not symmetric.

8.13. The case (Ã1, 2ω∨
1 , {0, 1}). — Finally, we consider the case (Ã1, 2ω∨

1 , {0, 1}). In
this case, K♭ = I♭ and Adm(λ) = {s0s1, s1s0, s1, s0, 1}. The irreducible components
of the geometric special fiber are I♭s0s1I♭/I♭ and I♭s1s0I♭/I♭. Their intersection is
I♭s1I♭/I♭ ∪ I♭s0I♭/I♭ and thus is not irreducible.

9. Proof of Theorem 5.1

In this section we assume p ̸= 2. As already explained in Section 5.1, we may
assume that Gad is absolutely simple. By Proposition 2.14 (iv), we may change G
arbitrarily, as long as Gad is fixed. Let us check one implication. If K is hyperspecial,
then Mloc

K (G, {µ}) is smooth over OE , cf. Proposition 2.14 (i). Let G = GU(V ) be
the group of unitary similitudes for a hermitian space relative to a ramified quadratic
extension F̃ /F , and let {µ} = (1, 0, . . . , 0). If K is the stabilizer of a π-modular
lattice Λ if dimV is even, resp. is the stabilizer of an almost π-modular lattice Λ if
dimV is odd, then E = F̃ and the local model Mloc

K (G, {µ}) is smooth over OE ,
cf. [1, Prop. 4.16], [40, Th. 2.27 (iii)]. Now let G = SO(V ) be the orthogonal group
associated to an orthogonal F -vector space of even dimension ! 6, {µ} the cocharacter
corresponding to the orthogonal Grassmannian of isotropic subspaces of maximal
dimension, and K the parahoric stabilizer of an almost selfdual vertex lattice, as in
5.1 (2). After an unramified extension of F , the set-up described in 12.11 applies;
by the calculation in 12.11 and Proposition 2.14 (ii) the local model Mloc

K (G, {µ}) is
smooth over OE . The general case of exotic good reduction type (which involves in
addition an unramified restriction of scalars) follows.

Conversely, assume that Mloc
K (G, {µ}) is smooth over OE . Then its geometric spe-

cial fiber is irreducible, and hence the triple (G, {µ},K) produces enhanced Coxeter
data that appear in Theorem 7.1 under the heading (1). By Sections 8.1 and 8.2,
the exceptional types (d) and (e) do not have rationally SPSS reduction. Similarly,
Section 8.8 eliminates the case (b), and Section 8.7 eliminates the case (c). Therefore,
the only remaining possibilities are in case (a), i.e., K̆ is a special maximal parahoric.
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Hence the associated enhanced Tits datum (∆̃, {λ}, K̃) is such that K̃ consists of a sin-
gle special vertex. From these cases, Section 8.3 eliminates (F̃4,ω∨

1 , {0}). Sections 8.5
and 8.6 eliminate (B̃n,ω∨

i , {0}) and (C̃n,ω∨
i , {0}), for n ! 3 and 2 # i # n−1. (In these

cases, the special fiber is irreducible but, again, not rationally smooth). When K̆ is
hyperspecial and λ is minuscule we have good reduction. When K̆ is hyperspecial
and λ is not minuscule the reduction is not smooth by [31]. (This reference is for k
replaced by C but the same argument works; see also [19, §6] for an explanation of
the passage from C to k.) It remains to list the remaining cases in which K̆ is special
but not hyperspecial. Here are these remaining cases:

(1) (B̃n,ω∨
1 , {0}), n ! 3.

Since we are only considering the cases in which {0} is not hyperspecial, the lo-
cal Dynkin diagram is B-Cn. Since the non-trivial automorphism of B-Cn does not
preserve {0}, the Frobenius has to act trivially (see [17]). The corresponding group
is a quasi-split (tamely) ramified unitary group U(V ) for V of even dimension 2n
(e.g. [17, p. 22]). The coweight corresponds to {µ} = (1, 0, . . . , 0) and K is the para-
horic stabilizer of a π̃-modular lattice (notations as in 5.1 (1)). This is a case of unitary
exotic good reduction.

(2) (B̃n,ω∨
n, {0}), n ! 3.

As above, the local Dynkin diagram is B-Cn and the corresponding group a
(tamely) ramified unitary group U(V ) for V of even dimension 2n. The subgroup K is
the parahoric stabilizer of a π̃-modular lattice. In this case, the coweight corresponds
to {µ} = (1(n), 0(n)) so this is the case of signature (n, n). By [39, (5.3)], we see
that the geometric special fiber of the local model contains an open affine subscheme
which has the following properties: It is the reduced locus Cred of an irreducible
affine cone C which is defined by homogeneous equations of degree ! 2 and which is
generically reduced. Then Cred is the affine cone over the integral projective variety
(C − {0})red/ ∼, also given by such equations, and is therefore not smooth. We see
that, in this case, Mloc

K (G, {µ}) is not smooth.
(3) (C̃n,ω∨

1 , {0}), n ! 2.
Since we are only considering the case in which {0} is not hyperspecial, the local

Dynkin diagram is C-BCn or C-Bn. In both cases, only the trivial automorphism
can preserve {0} so Frobenius acts trivially. In the case C-BCn, we have a ramified
unitary group U(V ) for V of odd dimension 2n+1; here there are two possibilities for
a corresponding enhanced Tits datum. There are three cases overall that also appear
as cases (1-a), (1-b), (1-c) in the next section:

(a) Ramified quasi-split U(V ) for V of odd dimension 2n + 1, {µ} = (1, 0, . . . , 0),
andK the parahoric stabilizer of an almost π̃-modular lattice. This is a case of unitary
exotic good reduction.

(b) Ramified quasi-split U(V ) for V of odd dimension 2n+1, {µ} = (1(n−1), 0(n+2))
and K is the parahoric stabilizer of a selfdual lattice. Then the local model has non-
smooth special fiber by Section 10.3 (or one can employ an argument using [39, (5.2)]
as in (2) above).
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(c) Ramified quasi-split orthogonal group SO(V ) for V of even dimension 2n+ 2,
µ is the cocharacter that corresponds to the quadric homogeneous space and K̃ is the
parahoric stabilizer of an almost selfdual vertex lattice. Then the local model is not
smooth; this follows by combining Propositions 12.7 and 12.6 (II).

(4) (C̃n,ω∨
n, {0}), n ! 2.

The local Dynkin diagram is C-Bn. As above, we see that we have a ramified
quasi-split but not split orthogonal group SO(V ) for V of even dimension 2n + 2,
{µ} corresponds to the orthogonal Grassmannian of isotropic subspaces of dimension
n+1 and K̃ is the parahoric stabilizer of an almost selfdual vertex lattice. This is the
case of orthogonal exotic good reduction (see also Section 12.11).

(5) (C̃n, 2ω∨
n, {0}), n ! 1.

The local Dynkin diagram is C-BCn. We have a ramified unitary group U(V ) for V
of odd dimension 2n+1, {µ} = (1(n), 0(n+1)), and K is the parahoric stabilizer of an
almost π̃-modular lattice. Using [39, (5.2)] and an argument as in 2) above, we see
that the special fiber is not smooth when n > 1. If n = 1, then {µ} = (1, 0, 0) and
this is a case of unitary exotic reduction.

(6) (G̃2,ω∨
2 , {0}).

Again Frobenius is trivial and we have the quasi-split ramified triality group of
type 3D4. The tameness assumption implies that p ̸= 3. Therefore, the main result
of Haines-Richarz [19] is applicable and implies that the special fiber is not smooth.
(In principle, this non-smoothness statement can also be deduced using Kumar’s
criterion—see Section 10.2 below. However, this involves a lengthy calculation that ap-
pears to require computer assistance, see the (simpler) case ofG2 in [31, (7.9)–(7.12)].)

10. Strictly pseudo semi-stable reduction

10.1. Statement of the result. — Our goal here is to examine smoothness of the
affine Schubert varieties contained in the geometric special fiber of Mloc

K (G, {µ}). By
Theorem 2.11, this fiber can be identified with the admissible locus AK(G, {µ}) in
the partial affine flag variety for a group G̃♭ which is isogenous to G♭ but which has
simply connected derived group. In the rest of this section, we will omit the tilde from
the notation; but it is understood that the affine Schubert varieties will be for a group
with simply connected derived group. This issue did not appear in our discussion of
rational smoothness since this is defined via ℓ-adic cohomology which is insensitive
to radicial morphisms. In fact, the rational smoothness of the affine Schubert variety
I♭wI♭/I♭ only depends on the element w in the Iwahori-Weyl group, and does not
depend on the reductive group itself. On the other hand, the smoothness of the affine
Schubert variety I♭wI♭/I♭ depends on the reductive group, not only the associated
Iwahori-Weyl group. In other words, smoothness of the affine Schubert varieties in
question (assuming simply connected derived group) depends on the enhanced Tits
datum, and not only on the enhanced Coxeter datum.

In this section, we consider the enhanced Tits data associated to the enhanced
Coxeter data (C̃n,ω∨

1 , {0}), (B̃n,ω∨
1 , {0, n}) and (C̃n,ω∨

n, {0, 1}). They are as follows:
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(1) The triple (C̃n,ω∨
1 , {0}) with n ! 2:

Label Enhanced Tits datum Linear algebra datum

(1-a) •0 ◦
1×

◦2 ◦
n− 1

◦n Nonsplit U2n+1, r = 1,Λ0

(1-b) ◦0 ◦1 ◦2 ◦
n− 1×

•n Nonsplit U2n+1, r = n− 1,Λn

(1-c) •0 ◦
1×

◦2 ◦
n− 1

◦n Nonsplit SO2n+2, r = 1,Λ0

(2) The triple (B̃n,ω∨
1 , {0, n}) with n ! 3:

Label Enhanced Tits datum Linear algebra datum

(2-a) •n ◦
n− 1

◦
n− 2

◦2
•0

◦
1×

Split SO2n+1, r = 1, (Λ0,Λn)

(2-b) •n ◦
n− 1

◦
n− 2

◦2
•0

◦
1×

U2n, r = 1, (Λ0,Λn)

(3) The triple (C̃n,ω∨
n, {0, 1}) with n ! 2:

Label Enhanced Tits datum Linear algebra datum

(3-a) •0 •1 ◦2 ◦
n− 1

◦
n× Split Sp2n, r = n, (Λ0,Λ1)

(3-a) •0 •1 ◦2 ◦
n− 1

◦
n× Nonsplit SO2n+2, r = n+ 1, (Λ0,Λ2)

Here the numbers above the vertices of the Dynkin diagrams are the labellings.
The main result of this section is

Proposition 10.1. — The cases (1-b), (1-c), (2-b) and (3-a) are not strictly pseudo
semi-stable reduction.

We prove Proposition 10.1 by showing that at least one of the irreducible compo-
nents of the geometric fiber is not smooth.

10.2. Kumar’s criterion. — Note that for any x ∈ W̃ and parahoric subgroup K, the
smoothness of K♭xK♭/K♭ is equivalent to the smoothness of I♭wI♭/I♭, where we set
w = max{WKxWK}. To study the case (1-b), we use Kumar’s criterion [28], which
we recall here.

Let Q be the quotient field of the symmetric algebra of the root lattice. Follow-
ing [4], we fix a reduced expression w = τsα1 · · · sαℓ of w, where τ is a length-zero
element in W̃ and α1, . . . ,αℓ are affine simple roots. For any x # w, we define

(10.1) exX(w) =
∑

(s1,...,sℓ)

ℓ∏

j=1

s1 · · · sj(αj)
−1 ∈ Q,

where the sum runs over all sequences (s1, . . . , sℓ) such that sj = 1 or sαj for any j
and s1 · · · sℓ = x. We call such sequences the subexpressions for x in w. It is known
that exX(w) is independent of the choice of the reduced expression w of w. Kumar’s
criterion gives a necessary and sufficient condition for the Schubert variety to be
singular in terms of e1X(w) when the field is C. It is not known if a similar result
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holds in positive characteristic. However, one implication can be shown following
[19, §6]. The statement we will use is the following:

Theorem 10.2. — If e1X(w) ̸=
∏

{α∈Φ+
af |sα!w} α

−1, then the Schubert variety
I♭wI♭/I♭ is singular.

10.3. The case (1-b). — Set λ′ = (−1,−1, . . . ,−1, 0). By Lemma 8.5, tλ′ is the max-
imal element in W!λ′,K . Set w = max(WKtλ

′
WK). By direct computation,

w = (sn−1sn−2 · · · s0)(s1s2 · · · sn)wK
0 ,

where wK
0 is the longest element in WK .

As sn is the reflection of a long root, and the other simple reflections are reflections
of short roots, in any expression of 1, the simple reflection sn must appear an even
number of times. Note that in a reduced expression of w, the simple reflection sn
appears only once, thus sn does not appear in the subexpression for 1. Moreover,
the reduced expression w of w may be chosen to be of the form . . . sn−1snsn−1 . . . .
Thus any subexpression (s1, . . . , sj) for 1 in w is of the form (. . . , 1, 1, 1, . . . ),
(. . . , sn−1, 1, sn−1, . . . ), (. . . , sn−1, 1, 1, . . . ), (. . . , 1, 1, sn−1, . . . ). Here the three terms
in the middle are the subexpressions of sn−1snsn−1 in which sn does not appear. A
direct computation for the rank-two Weyl groups shows that

(10.2)
e1X(sn−1snsn−1) = −esn−1X(sn−1snsn−1)

=
−⟨αn,α∨

n−1⟩
αnαn−1sn−1(αn)

=
2

αnαn−1sn−1(αn)
.

We rewrite the formula (10.1) as

e1X(w) =
∑

(...,1,1,1,... )

ℓ∏

j=1

s1 · · · sj(αj)
−1 +

∑

(...,sn−1,1,sn−1,... )

ℓ∏

j=1

s1 · · · sj(αj)
−1

+
∑

(...,sn−1,1,1,... )

ℓ∏

j=1

s1 · · · sj(αj)
−1 +

∑

(...,1,1,sn−1,... )

ℓ∏

j=1

s1 · · · sj(αj)
−1.

By (10.2), all coefficients in the first and in the second line are multiples of 2. By
Theorem 10.2, I♭wI♭/I♭ is not smooth.

10.4. The case (1-c). — The special fiber is irreducible but not smooth. As was also
mentioned in Section 9, Case (3), this follows by combining Propositions 12.7 and
12.6 (II).

10.5. The case (2-b). — Set λ′ = (0, 0, . . . , 0, 1). By Lemma 8.5, tλ′ is the maximal
element in W!λ′,K . Set w = max(WKtλ

′
WK). By direct computation,

w = τ(sn−1sn−2 · · · s2)(s0s1 · · · sn)wK
0 ,

where τ is the unique length-zero element in W̃ with tλ
′ ∈Waτ and wK

0 is the longest
element in WK .
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Note that in a reduced expression of w, the simple reflection sn appears only
once, thus sn does not appear in the subexpression for 1. Similar to the argument in
Section 10.3, I♭wI♭/I♭ is not smooth.

10.6. The case (3-a). — Set λ′ = (− 1
2 ,−

1
2 , . . . ,−

1
2 ). By Lemma 8.5, tλ′ is the maxi-

mal element in W!λ′,K . By direct computation,

max(WKtλ
′
WK) = τw{n}

0 w{0,n}
0 wK

0 ,

where τ is the unique length-zero element in W̃ with tλ
′ ∈Waτ and where wK′

0 is the
longest element in WK′ for K̃ ′ = {0, 1}, {n} or {0, n}. Note that

K♭tλ′K♭/K♭ = I♭tλ′K♭/K♭ ∼= I♭w{n}
0 w{0,n}

0 K♭/K♭ ∼= I♭w{n}
0 w{0,n}

0 K♭
1/K

♭
1 ⊂ K♭

2/K
♭
1,

where K̃1 = {0, 1, n} and K̃2 = {n}.
Let UK♭

2
be the pro-unipotent radical of K♭

2 and G′ = K♭
2/UK♭

2
the reductive

quotient ofK♭
2. Note thatG′

ad is the adjoint group of type Bn over k. Let P = K♭
1/UK♭

2
.

This is a standard parabolic subgroup of G′. We haveK♭
2/K

♭
1
∼= G′/P . This is a partial

flag variety of finite type.

Group Affine/Finite Dynkin diagram

G •0 •1 ◦2 ◦
n− 1

•n

G′ •n •
n− 1

◦
n− 2

◦1

Table 6.

In Table 6, the parahoric subgroup K̆1 of G and the parabolic subgroup P of G′

correspond to the set of vertices filled with black color in the corresponding diagram.
The finite Dynkin diagram of G′ is obtained from the local Dynkin diagram of G

by deleting the vertex labeled n. The labeling of the Dynkin diagram is not inher-
ited from the local Dynkin diagram of G, but is the standard labeling of the finite
Dynkin diagram in [3]. The reason is that we will apply the smoothness criterion for
finite Schubert varieties, and we follow the convention for finite Dynkin diagrams and
finite Weyl groups. We identify the finite Weyl group WG′ of G′ with the group of
permutations of {±1,±2, . . . ,±n}.

Under the natural isomorphism K♭
2/K

♭
1
∼= G′/P , the closed subset of the affine par-

tial flag variety I♭w{n}
0 w{0,n}

0 K♭
1/K

♭
1 is isomorphic to the closed subvariety B′w′P/P

of the finite type partial flag variety, where B′ = I♭/UK♭
2
is a Borel subgroup of G′

and w′ ∈WG′ is the permutation (1,−n)(2,−(n− 1)) · · · .
The smoothness of B′w′P/P is equivalent to the smoothness of B′w′wP

0 B
′/B′,

where wP
0 is the longest element in the Weyl group WP of P . The element w′wP

0 is
the permutation of {±1,±2, . . . ,±n} sending 1 to −2, 2 to −3, . . . , n−1 to −n and n

to −1. By the pattern avoidance criterion (see [2, Th. 8.3.17]), B′w′wP
0 B

′/B′ is not
smooth. Hence K♭λ′K♭/K♭ is not smooth.
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11. Proof of one implication in Theorem 5.6

Assume that Mloc
K (G, {µ}) has strictly semi-stable reduction. Inspection of all cases

considered in the previous section shows that then (G, {µ},K) appears in the list of
Theorem 5.6. In the remaining section of the paper, we show that indeed for all
triples (G, {µ},K) on this list the corresponding associated local models have semi-
stable reduction. As a consequence of this assertion, we obtain the following somewhat
surprising result.

Corollary 11.1. — Let (G, {µ},K) be a triple over F such that G splits over a tame
extension of F . Assume p ̸= 2. Assume also that the group G is adjoint and absolutely
simple. If Mloc

K (G, {µ}) has strictly pseudo semi-stable reduction, then Mloc
K (G, {µ})

has (strictly) semi-stable reduction, in particular, it is a regular scheme with reduced
special fiber. "

12. Proof of the other implication of Theorem 5.6

In this section, we go through the list of Theorem 5.6, and produce in each case
an LM triple (G, {µ},K) in the given central isogeny type which has semi-stable
reduction. By Lemma 5.2, we may indeed assume that G is a central extension of the
adjoint group appearing in the list of Theorem 5.6. So, for instance, in this section,
we work with GL instead of SL, GSp instead of Sp, and, in some instances, with GO
instead of SO.

We precede this by the following remarks. The first remark is that the locus where
Mloc

K (G, {µ}) has semi-stable reduction is open and G-invariant. Therefore, in order to
show that Mloc

K (G, {µ}) has semi-stable reduction, it suffices to check this in a closed
point of the unique closed G⊗OF k-orbit of the special fiber.

The second remark is that we may always make an unramified field extension F ′/F .
This implies that, in checking semi-stable reduction, we may assume that in the LM
triple (G, {µ},K), the group G is residually split.

The third remark is that in most of the cases which we treat, the LM triples are
of “EL or PEL type.” Then the corresponding local models of [41] have a more stan-
dard/classical description, as closed subschemes of linked classical (i.e., not affine)
Grassmannians. This description, which was in fact given in earlier works, is estab-
lished in [41, 7.2, 8.2]; we use this in our analysis, sometimes without further mention.
There are two cases which are different: These are the LM triples for (special) orthog-
onal groups and the coweight ω∨

1 (i.e., r = 1). The corresponding local models have as
generic fiber a quadric hypersurface. These are just of “Hodge type” and, for them,
we have to work harder to first establish a standard description. Most of this is done
in Section 12.7 with the key statement being Proposition 12.7.

12.1. Preliminaries on GLn. — In this subsection, we consider the LM triple

(G = GLn, {µ} = µr := (1(r), 0(n−r)),KI)
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for some r ! 1, whereKI is the stabilizer of a lattice chain ΛI for some non-empty sub-
set I ⊂ {0, 1, . . . , n− 1}. We use the notation (GLn, µr, I). We follow Görtz [15, §4.1]
for the description of the local model in this case (the standard local model) and of
an open subset U around the worst point, cf. [15, Prop. 4.5].

The local model Mloc
I (GLn, µr) represents the following functor on OF -schemes.

Write I = {i0 < i1 < · · · < im−1}. Then Mloc
I (GLn, µr)(S) is the set of commutative

diagrams

(12.1)
Λi0,S

!! Λi1,S
!! · · · !! Λim−1,S

π !! Λi0,S

F0

!"

''

!! F1

!"

''

!!
!"

''

· · · !! Fm−1

!"

''

!! F0

!"

''

where Λi is the lattice generated by ei1 := π−1e1, . . . , eii := π−1ei, eii+1 :=
ei+1, . . . , ein := en, Λi,S is Λi ⊗OF OS , π is a fixed uniformizer of F , and where
the Fκ are locally free OS-submodules of rank r which Zariski-locally on S are direct
summands of Λiκ,S .

12.2. The case (GLn, r = 1, I), I arbitrary. — That in this case we have semi-stable
reduction is well-known and follows from [15, Prop. 4.13].(8)

12.3. Preliminaries on (GLn, r, {0,κ}), r arbitrary. — Note that to verify the
remaining case for GLn, we only need the case κ = 1, cf. Section 12.4. However,
as we will see later, in order to verify the cases for other classical groups, we need
to describe the incidence relation between 0 and κ for some other κ. So we discuss
arbitrary κ here.

In terms of the bases {ei1, . . . , ein} of Λi,S , the transition maps Λ0,S → Λκ,S ,
resp. π : Λκ,S → Λ0,S are given by the diagonal matrices
(12.2) φ0,κ = diag(π(κ), 1(n−κ)), resp. φκ,0 = diag(1(κ),κ(n−κ)).

For the open subset U around the worst point we take the pair of subspaces F0 of
Λ0,S , resp. Fκ of Λκ,S , given by the n× r-matrices

F0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

a011 a012 · · · a01r
...

...
...

a0n−r,1 a0n−r,2 · · · a0n−r,r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Fκ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aκn−r−κ+1,1 aκn−r−κ+1,2 · · · aκn−r−κ+1,r
...

...
...

aκn−r,1 aκn−r,2 · · · aκn−r,r

1
1

. . .
1

aκ11 aκ12 · · · aκ1r
...

...
...

aκn−r−κ,1 aκn−r−κ,2 · · · aκn−r−κ,r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)More precisely, in loc. cit., the case I = {0, . . . , n−1} is considered, but the case of an arbitrary
subset I is the same.
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Then the incidence relation from 0 to κ is given by
φ0,κ · F0 = Fκ ·N0,

and the incidence relation from κ to 0 is given by
φκ,0 · Fκ = F0 ·Nκ,

where N0, Nκ ∈ GLr(OS) are uniquely defined matrices. These equations can now be
evaluated and lead to the following description of U :

Proposition 12.1 ([15, §4.4.5]). — Let κ # r. Let

A = (a0i,j)i,j=1,...,κ, B = (aκi,j)i=1,...,κ,j=r−κ+1,...,r

be κ× κ-matrices of indeterminates. Then

U ∼= SpecOF [A,B]/(BA− π, AB − π)× V,

where
V = SpecOF [a

0
i,j ]i=1,...,r,j=κ+1,...,n−r × SpecOF [a

κ
i,j ]i=1,...,r−κ,j=1,...,κ

is an affine space A(n−r)r−κ2 over OF . "

Something analogous holds in the case when κ > r, cf. loc. cit..

12.4. The case (GLn, r = 1, I = {i, i+ 1}), r arbitrary. — After changing the basis,
we may assume that i = 0. Then the above proposition implies that U is a product
of SpecOF [X,Y ]/(XY − π) and an affine space A(n−r)r−1. Hence U is regular and
the special fiber is the union of two smooth divisors crossing normally along a smooth
subscheme of codimension 2. Hence U has semi-stable reduction.

Remark 12.2. — In contrast to the case of a general subset I, in this case the incidence
condition from F0 to F1 automatically implies the incidence relation from F1 to F0.

12.5. The case (GSp2n, r = n, {0, 1}). — In the case of GSp2n there is only one non-
trivial minuscule coweight {µ} = µn. Let e1, . . . , e2n be a symplectic basis of F 2n,
i.e., ⟨ei, e2n−j+1⟩ = ±δij for i, j # 2n (with sign + if i = j # n and sign − if
n + 1 # i = j). Then the standard lattice chain is self-dual, i.e., Λi and Λ2n−1 are
paired by a perfect pairing. In this case, a parahoric subgroup K is the stabilizer of a
selfdual periodic lattice chain ΛI , i.e., I satisfies i ∈ I ⇐⇒ 2n− i ∈ I. In this case,
the local model is contained in the closed subscheme Mnaive

I (GSp2n, µn) of the local
model Mloc

I (GL2n, µn) given by the condition that

(12.3) Fi = F⊥
2n−i, i ∈ I.

In fact, by [16], it is equal to this closed subscheme but we will not use this fact.
Now let I0 = {0, 1, 2n− 1}. Then, since F2n−1 is determined by F1 via the identity

(12.3), we obtain a closed embedding Mnaive
I0

(GSp2n, µn) ⊂Mloc
{0,1}(GL2n, µn).

J.É.P.—M., 2020, tome 7



554 X. He, G. Pappas & M. Rapoport

As open subset U of the worst point we take the scheme of (F0,F1), where

F0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

c11 c12 · · · c1n
...

...
...

cn1 cn2 · · · cnn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 an2 · · · ann
1

1
. . .

1
a11 a12 · · · a1n
...

...
...

an−1,1 an−1,2 · · · an−1,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The condition that F0 be a totally isotropic subspace of Λ0,S is expressed by

(12.4) cµν = cn−ν+1,n−µ+1.

The incidence relation from F0 to F1 is given by the following system of equations,
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π 0 . . . 0
0 1 . . . 0
... . . .
0 0 . . . 1
c11 c12 . . . c1n
...

...
...

cn1 cn2 . . . cnn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 an2 . . . ann
1 0 . . . 0
0 1 . . . 0
... . . .
0 0 . . . 1
a11 a12 . . . a1n
...

...
...

an−1,1 an−1,2 . . . an−1,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
... . . .
0 0 0 . . . 1
c11 c12 c13 . . . c1n

⎞

⎟⎟⎟⎟⎟⎟⎠

The first row of this matrix identity gives

(12.5) annc11 = π,

and allows one to eliminate an1, . . . , an,n−1. The last n − 1 entries of the n + 2-th
row allow one to eliminate a11, . . . , a1,n−1, the last n − 1 entries of the n + 3-th row
allow one to eliminate a21, . . . , a2,n−1, etc., until the last n − 1 entries of the 2n-th
row eliminate an−1,1, . . . , an−1,n−1. Finally, the first column of these rows allows one
to eliminate c21, , . . . , cn1. All in all, we keep the entries a1n, . . . , ann, c11, and cµν for
µ ! ν > 1, which are subject to equation (12.5).

Let Grasslagr(Λ0) × Grass(Λ1) be the product of the Grassmannian variety of
Lagrangian subspaces of Λ0 and of the Grassmannian variety of subspaces of dimen-
sion n of Λ1. Let M denote its closed subscheme of elements (F0,F1) such that F0

is incident to F1. Note that M and Mloc
I0

(GSp2n, µn) have identical generic fibers.
We have a chain of closed embeddings

(12.6) Mloc
I0 (GSp2n, µn) ⊂Mnaive

I0 (GSp2n, µn) ⊂M.

But we just proved that M has semi-stable reduction, and is therefore flat over OF .
Hence all inclusions are equalities, since we can identify all three schemes with the
flat closure of the generic fiber of Mloc

I0
(GSp2n, µn) in Mloc

{0,1}(GL2n, µn). In particular,
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Mloc
I0

(GSp2n, µn) has semi-stable reduction (in fact, with special fiber the union of
two smooth divisors meeting transversally in a smooth subscheme of codimension 2).

Remark 12.3. — Again, as in the case of GLn, in this case the incidences from F1 to
F2n−1 and from F2n−1 to F0 are automatic.

12.6. The case (splitGO2n, r = n, {1}). — In this subsection, we assume p ̸= 2.
Let e1, . . . , e2n be a Witt basis of F 2n, i.e., ⟨ei, e2n−j+1⟩ = δij for i, j # 2n. Then
the standard lattice chain is self-dual, i.e., Λi and Λ2n−i are paired by a perfect
pairing. In this caseK is the parahoric stabilizer of a selfdual periodic lattice chain ΛI ,
i.e., I has the property i ∈ I ⇔ 2n − i ∈ I. In this case, by [41, 8.2.3], the local
model is contained in the closed subscheme Mnaive

I (GO2n, µn) of the local model
Mloc

I (GL2n, µn) given by the condition that

(12.7) Fi = F⊥
2n−i, i ∈ I.

Now let I0 = {1, 2n − 1}. Then, since F2n−1 is determined by F1 via the identity
(12.7), we obtain a closed embedding Mloc

I0
(GO2n, µn) ⊂Mloc

{1}(GL2n, µn).
As open subset U of the worst point we take the scheme of (F1,F2n−1), where

F1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an,1 an,2 · · · an,n
1

1
. . .

1
a11 a12 · · · a1n
...

...
...

an−1,1 an−1,2 · · · an−1,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F2n−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1
b11 b12 · · · b1n
...

...
...

bn,1 bn,2 · · · bn,n
1 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The condition that F1 and F2n−1 be orthogonal is expressed by

(12.8) bµν = −an−ν+1,n−µ+1.

Recall the spin condition on F1, cf. [39, 7.1, 8.3]. This is a set of conditions stipulating
the vanishing of certain linear forms on ∧nΛ1 on the line ∧nF1 in ∧nΛ1,S . These linear
forms are enumerated by certain subsets E ⊂ {1, . . . , 2n} of order n. For a subset
E ⊂ {1, . . . , 2n} of order n, set E⊥ = (2n + 1 − E)c. Also, to such a subset E is
associated a permutation σE of S2n, cf. [39, 7.1.3]. We call the weak spin condition
the vanishing of the linear forms corresponding to subsets E with the property

(12.9) E = E⊥, |E ∩ {2, 3, . . . , n+ 1}| = n− 1, sgnσE = 1.

It is easy to see that there are precisely the following subsets satisfying this condition:
{1, . . . , n} and {2, . . . , n− 1, n+ 1, 2n}.

Lemma 12.4. — The weak spin condition on F1 implies an−1,n−1 = ann = 0.

J.É.P.—M., 2020, tome 7



556 X. He, G. Pappas & M. Rapoport

Proof. — Indeed, the linear forms for
E = {1, . . . , n}, resp. E = {2, . . . , n− 1, n+ 1, 2n},

are the minors of size n consisting of the rows
{1, . . . , n}, resp. {2, . . . , n− 1, n+ 1, 2n}. "

The incidence relation between F2n−1 and F1 is given by the following system of
equations,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 π 0 . . . 0
0 0 1 . . . 0
... . . .
0 0 . . . 0 1
b11 b12 . . . b1n
...

...
bn1 bn2 . . . bnn
π 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 an2 . . . ann
1 0 . . . 0
0 1 . . . 0
... . . .
0 0 . . . 1
a11 a12 . . . a1n
...

...
an−1,1 an−1,2 . . . an−1,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 . . . 0
... . . .
0 0 . . . 0 1
b11 b12 b13 . . . b1n
b21 b22 b23 . . . b2n

⎞

⎟⎟⎟⎟⎟⎟⎠

Using (12.8) and Lemma 12.4, we may also write the equations for the closed sublocus
Uwspin where, in addition to the incidence relation from F0 to F1 and the isotropy
condition on F0, the weak spin condition is satisfied, as an identity of n×n-matrices,
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 π . . . 0
−an,n−2 −an−1,n−2 . . . −a1,n−2

−an,n−3 −an−1,n−3 . . . −a1,n−3

...
...

−an,1 −an−1,1 . . . −a11
π 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 . . . an,n−1 0
a11 . . . a1,n−1 a1,n
a21 . . . a2,n−1 a2,n
...

...
an−2,1 . . . an−2,n−1 an−2,n

an−1,1 . . . 0 an−1,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 . . . 0
0 0 0 . . . 0
... . . .
0 0 . . . 0 1
0 −an−1,n −an−2,n . . . −a1,n

−an,n−1 0 −an−2,n−1 . . . −a1,n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

It implies (look at the (1, 2) entry, which also equals the (n, 1) entry)
(12.10) an−1,n · an,n−1 = −π.

Let us call Eij the polynomial identity among the aµν that is given by the entry i, j
of the above matrix identity. Then E1,j for 3 # j # n is of the form

an,j−2 = P1,j(a•,n−1, a•,n).

The identities En,j for 3 # j # n are of the form
an−1,j = Pn,j(a•,n−1, a•,n).
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The identities Ei,1 for 2 # i # n− 1 are of the form
an,n−i = Pi,1(a•,n−1, a•,n).

The identities Ei,2 for 2 # i # n− 1 are of the form
an−1,n−i = Pi,2(a•,n−1, a•,n).

The identities Ei,j for 2 # i # n− 1 and 3 # j # n are of the form
ai−1,j−2 + an+1−j,n−i = Pi,j(a•,n−1, a•,n).

We also note the following identities
Ei,j = En+2−j,n+2−i, for i ∈ [2, n− 1], j ∈ [3, n];

E1,j = En+2−j,1, for j ∈ [3, n− 2];

En,j = En−j,2, for j ∈ [3, n− 2].

We keep the 2(n − 2) variables a•,n−1 and a•,n, but eliminate an,j and an−1,j , for
j ∈ [1, n − 2]. Then the remaining variables ai,j with i, j ∈ [1, n − 2] satisfy the
identities

ai,j + an−1−j,n−1−i = Qi,j(a•,n−1, a•,n).

It follows that
(12.11) Uwspin ≃ SpecOF [X,Y ]/(XY − π)× An(n−1)/2−1.

We obtain the semi-stability of Mloc
I0

(GO2n, µn) as in the case of the symplectic group
via the chain of closed embeddings

Mloc
I0 (GO2n, µn) ⊂Mwspin

I0
(GO2n, µn) ⊂Mloc

{1}(GL2n, µn).

Remark 12.5. — Again, as in the case of GLn, in this case we can see, using flatness,
that the further incidence relation from F1 to F2n−1 and from F2n−1 to F1, as well
as the full spin condition are automatically satisfied.

12.7. Quadric local models. — Let V be an F -vector space of dimension d = 2n
or 2n+1, with a non-degenerate symmetric F -bilinear form ⟨ , ⟩. Assume that d ! 5
and that p ̸= 2. We will consider a minuscule coweight µ of SO(V )(F ) (i.e., defined
over F ) that corresponds to cases with r = 1.

Recall the notion of a vertex lattice in V : this is an OF -lattice Λ in V such that
Λ ⊂ Λ∨ ⊂ π−1Λ. We will say that an orthogonal vertex lattice Λ in V is self-dual if
Λ = Λ∨, and almost self-dual if the length lg(Λ∨/Λ) = 1. We list this as two cases:

(I) Λ is self-dual, i.e., Λ∨ = Λ.
(II) We have Λ ⊂ Λ∨ ⊂ π−1Λ, and lg(Λ∨/Λ) = 1.
Now let us consider the following cases:
(a) d = 2n+ 1, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , and Λ = ⊕d

i=1OF · ei, so
that Λ∨ = Λ.

(b) d = 2n, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , and Λ = ⊕d
i=1OF · ei, so that

we have Λ∨ = Λ.
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(c) d = 2n+ 1, there is a basis ei with ⟨ei, ed+1−j⟩ = πδij , and

Λ = (⊕n
i=1OF · π−1ei)⊕ (⊕d

i=n+1OF · ei),

so that Λ ⊂ Λ∨ ⊂ π−1Λ.
(d) d = 2n, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , if i, j ̸= n, n + 1, and

⟨en, en⟩ = π, ⟨en+1, en+1⟩ = 1, ⟨en, en+1⟩ = 0, and Λ = ⊕d
i=1OF ·ei, so that Λ ⊂ Λ∨ ⊂

π−1Λ.
In all these cases, we take µ : Gm → SO(V ) to be given by

µ(t) = diag(t−1, 1, . . . , 1, t)

(under the embedding into the group of matrices by giving the action on the basis).
It follows from the classification of quadratic forms over local fields [14] that for each

(V, ⟨ , ⟩,Λ) with lg(Λ∨/πΛ) # 1, and µ as in the beginning of this subsection, there is
an unramified finite field extension F ′/F such that the base change of (V, ⟨ , ⟩,Λ) to F ′

affords a basis as in one of the cases (a)–(d), and µ is given as above. In fact, we can
also consider similarly cases of (V, ⟨ , ⟩,Λ) with πΛ ⊂ Λ∨ ⊂ Λ, with lg(Λ∨/πΛ) # 1,
by changing the form ⟨ , ⟩ to π⟨ , ⟩; these two forms have the same orthogonal group.

In what follows, for simplicity we set OF = O.

12.7.1. Quadrics. — We will now consider the quadric Q(Λ) over SpecO which, by
definition, is the projective hypersurface in Pd−1

O whose R-valued points parametrize
isotropic lines, i.e., R-locally free rank 1 direct summands

F ⊂ ΛR := Λ⊗O R,

with ⟨F,F⟩R = 0. Here ⟨ , ⟩R is the symmetric R-bilinear form ΛR×ΛR → R obtained
from ⟨ , ⟩ restricted to Λ× Λ by base change.

Proposition 12.6. — Set Pd−1
Ŏ

= Proj(Ŏ[x1, . . . , xd]).
In case (I), Q(Λ)⊗O Ŏ is isomorphic to the closed subscheme of Pd−1

Ŏ
given by

∑d

i=1
xixd+1−i = 0

and the scheme Q(Λ) is smooth over O.
In case (II), Q(Λ)⊗O Ŏ is isomorphic to the closed subscheme of Pd−1

Ŏ
given by

∑d−1

i=1
xixd−i + πx2

d = 0.

Then Q(Λ) is regular with normal special fiber which is singular only at the point
(0; . . . ; 1); this point corresponds to F0 = πΛ∨/πΛ ⊂ Λ/πΛ = Λ⊗O k.

Proof. — Follows from the classification of quadratic forms over F̆ , by expressing
Q(Λ) in cases (a)–(d). (To get the equations in the statement we have to rearrange
the basis vectors.) "

J.É.P.—M., 2020, tome 7



Good and semi-stable reductions of Shimura varieties 559

12.7.2. Quadrics and PZ local models. — We can now extend our data to O[u, u−1].
We set V = ⊕d

i=1O[u, u−1] · ei with ⟨ , ⟩ : V× V→ O[u, u−1] a symmetric O[u, u−1]-
bilinear form for which ⟨ej , ej⟩ is given as ⟨ei, ej⟩ above, but with π replaced by u.
We define µ : Gm → SO(V) by µ(t) = diag(t−1, 1, . . . , 1, t) by using the basis ei.

Similarly, we define L to be the free O[u]-submodule of V spanned by ei (or u−1ei
and ej) as above, following the pattern of the definition of Λ in each case. Then, the
base change of (V, ⟨ , ⟩,L) from O[u, u−1] to F given by u )→ π are (V, ⟨ , ⟩,Λ).

We can now define the local model Mloc = Mloc(Λ) = Mloc
K (SO(V ), {µ}) for the LM

triple (SO(V ), {µ},K) where K is the parahoric stabilizer of Λ, as in [41]. Consider
the smooth affine group scheme G over O[u] given by g ∈ SO(V) that also preserve L
and L∨. Base changing by u )→ π gives the Bruhat-Tits group scheme G of SO(V )
which is the stabilizer of the lattice chain Λ ⊂ Λ∨ ⊂ π−1Λ. This is a hyperspecial
subgroup when Λ∨ = Λ. If lg(Λ∨/Λ) = 1, we can see that G has special fiber with Z/2Z
as its group of connected components. The corresponding parahoric group scheme is
its connected component G0. The construction of [41] produces the group scheme G0

that extends G0. By construction, there is a group scheme immersion G0 ↪→ G.
As in [41], one can see that the Beilinson-Drinfeld style (“global”) affine Grassman-

nian GrG,O[u] over O[u] represents the functor that sends the O[u]-algebra R given by
u )→ r to the set of projective finitely generated R[u]-submodules L of V⊗O R which
are R-locally free such that (u− r)NL ⊂ L ⊂ (u− r)−NL for some N ≫ 0 and satisfy
L∨ = L in case (I), resp.

uL∨ d−1
⊂ L

1
⊂ L∨ d−1

⊂ u−1L

in case (II), with all graded quotients R-locally free and of the indicated rank.
By definition, the PZ local model Mloc is a closed subscheme of the base change

GrG0,O = GrG0,O[u] ⊗O[u] O by O[u] → O given by u )→ π. Consider the O-valued
point [L(0)] given by

L(0) = µ(u− π)L.

By definition, the PZ local model Mloc is the reduced Zariski closure of the orbit of
[L(0)] in GrG0,O; it inherits an action of the group scheme G0 = G0 ⊗O[u] O. As in
[41, 8.2.3], we can see that the natural morphism GrG0,O[u] → GrG,O[u] induced by
G0 ↪→ G identifies Mloc with a closed subscheme of GrG,O := GrG,O[u] ⊗O[u] O.

Proposition 12.7. — In each of the above cases (a)–(d) with lg(Λ∨/Λ) # 1, there is
a G-equivariant isomorphism

Mloc(Λ)
∼−→ Q(Λ)

between the PZ local model as defined above and the quadric.
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Proof. — Note that since, by definition, G maps to GL(Λ) and preserves the form
⟨ , ⟩, it acts on the quadric Q(Λ). By the definition of L(0), we have

(u− π)L ⊂ L(0) ∩ L ⊂
⊂

L

L(0)
⊂

⊂
L+ L(0) ⊂ (u− π)−1L,

where the quotients along all slanted inclusions are O-free of rank 1. Consider the
subfunctor M of GrG,OF parametrizing L such that

(u− π)L ⊂ L ⊂ (u− π)−1L.

Then M is given by a closed subscheme of GrG,O which contains the orbit of L(0);
therefore the local model Mloc is a closed subscheme of M and Mloc is the reduced
Zariski closure of its generic fiber in M .

We now consider another projective scheme P (Λ) which parametrizes pairs (F,F′)
where F ⊂ ΛR, F′ ⊂ Λ∨

R are both R-lines, such that F is isotropic for ⟨ , ⟩R and F′ is
isotropic for π⟨ , ⟩R, and such that F, F′ are linked by both natural R-maps ΛR → Λ∨

R

and π : Λ∨
R → ΛR.

Lemma 12.8. — In case (I), the forgetful morphism f : P (Λ)
∼−→ Q(Λ) is an iso-

morphism. In case (II), denote by P (Λ)fl the flat closure of P (Λ). Then the forgetful
morphism f : P (Λ)fl → Q(Λ), given by (F,F′) )→ F, can be identified with the blow-up
of Q(Λ) at the unique singular closed point of its special fiber. In particular, it is an
isomorphism away from the closed point given by F = the radical of the form ⟨ , ⟩
on ΛκF . If F is the radical, then F′ lies in the radical of the form π⟨ , ⟩ on Λ∨⊗O κF .
Since this radical has dimension d− 1, the exceptional locus is isomorphic to Pd−2

κF
.

Proof. — In case (I), we have F′ = F, so P (Λ) ≃ Q(Λ). Assume we are in case (II).
Using the universal property of the blow-up, we see it is enough to show the statement
after base changing to Ŏ. For convenience we rearrange the basis of V such that Λ∨/Λ
is generated by π−1ed. Set

F =

( d∑

i=1

xiei

)
, F′ =

(d−1∑

i=1

yiei + ydπ
−1ed

)
.

Since F maps to F′ by ΛR → Λ∨
R and F′ maps to F by π : Λ∨

R → ΛR, there are
λ, µ ∈ R such that λµ = π and

x1 = λy1, . . . , xd−1 = λyd−1, πxd = λyd

πy1 = µx1, . . . ,πyd−1 = µxd−1, yd = µxd.

The isotropy conditions are
d−1∑

i=1

xixd−i + πx2
d = 0,

d−1∑

i=1

πyiyd−i + y2d = 0.
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Let us consider the inverse image of the affine chart with xd = 1 under the forgetful
morphism f : P (Λ)→ Q(Λ). We obtain yd = µ and the equations become

λ

(d−1∑

i=1

xiyd−i + µ

)
= 0, µ

(d−1∑

i=1

xiyd−i + µ

)
= 0.

The flat closure P (Λ)fl is given by λµ = π and
∑d−1

i=1 xiyd−i + µ = 0. Since xi = λyi,
we get λ

∑d−1
i=1 yiyd−i + µ = 0. Eliminating µ gives

−λ2
(d−1∑

i=1

yiyd−i

)
= π.

An explicit calculation shows that this coincides with the blow-up of the affine chart
xd = 1 in the quadric Q(Λ) at the point (0 : · · · : 1) of its special fiber. In fact,
we see that P (Λ)fl is regular and that the special fiber P (Λ)flk has two irreducible
components: The smooth blow up of the special fiber Q(Λ) ⊗O κF at the singular
point and the exceptional locus Pd−2

κF
for λ = 0; they intersect along a smooth quadric

of dimension d − 3 over κF . The exceptional locus has multiplicity 2 in the special
fiber of P (Λ)fl. The rest of the statements follow easily. "

We now continue with the proof of Proposition 12.7. Assume that (F,F′) gives
an R-valued point of P (Λ). The pair (F,F′) uniquely determines lattices L(F) and
L′(F′) with

(u− π)L ⊂ L′(F′)
1
⊂ L

1
⊂ L(F) ⊂ (u− π)−1L,

by
L(F) = the inverse image of F under u− π : (u− π)−1L −→ L/(u− π)L = ΛR,

L′(F′) = the inverse image of F′⊥ ⊂ ΛR under L −→ L/(u− π)L = ΛR.
The other conditions translate to (u− π)L(F) ⊂ L′(F′) ⊂ L(F) and

L′(F′) ⊂ L(F)∨ ⊂ u−1L′(F′),

L(F) ⊂ L′(F′)∨ ⊂ u−1L(F).

Note that we obtain a symmetric R-bilinear form by interpreting the value ⟨ , ⟩ in
(u− π)−1R[u]/R[u] ≃ R,

h : L(F)/L′(F′)× L(F)/L′(F′) −→ R

Consider the scheme Z → P (Λ)fl ⊂ P (Λ) classifying isotropic lines in the rank 2
symmetric space L(Funiv)/L′(F′univ) over P (Λ). One of these isotropic lines is always
L/L′(F′). Suppose R = k. When F is the radical in Λk, then L(F) = L∨. Then
L/L′(F′) is the radical of h and gives the unique isotropic line. If F is not the radical
in Λk, then h is non-degenerate and there are two distinct isotropic lines, one of which
is L/L′(F′).

We first consider case (I), i.e., Λ = Λ∨. Then F = F′, and P (Λ) = Q(Λ). The form h
is perfect (everywhere non-degenerate) and Z is the disjoint union Z = Z0 3 Z1,
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where Z0 is the component where the isotropic line is L/L′(F′). Each component Zi

projects isomorphically to Q(Λ). We can give a morphism

g : Z1 ≃ P (Λ) = Q(Λ) −→Mloc

by sending F to L characterized by the condition that L/L′(F′) ⊂ L(F)/L′(F′) is
the tautological isotropic line over Z1. The morphism g is the desired equivariant
isomorphism Q(Λ) ≃Mloc(Λ).

We now consider case (II), i.e., lg(Λ∨/Λ) = 1. Then the scheme Z → P (Λ)fl has two
irreducible components Z0, Z1, where Z0 is the irreducible component over which the
isotropic line is L/L(F′) and where Z1 is the irreducible component over which the
isotropic line generically is not L/L(F′). By the above, the two components intersect
over the exceptional locus of the blow-up P (Λ)fl → Q(Λ). Each irreducible compo-
nent maps isomorphically to P (Λ)fl. (Note that P (Λ)fl is normal and each morphism
Zi → P (Λ)fl is clearly birational and finite.) We can now produce a morphism

g : Z1 ≃ P (Λ)fl −→Mloc

by sending (F,F′) to L characterized by the condition that L/L(F′) ⊂ L(F)/L(F′) is
the tautological isotropic line over Z1,

(u− π)L ⊂ L′(F′) ⊂
⊂

L

L
⊂

⊂
L(F) ⊂ (u− π)−1L.

When L ̸= L, then L(F) = L + L and L′(F′) = L ∩ L and so (F,F′) is uniquely
determined by its image L in Mloc. Hence, g is an isomorphism over the open sub-
scheme of Mloc where L ̸= L. When L = L, L/L(F′) is isotropic in L(F)/L(F′)
and, as above, F = the radical of the form on Λk. This shows that the inverse
image of g : P (Λ) → Mloc over [L] agrees with exceptional locus of the blow-up
f : P (Λ)fl → Q(Λ) over the point F given by the radical. Since Q(Λ), Mloc are both
normal, we can conclude that the birational map f ◦ g−1 : Mloc %%& Q(Λ) is an iso-
morphism; it is G-equivariant since this is true on the generic fibers. This completes
the proof of Proposition 12.7. "

12.7.3. More orthogonal local models. — We will now consider orthogonal local mod-
els associated to the self-dual chains generated by two lattices Λ0, Λn and their duals,
where Λ0, Λn are both self-dual or almost self-dual vertex lattices, Λ0 for the form
⟨ , ⟩ and Λn for its multiple π⟨ , ⟩. In all cases, the self-dual lattice chain has the form

· · · ⊂ Λ0
r
⊂ Λ∨

0 ⊂ Λn
s
⊂ π−1Λ∨

n ⊂ π−1Λ0 ⊂ · · ·

with each r, s either 0 or 1. Again, after an unramified extension of F , we can reduce
to the following cases:

(1) d = 2n+ 1, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , Λ0 = ⊕d
i=1O · ei so that

Λ∨
0 = Λ0 and Λn = (⊕n

i=1O · π−1ei)⊕ (⊕d
i=n+1O · ei) so that Λn & π−1Λ∨

n.
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(2) d = 2n, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , Λ0 = ⊕d
i=1O · ei so that

Λ∨
0 = Λ0, and Λn = (⊕n

i=1O · π−1ei)⊕ (⊕d
i=n+1O · ei) so that Λn = π−1Λ∨

n.
(3) d = 2n, there is a basis ei with ⟨ei, ed+1−j⟩ = δij , if i, j ̸= n, n + 1, and

⟨en, en⟩ = π, ⟨en+1, en+1⟩ = 1, ⟨en, en+1⟩ = 0, and Λ0 = ⊕d
i=1O ·ei so that Λ0 & Λ∨

0 ⊂
π−1Λ0 and Λn = (⊕n

i=1O · π−1ei)⊕ (⊕d
i=n+1O · ei) so that Λ∨

n ⊂ Λn & π−1Λ∨
n.

We extend (V, ⟨ , ⟩) and Λj to (V, ⟨ , ⟩) and Lj over O[u] as in 12.7.2. We consider
the (smooth, affine) group scheme G = GL•

over O[u] given by g ∈ SO(V) that also
preserve the chain

L• : · · · ⊂ L0 ⊂ L∨
0 ⊂ Ln ⊂ u−1L∨

n ⊂ u−1L0 ⊂ · · ·

The base change of G by u )→ π is the the Bruhat-Tits group scheme G for SO(V )
that preserves the chain

Λ• : · · · ⊂ Λ0 ⊂ Λ∨
0 ⊂ Λn ⊂ π−1Λ∨

n ⊂ π−1Λ0 ⊂ · · ·

This is connected and hence parahoric in cases 1) and 2), since it is contained in the
hyperspecial stabilizer of Λ0. In case 3), the group of connected components of its
special fiber is Z/2Z. The corresponding parahoric is the connected component of G.
We can now see that the diagonal embedding gives a closed immersion

GL•
↪−→ GL0

× GLn

of group schemes over O[u]. Similarly, we have a compatible closed immersion of the
global affine Grassmannian for GL•

into the product of the ones for GL0
and GLn

.
The global affine Grassmannian for GL•

represents the functor which sends the
O[u]-algebra R given by u )→ r to the set of pairs of projective finitely generated
R[u]-submodules (L0,Ln) of V⊗O R which are R-locally free, such that (u− r)NL ⊂
Li ⊂ (u− r)−NL for some N ≫ 0, and

L0
r
⊂ L∨

0

n−r
⊂ Ln

s
⊂ u−1L∨

n

n−s
⊂ u−1L0

with all graded quotients R-locally free and of the indicated rank. From this and the
discussion before Proposition 12.7 it easily follows that there is an equivariant closed
embedding of local models

Mloc(Λ•) ↪−→Mloc(Λ0)×Mloc(Λn)

which restricts to the diagonal morphism on the generic fibers. Proposition 12.7 now
gives equivariant isomorphismsMloc(Λ0) ≃ Q(Λ0, ⟨ , ⟩) andMloc(Λn) ≃ Q(Λn,π⟨ , ⟩).
In fact, we can now see that the construction of these isomorphisms in the proof of
this proposition implies that the image of the resulting closed embedding

Mloc(Λ•) ↪−→ Q(Λ0, ⟨ , ⟩)×Q(Λn,π⟨ , ⟩)

lies in the closed subscheme of the product of the two quadrics where the two lines
(F0,Fn) are linked in the same manner as for the corresponding local model for GLd,
i.e., F0 ⊂ Λ0,R maps to Fn ⊂ Λn,R via Λ0,R → Λn,R induced by Λ0 ⊂ Λn and Fn

maps to F0 under Λn,R → Λ0,R induced by π : Λn → Λ0. Indeed, the reason is that
Mloc(Λ•), as a closed subscheme of the Beilinson-Drinfeld Grassmannian, classifies
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(L0,Ln) which in particular satisfy L0 ⊂ Ln ⊂ u−1L0. Therefore, we have that
L0 +L0 ⊂ Ln +Ln ⊂ u−1(L0 +L0). But, as the proof shows, on the open dense non-
singular part of the quadrics, the sums L0 + L0 and Ln + Ln determine the lines F0

and Fn and we easily see that the linkage inclusions as above are satisfied.

12.8. The case (split SO2n, r = 1, {0, n}). — This corresponds to case 2) in 12.7.3.
We continue to assume p ̸= 2. We have V = ⊕2n

i=1F · ei with symmetric F -bilinear
form determined by ⟨ei, e2n+1−j⟩ = δij . For 1 # j # n, set

Λj = (π−1e1, . . . ,π
−1ej , ej+1, . . . , e2n) ≃ O2n ⊂ V ;

Then Λ0 = Λ∨
0 , πΛn = Λ∨

n. In this case, the local model is contained in the closed
subscheme Mnaive

{0,n}(SO2n, µ1) of the local model Mloc
{0,n}(GL2n, µ1) given by the condi-

tion

(12.12) F0 ⊂ F⊥
0 , Fn ⊂ F⊥

n .

As open subset U of the worst point we take the scheme of (F0,Fn), where

F0 = (e1 + a1e2 + · · ·+ a2n−1e2n),

Fn = (bnπ
−1e1 + · · ·+ b2n−1π

−1en + en+1 + b1en+1 + · · ·+ bn−1e2n).

The incidences from F0 to Fn, resp. from Fn to F0 are given by the following matrix
relations

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π
πa1
...

πan−1

an
...

a2n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bn
bn+1

...
b2n−1

1
b1
...

bn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· an,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bn
...

b2n−1

π
πb1
...

πbn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a1
...
an
...

a2n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· bn.

We deduce that

(12.13) anbn = π,

and the following identities for i = 1, . . . , n− 1,

(12.14)
anbi = an+i, bnai = bn+i,

anbn+i = πai, bnan+i = πbi.

The isotropy conditions on F0, resp. Fn, are given by the following equations,

(12.15)
a2n−1 + a1a2n−2 + · · ·+ an−1an = 0,

b2n−1 + b1b2n−2 + · · ·+ bn−1bn = 0.
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We use the first lines of (12.14) to eliminate an+1, . . . , a2n−1 and bn+1, . . . , b2n−1.
Then the second lines in (12.14) are automatically satisfied (use (12.13)),

anbn+i − πai = anbnai − πai = ai(anbn − π) = 0;

bnan+i − πbi = bnanbi − πbi = bi(anbn − π) = 0.

Expressing an+1, . . . , a2n−1 in terms of b1, . . . , bn−1 in the first equation of (12.15),
we obtain the equation

an(bn−1 + a1bn−2 + · · ·+ an−2bn−1 + an−1) = 0.

Similarly, the second equation of (12.15) gives

bn(bn−1 + a1bn−2 + · · ·+ an−2bn−1 + an−1) = 0.

These equations also hold in the generic fiber of U ; but by (12.13), both an and bn
are units in the generic fiber, and hence we obtain the following equation, first in the
generic fiber but then by flatness on all of U ,

(12.16) bn−1 + a1bn−2 + · · ·+ an−2bn−1 + an−1 = 0.

We can now eliminate bn−1 and remain only with equation (12.13) among the inde-
terminates a1, . . . , an, b1, . . . , bn−2, bn. Hence

U ≃ SpecOF [X,Y ]/(XY − π)× A2n−3

has semi-stable reduction.

12.9. The case (split SO2n+1, r = 1, {0, n}). — This corresponds to case (1) in 12.7.3.
We continue to assume p ̸= 2. Again we denote by e1, . . . , e2n+1 a Witt basis, i.e.,
⟨ei, e2n+2−j⟩ = δij for i, j # 2n+ 1.

The local model is contained in the closed subscheme Mnaive
{0,n}(SO2n+1, µ1) of the

local model Mloc
{0,n}(GL2n+1, µ1) given by the condition

(12.17) F0 ⊂ F⊥
0 , Fn ⊂ F⊥

n

where the second ⊥ is for the form π⟨ , ⟩ on Λn,R.
As open subset U of the worst point we take the scheme of (F0,Fn), where

F0 = (e1 + a1e2 + · · ·+ a2ne2n+1),

Fn = (b1π
−1e1 + · · ·+ bnπ

−1en + en+1 + bn+1en+1 + · · ·+ b2ne2n).
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The incidences from F0 to Fn, resp. from Fn to F0 are given by the following matrix
relations

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π
πa1
...

πan−1

an
...

a2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
...
bn
1

bn+1

...
b2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· an,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
...
bn
π

πbn+1

...
πb2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a1
...
an
...

a2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· b1.

We deduce that

(12.18) anb1 = π,

and the following identities,

(12.19)
anbn+i = an+i, for i = 1, . . . , n b1ai = bi+1, for i = 1, . . . , n− 1

anbi+1 = πai, for i = 1, . . . , n− 1 b1an+i = πbn+i for i = 1, . . . , n.

The isotropy conditions on F0, resp. Fn, are given by the following equations,

(12.20)
2a2n + 2a1a2n−1 + · · ·+ 2anan+1 + a2n = 0,

π + 2b1b2n + 2b2b2n−1 + · · ·+ 2bnbn+1 = 0.

We use the first lines of (12.19) to eliminate an+1, . . . , a2n and b2, . . . , bn. Then the
second lines in (12.19) are automatically satisfied (use (12.13)),

anbi+1 − πai = anb1ai − πai = ai(anb1 − π) = 0;

b1an+i − πbn+i = b1anbn+i − πbn+i = bn+i(anb1 − π) = 0.

Expressing an+1, . . . , a2n−1 in terms of b1, . . . , bn−1 in the first equation of (12.20),
we obtain the equation

an(2bn + 2a1b2n−1 + · · ·+ 2an−1bn+1 + an) = 0.

Similarly, the second equation of (12.14) gives

b1(2b2n + a1b2n−1 + · · ·+ 2an−1bn+1 + an) = 0.

These equations also hold in the generic fiber of U ; but by (12.13), both an and b1
are units in the generic fiber, and hence we obtain the following equation, first in the
generic fiber but then by flatness on all of U ,

(12.21) 2b2n + a1b2n−1 + · · ·+ 2an−1bn+1 + an = 0.

We can now eliminate b2n and remain only with equation (12.13) among the indeter-
minates a1, . . . , an, b1, bn+1, . . . , b2n−1. Hence

U ≃ SpecOF [X,Y ]/(XY − π)× A2n−2

has semi-stable reduction.
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12.10. The case (nonsplit SO2n, r = 1, {0, n}). — This corresponds to case (3) in
12.7.3. We continue to assume p ̸= 2. Considering this case is not essential for the
proof of the main result, since it has already been excluded in Section 10.6. However,
we include it here since it fits the pattern of the previous cases.

We have V = ⊕2n
i=1F · ei with symmetric F -bilinear form determined by

(ei, e2n+1−j) = δij , for i, j ̸= n, n+ 1, (en, en) = π, (en+1, en+1) = 1, (en, en+1) = 0.

Here, Λ0 ⊂ Λ∨
0 ⊂ π−1Λ0, πΛn ⊂ Λ∨

n ⊂ Λn with the quotients Λ∨
0/Λ0, Λ∨

n/πΛn both
of length one.

We consider the functor which to an O-algebra R, associates the set of F0 ⊂
Λ0⊗O R, Fn ⊂ Λn⊗O R, both R-locally direct summands of rank 1 that are isotropic
for the symmetric forms induced by ( , ) on Λ0 ⊗O R, resp. by π( , ) on Λn ⊗O R, and
which are linked, i.e., Λ0⊗OR→ Λn⊗OR maps F0 to Fn and π : Λn⊗OR→ Λ0⊗OR
maps Fn to F0. This functor is represented by a closed subscheme

Mnaive
Λ• (SO(V ), µ1) ⊂ Q(Λ0, ( , ))×Q(Λn,π( , ))

of the product of the two quadrics. The local model Mloc(Λ•) is the flat closure of the
generic fiber of this subscheme. Set

F0 =

( 2n∑

i=1

xiei

)
, Fn =

( n∑

i=1

yiπ
−1ei +

2n∑

i=n+1

yiei

)
.

The isotropy conditions translate to:
x1x2n + · · ·+ xn−1xn+2 + πx2

n + x2
n+1 = 0,(12.22)

y1y2n + · · ·+ yn−1yn+2 + y2n + πy2n+1 = 0.(12.23)
(Here (x1; . . . ;x2n), (y1; . . . ; y2n) are homogeneous coordinates.) Linkage translates
to the existence of λ, µ ∈ R with

n∑

i=1

xiei +
2n∑

i=n+1

xiei = λ ·
( n∑

i=1

yiπ
−1ei +

2n∑

i=n+1

yiei

)
,

n∑

i=1

yiei +
2n∑

i=n+1

πyiei = µ ·
( n∑

i=1

xiei +
2n∑

i=n+1

xiei

)
.

This gives
πx1 = λy1, . . . ,πxn = λyn, xn+1 = λyn+1, . . . , x2n = λy2n,

y1 = µx1, . . . , yn = µxn, πyn+1 = µxn+1, . . . ,πy2n = µx2n.

We obtain λµ = π. Now the two isotropy conditions become:
x1λy2n + · · ·+ xnλyn + λ2y2n+1 = 0,

x1µy2n + · · ·+ µ2x2
n + xn+1µyn+1 = 0.

These give:
λ · (x1y2n + · · ·+ xnyn + λy2n+1) = µ · (x1y2n + · · ·+ µx2

n + xn+1yn+1) = 0.

J.É.P.—M., 2020, tome 7



568 X. He, G. Pappas & M. Rapoport

Since xn+1 = λyn+1, yn = µxn, the expressions in both parentheses are the same,
and are equal to

x1y2n + · · ·+ xnyn + xn+1yn+1.

By flatness, x1y2n + · · ·+ xnyn + xn+1yn+1 = 0 holds on Mloc(Λ•). In fact, the worst
point lies in the affine chart U with xn = 1 and yn+1 = 1. Then µ = yn and λ = xn+1

and we can see

U ≃ SpecOF [X,x1, . . . , xn−1, yn+2, . . . , y2n]/(X(X + x1y2n + · · ·+ xn−1yn+2) + π)

with X = xn+1. The special fiber UκF has two irreducible components that are both
isomorphic to A2n−2

κF
. Their intersection is isomorphic to

SpecκF [x1, . . . , xn−1, yn+2, . . . , y2n]/(x1y2n + · · ·+ xn−1yn+2),

which is singular. Therefore, in this case, the local model Mloc(Λ•) indeed does not
have pseudo semi-stable reduction.

Note that Mnaive
Λ•

(SO(V ), µ1) is not flat; the special fiber contains λ = µ = 0 and
xn+1 = · · · = x2n = 0, y1 = · · · = yn = 0. This shows that there is an extra irreducible
component isomorphic to Pn−1

κF
× Pn−1

κF
given by

(x1; . . . ;xn, 0; . . . ; 0)× (0; . . . ; 0, yn+1; . . . ; y2n).

On this component, the equation x1y2n + · · ·+ xnyn + xn+1yn+1 = 0 becomes x1y1 +
· · ·+ xn−1yn+2 = 0 and it is not satisfied.

12.11. The case (nonsplit SO2n, r = n, {0}). — Here n ! 2. We have V = ⊕2n
i=1F · ei

with symmetric F -bilinear form determined by

(ei, e2n+1−j) = δij , for i, j ̸= n, n+ 1, (en, en) = π, (en+1, en+1) = 1, (en, en+1) = 0.

Then Λ0 ⊂1 Λ∨
0 ⊂ π−1Λ0, the quotient Λ∨

0/Λ0 is of length one. In this case, K is the
parahoric stabilizer of the selfdual periodic lattice chain

· · · ⊂ πΛ∨
0 ⊂ Λ0 ⊂ Λ∨

0 ⊂ π−1Λ0 ⊂ · · ·

The reflex field E is the ramified quadratic extension of F obtained by adjoining the
square root of π.

Set I = {0, 1}. In this case, by [41, 8.2.3], the local model is contained in the closed
subscheme Mnaive

I (GO2n, µn) of the local model Mloc
I (GL2n, µn)⊗O OE described by

(12.24) F1 = F⊥
0 .

(Note that the group GO2n is not connected and so the discussion in [41, p. 215]
applies.) As open subset U of the worst point we take the scheme of

(F0,F1) = (F0,F
⊥
0 ),
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where

F0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .
1

a11 a12 · · · a1n
...

...
...

an,1 an,2 · · · an,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can now see that U is a subscheme of the closed subscheme of Spec(OE [ai,j ]1!i,j!n)
defined by the equations

a21n = π, and an+1−i,j + an+1−j,i + a1ia1j = 0,

(if at least one of i or j is not equal to n). This has two irreducible components defined
by setting a1n =

√
π, or a1n = −

√
π respectively. As we can see from the equations,

each component is isomorphic to affine space over OE in the coordinates ai,j with
i + j # n, and is therefore smooth over OE . The generic fiber U ⊗OE E has two
isomorphic connected components, given by the generic fibers of these two irreducible
components and the two irreducible components above are the Zariski closures of
these two connected components. Our discussion implies that the corresponding local
model, which has an open affine given by the Zariski closure of one of these connected
components, is smooth.
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