
1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

1

LeanConvNets: Low-cost Yet Effective
Convolutional Neural Networks

Jonathan Ephrath, Moshe Eliasof, Lars Ruthotto, Eldad Haber and Eran Treister

Abstract—Convolutional Neural Networks (CNNs) have be-
come indispensable for solving machine learning tasks in speech
recognition, computer vision, and other areas that involve high-
dimensional data. A CNN filters the input feature using a
network containing spatial convolution operators with compactly
supported stencils. In practice, the input data and the hidden
features consist of a large number of channels, which in most
CNNs are fully coupled by the convolution operators. This
coupling leads to immense computational cost in the training
and prediction phase. In this paper, we introduce LeanConvNets
that are derived by sparsifying fully-coupled operators in existing
CNNs. Our goal is to improve the efficiency of CNNs by reducing
the number of weights, floating point operations and latency
times, with minimal loss of accuracy. Our lean convolution
operators involve tuning parameters that controls the trade-off
between the network’s accuracy and computational costs. These
convolutions can be used in a wide range of existing networks,
and we exemplify their use in residual networks (ResNets).
Using a range of benchmark problems from image classification
and semantic segmentation, we demonstrate that the resulting
LeanConvNet’s accuracy is close to state-of-the-art networks
while being computationally less expensive. In our tests, the lean
versions of ResNet in most cases outperform comparable reduced
architectures such as MobileNets and ShuffleNets.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) [1] are
among the most effective machine learning approaches

for processing structured, high-dimensional data such as voice
recordings, images, and videos and have become indispensable
in, e.g., speech recognition [2], [3], audio processing [4], and
image classification [5].

In the forward propagation, a CNN filters the input fea-
tures through a sequence of layers, which are composed of
convolution operators, biases, normalization layers, nonlinear
activation functions, and pooling operators. In imaging tasks,
the input features and the hidden features at each layer can
be grouped into several channels, each of which can be
interpreted as an image. The stencils that parameterize the
convolution operators are typically chosen to have a small
support around the origin. Hence, each feature in an image
interacts with features from a small neighborhood in its chan-
nel and, in the standard, fully-coupled approach, the features

J. Ephrath, M. Eliasof, and E. Treister are with the Department of
Computer Sciences at the Ben-Gurion University of the Negev, Be’er
Sheva, Israel. emails: [ephrathj,eliasof]@post.bgu.ac.il,
erant@cs.bgu.ac.il. JE and ME contributed equally to this work.

L. Ruthotto is with the Departments of Mathematics and Computer Science,
Emory University, Atlanta, GA, USA. email: lruthotto@emory.edu.

E. Haber is with the Department of Earth, Ocean and Atmospheric Sciences,
University of British Columbia, and with Xtract AI, Vancouver, Canada. email:
ehaber@eos.ubc.ca.

from the same neighborhood in the remaining channels [6],
[7]. A drawback of the fully-coupled approach is that the
number of convolution operators in a layer is proportional
to the product of the number of input and output channels.
This scaling can render wide architectures (i.e., architectures
whose layers contain a large number of channels) prohibitively
expensive in training and inference. It also complicates the
deployment of such CNNs, especially on devices with limited
memory and computing resources like autonomous vehicles,
drones, and smartphones.

In recent years there has been an effort to improve the ef-
ficiency of CNNs. Common approaches to reduce the number
of weights in CNNs are pruning [8]–[13], sparsity [14]–[16],
and quantization [17]–[19]. Pruning reduces the number of
weights in the network after training. The fact that in many
cases large portions of the networks’ weights can be removed
with minimal reduction of its accuracy indicates a considerable
redundancy and over-parameterization of standard CNNs [20].
While pruning is effective in reducing the number of weights
and floating point operations (FLOPs), it generally leads
to an unstructured non-zero pattern of the weights, which
increases the memory access costs. The lack of structure also
complicates the efficient deployment of the CNN on hardware.

Another approach to improve the efficiency of CNNs is
to replace the fully-coupled convolution operators by sparser
convolution operators (i.e., operators with fewer non-zero ele-
ments) before training. One typical building block is known as
a grouped convolution operator, which partitions the channels
into groups and only allow grouped coupling; see, e.g., [5].
When the number of groups equals the number of channels,
one obtains a depth-wise convolution operator, which is a
block diagonal matrix whose blocks are spatial convolution
operators. The depth-wise convolution operator filters each
channel of the image data separately and thus restricts the
interaction of each feature to its nearby features in the same
channel. It is common to use the depth-wise operator in
conjunction with fully-connected point-wise 1×1 convolutions
to introduce coupling across the channels.

A few CNN architectures have been derived using depth-
wise and 1 × 1 convolution operators, often augmented with
bottleneck or shuffling techniques; see, e.g., [21]–[25]. These
works use the depth-wise and 1×1 convolution separately, with
activation and batch normalization layers in between them.
Although in this paper we use 3 × 3 convolutional stencils
to parameterize the depth-wise convolution, other choices are
possible; in fact, mixing stencils of different sizes has shown
promising results [26]. This typically requires a redesign of ex-
isting CNN architectures. To reduce the ratio between FLOPs

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

2

and memory access in depth-wise convolution operators, re-
placing convolutions with shifts has been proposed in [27].
Exploiting the multiscale structure of image data provides
an alternative way to derive more efficient architectures; see
the contemporary work [28]. It is known, however, that the
memory access is often the real bottleneck in modern parallel
hardware, and not necessarily FLOPs. In fact, state-of-the-art
implementations of depth-wise convolution operators on GPUs
involve more FLOPs than necessary to achieve lower runtimes;
see, e.g., [29]. Nevertheless, whether the dominant cost is the
storage of the parameters, the FLOPs, or the memory access,
is highly dependent on the hardware at hand. Therefore, it is
desirable to build convolution operators and architectures that
are flexible in their definition so that they can be configured
as necessary on any specific hardware.

In this paper, we introduce LeanConvNets, a new family
of CNNs built as lean versions of known networks, using
lean convolution operators. These operators reduce the number
of weights, computation time, and FLOPs while achieving
competitive results. The lean operators preserve the overall
network structure and can thus be applied to a variety of
networks, e.g., residual networks (ResNets, ResNeXt) [30]–
[32], which have been two of the most reliable architectures
in the literature. The following aspects set our work apart from
other approaches:
• We obtain a new operator as the sum of the grouped and
1 × 1 convolution operators (a schematic description of a
ResNet block with lean convolutions appears in Fig. 1; more
details later). Using a prototype implementation, we show that
handling both operations simultaneously reduces the compu-
tation time required to apply the operator. Also, this design
introduces several opportunities for optimization in hardware
through its parallelism, minimal number of memory accesses,
and slightly reduced number of weights. Using grouped instead
of depth-wise convolution operators allows one to gradually
enlarge the portion of spatial convolutions in order to improve
the performance of the lean networks. Our networks are mostly
suitable to parallel devices that are bandwidth bounded and not
computation bounded.
• We present two ways to reduce the spatial kernel size
that further decrease the number of weights and FLOPs
and are easy to implement efficiently. In the first method,
we replace the standard 3 × 3 by a 5-point stencil. In the
second method, we filter two-dimensional images using a one-
dimensional convolution operator (3×1 or 1×3, depending on
memory layout) and its transpose applied at the memory write.
This operator can be implemented with the same number of
memory accesses as the 1× 1 convolution since the memory
of the feature maps is sequential in the one dimension.

The remainder of the paper is organized as follows: In
Sec. II, we discuss existing convolution operators and their
computational costs in the context of residual neural networks.
In Sec. III, we introduce a family of lean convolution oper-
ators, analyze their costs, and outline their implementation.
In Sec. IV, we provide extensive numerical evidence for the
efficacy of the resulting LeanConvNets for image classification
and semantic segmentation. In Sec. V, we summarize the paper
and discuss directions for future research.

Fig. 1: Building blocks of basic LeanResNet step. The 1× 1
and spatial grouped convolutions are applied simultaneously.

II. PRELIMINARIES AND NOTATION

We now introduce our main notation and define the su-
pervised classification and semantic segmentation problems
that we use to validate our methods; for more details see [7].
For brevity, we restrict the discussion to images although the
techniques derived here can also be used for other structured
data types such as audio or video data. In supervised learning,
we are given a set of training data consisting of pairs,
{(y(k)

0 , c(k))}sk=1 ⊂ Rnf ×Rnc . In our case, y(k)
0 is the k-th

input image and c(k) either represents the probabilities for the
entire image (in classification) or each pixel (in segmentation)
to belong to one of the pre-defined classes. Our goal is to
define a neural network architecture and train its weights
θ ∈ Rp and the weights of a linear classifier, denoted by
W ∈ Rnc×nout and µ ∈ Rnc , such that

c(k) ≈ S(Wy(k)(θ) + µ), for all k = 1, 2, . . . , s.

Here, S is a softmax hypothesis function and y(k)(θ) ∈ Rnout

denotes the output of the network applied to the kth sample.
The learning problem can be phrased as a minimization

problem of a regularized empirical loss function

min
θ,W,µ

1

s

s∑
k=1

L(S(Wy(k)(θ) + µ), c(k)) +R(θ,W, µ),

where L is the cross entropy loss and R is a regularization
function. The optimization problem is usually solved using
variants of stochastic gradient descent (SGD); see the original
work [33] and the survey [34].

As a baseline architecture, we consider residual networks
(ResNet) [30], [31], which have been successful in many imag-
ing tasks. Given a data sample, y0, the forward propagation
through an N -layer ResNet is defined as

yl+1 = yl + F(θl,yl), for l = 0, . . . , N − 1, (1)

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

3

where θl is the set of weights associated with the l-th layer
and we define y(θ) = y0. There are different choices for the
nonlinear term in (1), e.g.,

F(θl,yl) = K2(θl,2)σ(N (K1(θl,1)σ(N (yl)))). (2)

Here, σ(x) = max{x, 0} denotes an element-wise rectified
linear unit (ReLU) activation function and the weights are
partitioned into θl,1 and θl,2 that parameterize the two linear
operators K1 and K2, respectively. For brevity, we omit the
weights of the normalization layer N .

In convolutional ResNets, the operators Ki in (2) are
composed of spatial convolution operators. If the input y has
cin channels, and the output Ky has cout channels, then the
common choice for an operator K is a cout×cin block matrix
of convolutions, introducing full coupling across the channels.
For example, if cin = cout = 4, then the convolution operators
in (2) can be written in matrix form as

Kfull(θ) =


C(1,1) C(1,2) C(1,3) C(1,4)

C(2,1) C(2,2) C(2,3) C(2,4)

C(3,1) C(3,2) C(3,3) C(3,4)

C(4,1) C(4,2) C(4,3) C(4,4)

 , (3)

where C(i,j) = C(θ(i,j)) denotes the sparse matrix associated
with the spatial convolution kernel parameterized by the 3×3
filter θ(i,j) ∈ R9. For ease of notation, we do not explicitly
denote the dependency on θ in the following. The sparsity
pattern of this operator is visualized in the leftmost subplot
of Fig. 2 for an image size of 6× 6. Applying Kfull requires
O(cin · cout) FLOPs, and Kfull has 9 · cin · cout weights. In
practice, each Kfull can have millions of weights.

Grouped convolutions are popular alternatives to Kfull as
they reduce the number of weights and computations. In our
example, we can restrict the interaction of the channels to
g = 2 groups, which leads to the block diagonal matrix

Kg=2 =


C(1,1) C(1,2) 0 0
C(2,1) C(2,2) 0 0

0 0 C(3,3) C(3,4)

0 0 C(4,3) C(4,4)

 . (4)

This reduces the number of weights and FLOPs by a factor of
g compared to the full convolution. Clearly, Kfull = Kg=1 and
for g = cin, we get the depth-wise convolution; the sparsity
pattern of Kg=2 and Kg=4 are shown in Fig. 2. Grouped
convolutions can be extended to rectangular operators when
g divides both cin and cout.

III. LEAN CONVOLUTIONAL OPERATORS

We now introduce a family of lean convolutional operators
that achieve competitive performance and reduce the number
of weights, memory access, and FLOPs. It has been shown
that 1 × 1 convolutions can be effective if complemented
with a relatively small number of spatial convolutions [21]–
[25]. Then, the computational cost of the 1 × 1 convolution
(in terms of FLOPs and weights) dominates the cost of the
spatial convolutions as the number of channels grows. It has
also been observed that the accuracy of the network suffers
from the relative shortage of spatial convolutions, which is

often explained by a relatively small number of weights. To
increase the accuracy, our lean convolution operators aim to
allocate the weights more efficiently between grouped and
1× 1 convolutions. To this end, we reduce the kernel size on
the one hand and add spatial convolutions on the other. The
group size of the spatial convolution is a hyper parameter that
trades off between accuracy and computational efficiency. This
also allows us to accommodate different computational devices
without changing the high-level structure of the network.

We obtain lean convolution operators in three steps. First,
lean operators are a sum of 1 × 1 and grouped spatial
convolutions—see Fig. 1. If implemented efficiently the lean
convolution allows one to reuse of memory access, increase
parallelism, and further reduce the number of weights. Second,
the group size parameter g allows the user to balance between
spatial filtering (by a grouped operator) and coupling (by 1×1
operators) and control the performance of the network. Third,
we use convolutional filters with only five or three elements
instead of 9 for common 3 × 3 filters, which reduces the
number of weights and FLOPs.

Continuing our example from above, we define the lean
analogue to (3)-(4) as

Klean,g=2 =


C(1,1) C(1,2) α1,3I α1,4I
C(2,1) C(2,2) α2,3I α2,4I
α3,1I α3,2I C(3,3) C(3,4)

α4,1I α4,2I C(4,3) C(4,4)

 , (5)

where I is a scaled identity matrix and αi,j ∈ R are weights.
The identity operators represent the 1× 1 convolution and the
convolution operators C(i,j) enable spatial filtering. Similarly,
the lean operator with g = 4 groups is

Klean,g=4 =


C(1,1) α1,2I α1,3I α1,4I
α2,1I C(2,2) α2,3I α2,4I
α3,1I α3,2I C(3,3) α3,4I
α4,1I α4,2I α4,3I C(4,4)

 , (6)

The sparsity patterns of these operators are shown in fourth
and fifth subplots of Fig. 2.

The setting in (6) with g = 4 can be seen as the sum
of depth-wise and 1 × 1 convolutions, which are also used
in [21], [22], [25]. These works perform the depth-wise and
1× 1 convolutions separately—the depth-wise convolution is
applied between two 1×1 convolutions with ReLU operations
between them. Since we sum the operators we can apply them
both simultaneously, which allows us to optimize memory
access and improve parallelism (more can be done at once).

A. The argument for groups in compact networks

Our experiments suggest that if we take a given compact
network that utilizes depth-wise and 1 × 1 operations, and
define its full version by placing a 3×3 convolution instead of
each 1× 1 convolution, we get networks that are significantly
more expensive, but perform better in terms of accuracy.
Employing such compact schemes may result in a spatial
component that is too small, especially when the number of
channels is large and the 1× 1 operators dominate the spatial
convolutions. This motivates us to add a small number (e.g.,

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

4

Fig. 2: Sparsity patterns of different convolution operators for 6× 6 images with four input and output channels. The leftmost
subplot shows the sparsity pattern of a 3 × 3 fully-coupled convolution operator. The next two subplots depict the grouped
convolution operators for g = 2 and g = 4, respectively. The remaining two subplots show the proposed lean grouped and
depth-wise operators that are a sum of a fully coupled 1× 1 and a grouped (or depth-wise) spatial convolution operators.

cincout
g) of spatial convolutions to improve the performance of

the network compared to depth-wise operators.
The motivation for using this operator is as follows: first,

the implementation of the grouped convolution works best in
groups of intermediate size, and it is often even more efficient
to zero-pad the groups (artificially enlarge them) to get better
computational performance on GPUs [29]. Second, in the
standard combination of depth-wise and 1 × 1 convolutions,
the former becomes negligible compared to the the latter as the
number of channels grow, hurting accuracy without providing
considerable savings. Our proposal in this context is to use the
grouping mechanism to keep a constant ratio of operations
between the two types of convolutions, such that the 1 × 1
convolution that has cin · cout weights is more dominant than
the grouped convolution that has (r−1)cincout

g weights1, where
r is the stencil size (e.g., r = 9 for a 3 × 3 stencil). For
example, if we choose a ratio of 1

8 , then we set g ≈ 8(r−1) s.t.
the number of channels is divisible by g. We subtract 1 from
r since the middle weight is included in the 1×1 convolution.

We note that enhancing the lean convolution with the
grouping mechanism is similar to enhancing the depth-wise
convolution in networks such as MobileNetV2. This would
result in a network that is similar to the ResNeXt networks
[32], which applies a grouped convolution instead of the full
3 × 3 convolution in the bottleneck version of the original
ResNet. The grouping helps to enlarge the bottleneck ex-
pansion while keeping a low additional cost, and without
adding many weights. Although the works were proposed
independently, maximizing the number of groups in ResNeXt
leads to a network which is similar to MobileNetV2.

B. LeanConv 5-pt: lean convolutions with 5-point stencils.

The first version of LeanConvNets is based on 5-point
convolution stencils. The idea is to replace the stencils of
C(i,j) in (5) and (6) by the 5-point stencil 0 ci,1 0

ci,2 αi,i ci,3
0 ci,4 0

 , (7)

1The cost in operations is proportional to the number of weights.

where αi,i is the i, i-th entry of the 1 × 1 convolution, and
ci,1, ..., ci,4 are additional four weights per input channel i. An
example for the sparsity pattern of the resulting lean operator
with 5-point convolutions is shown in Fig. 2. The operator
Klean,g with 5-point stencils and g groups has (1+ 4

g)(cin·cout)
weights. We note that if the number of channels and g are
large, then the 1 × 1 convolution is the dominating operator
both in terms of weights and FLOPs.

The lean convolution can replace fully-coupled convolu-
tion operators in many existing CNNs without any structural
changes to the architecture. A straightforward way to imple-
ment a grouped lean convolution like in (5) is to use the
package cudnn to perform the 1×1 and spatial convolutions
separately. As we show later, our custom implementation,
which simultaneously applies both operations, outperforms the
cudnn approach for g = cin.

To motivate the use of 5-point stencils, consider the ResNet
architectures that have been recently interpreted as time-
dependent nonlinear ordinary differential equations (ODEs);
see, e.g., [35]–[41]. This allows the community to analyze
and extend ResNets using theoretical and practical ideas from
the world of ODEs and PDEs [42]. In this point of view,
the five-point stencil is able to express a mass term, and a
discretization of first and second spatial derivatives in the x
and y dimensions. That is, the first and second derivatives in
the x dimension can be approximated by

∂

∂x
≈ 1

2hx
[−1, 0, 1] and

∂2

∂x2
≈ 1

h2x
[1,−2, 1], (8)

where hx is the edge length of a pixel. This, together with
∂
∂y , ∂2

∂y2 and the mass term (or 5-point low-pass filter) are
included in the span of the 5-point stencil (7). The remaining
four entries of a full 3× 3 stencil correspond to mixed partial
derivatives, which rarely occur in PDE-models, and are thus
good candidates for reducing computations and weights.

Implementation: The standard 3 × 3 convolution is imple-
mented using a shift per stencil parameter (known as the
shiftIm2col operation), and a matrix-matrix multiplication
using the function gemm. In the same way we can multiply
a 5-point convolution operator, trivially saving 4/9 of the
operations. For small group sizes, and in particular for the

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

5

depth-wise setting (group size of 1), we found that a direct
implementation of the convolutions is faster than the standard
implementation with shiftIm2col. As the groups get larger,
the approach using shiftIm2col is more preferable, due to the
efficiency of gemm. Even more savings can be realized in 3D
CNNs where the standard 27-point stencils are replaced with
7-point stencils (the 3D version of (7)), saving 20/27 of the
operations and weights.

C. LeanConv 3-pt: lean convolutions with 1D 3-point stencils

In this section, we present a more sophisticated lean convo-
lution operator that can be applied almost at the same cost as
a 1 × 1 convolution as both operators use the same memory
accesses. This convolution is based on 1D convolution opera-
tors, either 1× 3 or 3× 1, which can be applied efficiently if
the memory is continuous in the direction of the 1D kernel.

In addition to the benefits from an implementation perspec-
tive, the use of 1D kernels can also be motivated as follows:
It is known that in 2D, a large portion of the 3 × 3 kernel
can be parameterized by a multiplication of 1 × 3 and 3 × 1
kernels, also called separable kernels. Separable kernels can
represent many of the important operators, such as low-pass
filters, and the spatial derivatives in (8). Our idea is to use
two convolutions, such as K1 and K2 in (2), to effectively
apply separable operators: K1 applies a 1 × 3 kernel in the
horizontal direction, and K2 applies a 3 × 1 kernel in the
vertical direction. We note that 1D stencils were also used in
a small section of the InceptionV4 network [43]. There, 1× 7
and 7 × 1 were used in together with 3 × 3 convolutions to
increase the field of view of the network. Here we show that
even if we use 1 × 3 and 3 × 1 convolutions only, we can
still get an effective network, while reducing the number of
weights, FLOPs and (most importantly) memory access. The
latter can be saved if the memory of the feature maps is aligned
with the direction of the kernel. Our idea here to maintain the
memory alignment is to apply the convolutions together with
channel transposition. That is, if the 1D convolution operator
K1 is aligned with the memory, then the feature maps are
transposed during the WRITE operation to prepare the result
to K2 that is aligned in the other direction, and vice-versa.

Custom GPU Implementation: To explain the 3-pt lean
convolution, we first briefly describe one of the approaches
for multiplying matrices on a GPU—that is essentially the
1 × 1 convolution operator. We follow the description of
the cutlass library [44], and the implementation of the
MAGMA open source project [45]. Given two matrices K ∈
Rcout×cin and Y ∈ Rcin×n, we first divide their product
KY ∈ Rcout×n into tiles of size tn × to. Each of these tiles
is computed by a multiplication of a block of to columns of
K and tn columns of Y. These sub-matrices are also divided
into sub-blocks of size ti. Each group of physical cores gets a
task of computing a tile of tn × to output numbers. To apply
this, we first fetch the relevant tiles into shared memory, and
then multiply them in parallel. Algorithm 1 summarizes the
procedure, ignoring the underlined parts; see [44], [45] for
more details.

Now we explain how to apply the 3-pt lean operator,
assuming that the number of convolutions is small compared
to cin×cout. An important consideration for GPU implementa-
tions is that fetching memory from global memory into shared
memory is slow, while accessing the shared memory is fast.
Our idea is to add a small memory fetch into the procedure
above, and apply the 1D convolution to the already-fetched
tile of Y, assuming that the memory of Y is continuous in
the same direction of the 1D kernel.

To finish the operation, we now wish that the direction of
the next kernel is aligned with the direction of the data. This
will be true only for one direction, and we handle that by
transposing the feature maps during the write phase at the
end of the convolution. Thus, when multiplying K1 in (2)
we have the maps aligned in one direction, but during the
multiplication, we transpose the data in shared memory and
write it transposed. After a ReLU operation (for which the
direction does not matter) the input to K2 is ready to be
multiplied and is aligned in the other direction. At the end of
the same multiplication of K2, the result is again transposed
back to the original alignment. Algorithm 1 summarizes the
3-pt lean convolution procedure. Compared to the 5-pt lean
convolution, the 3-pt conv requires that at least two kernels
are applied one after the other before a skip connection, such
that the maps are transposed back to their original form. We
note that this algorithm is mostly beneficial with large number
of groups, and in particular with depth-wise configuration. If
the groups are large, the shiftIm2Col approach is preferable.

Algorithm 1 Tiled 3-point LeanConv Multiplication

1: # Computation of X = KY.
2: # tn,to,ti: tile sizes. (i, j): thread id.
3: # The underline parts add over simple 1× 1 conv.
4: procedure LEAN3PTGEMM(X,K,Y, i, j)
5: Fetch boundary values from Y and spatial
6: convolution parameters into shared memory C.
7: for k = 1, ..., d cint e do
8: # Each thread in the tile fetches two blocks:
9: Fetch tile i, k from K to shared A ∈ Rtn×ti .

10: Fetch tile k, j from Y to shared B ∈ Rti×to .
11: # Multiply AB by ti outer products:
12: Multiply AB into local memory.
13: If relevant to the output tile:
14: Apply convolution to B into local memory.
15: Write transposed local memory to X.
16: end for
17: end procedure

IV. EXPERIMENTS

We demonstrate the proposed LeanConvNet approach and
compare the lean versions of ResNet and ResNeXt [32],
called “LeanResNet”, and ”LeanResNeXt” to a fully-coupled
ResNet, and other recent state-of-the-art compact architec-
tures: ShuffleNetV2 [25], MobileNetV2 [22], and ShiftResNet
[27]. We consider the image classification and semantic seg-
mentation tasks using several data sets. Our primary focus is to

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

6

Type Layer width (channels) # Steps Strides
Res18 32-64-128-256 2-2-2-2 1-2-2-2

Res24-narrow 12-24-48-96 2-3-3-3 1-2-2-2
Res24 32-64-128-256 2-3-3-3 1-2-2-2
Res34 64-128-256-512 3-4-6-3 1-2-2-2

Res38-narrow 24-48-96-192-384 4-5-5-3-1 1-2-2-2-2
Res38 64-128-256-512-1024 4-5-5-3-1 1-2-2-2-2

Res40-narrow 24-48-96-192 3-5-7-4 1-2-2-2
Res40 64-128-256-512 3-5-7-4 1-2-2-2

TABLE I: Network configurations.

compare how different architectures perform using a relatively
small number of parameters and FLOPs (we count floating
point multiplications). Our experiments are performed with the
PyTorch software [46]. In a third experiment, we also show
that our lean operators can be implemented efficiently and, for
g = cin, outperform the separate application of depth-wise and
1× 1 operators using the highly optimized package cudnn.

As our focus is on the performance of the lean convolution
operators, we use the established ResNet architectures as base-
line for comparison, and we use the same structure of those
ResNets, only with lean convolutions. Our ResNet networks
consist of several blocks that are preceded by an opening
convolutional 3×3 layer, which initially increases the number
of channels. Then, there are several blocks, each consisting
of a ResNet-based steps like Eq. (1). Each convolution is
followed by ReLU and batch normalization as described in
(1). To increase the number of channels and to down sample
the image, we concatenate the feature maps with a depth-wise
convolution applied to the same channels, thus doubling the
number of channels. This is followed by an average pooling
layer. The last block consists of a pooling layer that averages
each channel’s feature map to a single pixel, and we use a
linear classifier with softmax and cross entropy loss. For the
ImageNet dataset, we used the ResNeXt configuration [32],
which starts with an opening layer of a strided 7 × 7 con-
volution followed by max pooling. Its basic step is combined
from 3 convolutions (with ReLU and normalization), where the
middle is a grouped 3× 3 and the rest are 1× 1 convolutions.
To limit the number of parameters in our LeanResNeXt, we
replace each 1× 1 convolution with the lean convolution, and
the 3× 3 convolution with a 5-pt convolution. The last block
is identical to that of ResNet. In this ResNeXt architecture,
we reduced the number of channels compared to the original
network, since its cost is dominated by 1× 1 convolutions.

Although the architectures of LeanResNets and ResNet are
similar, the former employs efficient convolutions such as
(6). The convolution sizes of MobileNetV2 and ShiftResNet
were chosen such that the size of each expanded (by 6)
1 × 1 convolution is equivalent to the size of a square 1 × 1
convolution of LeanResNet. The architecture ShuffleNetV2 is
evaluated with the configurations (0.5x,1.0x,1.5x,2.0x) in [25].

A. Image Classification

We consider the CIFAR10, CIFAR100, STL10, Ima-
geNet, and tinyImageNet200 datasets. The CIFAR-10/100
datasets [47] consists of 60k natural images of size 32 × 32
with labels assigning each image into one of ten categories

Fig. 3: Validation (left) and Train (right) error per epoch for
the ImageNet dataset.

(for CIFAR10) or 100 categories (for CIFAR100). The data
are split into 50K training and 10K test sets. The STL-10
dataset [48] contains 13K color-images each of size 96 × 96
that are divided into 5K training and 8K test images that
are split into the ten categories. The ImageNet [49] challenge
ILSVRC consists of over 1.28M images of size 224×224 with
labels assigning each image into one of 1000 classes where
each class has 50 validation images. The tinyImageNet200
[50] is a subset of the ImageNet dataset, and consists of 110K
labeled images of size 64×64 belonging to 200 classes, where
each class has 500 training images and 50 validation images.

For each of the data sets we used a different configuration,
according to the difficulty of that data set. Table I summarizes
the network weights that we use, which differ in the number
of channels and the number of repetitions for each layer. As
optimization strategy for TinyImageNet200 we use momentum
SGD with a mini-batch size of 64 for 300 epochs. The learning
rate start at 0.05 and is reduced to 0.01, 0.005 and 0.001
after the epochs 75, 150 and 225 respectively. The weight
decay is 0.0001 and the momentum is 0.9. The strategy for
the other data sets is similar, with slight changes in the number
of epochs, batch sizes and the timing for reducing the learning
rate. We use standard data augmentation, i.e., random resizing,
cropping and horizontal flipping.

Our classification results are given in Tables II- III, where
we chose several representative configurations of groups for
the lean convolutions. The results show that our architecture
is on par with and in some cases better than other networks.
There is no preferred architecture between all options, but our
architecture has the advantage of simplicity and resemblance
to a standard and reliable ResNet network, which, as expected,
yields better accuracy than all the other network at the expense
of more parameters and cost. In Fig. 3 we show the training
and validation convergence plots of the architectures for the
ImageNet. The plots show that the convergence of the Lean-
ResNeXt is similar to that of the standard ResNet.

The influence of groups and stencils size: In this set of
experiments we demonstrate the classification accuracy of
LeanResNet with different configuration of grouping and
stencil sizes on CIFAR10 and CIFAR100 data sets. We use
small networks so that the differences in performance are
more obvious. Table IV presents the classification results. The
configuration of g = cin/q indicates that the group sizes are
equal throughout the layers, and leads to more FLOPs but less

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

7

CIFAR10 CIFAR100
Architecture Network Params\FLOPs[M] Test acc. Network Params\FLOPs[M] Test acc.
ResNet Res24 4.7\212 94.5% Res40 28.9\1490 78.5%
ResNet (small) Res24-narrow 0.66\53 92.0% Res40-narrow 3.8\239 72.3%
MobileNetV2 Res24∗ 0.50\33 91.7% Res40∗ 3.1\167 71.9%
ShuffleNetV2 0.5x 0.35\42 91.6% 1.5x 2.6\375 74.2%
ShiftResNet Res24∗ 0.49\31 90.7% Res40∗ 3.1\201 74.2%
LeanResNet 5-ptDW [ours] Res24 0.53\26 92.8% Res40 3.3\167 74.3%
LeanResNet 5-ptg=16 [ours] Res24 0.65\31 93.7% Res40 4.0\203 75.7%
LeanResNet 3-ptg=8 [ours] Res24 0.66\31 93.4% Res40 4.1\203 75.3%

STL10 TinyImageNet200
Architecture Network Params\FLOPs[M] Test acc. Network Params\FLOPs[M] Val. acc.
ResNet Res24 4.7\1908 86.6% Res38 40.9\4816 65.2%
ResNet (small) Res24-narrow 0.66\277 82.5% Res38-narrow 5.8\831 61.3%
MobileNetV2 Res24∗ 0.50\302 84.0% 1.4 [22] 4.7\661 56.4%
ShuffleNetV2 1.0x 1.2\608 81.7% 2.0X [25] 5.7\740 58.4%
ShiftResNet Res24∗ 0.49\361 84.0% Res38∗ 4.5\793 61.8%
LeanResNet 5-ptDW [ours] Res24 0.53\235 84.0% Res38 4.7\488 62.6%
LeanResNet 5-ptg=16 [ours] Res24 0.65\275 86.5% Res38 5.9\590 63.4%
LeanResNet 3-ptg=8 [ours] Res24 0.66\275 85.4% Res38 5.9\590 63.4%

TABLE II: Comparison of classification results for small datasets. To make a fair comparison, we seek to match the number
of parameters and FLOPs for each network. For MobileNetV2 and ShiftResNet we use expansion of ε = 6, and choose the
width (number of channels) to be approximately

√
6 smaller than the width of LeanResNet, so that their number of parameters

and FLOPs are comparable. We denote this by ∗. Since the images here are smaller that those of ImageNet, we removed the
strides from the first steps of the networks MobileNetV2 and ShuffleNetV2.

ImageNet
Architecture Network Params\FLOPs[M] Val. acc.
Resnet Res34 [30] 21.8\3600 74.0%
ResNeXt Res50 [32] 25.0\4100 77.8%
LeanResNeXt 5-ptg=32 Res34 3.6\680 71.7%
LeanResNeXt 5-ptg=16 Res34 3.9\630 72.1%
MobileNetV2 1.0 [22] 3.4\300 71.9%
ShuffleNetV2 1.5x [25] 3.5\299 72.6%
ShiftResNet ShiftNet-A[27] 4.1\- 70.1%

TABLE III: Comparison of classification results for ImageNet using different compact networks.

CIFAR10 CIFAR100
Architecture Groups Network Params \ FLOPs[M] Test acc. Network Params \ FLOPs [M] Test acc.
ResNet 9-pt — Res18 2.7\181 94.3% Res34 21.1\1325 77.6%
ResNet 5-pt — Res18 1.5\101 94.0% Res34 11.8\739 78.0%
ResNet 3-pt — Res18 0.92\62 93.4% Res34 7.1\445 76.5%
LeanResNet 9-pt DW (g = cin) Res18 0.33\25 91.1% Res34 2.5\160 73.0%
LeanResNet 9-pt g = 32 Res18 0.39\27 91.6% Res34 3.0\188 74.8%
LeanResNet 9-pt g = 16 Res18 0.46\32 92.0% Res34 3.6\225 75.6%
LeanResNet 9-pt g = 8 Res18 0.62\42 92.9% Res34 4.8\ 298 76.7%
LeanResNet 9-pt g = cin/32 Res18 0.80\107 93.6% Res34 4.3\426 76.5%
LeanResNet 9-pt g = cin/16 Res18 0.56\64 93.0% Res34 3.4\289 75.5%
LeanResNet 9-pt g = cin/8 Res18 0.43\43 92.5% Res34 2.9\220 74.9%
LeanResNet 5-pt DW (g = cin) Res18 0.32\23 91.0% Res34 2.4\156 72.7%
LeanResNet 5-pt g = 32 Res18 0.35\25 91.7% Res34 2.7\170 75.0%
LeanResNet 5-pt g = 16 Res18 0.39\27 92.5% Res34 3.0\188 75.7%
LeanResNet 5-pt g = 8 Res18 0.46\32 92.8% Res34 3.6\225 76.1%
LeanResNet 5-pt g = cin/32 Res18 0.56\64 93.9% Res34 3.4\289 76.5%
LeanResNet 5-pt g = cin/16 Res18 0.43\43 93.2% Res34 2.9\220 75.7%
LeanResNet 5-pt g = cin/8 Res18 0.37\33 92.8% Res34 2.6\186 75.6%
LeanResNet 3-pt DW (g = cin) Res18 0.31\23 90.5% Res34 2.4\153 72.7%
LeanResNet 3-pt g = 32 Res18 0.33\23 91.0% Res34 2.6\160 73.9%
LeanResNet 3-pt g = 16 Res18 0.35\24 91.4% Res34 2.7\170 74.5%
LeanResNet 3-pt g = 8 Res18 0.39\27 92.4% Res34 3.0\188 74.8%
LeanResNet 3-pt cin/32 Res18 0.43\43 92.5% Res34 2.9\220 76.5%
LeanResNet 3-pt cin/16 Res18 0.37\33 92.2% Res34 2.6\186 75.0%
LeanResNet 3-pt cin/8 Res18 0.35\27 92.0% Res34 2.5\169 74.3%

TABLE IV: Classification results for the CIFAR10/100 datasets. Keeping the same basic architectures we study the impact on
groups and stencil sizes on the test accuracy.

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

8

weights than the constant number of groups g = q. Since g
linearly increases as a function of number of channels, we get
relatively dense convolutions at the first layers of the network
(large maps, small # of channels) and sparser convolutions
at the last layers of the network (small maps, large # of
channels). In these examples, having more parameters at the
beginning of the network increases the accuracy, at the expense
of more FLOPs. The configuration is advantageous when
having a low number of parameters is more crucial than
FLOPs. On the other hand, keeping the number of groups
constant adds a fixed proportion of parameters and FLOPs to
the 1 × 1 convolution, and should be chosen in cases where
FLOPs cost as considerably as number of parameters. As a
result, the optimal configuration for an application can be
wisely chosen based on the limitations of the target device. If
there is a constraint on the number of FLOPs, then a constant
number of groups can be beneficial, but if the emphasis is
on a lower number of parameters, then, then a configuration
of g = cin/q will be more suitable for the application. In
addition, the table shows that by adding a small addition of
parameters to the lean network yields higher accuracy, which
gets closer to the considerably larger fully-coupled network.

B. Semantic Segmentation

We demonstrate the effectiveness of our proposed net-
work for the semantic segmentation task, which is used for
autonomous vehicles, for example, which require real-time
inference, and by design have less computational power. We
adopt two popular segmentation architectures, namely U-net
[51] and DeepLabV3 [52]. Specifically, we use the general
U-net architecture built on top of ResNet as a backbone.
That is, we adopt an encoder-decoder scheme, where the
encoder is of a standard ResNet architecture and the decoder
is based on upscaling operations and transposed convolutions
within a ResNet block. Similarly to the classification task,
the U-net based on ResNet is used as a baseline. With
these settings, we use the baseline with similar networks
incorporating various backbones as encoders: MobileNetV2,
ShuffleNetV2, ShiftResNet, and ours. As part of the decoders,
we perform convolutions to decrease the number of channels
and then perform upsampling, such that in the last layer we
have an image, the same size of the labeled image. For the
second batch of experiments, we adopt DeepLabV3’s ASPP
module to be our decoder, and compare the various encoders.
We test the networks using two popular datasets - Cityscapes
(fine annotated) and PASCAL VOC 2012. Cityscapes [53]
contains 5000 finely-annotated images with 19 categories
ranging from road, vehicles, trees and humans. We use the
standard train-validation data split as in [53] , i.e.; 2975 and
500 for training and validation, respectively. We resize the
images from 1024× 2048 to 512× 1024 due to memory and
computational limitations. As shown in [54] the reduction in
performance is only marginal when down-sampling the images
this way. In addition, we use standard augmentations like
random horizontal flips and random rotation of 10 degrees.
The PASCAL VOC 2012 dataset contains 1,464 training,
1,449 validation, and 1,456 test images over 21 object classes

Type # Channels # Steps Strides
MobileNetV2 32-64-128-256 1-2-3-2 1-2-2-2
ShuffleNetV2 116-232-464-512 7-10-10-1 1-2-2-2-2
ShiftResNet 64-128-256-320 3-4-6-4 1-2-2-2

(Lean)ResNet34 48-96-192-384 3-4-6-4 1-2-2-2
MobileNetV2 16-24-32-64-96-160-320 1-2-3-4-3-3-1 1-2-2-2-1-1-1

ShuffleNetV2 X1.0 24-116-232-464 1-3-7-3 2-2-2-1
LeanResNets 64-128-256-512 3-4-6-3 2-2-2-1

ResNet34 64-128-256-512 3-4-6-3 2-2-2-1

TABLE V: Semantic segmentation network configurations.
The upper and lower tables refer to the backbones in the U-net
and DeepLabV3 architectures, respectively.

U-net’s backbone Cityscapes
architecture Params[M]\FLOPs[B] Val. acc. mIoU
ResNet34 25.95 \ 228.4 94.1% 65.1%
MobileNetV2 3.50 \ 31.0 92.1% 56.9%
ShuffleNetV2 3.43 \ 36.5 90.7% 53.5%
ShiftResNet 3.82 \ 48.0 93.0% 60.0%
LeanResNet34 5ptDW 3.53 \ 31.6 92.8% 57.9%
LeanResNet34 5ptg=16 4.12 \ 36.0 92.8% 60.2%
LeanResNet34 3ptDW 3.41 \ 30.1 92.8% 59.2 %
LeanResNet34 3ptg=8 3.96 \ 34.9 93.1% 61.7%
DeepLabV3 backbone PASCAL VOC 2012
architecture Params[M]\FLOPs[B] Val. acc. mIoU
ResNet34 25.42 \ 39.5 94.1% 73.1%
MobileNetV2 4.52 \ 8.35 92.18% 66.9%
ShuffleNetV2 [1.0] 4.55 \ 9.04 90.57% 65.54%
LeanResNet34 5ptDW 5.12 \ 8.17 92.48% 67.40%
LeanResNet34 5ptg=8 6.41 \ 9.05 93.30% 70.31%
LeanResNet34 3ptDW 4.91 \ 6.35 92.11% 66.23%

TABLE VI: Comparison of our semantic segmentation results
with other compact networks.

(including a background class). We follow standard usage of
the augmented PASCAL dataset [55] which brings the training
set to 10,582 images. In the training process, we use the
ADAM [56] optimizer with a minibatch size of 8 and weight
decay of 0.01. The initial learning rate is 1e-4 and we employ
an adaptive learning rate reduction, where upon stagnation of
the mIoU metric for more than 5 epochs, the learning rate
is decreased by a factor of 10. We use the Focal loss [57]
as it penalizes wrong segmentations more than correct ones,
relative to Cross-Entropy loss. In table V we summarize the
configurations used for the segmentation experiments, where
again, we tried to configure the sizes of all the compact
architectures to have similar number of parameters and FLOPs.

Table VI shows the segmentation results. Similarly to the
classification results, the lean networks yield performance that
is comparable to the other compact architectures. In particular,
the grouped lean versions again yield the best accuracy among
compact networks, with a slight increase in the parameters
and FLOPs. Table VII shows the segmentation accuracy per
class, and Fig. 4 shows two example images from the data
set and their segmentation result using different networks.
For the U-net architecture, the encoder networks are trained
from scratch to give equal starting point to all experiments,
employing the same training scheme. The networks which
adopt the ASPP module as decoder were trained starting from
pre-trained models on ImageNet [49].

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

9

Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU
ResNet34 97.2 78.3 89.1 40.5 44.2 49.8 53.2 63.9 90.0 58.0 92.4 70.9 47.1 91.8 62.6 66.6 36.8 40.0 63.9 65.1
MobileNetV2 95.5 70.4 86.4 31.9 34.3 41.4 41.3 56.3 88.4 54.3 89.6 63.3 34.8 87.8 39.4 52.1 35.0 20.9 57.7 56.9
ShuffleNetV2 95.6 69.5 83.4 35.9 34.5 16.9 26.9 39.4 83.7 49.0 85.0 49.8 27.7 84.9 52.3 62.3 44.9 25.4 49.6 53.5
ShiftResNet 96.5 74.3 87.1 38.1 37.6 43.8 43.9 55.0 88.7 54.7 92.0 64.5 39.3 88.9 49.9 62.2 32.8 31.5 59.0 60.0
LeanResNet 5-ptDW 96.6 74.5 87.0 41.5 40.7 38.0 44.3 54.0 88.2 53.5 91.0 62.6 36.7 88.8 50.7 62.4 31.0 28.0 56.1 59.2
LeanResNet 5-ptg=16 96.6 74.3 86.9 44.0 42.6 39.1 41.7 53.7 88.1 54.5 90.8 62.6 37.7 89.0 53.5 61.8 42.0 28.3 55.8 60.2
LeanResNet 3-ptDW 96.6 74.5 87.0 41.5 40.7 38.0 44.3 54.0 88.2 53.5 91.0 62.6 36.7 88.8 50.7 62.4 31.0 28.0 56.1 59.2
LeanResNet 3-ptg=8 96.5 74.2 87.2 43.9 40.4 41.7 43.4 56.2 88.6 54.9 91.4 63.1 37.8 89.3 58.9 66.8 49.7 30.7 58.4 61.7

TABLE VII: Per-class results on Cityscapes validation set using the U-net architecture.

Method background airplane bicycle bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train monitor mIoU
ResNet34 93.6 88.2 40.1 84.1 63.8 77.9 93.7 82.9 88.0 36.7 74.1 56.0 79.4 77.7 81.0 84.3 56.5 80.8 42.9 82.4 70.8 73.1
MobileNetV2 91.7 77.6 38.7 72.4 55.6 66.3 85.1 79.3 80.7 32.7 73.2 48.9 73.8 72.0 75.8 78.1 46.6 79.4 37.9 76.7 62.8 66.9
ShuffleNetV2 91.5 79.8 38.1 73.5 57.2 58.2 86.1 81.6 82.1 27.0 65.1 41.7 72.5 73.0 76.8 79.0 42.3 72.7 36.3 77.8 63.4 65.5
LeanResNet 5-ptDW 92.0 81.3 38.3 75.5 60.2 63.7 86.0 81.3 80.9 28.4 71.9 40.7 71.7 76.3 78.6 79.6 48.8 79.4 38.5 77.5 64.6 67.4
LeanResNet 5-ptg=8 92.9 84.7 39.0 79.3 66.6 70.9 89.8 79.6 86.3 32.3 69.7 49.2 75.0 76.4 80.9 81.9 50.4 78.2 45.0 80.6 67.8 70.3
LeanResNet 3-ptDW 91.8 78.4 36.9 76.9 62.7 66.9 88.1 79.6 82.3 25.1 67.2 44.5 75.2 72.9 74.4 77.9 44.7 73.1 30.1 79.6 62.1 66.2

TABLE VIII: Per-class results on PASCAL VOC 2012 validation set using the DeepLabV3 architecture.

C. Computational Performance

We compare the latency of our CUDA implementation of
the lean convolution with two other combination of layers,
comprised of a 1× 1 convolution that is followed by a depth-
wise convolution. In one combination we use cin = cout,
and in the other cin ≈ 6cout, but with the same number of
weights. Such layers are applied in [22]. We compare the
runtime of a typical network: the first layer consists of 16
channels of 512× 512 maps, and the maps are coarsened by
a factor of 2 when the channels increase by a factor of 2
(i.e., for 512 channels the images are of size 16). We use
a batch size of 64, and compare the runtime of a NVIDIA
GeForce 1080Ti GPU for the task. The implementation for
the other convolutions is based on PyTorch’s 1 × 1 and
grouped convolutions using CUDA 9.2. Figure 5 summarizes
the results. The depthwise convolutions dominate the low
channels layers, while all combination converge to the cost
of the 1 × 1 convolution as the channels increase (and the
depthwise layer becomes negligible). Our implementation of
(6) is comprised of a standard 4-point convolution for each
channel followed by a matrix multiplication using cublas for
the 1× 1 part, to use the highly optimized gemm kernel. Our
implementation is faster because the shiftIm2Col approach is
not efficient for small group sizes (1 in this case). The clear
advantage of the lean operator over the expanded combination
is the less feature maps that undergo the spatial convolution.
Although our implementation applies the 1× 1 and depthwise
convolutions separately for each sample, our experiments show
that this yields a performance gain compared to a completely
separate multiplication for the whole mini-batch.

V. CONCLUSION

We present LeanConvNets, a family of efficient CNNs that
reduce the number of weights, and floating point operations
with minimal loss of accuracy. LeanConvNets can be obtained
from existing CNNs by replacing fully-coupled convolution
operators by lean operators that are the sum of grouped and
1×1 convolutions. The group size serves as a hyperparameter
that allows the user to trade off computational cost and
accuracy. Additional savings can be realized by the proposed
five-point and three-point stencils. Those savings will be more
pronounced for 3D and 4D imaging data.

In our experiments, we apply various configurations of
LeanConvNets to image classification and segmentation tasks.
In our tests, the LeanConvNets perform slightly better than
other reduced architectures, and is almost as effective as
their fully-coupled counterpart. We also demonstrate in a
direct comparison that the addition of depth-wise and 1 × 1
convolution reduces the computational time.

Our future research aims to further optimize implementation
of the lean convolutions on GPUs, as well as investigate
optimization of such implementation on other devices. In
addition, it is worthy to investigate and characterize the hyper-
parameter choices of the lean convolution (groups, stencil size,
multiplication algorithm), as these choices should be guided
by the hardware [58]. We also plan to examine the efficiency
of the lean operators in challenging 3D applications such as
video analysis on limited devices [59], where the small stencil
size is more beneficial.

ACKNOWLEDGEMENTS

LRs work is supported by the US National Science Founda-
tion (NSF) award DMS 1751636. This research was partially
supported by grant no. 2018209 from the United States - Israel
Binational Science Foundation (BSF), Jerusalem, Israel. ME
is supported by Kreitman High-tech scholarship.

REFERENCES

[1] Y. LeCun, B. E. Boser, and J. S. Denker, “Handwritten digit recognition
with a back-propagation network,” in Advances in neural information
processing systems, 1990, pp. 396–404.

[2] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the 26th annual
international conference on machine learning. ACM, 2009, pp. 873–
880.

[3] P. Agrawal and S. Ganapathy, “Modulation filter learning using deep
variational networks for robust speech recognition,” IEEE Journal of
Selected Topics in Signal Processing, vol. 13, no. 2, pp. 244–253, May
2019.

[4] H. Purwins, B. Li, T. Virtanen, J. Schlter, S. Chang, and T. Sainath,
“Deep learning for audio signal processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 13, no. 2, pp. 206–219, May 2019.

[5] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” Adv Neural Inf Process Syst,
vol. 61, p. 10971105, 2012.

[6] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in con-
volutional neural networks,” Pattern Recognition, vol. 77, pp. 354–377,
May 2018.

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

10

Fig. 4: Visualization of the semantic segmentation results of
different networks for two images from the Cityscapes dataset.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
Nov. 2016.

[8] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon reconstruction,” International Journal
of Computer Vision, vol. 5, no. 5, pp. 164–171, 1992.

[9] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural network,” International Journal of
Computer Vision, vol. 5, no. 5, pp. 1135–1143, 2015.

[10] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances In Neural Information Processing Systems, 2016, pp.
1379–1387.

[11] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning

16 32 64 128 256 512
0

0.5
1
2

4

6

channels

R
el

at
iv

e
tim

e

1×1 + DW, Square

1×1 + DW, Expansion 6

Lean Conv (our impl.)

Fig. 5: Relative timings of reduced convolutions compared to
a 3×3 convolution (lower is faster). The expanded and square
1× 1 convolutions has the same number of weights.

filters for efficient ConvNets,” https://arxiv.org/abs/1608.08710, 2017.
[12] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method

for deep neural network compression,” in The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[13] T.-W. Chin, C. Zhang, and D. Marculescu, “Layer-compensated pruning
for resource-constrained convolutional neural networks,” arXiv preprint
arXiv:1810.00518, 2018.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 2074–2082.

[15] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity
in convolutional neural networks,” arXiv preprint arXiv:1702.06257,
2017.

[16] S. Han, J. Pool, S. Narang, H. Mao, S. Tang, E. Elsen, B. Catanzaro,
J. Tran, and W. J. Dally, “Dsd: regularizing deep neural networks with
dense-sparse-dense training flow,” arXiv preprint arXiv:1607.04381,
vol. 3, no. 6, 2016.

[17] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[18] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training
quantized nets: A deeper understanding,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 5811–5821.

[19] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” in Advances in Neural Information
Processing Systems, 2018, pp. 5145–5153.

[20] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
arXiv preprint arXiv:1611.06440, vol. 3, 2016.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[23] M. Wang, B. Liu, and H. Foroosh, “Design of efficient convolutional
layers using single intra-channel convolution, topological subdivisioning
and spatial” bottleneck” structure,” arXiv preprint arXiv:1608.04337,
2016.

[24] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[25] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 116–131.

[26] M. Tan and Q. V. Le, “MixConv: Mixed Depthwise Convolutional
Kernels,” arXiv.org, Jul. 2019.

[27] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad,
J. Gonzalez, and K. Keutzer, “Shift: A zero flop, zero parameter alter-
native to spatial convolutions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 9127–9135.

[28] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan,
and J. Feng, “Drop an Octave: Reducing Spatial Redundancy in Con-
volutional Neural Networks with Octave Convolution,” arXiv.org, Apr.
2019.

[29] Z. Qin, Z. Zhang, D. Li, Y. Zhang, and Y. Peng, “Diagonalwise refac-
torization: An efficient training method for depthwise convolutions,”

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2972775, IEEE Journal
of Selected Topics in Signal Processing

11

in 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018, pp. 1–8.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[31] ——, “Identity mappings in deep residual networks,” in European
Conference on Computer Vision. Springer, 2016, pp. 630–645.

[32] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[33] H. Robbins and S. Monro, “A Stochastic Approximation Method,”
Ann. Math. Stat., 1951. [Online]. Available: http://www.jstor.org/stable/
2236626

[34] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” arXiv preprint arXiv:1606.04838, 2016.

[35] E. Haber and L. Ruthotto, “Stable architectures for deep neural net-
works,” Inverse Problems, vol. 34, no. 1, 2017.

[36] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham,
“Reversible architectures for arbitrarily deep residual neural networks,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[37] E. Weinan, “A Proposal on Machine Learning via Dynamical Systems,”
Communications in Mathematics and Statistics, vol. 5, no. 1, pp. 1–11,
Mar. 2017.

[38] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, “Deep
Relaxation: Partial Differential Equations for Optimizing Deep Neural
Networks,” pp. 1–22, 2017.

[39] Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations,”
in International Conference on Machine Learning (ICML), 2018.

[40] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Advances in Neural Information
Processing Systems, 2018, pp. 6571–6583.

[41] E. Haber, K. Lensink, E. Treister, and L. Ruthotto, “Imexnet: A forward
stable deep neural network,” International Conference on Machine
Learning (ICML), 2019.

[42] L. Ruthotto and E. Haber, “Deep neural networks motivated by partial
differential equations,” arXiv preprint arXiv:1804.04272, 2018.

[43] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[44] https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/, [Online; ac-
cessed May-2019].

[45] http://icl.cs.utk.edu/magma/index.html, [Online; accessed May-2019].
[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in Advances in Neural Information Processing Systems, 2017.

[47] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[48] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the 14th AISTATS,
2011, pp. 215–223.

[49] http://www.image-net.org/, [Online; accessed May-2019].
[50] https://tiny-imagenet.herokuapp.com/, [Online; accessed May-2019].
[51] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[52] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[53] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[54] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution resid-
ual networks for semantic segmentation in street scenes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 4151–4160.

[55] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in 2011 International Conference on
Computer Vision. IEEE, 2011, pp. 991–998.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[57] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[58] D. Marculescu, D. Stamoulis, and E. Cai, “Hardware-aware machine
learning: modeling and optimization,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design. ACM, 2018, p. 137.

[59] H. Fassold, S. Wechtitsch, M. Thaler, K. Kozłowski, and W. Bailer,
“Real-time video quality analysis on mobile devices,” in Proceedings of
the 7th ACM International Workshop on Mobile Video. ACM, 2015,
pp. 23–24.

Authorized licensed use limited to: Emory University. Downloaded on June 29,2020 at 17:33:03 UTC from IEEE Xplore. Restrictions apply.

