
IPSA: Integer Programming via Sparse Approximation for Efficient
Test-chip Design

Qicheng Huang*, Chenlei Fang*, Zeye Liu*, Ruizhou Ding and R. D. (Shawn) Blanton*

*Advanced Chip Testing Laboratory (www.ece.cmu.edu/∼actl/)

Department of Electrical and Computer Engineering

Carnegie Mellon University

Email: {qichengh, chenleif, zeyel, rding, rblanton}@andrew.cmu.edu

Abstract—Logic test chips are a key component of the yield
learning process, which aim to investigate the yield characteristics
of actual products that will be fabricated at high volume. Math-
ematically, the design of a logic test chip with such an objective
may involve solving a constrained under-determined equation
for an integer vector solution, which is unfortunately, NP-hard.
Existing solving methods are not applicable due to lack of
accuracy or high computational complexity. We propose a method
called IPSA (Integer Programming via Sparse Approximation)
to solve this integer programming (IP) problem in an effective
and efficient manner. By solving a transformed sparse-regression
problem and a subsequent rounding process, a solution can
be achieved with comparable error to the optimal solution of
the original IP problem but using far less time and memory.
Experiments with seven industrial examples demonstrate that
with more than 100× speed-up, IPSA achieves a similar or even
better solution compared to directly solving the original problem
with a commercial IP solver.

I. INTRODUCTION

The continued scaling of integrated circuits (ICs) introduces

complex interactions between layout features, which can lead

to manufacturability issues that reduce yield. In recent years,

foundries have increased capital expenditures [1] and time

to inspect and review equipment for process control and

yield stabilization/improvement. Logic test chips are a key

component of the yield learning process. The main objective

for a test chip is to identify systematic defects that may lead

to yield loss during the high-volume production.

Fabless, IDMs (integrated device manufacturers), and

foundries all use product-like designs as test chips, which

are not ideal since they do not inherently optimize testability

and diagnosability [2, 3]. A Logic Characterization Vehicle

(LCV) [3-5] addresses the drawbacks of traditional test-chip

approaches. As shown in Figure 1(a), the basic architecture of

the LCV is a two-dimensional array of functional unit blocks

(FUBs). Each FUB consists of a logical circuit that implements

a special FUB function (e.g., VH-bijective [3]). Leveraging C-

testability theory [6], the LCV can guarantee defect detection

at array primary outputs if it is detectable at the FUB boundary,

which also enhances the diagnosability.

From a design perspective, an ideal test chip would perfectly

incorporate the characteristics of actual customer/product de-

signs. In other words, it is of the utmost importance that the

test chip physically mimics actual designs that will go into

high-volume production. Otherwise, it is possible that a test

chip misses design-fabrication issues inherent to a product, or

results in unnecessary and even detrimental fixes of false-alarm

issues. In order to incorporate the physical characteristics of

standard-cells into a LCV, one of the basic requirements is

to establish the same standard-cell usage distribution derived

from actual customer/product design(s) within a test chip. To

this end, a set of FUB logic implementations need to be

identified that altogether have a standard-cell histogram that

closely matches a target distribution.
The task to properly identify FUB implementations that

mimic a given standard-cell usage distribution (referred to as

“LCV implementation” for the rest of paper) can be accom-

plished by solving a constrained under-determined equation for

an integer vector solution [7, 8] (more details in Section II.A).

Such an integer programming (IP) problem has been proved

to be NP-hard [9], if each possible integral solution needs to

enumerated. The branch and bound algorithm [10], adopted

by widely-used commercial IP solvers [11, 12], reduces the

computation efforts of pure enumeration by searching branches

and discarding unpromising ones. However, the time and space

complexity of branch and bound is still exponential in the

number of variables. For the LCV implementation task, the

optimization problem is extremely large (e.g., with ∼ 106

variables), which greatly challenges even the best solvers. For

example, a server with 64 2.2GHz CPU cores and 1TB of

RAM is unable to handle an IP problem with 6×106 variables

due to insufficient memory; even for a problem with 3×104

variables, it took more than one day to reach a solution

with satisfactory error. Such a dilemma has become a severe

bottleneck in the overall test-chip design process, especially

for fabless and foundries that require fast yield ramping (e.g.,

a foundry may need to fabricate a new product each month).

Therefore, it is crucial to develop a more efficient solver with

both reduced runtime and compute resources.
Towards this goal, we propose a methodology called IPSA

(Integer Programming via Sparse Approximation) to find a

near-optimal solution for the LCV implementation problem

that requires shorter runtime and less memory than the original

formulation. Our work is motivated by the observation that

the original IP problem can be transformed into a sparse-

regression problem without the integer constraint followed by

a subsequent rounding process. Compared to directly solving

the original IP problem, IPSA results in similar distribution-

matching error, but requires far less time and memory due

to the sparse restriction. Besides this new solution approach,

other contributions of this work include:

• Theoretical and intuitive explanations of why a relaxed

11

2019 IEEE 37th International Conference on Computer Design (ICCD)

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00011

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Optimization formulation for test-chip (LCV) implementation:
(a) a structural illustration of the LCV under design and (b) mathematical
formulation of the matching objective. The goal of test-chip implementation
is to select a suitable combination of implementations from a FUB library
described by matrix A, so that the overall inclusion of standard cells within
the test chip mimics the target distribution described by vector b. The
FUB implementations denoted by the colored columns are selected and their
corresponding counts can be found in vector x, which is the objective of the
solver.

sparse regression with a subsequent rounding process can

result in a sub-optimal solution with comparable error to

the solution derived by conventional branch-and-bound

algorithm. Specifically, we analyze two sources of errors

involved in the proposed methodology, and show that

by finding a sparse solution, one type of error can be

decreased significantly while not increasing the other type

too much.

• Deployment of two strategies to efficiently solve

the transformed sparse regression problem, namely:

(i) greedy forward step-wise regression and (ii) L1-

regularization. Analysis of error bounds and computa-

tional cost are provided, which verify the correctness and

efficiency of the two strategies.

• Application to other large-scale constrained IP problems

with the aim of solving an underdetermined linear system.

The remainder of this paper is organized as follows. In

Section II, we introduce the mathematical formulation of LCV

implementation and review existing methods for solving the

formulation. The IPSA method is presented in Section III,

including how it is derived from an analysis of two types of

errors and theoretical verification of correctness and efficiency.

Then the efficacy of the method is demonstrated using seven

case studies in Section IV. Section V concludes the paper and

gives directions for future work.

II. PROBLEM FORMULATION AND CHALLENGES

In this section, we first introduce the optimization problem

for LCV design, and then describe the existing methods for

solving it and their respective limitations.

A. The Optimization Problem for LCV Implementation

The goal of LCV implementation is to implement each FUB

in the array with a proper combination of standard cells, so

that all the standard cells within the entire LCV closely match

a usage distribution. The distribution is usually in the form of

a histogram identified during standard-cell measurement from

target design(s) such as a flagship product (for fabless), or

customer designs (for foundries).

However, it is quite challenging to generate a proper set

of FUB implementations where (i) each implements a specific

function (e.g., VH-bijective), and (ii) with an overall standard-

cell usage that matches the target distribution. This is mainly

the case because synthesis is not geared to create a logic

implementation with constraints on the cell types and their

counts. For example, it is difficult to ensure synthesis generates

an implementation with only 100 INV, 50 NOR and 50 NAND

gates. A workaround to address this shortcoming developed

in past work [7, 8] involves synthesizing a large number of

FUBs (up to a million) using different subsets of the standard-

cell library. Each FUB is characterized for the types and

numbers of cells it has, its testability, diagnosability, etc., and

those with promising properties are kept in a FUB library.

The FUB library is similar to a box of Legos where each

piece of brick being a specific logic implementation. The

goal of LCV implementation task then becomes selecting

a suitable set of Legos to mimic a target (i.e., a standard-

cell distribution), which can be formulated as the following

optimization problem:

min
x

| |Ax − b| |22
s.t. x ∈ Zn

Dx � d
(1)

where Z denotes the integer set, A ∈ Rp×n+ and D ∈ Rm×n
+ are a

p×n and an m×n non-negative matrix respectively, and b ∈ Rp
+

and d ∈ Rm+ are non-negative vectors of p and m dimensions,

respectively. The symbol � denotes the element-wise greater

or equal.

As illustrated in Figure 1(b), each column of A represents a

FUB implementation and each row represents a specific type

of standard cell. So each entry in A indicates the number of

cell instances for the corresponding FUB implementation. The

vector x represents the numbers of FUB instances selected to

form the LCV. The target distribution is denoted by b, contain-

ing the required number of each standard cell. Mathematically,

the columns of A can also be called the “basis”, and the goal is

to decompose the target vector b using the basis with x being

the corresponding coefficients. In Eq. (1), the L2-norm of the

difference between the actual and target histograms is used

12

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Figure 2. A two-dimensional geometric explanation for the optimization
problem in Eq. (1). The points on the same contour have the same value for
the objective function. By solving the original IP problem in Eq. (1), we are
trying to find a point on the unshaded grid nodes that has the smallest objective
value. Also, the solution derived from the relax-round strategy (solving the
problem in Eq. (3) and then rounding) can be far from the true optimal integer
solution.

as the minimization objective. x ∈ Zn constraints the number

of selected instances of a given FUB to be an integer. Other

constraints on x are inclueded in Dx � d. For example, one

basic constraint is that the derived integers in x must be non-

negative, which can be formulated by setting D = I and d = 0;

if on the other hand, the practitioner has the requirement that

there must exist at least some minimum for a set of standard

cells, then the constraint can be reformulated by setting

D =
[
I
A

]
, d =

[
0
c

]
(2)

where c has the same size as b, with each entry representing

the number of instances for a given standard cell. The number

of columns in A is significantly larger than its row count,

since a more diverse FUB library provides more “Lego”s to

choose from and, hence, is more flexible for matching a target

distribution. It implies that the linear system Ax = b is highly

under-determined, i.e., the number of variables is much higher

than the number of equations.

Figure 2 gives a two-dimensional geometric explanation for

the optimization problem described in Eq. (1). The points

on the same contour have the same value for the objective

function in Eq. (1). The unshaded area is the feasible area

defined by the linear constraints in Dx � d. Beacuse only an

integer solution is possible due to x ∈ Zn, only the points on

the grid nodes make up the feasible solution set. Essentially,

solving the optimization problem equates to identifying a point

located at one of the unshaded grid nodes (as denoted by dark-

blue dots) that corresponds to the smallest objective value.

B. Existing Methods

Solving the IP problem in Eq. (1) is unfortunately, NP-hard

[9]. The most direct and naive workaround is a relax-round
strategy that first solves a relaxed version of the problem by

eliminating the integer constraint as:

min
x

| |Ax − b| |22
s.t. Dx � d

(3)

and then rounding the real number solution xreal to the final

integer solution xint by a rounding function fround(·):
xint = fround(xreal). (4)

The meaning of fround(·) is to map the relaxed solution to

the nearest integer grid node. However, the solution resulting

from this strategy can be far from optimal, because the nearest

mapped integer point can have a less-desirable objective value

compared to optimal solution, depending on the shape of the

objective function. Figure 2 shows an example for such cases,

where the mapped point Pint (as denoted by the blue triangle)

is not necessarily the optimal integer solution P∗
int (as denoted

by the yellow square). Their difference in objective function

can be exaggerated when the dimension of the solution space

increases.

Most commercial tools (e.g., [11, 12]), on the other hand,

are based on a more accurate branch-and-bound algorithm

[10, 13, 14] targeting the IP problem in Eq. (1) directly. The

branch-and-bound algorithm starts with a feasible point x(0)
(i.e., a point satisfies all the constraints). The corresponding

object function value f (0) of the best solution so far serves as

the upper bound. The n dimensions of x lead to a searching

space defined by n variables. The space is then iteratively

divided to search for an optimal solution. In each iteration, one

variable xj (j ∈ {1, 2, ..., n}) is selected and two “branches” of

sub-problems are formed. The two sub-problems have the new

constraints xj ≤ x(0)j and xj>x(0)j respectively, and the lower

bound for each sub-problem is calculated. If the lower bound

of either sub-problem is larger than the current upper bound,

the sub-space it defines can be safely discarded, as the optimal

value will not exist in this sub-space. By repetition of such a

progress, a search tree keeps growing and being pruned until

the optimal leaf is reached (i.e., the subspace contains only one

candidate and cannot be further divided). Given sufficient time

and memory, the algorithm is guaranteed to find the global-

optimal solution. However, this tree-based searching process

has time and memory complexity exponential to the variable

dimension n, and can easily be impractical for large-scale

problems.

Due to the high complexity of branch-and-bound, other

works have instead searched for a sub-optimal solution that

exhibits lower complexity. For example, the authors of [9]

have proposed a method based on a semi-positive definite

(SDP) relaxation of the original IP problem. A randomized

algorithm is then applied to find a feasible solution. This

algorithm has an overall complexity of O(n3), which is much

lower than that of branch-and-bound. However, it assumes the

integer programming problem has no other constraints, which

is not the case in our application scenario. The consequence of

adding the inequality constraints in Eq. (1) to the SDP problem

results in long runtimes for commercial tools to solve, which

is impractical for our problem considering its large scale.

III. INTEGER PROGRAMMING VIA SPARSE

APPROXIMATION

While the relax-round strategy described in Eqs. (3)-(4)

usually cannot provide a sufficiently accurate solution, the

relaxed problem in Eq. (3) can be solved by convex solvers

(e.g., [15]) with limited compute time as compared to branch-

and-bound. IPSA is based on error analysis of the relax-

13

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Solved coefficient values for Eq. (3). The solution is non-sparse but
more than 99.9% of the coefficients are extremely small. The small coefficients
lead to high rounding error as compared to fitting error.

round solution: by transforming Eq. (3) to a sparse-regression

problem, we can utilize the fast solving speed of the relax-

round strategy while decreasing the error to a comparable level

as the optimal IP solution.

In this section, we first introduce two sources of errors of

the relax-round strategy, namely fitting error and rounding
error, and then demonstrate their relationship to the sparsity

of the solution. For the transformed sparse-regression prob-

lem, we further propose two solving strategies – forward

step-wise regression and L1-regularization. Finally, detailed

analysis concerning the advantages and limitations of the two

strategies, as well as their error bound and computation cost

will be provided to verify their correctness and efficiency.

A. Two Error Types

From a statistical view, we assume that there is an un-

derlying optimal solution x∗ such that b = Ax∗ + ε , where

ε ∈ Rp is the Gaussian noise added to each dimension of b,

i.e., εj ∼ N(0, σ2), j = 1, 2, ..., p. For any given real-number

vector x, the difference after applying the rounding function

fround on it is denoted as Δx. For the sake of simplicity, we

assume a stochastic rounding strategy1 so that both Δx and

ε are random variables. The expected error of the rounded

solution can be expressed as:

E ‖A · fround(x) − b‖2
2 = EεEΔx ‖A(x + Δx) − b‖2

2

=EεEΔx
[‖Ax − b‖2

2 + 2(Ax − b)TAΔx + ‖AΔx‖2
2
]
. (5)

The expectation of the crossing term in Eq. (5) can be re-

written as:

EεEΔx
[(Ax − b)TAΔx

]
=Eε

[
(Ax − b)TAEΔx

[
Δx|x]] = 0, (6)

where we use the fact that EΔx
[
Δx|x] = 0 as implied by the

stochastic rounding assumption. Substituting Eq. (6) into Eq.

(5) yields:

E ‖Axint − b‖2
2 = E

[‖Ax − b‖2
2︸������︷︷������︸

fitting error

+ ‖AΔx‖2
2︸���︷︷���︸

rounding error

]
(7)

1We use stochastic rounding [16] for simplicity of analysis, but the similar
arguments about the error composing of fitting and rounding errors generally
hold if using nearest-rounding.

The error is composed of two parts: fitting error which

measures how well x can reconstruct b, and rounding error

which indicates how far x is from an integer point. Suppose

there are N non-zeros elements in x, an upper bound on the

rounding error can be calculated by

‖AΔx‖2
2 =

�����
∑
j

AjΔxj

�����
2

2

≤
∑
j

��AjΔxj
��2

2

≤ N · max
j

‖Aj ‖2
2, (8)

where we use the fact that the maximum possible stochastic

rounding error is 1. Since the upper bound in Eq. (8) is

proportional to N , decreasing the number of non-zero elements

in x reduces the rounding error. But on the other hand, a more

sparse x implies fewer types of FUB implementations are used

(i.e., fewer basis to decompose b onto), which increases the

fitting error.

Despite the trade-off between rounding and fitting errors

with respect to N , the impact of N on rounding error is much

higher, especially when N is not very small (e.g., N >100).

By studying various cases of the the relaxed IP problem in Eq.

(3), we find the solutions have two important characteristics:

(i) they are not sparse, i.e., almost all of the elements in x
are non-zero; (ii) most elements in x are extremely small

(e.g., more than 99.9% are less than 0.5). Figure 3 shows

an example by plotting the values of all the elements in x.

Only 74 out of 605,945 coefficients are larger than 0.5 and

a fairly large proportion of the coefficients are even smaller

than 10−5. Studying the contribution from the basis with small

coefficients to the fitting/rounding error reveals that such basis

bring much higher rounding error than their contribution to

reducing the fitting error. If we divide x into two vectors xL

(coefficients larger than 0.5, with corresponding basis AL) and

xS (smaller than 0.5, with basis A
S
), then the difference in

fitting error and rounding error brought by basis in A
S

can be

defined as follows, respectively:

Δε f =
(‖AL · x′

L − b‖2 − ‖Ax − b‖2
) / ‖b‖2 (9)

Δεr = ‖AS · ΔxS‖2 / ‖b‖2 (10)

where x′
L

are the coefficients solved from Eq. (3) by using

only the basis in AL, and ΔxS is calculated by:

ΔxS = xS − fround(xS) (11)

In the case shown in Figure 3, Δε f = 0.0149 while Δεr =
0.1446, which means that considering the basis in A

S
brings

10× more rounding error than their contribution to reducing

the fitting error. Thus, if A
S

can be identified beforehand and

eliminated from A, then the total error of the solution would

be significantly reduced.

B. Sparse Regression and Solving Strategies

Based on analysis of the two types of errors, we transform

Eq. (3) to a sparse-regression problem, namely:

14

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Figure 4. P1∼P3 are three solutions of the relaxed problem in Eq. (3). P1 is
has the least fitting error but higher rounding error because it is not sparse.
By sparse-regression in Eq. (12), we are trying to find solutions like P2 and
P3, both of which have lower overall error.

min
x

| |Ax − b| |22
s.t. Dx � d

‖x‖0 ≤ λ
(12)

The L0-norm of x in Eq. (12) restricts the number of non-zero

elements below a pre-defined hyper-parameter λ. By solving

Eq. (12), we are expecting to decrease N for small rounding

error and at the same time find a suitable set of basis so that

the fitting error can also be under control.

Note that the regression problem is highly under-

determined, implying that the number of basis in A is so large

that many of them are very similar. Thus, for Eq. (3), it is

probable to find many sub-optimal points near the optimal

solution. In Eq. (12) we aim to find such sub-optimal points

that are on the axis, which have slightly higher fitting error

but far lower rounding error. For example, as the illustration

shown in Figure 4, P1∼P3 are three solutions of Eq. (3). P1 is

the optimal solution with the least fitting error, but during the

rounding process, it has rounding errors in every dimension, so

its totally error is higher than other two sub-optimal solutions

which have smaller rounding error due to sparsity. By solving

Eq. (12), we are trying to find solutions like P2 and P3, which

are sub-optimal in terms of fitting error but with much lower

rounding and overall errors. Since Eq. (12) is NP-hard due to

the non-convexity of L0-norm, two alternative strategies are

proposed.

Solving Strategy 1: forward step-wise regression
When no other constraints are specified besides x � 0, a

greedy forward step-wise strategy can be adopted to iteratively

select a subset of the basis that can significantly decrease

fitting error. As summarized in Algorithm 1, we begin with a

residual r(0) = b and an empty basis index set V (step 1). In

each iteration, a basis that is most positively correlated with

the residual is identified by evaluating the normalized inner

product defined in Eq. (13). We need to ensure that the inner

product is non-negative to ensure the coefficients with respect

to the selected basis satisfy the constraint x � 0. So in step 3,

if no more basis are positively correlated to the residual, the

iteration terminates. Once a new basis is chosen, its index is

added to V and the regression problem is re-solved based on

the current selected basis in step 5 (which is easily solvable

by convex solvers such as [15]). A new r(k) is updated in step

6, indicating the residual that the remaining basis needs to fit.

If not terminated at step 3, an iteration will terminate when

its time reaches a pre-defined threshold Nmax. Finally, all the

coefficients with respect to the un-selected basis are set to zero

(step 7).

Algorithm 1 Forward Step-wise Regression

Input: Objective b, the basis matrix A and the maximum

number of iterations Nmax

Output: Coefficients x.

1. Initialize: r(0) = b, the index set V = 	.

for k = 1, ..., Nmax do
2. Find the index i so that

i = argmaxj∈{1,...,n}
〈
r(k−1),

Aj

|Aj |
〉
, (13)

3. if
〈
r(k−1), Ai

|Ai |
〉 ≤ 0 then

break

end
4. Update V = V ∪ {i}.
5. Solve the following optimization problem:

min
x(k)

�����
∑
j∈V

Aj xj − b
�����

2

2

(14)

s.t. xj ≥ 0, j ∈ V (15)

for solution x̂(k) = { x̂j, j ∈ V}.
6. Update the residual by r(k) = b−b(k), b(k) =

∑
j∈V Aj x̂j

end
7. Set the un-selected coefficients to 0: xj = 0, j � V

Solving Strategy 2: L1-regularization
If additional constraints are required besides x � 0 (e.g., Eq.

(2)), Strategy 1 cannot be used because selecting a basis during

iterations makes it difficult to ensure the final solution satisfy

the additional constrains. In such cases, L1-regularization can

be used to solve the constrained sparse-regression problem.

The main idea of L1-regularization is to relax Eq. (12) by

replacing the L0-norm term with L1-norm:

‖x‖1 ≤ λ. (16)

The L1-norm of a vector is defined as the summation of the

absolute value of all the elements, which is a convex function.

Various theoretical studies from the statistics community

demonstrate that under some general assumptions both

L0-norm regularization and L1-norm regularization result in

the same solution [17].

The two strategies have their respective advantages and

limitations. Strategy 1 is more heuristic but works very well

in practice. In each iteration, the optimization problem in

Eqs. (14)-(15) contains only a small number of variables so

that it can be efficiently solved. In addition, with Strategy 1,

selection of the hyper-parameter λ can be avoided, because

15

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

in practice we can integrate the rounding process and track

the error in each iteration by rounding x̂(k) and calculating the

residual. Finally, we can simply select the best result within

all the iterations (an example will be given in Section IV). The

downside of Strategy 1 however is that it can only solve the

problem with constraint x � 0, which highlights the strength

of Strategy 2 – flexibility to deal with any linear constraints.

However, Strategy 2 requires careful tuning of the hyper-

parameter λ, which significantly increases the total runtime

if aiming for an optimal λ.

C. Error Bound and Computational Cost

Here we analyze the error bound of the two strategies.

For Strategy 1, without loss of generality, we assume

that the object b can be constructed through a non-negative

linear combination of basis D = {ψ1, ψ2, ..., ψn}, where

ψ ∈ Rp, ‖ψ‖2 = 1 for all ψ ∈ D. This dictionary D can

be constructed by normalizing each column of matrix A. In

other words, we assume that there exists an underlying set of

coefficients x∗ that b = ∑
j x∗jψj . Based on the proof in the

appendix, we have the following theorem concerning the error

bound of the residual r(k) of step k:

Theorem 1. Let ‖b‖L1 =
∑

j x∗j < ∞, the residual r(k) after
k steps satisfies

‖r(k) ‖2 ≤ ‖b‖L1√
k + 1

(17)

for all k ≥ 1.

Theorem 1 demonstrates, using Algorithm 1, the residual-

error bound decreases at the rate of O(k1/2), which assures

error convergence of Strategy 1 (i.e., the fitting error). On

the other hand, after the subsequent rounding process, the

rounding error increases approximately at the rate of O(k)
(since the upper-bound is proportional to N). Considering the

trade-off between the two parts of error, there should exist an

optimal k that minimizes overall error.

For Algorithm 2, with the same “b = Ax∗ + ε” assumption

as stated at the beginning of Section III.A, and that ‖Aj ‖2
2 ≤

n, for j = 1, ..., p, we have the following theorem (see the

appendix for the proof of Theorem 2):

Theorem 2. Set λ = ‖x∗‖1 in Eq. (16), then with probability

at least 1− δ, the expectation of error between the fitted result

Ax̂ and Ax∗ has the error bound

1
p
‖Ax̂ − Ax∗‖2

2 � ‖x∗‖1

√
log n

p
. (18)

It shows that the error bound is proportional to the L1-norm

of the underlying “real” coefficients x∗. If x∗ has a small L1-

norm value, the solution x̂ given by Strategy 2 will not have

a large fitting error.

Now we demonstrate that the two strategies have polynomial

complexity, which is a significant speed-up over branch-and-

bound algorithm’s exponential complexity.

For Strategy 1, step 2 in Algorithm 1 involves n vector

multiplications of length p, which means O(np) floating-point

operations (FLOPs). Step 5 is the most complex, including

solving for a constrained quadratic optimization problem.

Conventional commercial tools use an interior-point method

that requires O(n2p) FLOPs. Step 6 is essentially a matrix-

vector product and a vector subtraction, which requires O(kp)
FLOPs. Assuming that iteration terminates after K iterations,

the overall complexity of Strategy 1 is O(Kn2p). The main

calculation of Strategy 2 is to solve the L1 regularized problem.

This step can also performed by commercial tools using an

interior-point method, which has O(n2p) complexity.

IV. EXPERIMENTS

In this section, we apply IPSA to the LCV implementation

problems, and compare the performance with the naive relax-

round method, and a commercial IP solver. In addition, further

analysis is conducted to demonstrate details of the method

and illustrate the trade-off between fitting and rounding errors

as discussed in Section III.A. All experiments are completed

using a server with 64 2.2GHz CPU cores and 1TB of RAM.

A. Comparison of Methods

We compare the performance of four methods for LCV im-

plementation: (i) IPSA with the forward step-wise strategy, (ii)

IPSA with L1-regularization, (iii) naive relax-round method,

and (iv) a commercial IP solver [11]. Seven examples (denoted

as Designs 1-7) with respect to real industrial test-chip design

cases are used to evaluate the performance. Each example

corresponds to a standard-cell library and a target standard-

cell histogram. In other words, Eq. (1) is solved using specific

matrix A and vector b for each design. The A matrices for

Designs 1-3 contain 605,945 columns, indicating the solution

x has a dimension of 605,945. The number for Designs 4-5 is

829,228, and 222,698 for Designs 6-7. A commercial convex

optimization tool [15] is used for solving the relaxed problem

in Eq. (3), forward step-wise regression (step 5 in Algorithm

1), and L1-regularization.

Two metrics are used to evaluate the four solution ap-

proaches, namely standard-cell histogram matching, and run-

time. Histogram matching for a specific solution x̂ is defined

as follows:

matching error =
‖Ax̂ − b‖1

‖b‖1
. (19)

Here we use the L1-norm because it measures the histogram

mismatch in a more intuitive way than L2-norm, while in

the optimization problem we used the latter because it is

more smooth and strictly convex, making it easier to solve

by commercial convex optimization tools.

First we consider a scenario where the only linear constraint

is x � 0, i.e., the practitioner has no specific requirement for

the least number of specific standard cell(s) in the design.

In this case, both forward step-wise and L1-regularization

strategies can be applied. The two metrics of the four methods

are listed in Table I, as shown in the “Overall error” and

“Time” columns. For each design, the method that gives the

smallest error is highlighted with bold text in each row. For

16

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Table I
HISTOGRAM MISMATCH (ERROR) AND RUNTIME COMPARISON OF DIFFERENT METHODS.

Design
Relax-round IPSA Forward step-wise regression IPSA L1-regularization IP Solver [11]

Full prec.
error

Overall
error

Time
(sec.)

Full prec.
error

Overall
error

Time
(sec.)

Full prec.
error

Overall
error

Time
(sec.)

Overall
error

Time
(sec.)

1 0.0956 0.096 404.1 0.0564 0.0561 549.7 0.0956 0.0951 2,595 0.086 86,000
2 0.0513 0.0517 403.1 0.0312 0.0313 630 0.0514 0.0514 2,625 0.035 86,000
3 0.0721 0.072 345.3 0.0466 0.0465 537.1 0.0718 0.0718 2,750 0.087 86,000
4 0.0056 0.0747 347.3 0.0058 0.0077 637.3 0.0056 0.0091 7,520 0.006 86,000
5 0.0062 0.1531 350.2 0.00089 0.0031 516.5 0.00089 0.0059 10,885 0.001 86,000
6 0.1158 0.1159 67.3 0.1158 0.1153 136.6 0.1158 0.1159 3,948 0.1159 10,601
7 0.1138 0.1147 100.5 0.1138 0.1126 182.9 0.1138 0.1133 6,835 0.114 7,974

Table II
HISTOGRAM MISMATCH (ERROR) AND TIME COMPARISON OF DIFFERENT METHODS WITH LINEAR CONSTRAINTS.

Design
Relax-round IPSA L1-regularization IP Solver [11]

Full prec.
error

Overall
error

Time
(sec.)

Full prec.
error

Overall
error

Time
(sec.)

Overall
error

Time
(sec.)

4 0.0056 0.0982 547.1 0.0056 0.0067 25,651 0.0062 86,000
5 0.0009 0.1832 350.2 0.0068 0.0172 20,198 0.0070 86,000

more straight-forward comparison, the error comparison with

respect to the seven designs is also plotted in Figure 5.

As expected, the relax-round method has the highest error

for almost all cases. The IP solver is supposed to have the

least error theoretically but for Design 3 it has the highest.

This is mainly because (i) we restrict the maximum runtime

to one day due to the time limit of the server, (ii) we only

allow it to use basis with 30,000 largest coefficients derived

from solving Eq. (3) because server memory cannot handle

a search space of the 105 dimensions exhibited by Eq. (1).

Forward step-wise regression significantly reduces the error

over 50× compared to relax-round method and in five cases it

even surpasses the IP solver. L1-regularization does not exhibit

similar improvement in some cases, probably because the time

limit we set does not allow a thorough exploration of the

hyper-parameters. If a suitable λ is found, L1-regularization

is also expected to significantly reduce error for Designs 4

and 5 as well. For Designs 6 and 7, because the least-accurate

relax-round method achieves a similar error to the IP solver,

it is expected that little improvement brought can be achieved

by these two sparse-regression strategies.

In terms of runtime, the relax-round method is the fastest,

because it solves the simplest problem. In contrast, the IP

solver is the slowest due to its high complexity; in some cases,

it does not reach the final solution within the 86,000-second

time limit. Forward step-wise regression runs slightly longer

but comparable to relax-round, and more than 100× faster

than the IP solver on average. L1-regularization has a longer

runtime, because the L1-regularized problem has to be solved

multiple times with different hyper-parameters λ to find the

optimal value.

Except for the IP solver, the other three methods first solve

a relaxed problem without an integer constraint, and then

round the full-precision solution xreal. So in addition to the

final error, the errors of xreal for the three methods are also

recorded and listed in columns named “Full prec. error” in

Figure 5. The comparison of the relative error (i.e., ‖Ax̂−b‖1/‖b‖1) of the
solution x̂ from each of the four methods for seven designs.

Table I. Comparing these errors with the corresponding values

in “Overall error” columns, we can observe the effect of the

rounding process for each method. The relax-round method

is most susceptible to rounding. When its xreal is close to a

integer grid node, the error resulting from the rounding process

is small (e.g., for Design 6), but for other cases, Designs

4 and 5 for example, the rounding process can increase the

error by 13× and 25×, respectively. In contrast, forward step-

wise regression and L1-regularization are not affected that

much, because the differences between the two columns are

relatively small and stable. This demonstrates that finding a

sparse solution can reduce rounding error.

We also consider another scenario where the practitioner

requires that the LCV implementation includes at least 20

instances for each type of standard-cells (i.e., the linear con-

straint becomes like Eq. (2) with elements in c equated to 20).

In this case, forward step-wise regression is not applicable, so

in Table II, we list the performance of the remaining three

methods to Designs 4 and 5. Similar comparison results as

Table I can be observed, that is, L1-regularization method

achieves similar error as the IP solver (much lower than relax-

round) but with significantly reduced runtime.

B. Detailed Analysis

In this sub-section, the details of forward step-wise regres-

sion including an analysis of relax-round are presented to

17

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Figure 6. The change of relative fitting error (i.e., | |Ax̂real −b | |1/ | |b | |1) and
relative overall error (i.e., (| |Ax̂−b | |1)/ | |b | |1) as the iterations of Algorithm1
proceeds.

demonstrate the trade-off between these two sources of errors.

For forward step-wise regression, the rounding process can

be integrated into each iteration so that the final error can be

tracked across iterations. In this way, the searching for hyper-

parameters can be eliminated, since we can simply choose the

one with least overall error as the final solution. For example,

Figure 6 shows the change of (i) fitting error with the full-

precision solution xreal and (ii) overall error with the rounded

solution x̂, as the iterations proceeds for Design 5. Because

in each iteration, a new basis is included in the candidate set

that b decomposes onto, the fitting error continues to decrease.

Generally, the overall error is close to the fitting error because

the effects of rounding are not obvious for the sparse solution.

However, as the number of non-zero coefficients increases, the

gap between the two curves becomes obvious and the overall

error starts fluctuating due to the varying rounding errors. The

lowest overall error is achieved at the 65-th iteration instead

of the last one, and we take the solution at the 65-th iteration

as the final solution.

Another experiment is conducted to demonstrate the trade-

off between fitting and rounding error as the sparsity of the

solution varies. For the relax-round method, we use only a

subset of basis, randomly selected from the columns of A for

Design 5 and gradually include more basis to match the same

target distribution. Figure 7 shows the change of fitting error

and overall error with respect to different sizes of the basis (N).

The deviation of the two curves is the results from the rounding

error. When N is small, the effect of rounding is negligible.

However, when N grows larger than 2 × 105, the rounding

error begins to dominate the fitting error, thus demonstrating

the trade-off between them as a function of solution sparsity.

The optimal sparsity is determined by tracking of errors during

iterations of forward step-wise regression and tuning hyper-

parameter λ for L1-regularization.

V. CONCLUSIONS

Incorporation of physical characteristics from actual prod-

ucts is the utmost important requirement for test-chip design.

One of the design objectives is matching a target standard-cell

usage distribution – essentially a large-scale IP problem, which

presents significant challenges to existing solution techniques

that lead to inaccuracy or high demand for compute resources.

In this paper we describe a method called IPSA to solve

Figure 7. The change of relative fitting error (i.e., | |Ax̂real −b | |1/ | |b | |1) and
relative overall error (i.e., (| |Ax̂ − b | |1)/ | |b | |1) of the relax-round strategy,
based on different basis size (N).

the IP problem in an effective way – solving a transformed

sparse-regression problem with a subsequent rounding process.

Two strategies for solving sparse-regression, namely forward

step-wise regression and L1-regularization, are investigated

for solving the sparse-regression problem. The former has

generally better performance and the latter has more flexibility.

Experiments demonstrate that compared to directly solving the

original problem with a commercial IP solver, IPSA achieves a

similar or even better solution with more than 100× speed-up.

Besides the test-chip design application in this paper, IPSA

can also be applied to other large-scale IP problems with

the aim of solving a linear system with linear constraints.

Especially, IPSA is expected to achieve high efficiency when

the linear system is highly under-determined and the under-

lying optimal solution is sparse. Future work may include

exploration of other design objectives other than standard-

cell distribution matching by effectively solving optimization

problems with different objective functions.

VI. APPENDIX

A. Proof of Theorem 1

Proof. For proof simplicity, we denote the vector selected in

Eq. (13) in Algorithm 1 as g(k). In other words:

g(k) = argmaxψ∈D
〈
r(k−1), ψ

〉
. (20)

Given the facts that (i) b(k) is the best approximation to b
from Span

({ψj, i ∈ V (k)}) , and (ii) the approximation of r(k−1)

from the set {a · g(k) : a ∈ R} is 〈r(k−1), g(k)〉g(k), we have

‖b − b(k) ‖2 ≤ ‖b − b(k−1) − 〈r(k−1), g(k)〉g(k) ‖2. Because r(j) =
b − b(j), j = 1, ..., k, the following holds:

‖r(k) ‖2
2 ≤ ‖r(k−1) − 〈r(k−1), g(k)〉g(k) ‖2

2

= ‖r(k−1) ‖2
2 − |〈r(k−1), g(k)〉 |2. (21)

Using the equations b = b(k−1)+r(k−1) and 〈b(k−1), r(k−1)〉 = 0,

we have

‖r(k−1) ‖2 = 〈r(k−1), r(k−1)〉 = 〈r(k−1), b〉 − 〈b(k−1), r(k−1)〉
= 〈r(k−1), b〉 =

∑
j

xj 〈r(k−1), ψj〉

≤ sup
ψ∈D

〈r(k−1), ψ〉
∑
j

xj = sup
ψ∈D

〈r(k−1), ψ〉‖b‖L1

= 〈r(k−1), g(k)〉‖b‖L1 . (22)

18

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Substituting Eq. (22) into Eq. (21) yields:

‖rk ‖2 ≤ ‖r(k−1) ‖2
(
1 − ‖r(k−1) ‖2〈r(k−1), g(k)〉2

〈r(k−1), g(k)〉2‖b‖2
L1

)

= ‖r(k−1) ‖2
(
1 − ‖r(k−1) ‖2

‖b‖2
L1

)
. (23)

Assume a series of non-negative numbers a(0) ≥ a(1)... ≥
a(k), where a(0) ≤ M , and a(k) ≤ a(k−1)(1 − a(k−1)/M), by

deduction we can derive a(k) ≤ M/(k + 1). Applying this to

Eq. (23), and because M = ‖b‖2
L1

, we have:

‖rk ‖2 ≤
‖b‖2

L1

k + 1
. (24)

Theorem 1 can then be derived by taking square root of each

side of Eq. (24). �

B. Proof of Theorem 2

Proof. Because x̂ is the solution to Eq. (12) with the constraint

Eq. (16), the following holds:

‖b − Ax̂‖2
2 ≤ ‖b − Ax∗‖2

2 . (25)

After rearranging and using Holder’s inequality [18] and the

bound for L1-regularization λ = ‖x∗‖1, we have

‖Ax̂ − Ax∗‖2
2 ≤ 2〈ε,Ax̂ − Ax∗〉 = 2〈AT ε, x̂ − x∗〉
≤ 2‖x̂ − x∗‖1‖AT ε ‖∞ ≤ 4‖x∗‖1‖AT ε ‖∞. (26)

In Eq. (26), ‖AT ε ‖∞ = maxj=1,...,n |AT
j ε | is a maximum of

n Gaussian random variables. By standard maximal inequality

for Gaussian random variables, for any δ > 0, with probability

of at least 1 − δ,
max

j=1,...,n
|AT

j ε | ≤ σ
√

2p log(en/δ). (27)

Substituting Eq. (27) into Eq. (26), we have

1
p
‖Ax̂ − Ax∗‖2

2 ≤ 4σ‖x∗‖1

√
2 log(en/δ)

p
, (28)

which is the same as the rate given in Eq. (18). �

REFERENCES

[1] R. C. Leachman and S. Ding, “Excursion Yield Loss and Cycle Time
Reduction in Semiconductor Manufacturing,” IEEE Transactions on
Automation Science and Engineering, 2011.

[2] K. Y. Cho, S. Mitra, and E. J. McCluskey, “Gate exhaustive testing,” in
IEEE International Conference on Test, 2005.

[3] R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic Characterization
Vehicle Design for Maximal Information Extraction for Yield Learning,”
in IEEE International Test Conference, 2014.

[4] P. Fynan, Z. Liu, B. Niewenhuis, S. Mittal, M. Strajwas, and R. D.
Blanton, “Logic Characterization Vehicle Design Reflection via Layout
Rewiring,” in IEEE International Test Conference, 2016.

[5] B. Niewenhuis and R. D. Blanton, “Efficient built-in self test of regular
logic characterization vehicles,” in IEEE VLSI Test Symposium (VTS),
2015.

[6] A. D. Friedman, “Easily testable iterative systems,” IEEE Transactions
on Computers, vol. 100, no. 12, pp. 1061–1064, 1973.

[7] R. D. Blanton, B. Niewenhuis, and Z. Liu, “Design Reflection for Opti-
mal Test Chip Implementation,” in IEEE International Test Conference,
2015.

[8] Z. Liu, B. Niewenhuis, S. Mittal, and R. D. Blanton, “Achieving
100% Cell-aware Coverage by Design,” in Design, Automation& Test in
Europe, 2016.

[9] J. Park and S. Boyd, “A semidefinite programming method for integer
convex quadratic minimization,” Optimization Letters, vol. 12, no. 3, pp.
499–518, 2018.

[10] J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1–30,
1999.

[11] N. V. Sahinidis, “BARON 18.5.9: Global Optimation of Mixed-integer
Nonlinear Programs.” Users manual, 2018.

[12] “GUROBI optimization.” https://http://www.gurobi.com/.
[13] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the res-

olution of large-scale symmetric traveling salesman problems,” SIAM
review, vol. 33, no. 1, pp. 60–100, 1991.

[14] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimiza-
tion problems,” Handbook of applied optimization, vol. 1, pp. 65–77,
2002.

[15] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming, version 2.1,” 2014.

[16] “Stochastic Rounding.” https://en.wikipedia.org/wiki/Rounding.
[17] E. J. Candès et al., “Compressive sampling,” in Proceedings of the

international congress of mathematicians, vol. 3. Madrid, Spain, 2006,
pp. 1433–1452.

[18] “Holder’s inequality.” https://en.wikipedia.org/wiki/Holdersinequality.

19

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

