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Gauss—Newton Optimization for Phase Recovery
From the Bispectrum

James Lincoln Herring

Abstract—Phase recovery from the bispectrum is a central prob-
lem in speckle interferometry which can be posed as an opti-
mization problem minimizing a weighted nonlinear least-squares
objective function. We look at two different formulations of the
phase recovery problem from the literature, both of which can be
minimized with respect to either the recovered phase or the recov-
ered image. Previously, strategies for solving these formulations
have been limited to gradient descent or quasi-Newton methods.
This article explores Gauss—Newton optimization schemes for the
problem of phase recovery from the bispectrum. We implement
efficient Gauss—Newton optimization schemes for all the formu-
lations. For the two of these formulations which optimize with
respect to the recovered image, we also extend to projected Gauss—
Newton to enforce element-wise lower and upper bounds on the
pixel intensities of the recovered image. We show that our efficient
Gauss—Newton schemes result in better image reconstructions with
no or limited additional computational cost compared to previously
implemented first-order optimization schemes for phase recovery
from the bispectrum. MATLAB implementations of all methods
and simulations are made publicly available in the BiBox reposi-
tory on Github.

Index Terms—Phase recovery, bispectrum, bispectral imaging,
Gauss—Newton method.

I. INTRODUCTION

MAGE blurring due to turbulence poses a significant obsta-
I cle in many applications. One approach to obtaining high
spatial frequency images of an object through turbulent optical
systems is speckle interferometry, which is built upon Labeyrie’s
observation that high spatial frequency information can be re-
covered from short-exposure images [1]. This work provided the
means to obtain diffraction-limited reconstructions of an object’s
Fourier modulus, or power spectrum, using short-exposure,
photon-limited data.

While an object’s Fourier modulus may be sufficient in the
case of some simple objects, many applications also require
recovery of the object’s Fourier phase in order to produce high
quality images. Thus, phase retrieval is often an essential sub-
problem when using speckle interferometry. Several methods
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have been developed to solve the phase retrieval problem, most
using relationships defined by high-order statistical correlation
measures such as an object’s triple correlation or its Fourier
counterpart, the bispectrum [2], [3]. These measures can be
collected from the short-exposure data and used to reconstruct
an object’s phase.

This work focuses on the problem of phase recovery from
an object’s collected bispectrum. The broader problem of phase
retrieval occurs in numerous engineering fields and the sciences
including astronomy, electronmicroscopy, crystallography, and
optical imaging. For a recent overview of applications and
challenges, we recommend [4]. The problem of phase recovery
from the bispectrum has its origins in astronomical imaging for
low-light images in the visible spectrum [2], [3], [5]-[8]. More
recently, the problem has been of interest in multiple applications
including long-range horizontal and slant path imaging [9]-[11]
and phase recovery in underwater imaging [12], [13]. The gen-
eral problem of phase retrieval from Fourier measurements also
continues to be an active area of research in the signal processing
community [ 14]-[22]. Many phase retrieval applications consid-
ered in the literature are based on the relationship between an
object’s phase and higher order statistical moments collected
from the data (such as the bispectrum) and require solving
constrained nonlinear least-squares problems; see, e.g., [16],
[21], [22]. Thus while we consider only the problem of phase
recovery from the bispectrum, the content of this paper is more
broadly applicable to the phase retrieval problem in general.

For phase recovery from the bispectrum, strategies can be
separated into two categories: recursive algorithms and weighted
least-squares problems. Recursive strategies fix a small set of
known phase values near the center of the Fourier domain and
use these known phase values along with the collected bispec-
trum to recursively compute the remainder of the reconstructed
phase. Such strategies are well explored in the literature [5], [6],
[10], [23]-[28]. One limitation of recursive strategies is poor
performance when attempting to reconstruct the phase values
associated with high frequency information when using noisy
data [7]. To improve on this, the phase recovery problem can be
reformulated as a weighted least-squares problem minimizing
the mismatch between the unknown object phase and the col-
lected phase of the bispectrum. This least-squares problem is
typically nonlinear because the bispectrum is collected modulo-
27 in the range [—, 7], i.e., the bispectrum is “wrapped.” One
can solve this nonlinear least-squares problem [7], [25], [26],
[29]-[32]. Alternatively, techniques have been proposed to un-
wrap the collected bispectrum, e.g., [33], [34], resulting in
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a linear least-squares problem, but these approaches have been
shown to produce inferior results to solving the nonlinear formu-
lation of the problem [29]. Previous approaches to solving both
the linear and nonlinear least-squares formulations have focused
on gradient-based first-order and quasi-Newton methods such
as gradient descent and the limited memory Broyden—Fletcher—
Goldfarb—Shanno method (L-BFGS) [7], [29], [30].

In this paper, we focus on the formulation of phase recovery
from the bispectrum as a nonlinear weighted least-squares prob-
lem using the wrapped bispectrum. We present Gauss—Newton
schemes as an alternative to the gradient-based optimization
approaches previously used in the literature. Specifically, we
make the following contributions:

* We implement efficient Gauss—Newton optimization meth-
ods for two nonlinear least-squares formulations of the
phase recovery problem from the literature. Both of these
formulations can be minimized with respect to the recov-
ered phase or recovered image, resulting in four possible
formulations. Our implementations exploit sparsity, ma-
trix reorderings, incomplete factorization, and the speed
of the fast Fourier transform (FFT) to reduce the cost
associated with solving the linear system to calculate the
Gauss—Newton step at each iteration of the optimization.
The resulting schemes have per iteration costs on the same
order of magnitude as gradient descent and quasi-Newton
methods like NLCG and L-BFGS but benefit from faster
convergence. This results in improved time-to-solution and
lower overall computational cost compared with previous
approaches.

* For the two formulations that are minimized with respect
to the resulting image, we also explore the constrained
problem with pixel-wise non-negativity constraints on the
pixel intensities of the recovered image. We use a projected
Gauss—Newton method to enforce these constraints. This
strategy improves the quality of the recovered image. Ad-
ditionally, it eliminates the need for a regularizer enforcing
non-negativity and offers the option to use other regular-
ization options while still enforcing non-negativity. We
demonstrate this for two common regularizers, a discrete
gradient regularizer, and a total variation regularizer. For
comparison with constrained gradient-based optimization,
we also test projected gradient descent with both regulariz-
ers for these two formulations.

* We show through numerical experiments that our proposed
standard Gauss—Newton and projected Gauss—Newton im-
plementations offer improvements on gradient descent,
L-BFGS, and projected gradient descent in both time-to-
solution and the quality of the resulting image for the four
formulations of the phase recovery problem taken from
the literature. We also show that these improvements in
the quality of the resulting image are robust to problem
parameters including atmospheric turbulence and noise
level.

e We provide MATLAB implementations for all our meth-
ods and for all our numerical simulations in the BiBox
repository on Github: https://github.com/herrinj/BiBox
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The paper is organized as follows. Section I gives an overview
of the collection of the bispectrum and the formulation of
phase recovery from the bispectrum as a weighted nonlin-
ear least-squares optimization problem. Section III details our
proposed iterative Gauss—Newton optimization for solving the
phase recovery problem from the previous section. Specifically,
we introduce expressions for the gradient and Gauss—Newton
approximations to the Hessians for four separate formulations
of the phase recovery problem and discuss efficient strategies
for solving the linear system associated with the Gauss—Newton
step within each iteration of the optimization. Lastly, for two
of the problem formulations, we extend our implementation to
projected Gauss—Newton which allows for phase recovery while
simultaneously imposing pixel-wise intensity bounds on the re-
covered image. Section IV presents numerical experiments. We
compare our proposed Gauss—Newton schemes with common
first-order optimization methods: gradient descent, projected
gradient descent, and quasi-Newton L-BFGS method. We also
demonstrate the robustness of our proposed Gauss—Newton
schemes for a range of problem parameters. We end with con-
cluding remarks in Section V.

II. PHASE RECOVERY PROBLEM

Most techniques for recovering an object’s phase from speckle
image data rely on the object’s triple correlation and its Fourier
transform, the bispectrum [2], [3]. An object’s triple correlation
is a second-order statistical moment given by measuring an
object against two independently shifted copies of itself. For
a two dimensional object o(x) with € R?, this is expressed
by

ot (x1, @) = //j: o' (x)o(x + x1)o(x + x2)dx.

Taking the Fourier transform of this and using the convolution
property, we get the object’s bispectrum,

0¥ (u,v) = O(u)O(v)O* (u + v).

Here, O(u) is the Fourier transform of the object and u, v € R?
are spatial frequencies. It follows that the phase of the object’s
bispectrum and the object are related by

Blu,v) = p(u) + ¢(v) — p(u +v) (M

where ¢(u) is the phase of O(u) and (u,v) is the phase of
the object’s bispectrum corresponding to the triplet (u, v, u +
v). This expression provides a deterministic relationship that
provides the basis for various algorithms for phase recovery
from the bispectrum.

‘We highlight several characteristics of the relationship in (1).
First, the object’s bispectrum is unknown in practice and is
estimated using the average data bispectrum from a series of
short-exposure images of the object, iy (x) for k=1,..., N.
To recover the object’s Fourier modulus, or power spectrum,
an additional set of short-exposure images of an appropriate
reference star, si(x) for k =1,..., N, is also necessary; see,
e.g., [7]. Typically, the data bispectrum is collected modulo-27
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or “wrapped.” This necessitates accounting for the modulus
within the phase recovery problem or unwrapping the bispec-
trum before phase recovery; see, e.g., [33], [34]. We opt for the
first strategy.

The size of the data bispectrum depends on the number
of discrete (u,v,u + v) triplets for which the bispectrum is
collected. Computational considerations and the optics of the
problem make it inadvisable to range w and v over the entire
Fourier plane. In practice, the number of discrete coordinates u
and v used to determine these triplets is restricted by two radii:
w indices are restricted within a larger, “recovery radius,” and
v indices are restricted within a smaller radius [35]-[37]. The
value of these radii vary depending on seeing conditions and
parameters; we discuss the values we select in the discussion on
datasetup in Sec. IV. For computational purposes, the indices for
the set of discrete (u, v, u + v) triplets are computed once and
stored in an indexing structure which vectorizes the accumula-
tion of the data bispectrum. This structure can be implemented
to exploit the symmetries in the phase for real-valued images
in Fourier space, which increases computational efficiency. We
base our indexing structure on the work presented by [28].

A. Phase Recovery Schemes

Numerous algorithms for phase recovery from the modulo-27
bispectrum have been proposed which build upon the relation-
shipin (1). These can be separated into two categories: recursive
algorithms; see, e.g., [5], [6], [10], [23]-[28], and nonlinear
least-squares formulations; see, e.g., [7], [25], [26], [29]-[31].
We look at the second category. Specifically, we look at four
nonlinear least-squares formulations proposed in the literature.

We first establish some notation. Let ¢, € R™ be the vector
of true object phase values we aim to recover. Here, the dimen-
sion n is determined by seeing conditions and signal-to-noise
(SNR) considerations. Let B¢,uc € R™ be the corresponding
true, unwrapped phase of the data bispectrum collected for m
distinct (u, v, u + v) triplets. These two vectors are related by

Btrue = A¢true (2)

where A € R™*™ is a sparse matrix with three non-zeros per
row: two 1’s and one —1 corresponding to the signs of phase
elements in (1). The indexing structure used to accumulate the
data bispectrum also contains the information used to construct
this matrix. The relationship in (2) provides the basis of the
algorithms for recovering the unknown object phase, ¢ € R",
from the phase of the collected data bispectrum, 3 € R™. The
SNR for each entry in (3 varies, so we define a diagonal weighting
matrix W € R™*™ with positive diagonal entries determined
by the SNR of the bispectrum phase elements [7]. Let W1/ be
the diagonal matrix with the square roots of the SNR weights
on the diagonal.

Using these definitions, we introduce several optimization
formulations for recovering an object’s phase from the phase
of the data bispectrum from the literature. All of the formu-
lations involve fitting the data through the minimization of an
appropriate nonlinear least-squares objective function. Here, we
introduce two such objective functions from the literature. The

first fits the object’s phase to the collected data bispectrum by
solving the following minimization problem [29]:

i {El<¢>> — LI mods. (8 - Ag) ||§} o

Here, the modulus is introduced because the phase of the data
bispectrum is collected modulo-27. This introduces several
considerations. It causes F1(¢) to be non-convex with periodic
local minima every 2w. Additionally, F(¢) is periodically
discontinuous with jumps every 27 where the misfit wraps from
0 to 2.

An alternative formulation to (3) exists which avoids the
issue of non-differentiability [29]. It exploits the identity ¢’ =
cos(f) + isin(d) to avoid the modulus. The resulting optimiza-
tion problem is

i { E4(0) = LI co5 —cos A0 I
. “4)
+ §||I/V1/2 (sin B — sin A¢) %},

Both E4(¢) and E5(¢) are minimized with respect to the un-
known object phase, ¢. One shortcoming is that these objective
functions solely minimize the data misfit between the recovered
phase and the collected data bispectrum, i.e, they are blind to
how the recovered phase impacts the recovered object when
combined with the object’s power spectrum. An alternative is to
optimize with respect to the resulting image, o, i.e., to reformu-
late (3) and (4) as F4 (¢p(0)) = E1(0) and Ez(¢(0)) = Es(0),
respectively. This idea was originally proposed for E; (o) in [30].
Extending the idea to F(0) is new to our knowledge.

Optimizing with respect to the resulting image is attractive
for a number of reasons. In many applications, the image of the
recovered object is the ultimate goal which necessitates solving
the phase recovery problem. It then makes intuitive sense that
the optimization should take into account this recovered image.
Additionally, since the objective functions for both (3) and (4)
are highly non-convex, optimizing with respect to the resulting
image may allow us to converge to different minima, potentially
resulting in improved recovery of the object. Lastly, optimizing
with respect to the recovered image allows us to impose de-
sirable characteristics on the solution image using appropriate
regularization and bound-constraints. Such characteristics may
include non-negativity or smoothness of the recovered object.
With this in mind, we incorporate regularization and bound
constraints into optimization formulations for F (o) and Es(0)
and consider the problems

Iélelél {E(0) + aR(0)} (5)
and
rgelg {Es(0) + aR(0)} . (6)

Here, C denotes a closed, convex set enforcing element-wise
bound constraints on the recovered object o, for example, non-
negativity. The operator R(o) is a regularizer subject to the
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weighting parameter « > 0 for introducing desirable charac-
teristics in the solution such as smoothness, sparsity, or non-
negativity. In Sec. IV, we look at three potential regularizers.
For the unconstrained problem (C = R"™), we explore a previ-
ously proposed penalty regularizer encouraging non-negative
solutions [30]. We also solve the problem with non-negativity
constraints, which we enforce using projected Gauss—Newton.
For this formulation, we implement and test two regularizers: a
quadratic regularizer with a discrete gradient operator, V,, and
a nonlinear total variation regularizer popular in many imaging
applications [38]. Other potential options include the identity
operator, p-norm based regularizers, or hybrid regularization
techniques.

III. OPTIMIZATION

We now look at methods for minimizing the four optimiza-
tion problems introduced in Sec. II. Previous work has relied
on first-order and quasi-Newton optimization methods such as
gradient descent, nonlinear conjugate gradient (NLCG), and
the limited memory implementation of the Broyden—Fletcher—
Goldfarb—Shanno (L-BFGS) method [7], [29], [30]. For further
references on these methods, see [39]. Our work implements
efficient, Gauss—Newton optimization schemes. To begin our
discussion, we provide a brief overview of the Gauss—Newton
method. After this, we discuss extending the method to projected
Gauss—Newton as a way to enforce element-wise bound con-
straints on the solution. Lastly, we narrow our focus and discuss
specific approaches for solving the linear system to determine
the Gauss—Newton step for each of the objective functions
proposed in the previous section. Solving this linear system
is the most computationally intensive step in Gauss—Newton
optimization and represents the most significant contribution of
our work. For (3) and (4), we introduce an efficient factorization
based approach which uses sparse matrix reordering and factor-
ization to solve the linear system directly. For (5) and (6), we
solve for the Gauss—Newton step iteratively. We also extend the
optimization for (5) and (6) to include regularization.

A. Gauss—Newton Method

The Gauss—Newton method is a common optimization
scheme for solving unconstrained nonlinear least-squares prob-
lems such as (3) and (4) [39], [40]. Starting from an initial guess,
the method iteratively updates the computed solution with a step
towards minimizing the objective function. At each iteration,
both the direction and length of this step must be computed.

The direction of this step at each iteration is determined by
solving a linear system. For an arbitrary objective function F'(y)
at the current iterate y, this equation is

Hp(y)p=—-VyE(y). (7

Here, V4 E(y) is the gradient, and Hp(y) ~ V3 E(y) is a
symmetric positive semi-definite approximation to the Hessian;
see, e.2., p. 246 in [39]. Both the gradient and the approximation
to the Hessian must be updated at each iteration of the optimiza-
tion. The system (7) can be solved using direct methods or an
appropriate iterative solver, and solving this system is the most
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significant cost in the Gauss-Newton method. Our work focuses
on implementing efficient strategies for solving this system, and
we use both direct and iterative solvers for (7) depending on
which of the four formulations of the phase recovery problem
we consider.

After choosing the step direction, we choose the step length
via a backtracking Armijo line search [39]. The Armijo line
search selects a step length 0 < 1 < 1 by iteratively backtrack-
ing from the full Newton step = 1 until a step length is found
which guarantees a sufficient reduction of the objective function.
Sufficient reduction is determined by the Armijo condition,

E(y+np) < E(y) + enVyE(y)'p

where ¢ € (0, 1) is areduction constant. Weuse c = 1 x 10~ as
recommended in [39]. Note that if the data residual is small in the
neighborhood of the solution, the Gauss—Newton approximation
to the Hessian is more accurate, and we expect to take the full
step 7 = 1. This reduces the number of backtracking line search
iterations required per outer Gauss—Newton iteration and lowers
the cost of the optimization.

The convergence of the Gauss-Newton method depends on the
nonlinearity of the objective function and the norm of the data
residual. In the best case, it can be shown to have near-quadratic
convergence in the neighborhood of a minimizer. This makes it
attractive compared to the linear convergence of gradient-based
methods and the super-linear convergence of quasi-Newton
methods like L-BFGS. We note that the backtracking Armijo line
search we use does not satisfy the Wolfe conditions necessary
for rigorous convergence results using Gauss—Newton, but this
does not pose a problem in practice as observed in Sec. IV.
For a more in-depth discussion of the convergence properties
of Gauss—Newton and the other optimization methods; see,
e.g., [39].

B. Projected Gauss—Newton Method

The standard Gauss—Newton method is sufficient for the
unconstrained optimization problems in (3) and (4). However,
additional considerations are required to solve constrained prob-
lems. For the formulations (5) and (6), we want to enforce
element-wise bound constraints on the solution object. To do
this, we use the projected Gauss—Newton method [41]. Pro-
jected Gauss—Newton incorporates constraints by combining
Gauss—Newton with projected gradient descent. The goal of
this combination is to benefit from the strengths of both meth-
ods: fast convergence in the neighborhood of the solution for
Gauss—Newton and straightforward implementation of bound
constraints for projected gradient descent.

We implement projected Gauss—Newton as follows. Given
a feasible initial guess, the method separates the set of opti-
mization variables into two sets at each iteration. The active set,
A, contains the indices of the variables for which the bound
constraints are active, i.e., variables on the boundary of the
feasible region. The inactive set, Z, contains the indices of
the variables for which the bound constraints are inactive, i.e.,
variables on the interior of the feasible region. Let the vectors
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x4 and x7 be vectors containing the entries of a at the indices
defined by the active and inactive sets, respectively.

On the inactive set, we take a Gauss—Newton step pr com-
puted by solving a projected version of (7). This can be written

(IzHp(y)Iz) pr = —17VyE(y),

where I7 is a projection operator. It is computed by modifying
an identity matrix by setting diagonal entries in the columns
corresponding to indices in A to 0. This projected linear system
can be solved using either a direct method or an iterative method
with an appropriate preconditioner.

On the active set, we take a projected gradient descent step
given by

pa= IV, E(y).

Here, I4 = I — Iz and V5 E(y) is the projected gradient where
the projection sets to zero entries of the gradient that would cause
the updated solution to violate the bound constraints.

We then combine the steps on the inactive and active sets to
get the full projected Gauss—Newton step, p, given by

P =Pz +YPa.

Here, the parameter v > 0 is introduced to reconcile the differ-
ence in scale between the two steps. Following the recommen-
dation in [41], we set v = %.

Lastly, we determine the length of the step using a projected
Armijo line search. It follows the same backtracking strategy
presented previously for standard Gauss—Newton but uses a

modified Armijo condition,
EQ(y+np)) < E(y)+ oV, E(y) ' p,

where () is a projection onto the feasible region and V5 E(y)
is the projected gradient. Note that due to the projected gradient
descent step on the active set, we expect projected Gauss—
Newton to require more line search iterations than standard
Gauss—Newton. This is particularly relevant when many bound-
constraints are active, and we often observe this in practice. Also,
variables may enter and leave the active and inactive sets with
each update to the solution, so the active and inactive sets must
be updated at each iteration of the optimization.

The convergence behavior of projected Gauss—Newton de-
pends on the objective function and the number of variables in
the active and inactive sets. For the best case where all variables
lie in the inactive set, the method reverts to standard Gauss—
Newton and has the corresponding convergence properties. In
the worst case scenario where all variables are in the active
set, convergence behavior is that of gradient descent, i.e., linear
convergence. Our numerical experiments in Sec. IV show that
for the phase recovery problems in this paper, we observe more
of the former.

C. Efficient Approaches for Computing the Gauss—Newton
Step

We now consider solving the linear system (7) associated with
the Gauss—Newton step for the four formulations of the problem.
We begin by considering the optimization problem associated

with E'1 (¢) in equation (3). The gradient and the Gauss—Newton
approximation to the Hessian are given by

VeEi(¢p) = —A'Wmods, (B — Agp)
Hp, (¢ =ATWA. (8)

For both derivatives, we ignore the modulus during differentia-
tion. This strategy is used in the literature and proves effective in
practice, but it may impact the optimization [29]. We also note
that the approximation to the Hessian, Hp, (¢), is independent
of the variable ¢ and remains constant for each Gauss—Newton
iteration. Furthermore, the matrix is large, sparse, and structured.
It has a large number of zero rows and columns due to SNR
considerations and symmetries in the phase for real-valued
images. The object’s phase can only be recovered at points for
which data, i.e., the phase of the bispectrum, has been collected.
This is restricted with a problem specific ‘recovery radius’ de-
termined by seeing conditions and the optics system [35]-[37].
Thus, columns and rows corresponding to entries outside this
radius are set to zero. Furthermore, the phase for real-valued
images displays a symmetry through D.C. That is, if we let
D.C. be the origin, (0, 0), then the phase at point (7,j) is
the negative of the phase at point (—i, —j), i.e., —@(i,7) =
¢(—i,—7). Exploiting this allows us to further increase spar-
sity, and makes sparse, direct methods an attractive option for
solving the linear system. Importantly, any factorization can be
computed once offline and then reused for each iteration of the
optimization.

With that in mind, we implement the following strategy. Prior
to the Gauss—Newton optimization, we compute and factor the
approximate Hessian offline. We perform a symmetric approx-
imate minimum degree permutation to shift the non-zero rows
and columns to the upper left-hand corner of the matrix [42].
This permutation is a heuristic designed to minimize the fill-in
when the permuted matrix is factored. Then, we extractthe n X n
sub-matrix corresponding to the non-zero columns and rows of
the permuted matrix. Here, the size n corresponds to the number
of phase-values to be recovered and is small due to the SNR
considerations and symmetries previously mentioned, n < n.
The extracted sub-matrix is also symmetric positive definite. On
this sub-matrix, we perform a zero fill-in incomplete Cholesky
factorization and store the factors [43], [44]. The symmetric
approximate minimum degree permutation helps to minimize
the amount of information lost with the zero fill-in strategy.
A full Cholesky factorization is also possible, but it may lead to
some loss of sparsity due to fill-in and does not improve results
for the problems presented in this paper. The stored incomplete
Cholesky factors can then be used to solve for the Gauss—Newton
step at each iteration of the standard Gauss—Newton method.
Computing the factorization once offline reduces the cost of
solving (7) at each iteration. The cost of solving the linear system
associated with the Gauss—Newton step is thereby reduced to
solving two sparse, triangular systems for a cost of O(7n?).
Note that in practice, O(7?) is a pessimistic bound on the
cost of inverting the triangular factors because the incomplete
Cholesky factorization preserves their sparsity. Fig. 1 gives a
visual step-by-step of the strategy.
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Fig. 1. This figure shows the permutation and factorization strategy used for the approximate Hessians of £ (¢) and E2(¢). From left to right, we start with the

full Hessian, permute using a symmetric approximate minimum degree factorization, truncate out the zero rows and columns, and perform an incomplete Cholesky
factorization on the truncated matrix. We use the resulting factors and the permutation to solve for the (7) at each iteration of the Gauss—Newton optimization.

In the case of Es(¢), the gradient and the Gauss—Newton
approximation to the Hessian are

Ve Ea(p) = ATWD, (o)
Hp,(¢) = ATWDy(¢)A. 9)

The matrices D1 (¢) and D2 (¢p) are diagonal matrices with
diagonal entries given by

diag(D1(¢p)) = cos B ® sin Ap — sin 8 © cos A
diag(D2(¢p)) = cos B ® cos A + sin B © sin A¢,

where © denotes the Hadamard product or component-wise
multiplication of two vectors. Unlike (8), the Gauss—Newton
approximation to the Hessian here is not independent of the
phase due to the diagonal matrix D2(¢), and makes solving
the system in (9) more computationally expensive. However,
we note that if mods, (3 — A¢p) = 0, i.e., we perfectly match
the recovered phase to the phase of the bispectrum, then the
diagonal entries of Dy(¢p) are 1, i.e, D2(¢) becomes the
identity. In practice, this is not true for noisy data and large
residuals, but it serves as motivation for omitting the diago-
nal matrix Dy (¢) from the approximate Hessian. This makes
Hpg, (¢) = Hg,(¢), and we can use the same permutation and
factorization strategy as we use for (3) when computing the
Gauss—Newton step for (4). This is effective in practice, as shown
in the numerical experiments. We also remark that although we
use the same approximate Hessian for both formulations, the
objective functions and gradients differ resulting in different
solutions.

For the optimization problems based on E;(0) and Es(o0),
that is solving (5) and (6) respectively, it is necessary to differ-
entiate with respect to the resulting image. Expressions for the
gradients and the Gauss—Newton approximations to the Hessians
follow from (8) and (9) via the chain rule with additional
gradients and derivatives for the regularization term. For the
objective function in (5), we get

VoEi(9) = — %‘f ATWmoda (B — Ag) + aV,R(0)
Hg, (¢) = %‘f ATWAg—i’ +aV2R(o) (10)

where g—i’ is the derivative of the phase with respect to the

resulting object and % is its adjoint. Similarly, the derivatives
for the objective function in (6) are given by

VoEs>(¢) = %d;* ATWD;(¢) + aV,R(0)
Hi, () = 92 ATWDy () A% + aV3R(0). (1)

To derive expressions for gl;; and its adjoint, we observe that the
object’s phase can be expressed as a function of the object by

#(0) = arctan (22 )

where F is a 2D Fourier transform matrix. Differentiating this
with respect o, we get an expression for the action of the adjoint
operator in the direction g,

0¢* )= Re(Fo) ® Im(Fq) — Im(Fo) © Re(Fq)
20 @ = | Fol?

~ Im(Fo® Fq)

~ FooFo

=Im ﬂ
n Fo)’

Here, the Hadamard product, division, square, and conjugation
are all taken component-wise. This expression is also given
in [30].

To evaluate the Gauss—Newton approximations to the Hes-
sians, it is necessary to compute the forward operator, %g.
This operator is not included in previous work using first-order
optimization methods. It can be computed and applied using a
matrix-free approach. In the direction g, it is given by

-7 (22304)
(e (2e0)
()
(7 ()

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:34:07 UTC from IEEE Xplore. Restrictions apply.



HERRING et al.: GAUSS-NEWTON OPTIMIZATION FOR PHASE RECOVERY FROM THE BISPECTRUM 241

Again, all operations are taken component-wise. In practice,
some additional considerations are necessary for both the for-
ward and adjoint operators. Storing the 2D FFT matrices is
inefficient and infeasible, so the operators are passed as function
handles and evaluated as matrix-vector products in a specific
direction, q. To avoid division by zero, we set the gradient equal
to zero when the denominator for indices where Fo is equal
to zero. It is also important to scale the Fourier transformations
appropriately. Lastly, we note that our code includes an adjoint
test to verify the agreement of the forward and adjoint operators.

Sparse, direct methods are not a viable option when solving
for the Gauss—Newton step using (10) and (11) because the 2D
Fourier transform matrices in g—'ﬁ and its adjoint are dense, com-
plex matrices and should not be formed explicitly. Instead, we
pass the approximate Hessians for £ (o) and E» (o) as function
handles that evaluate the matrices’ product with a vector. Both
matrices are symmetric, so separate implementations of their
transposes are unnecessary. Many iterative methods that require
only matrix-vector products can then be used to solve (7). We
use the conjugate gradient method [45], [46]. We minimize the
cost by solving the system to low accuracy, typically 1 x 1071,
following the example of [39]. This makes solving (7) quite
efficient. Potentially, we could increase efficiency further by
introducing an appropriate preconditioner for the conjugate
gradient method. This represents future work.

IV. NUMERICAL EXPERIMENTS

We now compare our proposed methods with methods found
in the literature for phase recovery from the bispectrum in
several experiments. First, we solve (3) and (4) to recover an
object’s phase and compare results for our proposed Gauss—
Newton strategy with gradient descent and L-BFGS. For these
formulations of the problem, no regularization is included. We
then run experiments with (5) and (6), optimizing with respect
to the recovered object. Here, we compare gradient descent,
projected gradient descent, L-BFGS, standard Gauss—Newton,
and projected Gauss—Newton. For gradient descent, L-BFGS,
and standard Gauss—Newton, we use the penalty term regu-
larizer defined by Eq. 12 in [30] to encourage non-negativity
in the solution. For the constrained problem with strict pixel-
wise non-negativity in the solution image, we use projected
Gauss—Newton to enforce the bound constraints and compare
this to projected gradient descent, a common gradient-based
approach for solving the constrained problem. For both projected
methods, we test two regularization options for R(0): aquadratic
regularizer using a discrete gradient operator and a total varia-
tion regularizer. One could also consider a bound constrained
approach to L-BFGS [47], but we do not explore that in this
work.

We organize the experiments in the following way. We begin
by discussing the setup of the phase recovery problem including
simulation of the speckle data and an initial guess. This is fol-
lowed by a discussion of method parameters for the optimization
including line search parameters, stopping criteria, and regular-
ization parameter selection. Then, we show the results for phase
recovery when minimizing (3), (4), (5), and (6). These results

are split into two sets of experiments. The first set compares all
the various optimization schemes for each of the four problem
formulations for a problem with fixed parameters. This shows the
utility of the proposed Gauss—Newton approach. The second set
shows the robustness of the proposed Gauss—Newton approach
by testing it across a range of problem parameters.

We compare the results of the various experiments by look-
ing at several values. When comparing optimization methods,
we compare the relative change in the objective function with
respect to the initial guess (ROF). For an objective function E(-)
at the iterate y*) with initial guess y(%), this is given by %
We also compare the relative error of the recovered object (RE),
number of optimization iterations (Its.), total optimization time
(Time), and CPU time per optimization iteration (Time/It.).
Lastly, we track the average number of line search iterations (in-
ner iterations) per optimization iterate (outer iterations) during
the optimization (LS/It.). The abbreviations listed in parentheses
are used to reference these values in tables and figures.

We use the following notation to refer to each method in tables
and figures: GD for gradient descent, PGD for projected gradient
descent, L-BFGS for the limited memory Broyden—Fletcher—
Goldfarb—Shanno method, GN for standard Gauss—Newton, and
PGN for projected Gauss—Newton. When regularization is used
for (5) and (6), we add a suffix of +, Vj,, or T'V in tables and
figures to denote the penalty, discrete gradient, and total variation
regularizers, respectively. For example, GD+ denotes gradient
descent with the penalty regularizer.

A. Data Setup

To setup test problems, we simulate speckle imaging data
for a known true object, 0,ye. We use a 256 x 256 image of a
satellite as the true object, which can be obtained from [48] (this
test image is widely in the literature to evaluate algorithms for
image restoration problems; see, e.g., [49]). We then generate
100 frames of short exposure data of the object and the reference
star for a chosen Fried parameter, D/ro. Higher values of
this parameter correspond to more atmospheric turbulence and
blurrier images. The approach we use, which is implemented
in the MATLAB package IR Tools [50] (software can be
obtained from https://github.com/jnagy 1/IRtools), is described
in detail in [51]. Each data set is generated using a different seed
for the random number generator to guarantee independence of
the randomness of the two data sets. The object data is scaled
to include 3 x 10% photo-events per data frame, and zero-mean
Gaussian noise with a chosen standard deviation o,., is added.
The reference star data is scaled to 5000 photo-events per frame.
From this data, we recover the object’s power spectrum and
accumulate the data bispectrum at a set of (u, v, u + v) triplets.
The set of triplets is collected using selected ‘recovery radius,’
denoted by R, and a smaller radius of 5, i.e., the indices satisfy
|lu| <= R, |u + v| <= R,and |v| < 5. These triplets are stored
in the indexing structure described in Sec. II and are used to
generate the matrix A. The choices for the Fried parameter D /r,
recovery radius R, and standard deviation of the Gaussian noise
o, vary for different numerical experiments, so values for these
parameters are listed in the subsections corresponding to the
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The top row shows the true object, data, and initial guesses used to set up the phase recovery problem. The bottom row shows the best recovered images

of the satellite. For F1 (¢) and E2(¢p), the results are shown for standard Gauss—Newton with no regularization on the solution phase. For E1 (0) and F2(0), the
results are shown for projected Gauss—Newton using a total variation regularizer. The relative error of the initial guesses and solution images are printed in each

image’s bottom right-hand corner.

relevant set of experiments. All other parameters are fixed as
listed here for all numerical experiments.

For all four formulations of the phase recovery problem,
3), (4), (5), and (6), the optimization methods are sensitive to
the choice of initial guess for the object phase or image. To
generate an appropriate initial guess for (3) and (4), we use the
phase recovered by a single iteration of the recursive algorithm
from [28]. We denote this by ¢;,.+. For (5) and (6) in the
unconstrained case, this is combined with the recovered power
spectrum of the data to produce an initial guess for the recovered
object, 0;,,;:. The relative error for this initial guess varies due
to the random generation of the speckle data but is typically
0.75-0.85 depending on the problem parameters. When using
projected Gauss—Newton, the initial guess for the recovered
objected must be within the feasible region, i.e., it must have
strictly non-negative pixel intensities. To obtain a non-negative
guess for the object, we project 0;,; using a method which
finds the nearest non-negative image such that the sum of the
pixel intensities is identical to 0;y¢; this is referred to as an
energy preserving constraint, and the implementation we use
can be found in the IR Tools package [50]. We denote this
projected initial guess by 0;,;;. In practice, we also ‘bump’ this
projected guess off the bound constraint by addinge = 1 x 10~*
to ensure the active set is empty for the first iteration of the
projected Gauss—Newton method, i.e., no pixels intensities are
exactly zero to start the optimization. We note that this projection
changes both the power spectrum and phase of the initial guess.
Another option for the projection is a single iteration of the
error-reduction algorithm [52], [53]. Images for the true object,
average speckle data frame, initial guess from the recursive
algorithm, and projected initial guess can be seen in Fig. 2.

B. Parameter Selection

The gradient descent, projected gradient descent, L-BFGS,
Gauss—Newton, and projected Gauss—Newton methods require
setting several parameters. These include stopping criteria for
the methods and parameters for the Armijo line search. Addi-
tionally, formulations (5) and (6) depend on the regularization
parameter used for the objective functions. We discuss selections
for these parameters here.

For stopping criteria, we monitor three values. The first two
are the change in the objective function value and the 2-norm
of the difference between successive iterates. The method stops
when these two values fall below tolerances of 1 x 10~* and
1 x 1074, respectively. Additionally for the Gauss—Newton and
projected Gauss—Newton methods, we use an approximation
to the Newton decrement as a stopping criteria [54]. The true
Newton decrement monitors the reduction in the curvature of
the Hessian near a minimizer and is defined by

(VyE(y) VZE(y) 'V,E(y))"/?.

We approximate substituting our Gauss—Newton approximation
to the Hessian, H(y), instead of VzE(y) Note that Gauss—
Newton step update is given by p = —H (y) 'V, E(y), so we
can cheaply compute the approximate Newton decrement by
(~VyE(y) " p)'/2. Both Gauss—Newton and projected Gauss—
Newton stop if either the Newton decrement falls below a
tolerance of 1 x 1072 or if the above criteria for the objective
function and difference between successive iterates are met.
The line search strategies differ for gradient descent, projected
gradient descent, and L-BFGS compared to Gauss—Newton and
projected Gauss—Newton. The full Newton step is perfectly
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scaled, and it follows that n = 1 is a logical initial choice for
the step length for Gauss—Newton and projected Gauss—Newton
at each iteration when the line search is called. In contrast, the
step updates for gradient descent, projected gradient descent,
and L-BFGS do not have natural scaling. To account for this, we
use an adaptive line search strategy. It works as follows. If the
line search succeeds in its first iteration, i.e., it takes the longest
step possible, then the line search doubles its initial guess for the
step length at the next optimization iterate, i.e. the next time the
line search is called. If the line search backtracks, i.e., it takes
a shorter step than its initial guess, then it uses the accepted,
shorter step as its initial guess for the step length the next time
it is called. This adaptive strategy prevents the gradient-based
optimization strategies from repeatedly taking initial line search
steps which are too large or too small. This is important because
each line search iteration requires reevaluating the objective
function, which is costly. The adaptive strategy used for gradient
descent, projected gradient descent, and L-BFGS helps to reduce
the number of line search iterations per optimization iteration
(and therefore reduce cost). This provides a fair grounds for
comparison with Gauss—Newton and projected Gauss—Newton
methods.

For (5) and (6), we include regularization on the recovered
object. This requires selecting the regularization parameter o.
Choosing this parameter is a challenging subproblem and an
active area of research. Popular methods for selecting it include
the unbiased predictive risk method, L-curve, and generalized
cross-validation (GCV) [55], [56]. For our simulated problem
where the true object is known, we solve both (5) and (6) for a
wide range of parameters and choose the parameter which min-
imizes the relative error of the recovered image. For the uncon-
strained problem where the penalty-term regularizer is used, this
results in e = 1 x 102 for both (5) and (6). For the constrained
problem with the discrete gradient regularizer, o = 1 x 1072
provides the best solutions for both objective functions, and
for the constrained problem with the total variation regularizer,
we use o = 1 x 10%. We note that these regularization param-
eters are sensitive to the data parameters and problem set up.
Also, for real-world data where the true solution is unknown,
this method for regularization parameter selection is infeasible.
A more sophisticated strategy for regularization parameter selec-
tion represents future work, but by using the best case scenarios
for choosing regularization parameters, we are able to provide
a fair comparison between the computational efficiency of the
various methods.

C. Comparison of Gauss—Newton and Gradient-Based
Optimization

To compare our proposed Gauss—Newton schemes with pre-
vious gradient-based optimization approaches, we solved 50
different phase recovery problems with independently generated
speckle data using all four formulations of the phase recovery
problem. For these problems, we used the data parameters and
problem setup outlined previously and set the Fried parameter
D /ry = 30, recovery radius R = 96, and standard deviation of
the Gaussian noise o,,, = 5. Table I provides results detailing
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TABLE I
OPTIMIZATION RESULTS FOR THE FOUR FORMULATIONS OF THE
PHASE RECOVERY PROBLEM

Ei(¢)
Method ROF RE Its. Time Time/It. LS/It.
GD 0.95 0.44 100.0 9.8e0 9.8e-2 1.7
L-BFGS 0.78 0.44 100.0 2.9el 2.9e-1 1.7
GN 0.74 0.43 24.1 3.5e0 1.5e-1 1.0
Es(¢)
Method ROF RE Tts. Time Time/It. LS/It.
GD 096 044 98.0 1.8l 1.9e-1 1.7
L-BFGS 0.81 0.44 100.0 2.0el 2.0e-1 1.7
GN 0.73 0.43 60.4 1.1lel 1.8e-1 1.0
E1 (O)
Method ROF RE Its. Time Time/It. LS/It.
GD + 0.37 0.53 54.2 1.4el 2.7e-1 1.8
PGD-TV 0.60 0.43 100.0 4.0el  4.0e-1 1.7
PGD-V,, 0.62 0.43 100.0 2.9el  2.8e-1 1.7
L-BFGS+ 0.42 0.79 64.2 1.8el 2.8e-1 1.9
GN+ 0.39 0.39 11.0 9.5e0 8.7e-1 1.0
PGN-TV 0.68 0.28 13.7 2.5el 1.8e0 1.1
PGN-V,, 0.65 0.31 29.1 5.8el 2.0e0 1.2
E> (o)
Method ROF RE Its. Time Time/It. LS/It.
GD + 0.29 0.61 83.9 1.9¢e1 2.2e-1 1.7
PGD-TV 0.60 0.34 100.0 3.5el 3.5e-1 1.7
PGD-Vy, 0.62 0.38 100.0 2.1el 2.1e-1 1.7
L-BFGS+ 0.32 0.82 87.1 2.0el 2.3e-1 1.8
GN+ 0.32 0.38 12.3 1.1lel 9.le-1 1.0
PGN-TV 0.67 0.28 14.1 3.3el 2.3e0 1.0
PGN-V, 066 030 23.1 3.9el 1.7¢0 1.0

From left to right, the columns show the optimization method used, minimum relative
objective function (ROF), minimum relative error (RE), number of iterations (Its.),
CPU time (Time), CPU time per iteration (Time/It.), and line search iterations per
optimization iteration (LS/It.) All values were averaged over 50 separate simulated
problems.

the cost of the optimization and quality of the resulting solutions
averaged over all 50 problems. Fig. 3 compares the convergence
of the various optimization schemes using the relative reduction
in the objective function for a single problem. Also, the best
recovered images for the single problem are displayed in Fig. 2.
To comment on the results, we separate the discussion for the
formulations of the problem which solve for the phase, (3) and
(4), and those which solve for the resulting object, (5) and (6).
Looking at the results for £(¢) and F5(¢) in Table I, we
see that the Gauss—Newton method outperforms both gradient
descent and L-BFGS in terms of minimizing the objective func-
tion. This results in marginally lower relative error values for
the solution object for the Gauss—Newton method, and all meth-
ods offer marginal improvements on the initial guess provided
by the recursive algorithm. This is true for both formulations
of the problem. In terms of cost, the gradient-based methods
require less time per iteration due to the additional computa-
tional cost of solving for the step direction at each iteration
of the Gauss—Newton method. However, this additional cost is
offset by the faster convergence of the Gauss—Newton method
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Fig. 3. This figure shows convergence plots of the relative objective function for all four formulations of the problem. Note that the Gauss—Newton approaches

converge to their minima in fewer iterations than the gradient-based approaches. Also, note that when minimizing £ (0) and Es(o), projected gradient descent
and projected Gauss—Newton converge to different minima than the other approaches due to the different regularizers, different regularization parameters, and

constraints.

(it requires significantly fewer iterations for convergence than
either gradient-based optimization scheme). This is observable
in Fig. 3. Overall, the time-to-solution for (3) and (4) using
Gauss—Newton is reduced for both formulations, and as men-
tioned above, this speed-up is coupled with better solutions
in terms of relative error. This suggests that Gauss—Newton
optimization is a preferable option to the gradient-based methods
for these formulations of the problem.

The results for (5) and (6) differ from the two formulations
above which consider only the recovered phase. Both standard
Gauss—Newton with the penalty term regularizer and projected
Gauss—Newton with the total variation and discrete gradient
regularizers offer significant improvements in the quality of the
recovered object. This can be seen from the minimum relative
error values in Table I, where both Gauss—Newton approaches
offer significant improvements on the relative error of the ini-
tial guess. Projected gradient descent also reduces the relative
error of the recovered object for both regularization options,
although not as much as the projected Gauss—Newton approach.
However, the table shows that gradient descent and L-BFGS
with the penalty regularizer actually worsen the relative error
of the recovered image compared to the initial guess despite
reducing the objective function. This emphasizes the importance
of appropriate regularization and bound constraints in driving
the solution to an appropriate minimum. The recovered images
also show the advantages of the Gauss—Newton approaches,
where the regularization terms in (5) and (6) reduce ringing
and graininess in the solution images in Fig. 2 compared to the
initial guess.

When comparing the different optimization methods for solv-
ing (5) and (6), we note that the different regularizers and regu-
larization parameters used make the relative objective function a
suboptimal way of comparing the methods, see Fig. 3. Instead,

we note that projected Gauss—Newton with non-negativity
constraints and the total variation regularizer achieves the best
solution images in terms of relative error out of all the methods.
However, this improvement comes at a cost as the projected
Gauss—Newton approach is the slowest of the four methods.
This represents a trade-off, but the method may be preferable if
quality of the recovered object is more important than time-to-
solution. Also, the projected Gauss—Newton approach allows for
the use of various regularizers, so an appropriate regularizer can
be chosen for a specific application to optimize solution quality.

Using standard Gauss—Newton to solve (5) and (6) with the
penalty term regularizer offers the best compromise of speed
and quality for our problem. It improves on solution quality and
time-to-solution compared to all the gradient-based methods. It
is also faster than the projected Gauss—Newton approach, but
the resulting images have slightly higher relative error.

Overall, we observe that for all four formulations of the prob-
lem, the standard and projected Gauss—Newton optimization
schemes offer improvements in recovered solution images over
the gradient descent, L-BFGS, and projected gradient descent
methods. Comparing the formulations of the problem, (5) and (6)
are preferable to (3) and (4) due to additional regularization and
constraints on the solution image that these formulations offer.
This results in improvements in the relative error of the recovered
image, and the solution images in Fig. 2 are less grainy and have
less ringing. In terms of cost, the faster convergence for standard
Gauss—Newton schemes results in lower time-to-solution for
all formulations. This is not the case when solving (5) and (6)
with constraints using projected Gauss—Newton. However, the
introduction of constraints and appropriate regularization using
this approach gives the best-quality images in terms of relative
error. This may make this strategy attractive despite the increased
cost.
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The rows from 7op to bottom show the initial guesses given by the recursive algorithm and optimization solutions for E (0) using projected Gauss—Newton

with the total variation regularizer (PGN-TV). The columns from left to right indicate the method parameters used for each problem. The relative error of each

image is printed in its bottom right-hand corner.

D. Robustness of Gauss—Newton Schemes

We also tested the robustness of the our proposed Gauss—
Newton schemes by solving several phase recovery problems
over a range of parameter values for the Fried parameter D /r(,
recovery radius I, and standard deviation of the Gaussian noise
Orn. We set up the problems in the following way. To test the
performance with respect to atmospheric blur, we fixed the
recovery radius R = 96 and standard deviation o,, = 5 and
solved the problem for Fried parameters D /o = 10, 20, 30, 40,
and 50. Here, increasing values for D/ indicate more atmo-
spheric turbulence and blurrier data. For each value of D /r, we
averaged results over 10 problems. We then tested the methods
for arange of recovery radii, R = 64, 80, 96, 112, and 128 while
fixing D/ro = 30 and o, = 5. Increasing the recovery radius
introduces values of the data bispectrum and recovered phase
corresponding to higher spatial frequencies. This presents a
tradeoff as data for higher spatial frequencies can potentially
enable better recovery of the object being imaged but is more
negatively affected by data noise. As with the Fried parameter,
we solved 10 problems for each different value of R. Lastly, we
solved the phase recovery over a range of values for the standard
deviation of the Gaussian noise, o,.,, = 1, 3, 5, 7, and 9 for fixed
D/ry = 30and R = 96. This corresponds to increased noise in
the problem data. As with the previous setups, we solved 10
problems for each value of 7.,

We solved the problems for each of the four objective func-
tions using the respective Gauss—Newton approach that per-
formed best in terms of relative error in the previous set of
experiments. For (3) and (4), this was the Gauss—Newton ap-
proach using the direct permutation and factorization approach
described in III, denoted GN in Table I. For (5) and (6), we
used projected Gauss—Newton with with the total variation
regularizer, denoted PGN-TV.

We compare the results using the average relative error of the
recovered object from solving each objective function across the

TABLE II
OPTIMIZATION RESULTS SHOWING THE AVERAGE RELATIVE ERROR OF THE
RECOVERED OBJECT USING THE PROPOSED GAUSS—-NEWTON SCHEMES FOR
VARIOUS VALUES OF FRIED PARAMETER D /r(, RECOVERY RADIUS R, AND
STANDARD DEVIATION OF THE GAUSSIAN NOISE 0y,

D/ro  Oinit Ginit FEi1(¢) E2(¢p) Ei(o) Ez(o)
10 0.82 0.79 0.38 0.37 0.20 0.20
20 0.83 0.78 0.47 0.46 0.27 0.26
30 0.83 0.77 0.50 0.50 0.31 0.31
40 0.82 0.75 0.56 0.55 0.35 0.35
50 0.83 0.76 0.62 0.62 0.45 0.46
R Oinit  Oinit F1(¢) Ez(p) Ei(o) Ez(o)
64 0.77 0.76 0.35 0.35 0.28 0.28
80 0.76 0.75 0.39 0.38 0.27 0.27
96 0.79 0.76 0.44 0.43 0.30 0.29
112 0.80 0.75 0.47 0.47 0.30 0.30
128 0.82 0.77 0.51 0.52 0.32 0.31

Orn Oinit  Oinit  E1(9) E2(¢) FEi(o) FEz(o)

1 0.75 0.74 0.29 0.29 0.29 0.28
3 0.75 0.73 0.34 0.33 0.27 0.27
5 0.79 0.76 0.43 0.43 0.29 0.28
7 0.81 0.77 0.51 0.50 0.30 0.30
9 0.85 0.78 0.58 0.57 0.31 0.31

From left to right, the columns show the value of the problem parameter
being tested and the relative errors for the initial guess guess, projected
initial guess, solution to F1 (¢) using GN, solution to F5 (¢p) using GN,
solution to E1 (o) minimized using PGN-TV, and the solution to E'3 (o)
minimized using PGN-TV. All relative error values are averaged over 10
separate problems.

range problem parameters. This is contrasted with the average
relative error of the initial guess, 0;,;;, from the recursive
algorithm and its projection, 0;,;;. These relative error values
are displayed in Table II with the best relative error results
highlighted. The performance of the optimization (reduction of
the relative objective function, iterations, and time-to-solution,
etc.) is similar to the previous set of experiments, so we omit
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these values. We display the initial guesses and solution images
minimizing (6) using projected Gauss—Newton with the total
variation regularizer for three separate problems in Fig. 4. As
expected, the results show that the average relative error of
the recovered objects increases as the problems become more
difficult, i.e., blurrier or noisier data. Also, phase recovery using
the nonlinear least-squares formulations results in better solu-
tions than the initial guesses based on the recursive algorithm.
This is likely due to the recursive algorithm’s limited ability to
recover high spatial frequency information and is evident over
the range of problem parameters. The results also reinforce the
conclusion that the non-negativity constraints and regularization
options available for (5) and (6) make these formulations of the
phase recovery problem preferable to (3) and (4), especially
if the quality of the recovered object is paramount. This is
well illustrated by comparing the initial guesses and solution
images using projected Gauss—Newton with the total variation
regularizer in Fig. 4.

V. CONCLUSION

This paper revisits multiple formulations for phase recovery
from the bispectrum, a central problem in speckle interferom-
etry. The formulations considered lead to weighted nonlinear
least-squares problems which can be solved for either the phase
or the object itself. Previous approaches in the literature focused
on gradient-based optimization schemes for solving these least-
squares problem, including gradient descent and L-BFGS.

In this work, we implement efficient Gauss—Newton schemes
to solve the phase recovery problem. We implement these
schemes for four formulations of the problem taken from the
literature. To reduce the computational cost of solving the linear
system associated with the Gauss—Newton step, we develop
tailored approaches for each formulation which exploit the
structure and sparsity of the problem. For two formulations of
the problem which solve for the solution image, we also extend
standard Gauss—Newton to projected Gauss—Newton to allow for
element-wise non-negativity constraints on the solution object,
a desirable characteristic in many imaging applications. Addi-
tionally, the non-negativity constraints within the optimization
allows flexibility to introduce additional regularization on the
problem. We show this by running numerical experiments with
both total variation and discrete gradient regularizers, but the
formulation allows for other options.

Our numerical experiments show that our implementations of-
fer improvements in terms of time-to-solution and quality of so-
lution compared to previously used gradient-based approaches.
Our Gauss—Newton schemes produce recovered objects with
lower relative error and reduce image artifacts in the resulting
images. Furthermore, our implementations achieve these results
in less time than the previously implemented first-order methods
in most cases. In the cases where Gauss—Newton optimization is
more expensive than gradient-based approaches, the increased
cost is offset by significantly better solutions. We also show that
the improvements in solution quality are robust across a range
of problem parameters, particularly for formulations (5) and (6)
where the introduction of bound constraints and appropriate
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regularization helps to introduce desirable qualities into the
solutions of phase retrieval problems.

Several directions for future work also present themselves.
Many recent phase retrieval applications from the signal pro-
cessing literature involve solving large nonlinear least-squares
problems like the ones considered in this paper. It would be
interesting to extend the ideas presented in this work to those
applications. Also, any adaptation of this work for real-world
applications would benefit from a more in-depth discussion
of regularization parameter selection and appropriate problem-
specific regularizers.

Lastly, the codes and methods in this paper are available
publicly on Github in the Bi Box repository for other researchers
looking to use bispectral imaging as part of their work.
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