2019 IEEE 37th International Conference on Computer Design (ICCD)

IPSA: Integer Programming via Sparse Approximation for Efficient
Test-chip Design

Qicheng Huang”, Chenlei Fang”, Zeye Liu“, Ruizhou Ding and R. D. (Shawn) Blanton”
*Advanced Chip Testing Laboratory (www.ece.cmu.edu/~actl/)
Department of Electrical and Computer Engineering
Carnegie Mellon University
Email: {qichengh, chenleif, zeyel, rding, rblanton} @andrew.cmu.edu

Abstract—Logic test chips are a key component of the yield
learning process, which aim to investigate the yield characteristics
of actual products that will be fabricated at high volume. Math-
ematically, the design of a logic test chip with such an objective
may involve solving a constrained under-determined equation
for an integer vector solution, which is unfortunately, NP-hard.
Existing solving methods are not applicable due to lack of
accuracy or high computational complexity. We propose a method
called IPSA (Integer Programming via Sparse Approximation)
to solve this integer programming (IP) problem in an effective
and efficient manner. By solving a transformed sparse-regression
problem and a subsequent rounding process, a solution can
be achieved with comparable error to the optimal solution of
the original IP problem but using far less time and memory.
Experiments with seven industrial examples demonstrate that
with more than 100x speed-up, IPSA achieves a similar or even
better solution compared to directly solving the original problem
with a commercial IP solver.

I. INTRODUCTION

The continued scaling of integrated circuits (ICs) introduces
complex interactions between layout features, which can lead
to manufacturability issues that reduce yield. In recent years,
foundries have increased capital expenditures [1] and time
to inspect and review equipment for process control and
yield stabilization/improvement. Logic test chips are a key
component of the yield learning process. The main objective
for a test chip is to identify systematic defects that may lead
to yield loss during the high-volume production.

Fabless, IDMs (integrated device manufacturers), and
foundries all use product-like designs as test chips, which
are not ideal since they do not inherently optimize testability
and diagnosability [2,3]. A Logic Characterization Vehicle
(LCV) [3-5] addresses the drawbacks of traditional test-chip
approaches. As shown in Figure 1(a), the basic architecture of
the LCV is a two-dimensional array of functional unit blocks
(FUBs). Each FUB consists of a logical circuit that implements
a special FUB function (e.g., VH-bijective [3]). Leveraging C-
testability theory [6], the LCV can guarantee defect detection
at array primary outputs if it is detectable at the FUB boundary,
which also enhances the diagnosability.

From a design perspective, an ideal test chip would perfectly
incorporate the characteristics of actual customer/product de-
signs. In other words, it is of the utmost importance that the
test chip physically mimics actual designs that will go into
high-volume production. Otherwise, it is possible that a test
chip misses design-fabrication issues inherent to a product, or
results in unnecessary and even detrimental fixes of false-alarm

issues. In order to incorporate the physical characteristics of
standard-cells into a LCV, one of the basic requirements is
to establish the same standard-cell usage distribution derived
from actual customer/product design(s) within a test chip. To
this end, a set of FUB logic implementations need to be
identified that altogether have a standard-cell histogram that
closely matches a target distribution.

The task to properly identify FUB implementations that
mimic a given standard-cell usage distribution (referred to as
“LCV implementation” for the rest of paper) can be accom-
plished by solving a constrained under-determined equation for
an integer vector solution [7, 8] (more details in Section II.A).
Such an integer programming (IP) problem has been proved
to be NP-hard [9], if each possible integral solution needs to
enumerated. The branch and bound algorithm [10], adopted
by widely-used commercial IP solvers [11,12], reduces the
computation efforts of pure enumeration by searching branches
and discarding unpromising ones. However, the time and space
complexity of branch and bound is still exponential in the
number of variables. For the LCV implementation task, the
optimization problem is extremely large (e.g., with ~ 10°
variables), which greatly challenges even the best solvers. For
example, a server with 64 2.2GHz CPU cores and 1TB of
RAM is unable to handle an IP problem with 6x10° variables
due to insufficient memory; even for a problem with 3x10*
variables, it took more than one day to reach a solution
with satisfactory error. Such a dilemma has become a severe
bottleneck in the overall test-chip design process, especially
for fabless and foundries that require fast yield ramping (e.g.,
a foundry may need to fabricate a new product each month).
Therefore, it is crucial to develop a more efficient solver with
both reduced runtime and compute resources.

Towards this goal, we propose a methodology called /PSA
(Integer Programming via Sparse Approximation) to find a
near-optimal solution for the LCV implementation problem
that requires shorter runtime and less memory than the original
formulation. Our work is motivated by the observation that
the original IP problem can be transformed into a sparse-
regression problem without the integer constraint followed by
a subsequent rounding process. Compared to directly solving
the original IP problem, IPSA results in similar distribution-
matching error, but requires far less time and memory due
to the sparse restriction. Besides this new solution approach,
other contributions of this work include:

o Theoretical and intuitive explanations of why a relaxed

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00011

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

A logic characterization vehicle (LCV)

(Vertical inputs)
L1 1T 1T L1l
2| IE
2 =
L |3
g - FUB ooe 5
=
8 S
5 . =
S . S
T C =
7 i TTT TTT TTT
[Vertical outputs]
(a)
e Xy = bpxl
u =
O . =[S
- .
]
o T - s Target
g A2 a8 a distribution
— = =~ 1=
(b)
FUB library Selected FUBs
Figure 1. Optimization formulation for test-chip (LCV) implementation:

(a) a structural illustration of the LCV under design and (b) mathematical
formulation of the matching objective. The goal of test-chip implementation
is to select a suitable combination of implementations from a FUB library
described by matrix A, so that the overall inclusion of standard cells within
the test chip mimics the target distribution described by vector b. The
FUB implementations denoted by the colored columns are selected and their
corresponding counts can be found in vector x, which is the objective of the
solver.

sparse regression with a subsequent rounding process can
result in a sub-optimal solution with comparable error to
the solution derived by conventional branch-and-bound
algorithm. Specifically, we analyze two sources of errors
involved in the proposed methodology, and show that
by finding a sparse solution, one type of error can be
decreased significantly while not increasing the other type
too much.
o Deployment of two strategies to efficiently solve
the transformed sparse regression problem, namely:
(i) greedy forward step-wise regression and (ii) L;-
regularization. Analysis of error bounds and computa-
tional cost are provided, which verify the correctness and
efficiency of the two strategies.
« Application to other large-scale constrained IP problems
with the aim of solving an underdetermined linear system.
The remainder of this paper is organized as follows. In
Section II, we introduce the mathematical formulation of LCV
implementation and review existing methods for solving the
formulation. The IPSA method is presented in Section III,
including how it is derived from an analysis of two types of
errors and theoretical verification of correctness and efficiency.
Then the efficacy of the method is demonstrated using seven
case studies in Section IV. Section V concludes the paper and

gives directions for future work.

II. PROBLEM FORMULATION AND CHALLENGES

In this section, we first introduce the optimization problem
for LCV design, and then describe the existing methods for
solving it and their respective limitations.

A. The Optimization Problem for LCV Implementation

The goal of LCV implementation is to implement each FUB
in the array with a proper combination of standard cells, so
that all the standard cells within the entire LCV closely match
a usage distribution. The distribution is usually in the form of
a histogram identified during standard-cell measurement from
target design(s) such as a flagship product (for fabless), or
customer designs (for foundries).

However, it is quite challenging to generate a proper set
of FUB implementations where (i) each implements a specific
function (e.g., VH-bijective), and (ii) with an overall standard-
cell usage that matches the target distribution. This is mainly
the case because synthesis is not geared to create a logic
implementation with constraints on the cell types and their
counts. For example, it is difficult to ensure synthesis generates
an implementation with only 100 INV, 50 NOR and 50 NAND
gates. A workaround to address this shortcoming developed
in past work [7,8] involves synthesizing a large number of
FUBs (up to a million) using different subsets of the standard-
cell library. Each FUB is characterized for the types and
numbers of cells it has, its testability, diagnosability, etc., and
those with promising properties are kept in a FUB library.
The FUB library is similar to a box of Legos where each
piece of brick being a specific logic implementation. The
goal of LCV implementation task then becomes selecting
a suitable set of Legos to mimic a target (i.e., a standard-
cell distribution), which can be formulated as the following
optimization problem:

min ||[AX — b||§
X

(M

st.xeZ"
Dx >d

where Z denotes the integer set, A € R?" and D € R7" are a
pxn and an mxn non-negative matrix respectively, and b € R
and d € R are non-negative vectors of p and m dimensions,
respectively. The symbol > denotes the element-wise greater
or equal.

As illustrated in Figure 1(b), each column of A represents a
FUB implementation and each row represents a specific type
of standard cell. So each entry in A indicates the number of
cell instances for the corresponding FUB implementation. The
vector x represents the numbers of FUB instances selected to
form the LCV. The target distribution is denoted by b, contain-
ing the required number of each standard cell. Mathematically,
the columns of A can also be called the “basis”, and the goal is
to decompose the target vector b using the basis with x being
the corresponding coefficients. In Eq. (1), the Ly-norm of the
difference between the actual and target histograms is used

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

N AN . A4 T2y Feasible set defined by Dx > d
N j
N I
N /l. SRR ¢ e Feasible integer set defined by Dx > d
b NG Py Py,
8 v 4& Lye--—-e % Optimal solution of the problem in
// \\\" M Eq. (3) (w/o integer constraint)
i R A Solution by rounding of %
A e
/ N\
/ N Optimal solution of the problem in
/ N 0

Eq. (1) (w/ integer constraint)

Figure 2. A two-dimensional geometric explanation for the optimization
problem in Eq. (1). The points on the same contour have the same value for
the objective function. By solving the original IP problem in Eq. (1), we are
trying to find a point on the unshaded grid nodes that has the smallest objective
value. Also, the solution derived from the relax-round strategy (solving the
problem in Eq. (3) and then rounding) can be far from the true optimal integer
solution.

as the minimization objective. x € Z" constraints the number
of selected instances of a given FUB to be an integer. Other
constraints on x are inclueded in Dx > d. For example, one
basic constraint is that the derived integers in X must be non-
negative, which can be formulated by setting D =T and d = 0;
if on the other hand, the practitioner has the requirement that
there must exist at least some minimum for a set of standard
cells, then the constraint can be reformulated by setting

o[-|

where ¢ has the same size as b, with each entry representing
the number of instances for a given standard cell. The number
of columns in A is significantly larger than its row count,
since a more diverse FUB library provides more “Lego’s to
choose from and, hence, is more flexible for matching a target
distribution. It implies that the linear system Ax = b is highly
under-determined, i.e., the number of variables is much higher
than the number of equations.

Figure 2 gives a two-dimensional geometric explanation for
the optimization problem described in Eq. (1). The points
on the same contour have the same value for the objective
function in Eq. (1). The unshaded area is the feasible area
defined by the linear constraints in Dx > d. Beacuse only an
integer solution is possible due to x € Z", only the points on
the grid nodes make up the feasible solution set. Essentially,
solving the optimization problem equates to identifying a point
located at one of the unshaded grid nodes (as denoted by dark-
blue dots) that corresponds to the smallest objective value.

(@)

B. Existing Methods

Solving the IP problem in Eq. (1) is unfortunately, NP-hard
[9]. The most direct and naive workaround is a relax-round
strategy that first solves a relaxed version of the problem by
eliminating the integer constraint as:

min ||Ax - b][3
X 3)
st.Dx>d
and then rounding the real number solution X, to the final
integer solution Xj, by a rounding function fiouna():

“

Xint = fround (Xreal)-

The meaning of fiounda(-) is to map the relaxed solution to
the nearest integer grid node. However, the solution resulting
from this strategy can be far from optimal, because the nearest
mapped integer point can have a less-desirable objective value
compared to optimal solution, depending on the shape of the
objective function. Figure 2 shows an example for such cases,
where the mapped point Py, (as denoted by the blue triangle)
is not necessarily the optimal integer solution P} (as denoted
by the yellow square). Their difference in objective function
can be exaggerated when the dimension of the solution space
increases.

Most commercial tools (e.g., [11,12]), on the other hand,
are based on a more accurate branch-and-bound algorithm
[10, 13, 14] targeting the IP problem in Eq. (1) directly. The
branch-and-bound algorithm starts with a feasible point x(©
(i.e., a point satisfies all the constraints). The corresponding
object function value f© of the best solution so far serves as
the upper bound. The n dimensions of x lead to a searching
space defined by n variables. The space is then iteratively
divided to search for an optimal solution. In each iteration, one
variable x; (j € {1,2,...,n}) is selected and two “branches” of
sub-problems are formed. The two sub-problems have the new
constraints x; < x and X;j >x 0 respectively, and the lower
bound for each sub-problem is calculated. If the lower bound
of either sub-problem is larger than the current upper bound,
the sub-space it defines can be safely discarded, as the optimal
value will not exist in this sub-space. By repetition of such a
progress, a search tree keeps growing and being pruned until
the optimal leaf is reached (i.e., the subspace contains only one
candidate and cannot be further divided). Given sufficient time
and memory, the algorithm is guaranteed to find the global-
optimal solution. However, this tree-based searching process
has time and memory complexity exponential to the variable
dimension n, and can easily be impractical for large-scale
problems.

Due to the high complexity of branch-and-bound, other
works have instead searched for a sub-optimal solution that
exhibits lower complexity. For example, the authors of [9]
have proposed a method based on a semi-positive definite
(SDP) relaxation of the original IP problem. A randomized
algorithm is then applied to find a feasible solution. This
algorithm has an overall complexity of O(n3), which is much
lower than that of branch-and-bound. However, it assumes the
integer programming problem has no other constraints, which
is not the case in our application scenario. The consequence of
adding the inequality constraints in Eq. (1) to the SDP problem
results in long runtimes for commercial tools to solve, which
is impractical for our problem considering its large scale.

III. INTEGER PROGRAMMING VIA SPARSE
APPROXIMATION

While the relax-round strategy described in Egs. (3)-(4)
usually cannot provide a sufficiently accurate solution, the
relaxed problem in Eq. (3) can be solved by convex solvers
(e.g., [15]) with limited compute time as compared to branch-
and-bound. IPSA is based on error analysis of the relax-

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Value x;

169.8 o

The corresponding basis:
main source of high rounding error

P

r N\

081055

-5.10-1
105107

163 488,037 605,945
Coefficient index 7

1 74

Figure 3. Solved coefficient values for Eq. (3). The solution is non-sparse but
more than 99.9% of the coefficients are extremely small. The small coefficients
lead to high rounding error as compared to fitting error.

round solution: by transforming Eq. (3) to a sparse-regression
problem, we can utilize the fast solving speed of the relax-
round strategy while decreasing the error to a comparable level
as the optimal IP solution.

In this section, we first introduce two sources of errors of
the relax-round strategy, namely fitting error and rounding
error, and then demonstrate their relationship to the sparsity
of the solution. For the transformed sparse-regression prob-
lem, we further propose two solving strategies — forward
step-wise regression and Li-regularization. Finally, detailed
analysis concerning the advantages and limitations of the two
strategies, as well as their error bound and computation cost
will be provided to verify their correctness and efficiency.

A. Two Error Types

From a statistical view, we assume that there is an un-
derlying optimal solution x* such that b = Ax* + €, where
€ € R” is the Gaussian noise added to each dimension of b,
ie., ~ N(0, o%),j = 1,2,...,p. For any given real-number
vector X, the difference after applying the rounding function
fround On it is denoted as Ax. For the sake of simplicity, we
assume a stochastic rounding strategy' so that both Ax and
€ are random variables. The expected error of the rounded
solution can be expressed as:

E ||A - fiound(X) = b|I3 = EcEax [|A(X + Ax) - b]|3

=EEax [|Ax = b]}; + 2(Ax — b)" AAx + [AAX|)5]. (5)

The expectation of the crossing term in Eq. (5) can be re-
written as:

EEax [(Ax — b)" AAx]

—E, [(Ax —b)T AE,, [Ax|x]] =0, (6)
where we use the fact that Exx [AX|X] = 0 as implied by the
stochastic rounding assumption. Substituting Eq. (6) into Eq.
(5) yields:

E [[Axin = bl3 =E [[Ax-b[3+ |AAXIF | ()
[————
fitting error rounding error

IWe use stochastic rounding [16] for simplicity of analysis, but the similar
arguments about the error composing of fitting and rounding errors generally
hold if using nearest-rounding.

The error is composed of two parts: fitting error which
measures how well x can reconstruct b, and rounding error
which indicates how far x is from an integer point. Suppose
there are N non-zeros elements in X, an upper bound on the
rounding error can be calculated by

2
DAy <> 1A A%;]3
J 2 J

N~mjax A1,

lAAX|)?

IA

®)

where we use the fact that the maximum possible stochastic
rounding error is 1. Since the upper bound in Eq. (8) is
proportional to N, decreasing the number of non-zero elements
in x reduces the rounding error. But on the other hand, a more
sparse x implies fewer types of FUB implementations are used
(i.e., fewer basis to decompose b onto), which increases the
fitting error.

Despite the trade-off between rounding and fitting errors
with respect to N, the impact of N on rounding error is much
higher, especially when N is not very small (e.g., N >100).
By studying various cases of the the relaxed IP problem in Eq.
(3), we find the solutions have two important characteristics:
(i) they are not sparse, i.e., almost all of the elements in x
are non-zero; (ii) most elements in x are extremely small
(e.g., more than 99.9% are less than 0.5). Figure 3 shows
an example by plotting the values of all the elements in x.
Only 74 out of 605,945 coefficients are larger than 0.5 and
a fairly large proportion of the coefficients are even smaller
than 107>, Studying the contribution from the basis with small
coefficients to the fitting/rounding error reveals that such basis
bring much higher rounding error than their contribution to
reducing the fitting error. If we divide x into two vectors Xp,
(coefficients larger than 0.5, with corresponding basis Ar) and
Xs (smaller than 0.5, with basis Ay), then the difference in
fitting error and rounding error brought by basis in A can be
defined as follows, respectively:

Aer = (AL - x{ = bll» = [[Ax = bl) / [Ibl]
A& = ||As - Axs]l / [[bll2

(€))
(10)

’

where x{ are the coefficients solved from Eq. (3) by using
only the basis in A, and Axg is calculated by:

an

Axg = X5 — fround(XS)

In the case shown in Figure 3, Ae; = 0.0149 while Ae. =
0.1446, which means that considering the basis in A, brings
10x more rounding error than their contribution to reducing
the fitting error. Thus, if A can be identified beforehand and
eliminated from A, then the total error of the solution would
be significantly reduced.

B. Sparse Regression and Solving Strategies

Based on analysis of the two types of errors, we transform
Eq. (3) to a sparse-regression problem, namely:

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

[Fitting error
Rounding error

Overall error

*1 P P, P

Figure 4. P|~P3 are three solutions of the relaxed problem in Eq. (3). Py is
has the least fitting error but higher rounding error because it is not sparse.
By sparse-regression in Eq. (12), we are trying to find solutions like P and
P3, both of which have lower overall error.

min ||Ax — b||§
X

st.Dx>d (12)

lIxllo < 4

The Ly-norm of x in Eq. (12) restricts the number of non-zero
elements below a pre-defined hyper-parameter A. By solving
Eq. (12), we are expecting to decrease N for small rounding
error and at the same time find a suitable set of basis so that
the fitting error can also be under control.

Note that the regression problem is highly under-
determined, implying that the number of basis in A is so large
that many of them are very similar. Thus, for Eq. (3), it is
probable to find many sub-optimal points near the optimal
solution. In Eq. (12) we aim to find such sub-optimal points
that are on the axis, which have slightly higher fitting error
but far lower rounding error. For example, as the illustration
shown in Figure 4, P;~P3 are three solutions of Eq. (3). Py is
the optimal solution with the least fitting error, but during the
rounding process, it has rounding errors in every dimension, so
its totally error is higher than other two sub-optimal solutions
which have smaller rounding error due to sparsity. By solving
Eq. (12), we are trying to find solutions like P, and P3, which
are sub-optimal in terms of fitting error but with much lower
rounding and overall errors. Since Eq. (12) is NP-hard due to
the non-convexity of Ly-norm, two alternative strategies are
proposed.

Solving Strategy 1: forward step-wise regression

When no other constraints are specified besides x > 0, a
greedy forward step-wise strategy can be adopted to iteratively
select a subset of the basis that can significantly decrease
fitting error. As summarized in Algorithm 1, we begin with a
residual r© = b and an empty basis index set V (step 1). In
each iteration, a basis that is most positively correlated with
the residual is identified by evaluating the normalized inner
product defined in Eq. (13). We need to ensure that the inner
product is non-negative to ensure the coefficients with respect
to the selected basis satisfy the constraint x > 0. So in step 3,
if no more basis are positively correlated to the residual, the
iteration terminates. Once a new basis is chosen, its index is
added to V and the regression problem is re-solved based on

the current selected basis in step 5 (which is easily solvable
by convex solvers such as [15]). A new r®) is updated in step
6, indicating the residual that the remaining basis needs to fit.
If not terminated at step 3, an iteration will terminate when
its time reaches a pre-defined threshold Np,x. Finally, all the
coefficients with respect to the un-selected basis are set to zero
(step 7).

Algorithm 1 Forward Step-wise Regression

Input: Objective b, the basis matrix A and the maximum
number of iterations Npax

Output: Coefficients x.

1. Initialize: @ = b, the index set V = @.

for k =1, ..., Nyax do

2. Find the index i so that

i= argmaxje{lw_’n}<l'(k_1), —j>, (13)
1A
. k-1) A;
3. if (rh), 7a) < 0 then
| break
end
4. Update V = V U {i}.
5. Solve the following optimization problem:
2
min Ajx;—b (14)
x(k) 14 ’
jeV 2
st.x; >0, jeV (15)
for solution %) = {%;,j € V}.
6. Update the residual by r®) = b—b®), b®) = 31, A;%;

end
7. Set the un-selected coefficients to 0: x; = 0,7 ¢ V

Solving Strategy 2: L,-regularization

If additional constraints are required besides x > 0 (e.g., Eq.
(2)), Strategy 1 cannot be used because selecting a basis during
iterations makes it difficult to ensure the final solution satisfy
the additional constrains. In such cases, L;-regularization can
be used to solve the constrained sparse-regression problem.

The main idea of L;-regularization is to relax Eq. (12) by
replacing the Ly-norm term with L;-norm:

x|l < A (16)

The Li-norm of a vector is defined as the summation of the
absolute value of all the elements, which is a convex function.
Various theoretical studies from the statistics community
demonstrate that under some general assumptions both
Lo-norm regularization and L;-norm regularization result in
the same solution [17].

The two strategies have their respective advantages and
limitations. Strategy 1 is more heuristic but works very well
in practice. In each iteration, the optimization problem in
Egs. (14)-(15) contains only a small number of variables so
that it can be efficiently solved. In addition, with Strategy 1,
selection of the hyper-parameter A can be avoided, because

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

in practice we can integrate the rounding process and track
the error in each iteration by rounding) and calculating the
residual. Finally, we can simply select the best result within
all the iterations (an example will be given in Section IV). The
downside of Strategy 1 however is that it can only solve the
problem with constraint x > 0, which highlights the strength
of Strategy 2 — flexibility to deal with any linear constraints.
However, Strategy 2 requires careful tuning of the hyper-
parameter A, which significantly increases the total runtime
if aiming for an optimal A.

C. Error Bound and Computational Cost

Here we analyze the error bound of the two strategies.

For Strategy 1, without loss of generality, we assume
that the object b can be constructed through a non-negative
linear combination of basis D {Y1,¥2, ... ¥}, where
v o€ RP |yl 1 for all ¥ € D. This dictionary D can
be constructed by normalizing each column of matrix A. In
other words, we assume that there exists an underlying set of
coefficients x* that b = 3; x7y;. Based on the proof in the
appendix, we have the following theorem concerning the error
bound of the residual r®) of step k:

Theorem 1. Let ||bllz, = 3; x; < oo, the residual r® after
k steps satisfies

||r(k)||2 < %
k+1

a7

forall k > 1.

Theorem 1 demonstrates, using Algorithm 1, the residual-
error bound decreases at the rate of O(k'/?), which assures
error convergence of Strategy 1 (i.e., the fitting error). On
the other hand, after the subsequent rounding process, the
rounding error increases approximately at the rate of O(k)
(since the upper-bound is proportional to N). Considering the
trade-off between the two parts of error, there should exist an
optimal k that minimizes overall error.

For Algorithm 2, with the same “b = AX* + €” assumption
as stated at the beginning of Section III.A, and that ||Aj||§ <
n, for j = 1,...,p, we have the following theorem (see the
appendix for the proof of Theorem 2):

Theorem 2. Set A = ||x*||; in Eq. (16), then with probability
at least 1 —4, the expectation of error between the fitted result
AX and Ax* has the error bound

1. logn
—[|A% - AX"|l3 < [Ix"[|y .
p p

It shows that the error bound is proportional to the Li-norm
of the underlying “real” coefficients x*. If x* has a small L;-
norm value, the solution X given by Strategy 2 will not have
a large fitting error.

Now we demonstrate that the two strategies have polynomial
complexity, which is a significant speed-up over branch-and-
bound algorithm’s exponential complexity.

For Strategy 1, step 2 in Algorithm 1 involves n vector
multiplications of length p, which means O(np) floating-point

(18)

operations (FLOPs). Step 5 is the most complex, including
solving for a constrained quadratic optimization problem.
Conventional commercial tools use an interior-point method
that requires O(n>p) FLOPs. Step 6 is essentially a matrix-
vector product and a vector subtraction, which requires O(kp)
FLOPs. Assuming that iteration terminates after K iterations,
the overall complexity of Strategy 1 is O(Kn?p). The main
calculation of Strategy 2 is to solve the L; regularized problem.
This step can also performed by commercial tools using an
interior-point method, which has O(n?p) complexity.

IV. EXPERIMENTS

In this section, we apply IPSA to the LCV implementation
problems, and compare the performance with the naive relax-
round method, and a commercial IP solver. In addition, further
analysis is conducted to demonstrate details of the method
and illustrate the trade-off between fitting and rounding errors
as discussed in Section III.A. All experiments are completed
using a server with 64 2.2GHz CPU cores and 1TB of RAM.

A. Comparison of Methods

We compare the performance of four methods for LCV im-
plementation: (i) IPSA with the forward step-wise strategy, (ii)
IPSA with Lj-regularization, (iii) naive relax-round method,
and (iv) a commercial IP solver [11]. Seven examples (denoted
as Designs 1-7) with respect to real industrial test-chip design
cases are used to evaluate the performance. Each example
corresponds to a standard-cell library and a target standard-
cell histogram. In other words, Eq. (1) is solved using specific
matrix A and vector b for each design. The A matrices for
Designs 1-3 contain 605,945 columns, indicating the solution
x has a dimension of 605,945. The number for Designs 4-5 is
829,228, and 222,698 for Designs 6-7. A commercial convex
optimization tool [15] is used for solving the relaxed problem
in Eq. (3), forward step-wise regression (step 5 in Algorithm
1), and L;-regularization.

Two metrics are used to evaluate the four solution ap-
proaches, namely standard-cell histogram matching, and run-
time. Histogram matching for a specific solution X is defined
as follows:

[Ibll;

Here we use the Li-norm because it measures the histogram
mismatch in a more intuitive way than L,-norm, while in
the optimization problem we used the latter because it is
more smooth and strictly convex, making it easier to solve
by commercial convex optimization tools.

First we consider a scenario where the only linear constraint
is X > 0, i.e., the practitioner has no specific requirement for
the least number of specific standard cell(s) in the design.
In this case, both forward step-wise and L;-regularization
strategies can be applied. The two metrics of the four methods
are listed in Table I, as shown in the “Overall error” and
“Time” columns. For each design, the method that gives the
smallest error is highlighted with bold text in each row. For

matching error = (19)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Table 1
HISTOGRAM MISMATCH (ERROR) AND RUNTIME COMPARISON OF DIFFERENT METHODS.

Relax-round IPSA Forward step-wise regression IPSA Li-regularization IP Solver [11]

Design Full prec. Overall ‘ Time Full prec. Overall Time Full prec. Overall Time Overall Time
error error (sec.) error error (sec.) error error (sec.) error (sec.)

1 0.0956 0.096 404.1 0.0564 0.0561 549.7 0.0956 0.0951 2,595 0.086 86,000
2 0.0513 0.0517 403.1 0.0312 0.0313 630 0.0514 0.0514 2,625 0.035 86,000
3 0.0721 0.072 345.3 0.0466 0.0465 537.1 0.0718 0.0718 2,750 0.087 86,000
4 0.0056 0.0747 347.3 0.0058 0.0077 637.3 0.0056 0.0091 7,520 0.006 86,000
5 0.0062 0.1531 350.2 0.00089 0.0031 516.5 0.00089 0.0059 10,885 0.001 86,000
6 0.1158 0.1159 67.3 0.1158 0.1153 136.6 0.1158 0.1159 3,948 0.1159 10,601
7 0.1138 0.1147 100.5 0.1138 0.1126 182.9 0.1138 0.1133 6,835 0.114 7,974

Table II

HISTOGRAM MISMATCH (ERROR) AND TIME COMPARISON OF DIFFERENT METHODS WITH LINEAR CONSTRAINTS.

Relax-round IPSA Li-regularization IP Solver [11]
Design Full prec. Overall Time Full prec. Overall Time Overall Time
error error (sec.) error error (sec.) error (sec.)
4 0.0056 0.0982 547.1 0.0056 0.0067 25,651 0.0062 86,000
5 0.0009 0.1832 350.2 0.0068 0.0172 20,198 0.0070 86,000
more straight-forward comparison, the error comparison with 0.16
respect to the seven designs is also plotted in Figure 5. N
As expected, the relax-round method has the highest error £
for almost all cases. The IP solver is supposed to have the ;
least error theoretically but for Design 3 it has the highest. £ . £
This is mainly because (i) we restrict the maximum runtime & g; %
Hlemrn

to one day due to the time limit of the server, (ii) we only
allow it to use basis with 30,000 largest coefficients derived
from solving Eq. (3) because server memory cannot handle
a search space of the 10° dimensions exhibited by Eq. (1).
Forward step-wise regression significantly reduces the error
over 50x compared to relax-round method and in five cases it
even surpasses the IP solver. Li-regularization does not exhibit
similar improvement in some cases, probably because the time
limit we set does not allow a thorough exploration of the
hyper-parameters. If a suitable A is found, L;-regularization
is also expected to significantly reduce error for Designs 4
and 5 as well. For Designs 6 and 7, because the least-accurate
relax-round method achieves a similar error to the IP solver,
it is expected that little improvement brought can be achieved
by these two sparse-regression strategies.

In terms of runtime, the relax-round method is the fastest,
because it solves the simplest problem. In contrast, the IP
solver is the slowest due to its high complexity; in some cases,
it does not reach the final solution within the 86,000-second
time limit. Forward step-wise regression runs slightly longer
but comparable to relax-round, and more than 100x faster
than the IP solver on average. Li-regularization has a longer
runtime, because the L;-regularized problem has to be solved
multiple times with different hyper-parameters A to find the
optimal value.

Except for the IP solver, the other three methods first solve
a relaxed problem without an integer constraint, and then
round the full-precision solution Xey. So in addition to the
final error, the errors of X, for the three methods are also
recorded and listed in columns named “Full prec. error” in

Design2 Design3 Design4 Design5 Design6 Design7

% Relax-round E=Z IPSA L,-reguralization /] IPSA fwd. step-wise || IP solver

Figure 5. The comparison of the relative error (i.e., [[AX—b||;/]|b|[;) of the
solution X from each of the four methods for seven designs.

Table I. Comparing these errors with the corresponding values
in “Overall error” columns, we can observe the effect of the
rounding process for each method. The relax-round method
is most susceptible to rounding. When its X, is close to a
integer grid node, the error resulting from the rounding process
is small (e.g., for Design 6), but for other cases, Designs
4 and 5 for example, the rounding process can increase the
error by 13X and 25X, respectively. In contrast, forward step-
wise regression and L;-regularization are not affected that
much, because the differences between the two columns are
relatively small and stable. This demonstrates that finding a
sparse solution can reduce rounding error.

We also consider another scenario where the practitioner
requires that the LCV implementation includes at least 20
instances for each type of standard-cells (i.e., the linear con-
straint becomes like Eq. (2) with elements in ¢ equated to 20).
In this case, forward step-wise regression is not applicable, so
in Table II, we list the performance of the remaining three
methods to Designs 4 and 5. Similar comparison results as
Table I can be observed, that is, L;-regularization method
achieves similar error as the IP solver (much lower than relax-
round) but with significantly reduced runtime.

B. Detailed Analysis

In this sub-section, the details of forward step-wise regres-
sion including an analysis of relax-round are presented to

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

—o— Fitting error
0.3 ¥+ Overall error
.
e 02
=
=
0.1
0 ; B i '
0 20 40 60 80
Number of iterations
Figure 6. The change of relative fitting error (i.e., ||ARea1 —b||1/||b[]1) and

relative overall error (i.e., (||AX—b|[;)/||b|]1) as the iterations of Algorithml
proceeds.

demonstrate the trade-off between these two sources of errors.

For forward step-wise regression, the rounding process can
be integrated into each iteration so that the final error can be
tracked across iterations. In this way, the searching for hyper-
parameters can be eliminated, since we can simply choose the
one with least overall error as the final solution. For example,
Figure 6 shows the change of (i) fitting error with the full-
precision solution X, and (ii) overall error with the rounded
solution X, as the iterations proceeds for Design 5. Because
in each iteration, a new basis is included in the candidate set
that b decomposes onto, the fitting error continues to decrease.
Generally, the overall error is close to the fitting error because
the effects of rounding are not obvious for the sparse solution.
However, as the number of non-zero coefficients increases, the
gap between the two curves becomes obvious and the overall
error starts fluctuating due to the varying rounding errors. The
lowest overall error is achieved at the 65-th iteration instead
of the last one, and we take the solution at the 65-th iteration
as the final solution.

Another experiment is conducted to demonstrate the trade-
off between fitting and rounding error as the sparsity of the
solution varies. For the relax-round method, we use only a
subset of basis, randomly selected from the columns of A for
Design 5 and gradually include more basis to match the same
target distribution. Figure 7 shows the change of fitting error
and overall error with respect to different sizes of the basis (V).
The deviation of the two curves is the results from the rounding
error. When N is small, the effect of rounding is negligible.
However, when N grows larger than 2 x 10°, the rounding
error begins to dominate the fitting error, thus demonstrating
the trade-off between them as a function of solution sparsity.
The optimal sparsity is determined by tracking of errors during
iterations of forward step-wise regression and tuning hyper-
parameter A for L;-regularization.

V. CONCLUSIONS

Incorporation of physical characteristics from actual prod-
ucts is the utmost important requirement for test-chip design.
One of the design objectives is matching a target standard-cell
usage distribution — essentially a large-scale IP problem, which
presents significant challenges to existing solution techniques
that lead to inaccuracy or high demand for compute resources.
In this paper we describe a method called IPSA to solve

—o— Fitting error
—+— Overall error
: 0 /f’ il
s} Roundlng error |
: I

0 2 4 6 7x10°
Number of basis

Figure 7. The change of relative fitting error (i.e., ||AXea —b]|[1/][b|]1) and

relative overall error (i.e., (||AX — b]|[;)/||b]|;) of the relax-round strategy,

based on different basis size (N).

the IP problem in an effective way — solving a transformed
sparse-regression problem with a subsequent rounding process.
Two strategies for solving sparse-regression, namely forward
step-wise regression and Li-regularization, are investigated
for solving the sparse-regression problem. The former has
generally better performance and the latter has more flexibility.
Experiments demonstrate that compared to directly solving the
original problem with a commercial IP solver, IPSA achieves a
similar or even better solution with more than 100x speed-up.

Besides the test-chip design application in this paper, IPSA
can also be applied to other large-scale IP problems with
the aim of solving a linear system with linear constraints.
Especially, IPSA is expected to achieve high efficiency when
the linear system is highly under-determined and the under-
lying optimal solution is sparse. Future work may include
exploration of other design objectives other than standard-
cell distribution matching by effectively solving optimization
problems with different objective functions.

VI. APPENDIX
A. Proof of Theorem 1
Proof. For proof simplicity, we denote the vector selected in

Eq. (13) in Algorithm 1 as g®). In other words:

g® = argmax,, ., (r* V. y). (20)

Given the facts that (i) b®) is the best approximation to b
from Span({y;,i € V¥}), and (ii) the approximation of r*~1
from the set {a - g®) : a € R} is (r*D, g®))g®) we have
[Ib —b®|12 < [Ib = b* =D — (pk-D, gk} g®)|2 Because rl/) =
b-bY), j =1,... k, the following holds:

K93 < I - D, g
_ k=1)12
= [t -

eIz

[(x®=D, g®y2, @21

Using the equations b = b =D +r*=1) and (b*=1 r*=Dy =
we have
”r(k—l)”Z — <I'(k_1), r(k—1)> - <l'(k_1), b) _
= (1% b) = 3 xr* gy
J

< sup (e) 3 ;= sup (¢4) bl
yeD 7 yeD

(b(k—l), r(k—1)>

= (x*D, g®y bl ¢, (22)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

Substituting Eq. (22) into Eq. (21) yields:

R=1)112 s ulk=1) o(k)\2
I < ey (1 - T e)
- 0 g P2 bl
1
ey IV
= [Ir* l)||2(1 - W) (23)
L

Assume a series of non-negative numbers a©@ > a(V... >
a®, where a® < M, and a® < a*=V(1 - a*D/M), by
deduction we can derive a*) < M /(k + 1). Applying this to
Eq. (23), and because M = ||b||2], we have:

IIbll7
2o A 24
el < = 4
Theorem 1 can then be derived by taking square root of each
side of Eq. (24). O

B. Proof of Theorem 2
Proof. Because X is the solution to Eq. (12) with the constraint
Eq. (16), the following holds:

b — A%[[; < |Ib - AX*|)5. (25)

After rearranging and using Holder’s inequality [18] and the
bound for Lj-regularization A = ||x*||;, we have

A% — Ax"||7 < 2(e, A% — Ax") = 2(AT €, & — x")
<2lR = X[|A €lloo < 4lIX* 11 IAT €leo. (26)
In Eq. (26), ||AT €|l = maxj=i,_n |AT¢| is a maximum of
n Gaussian random variables. By standard maximal inequality

for Gaussian random variables, for any ¢ > 0, with probability
of at least 1 — 9,

max |AT €| < oy2plog(en/s). X))
J=l.n
Substituting Eq. (27) into Eq. (26), we have
1 21 é
LiAR = AXIB < dorfix [y | 222D o)
4
which is the same as the rate given in Eq. (18). |

REFERENCES

[1] R. C. Leachman and S. Ding, “Excursion Yield Loss and Cycle Time
Reduction in Semiconductor Manufacturing,” IEEE Transactions on
Automation Science and Engineering, 2011.

K. Y. Cho, S. Mitra, and E. J. McCluskey, “Gate exhaustive testing,” in
IEEE International Conference on Test, 2005.

R. D. Blanton, B. Niewenhuis, and C. Taylor, “Logic Characterization
Vehicle Design for Maximal Information Extraction for Yield Learning,”
in IEEE International Test Conference, 2014.

P. Fynan, Z. Liu, B. Niewenhuis, S. Mittal, M. Strajwas, and R. D.
Blanton, “Logic Characterization Vehicle Design Reflection via Layout
Rewiring,” in IEEE International Test Conference, 2016.

B. Niewenhuis and R. D. Blanton, “Efficient built-in self test of regular
logic characterization vehicles,” in IEEE VLSI Test Symposium (VTS),
2015.

A. D. Friedman, “Easily testable iterative systems,” IEEE Transactions
on Computers, vol. 100, no. 12, pp. 1061-1064, 1973.

R. D. Blanton, B. Niewenhuis, and Z. Liu, “Design Reflection for Opti-
mal Test Chip Implementation,” in IEEE International Test Conference,
2015.

(81

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

Z. Liu, B. Niewenhuis, S. Mittal, and R. D. Blanton, “Achieving
100% Cell-aware Coverage by Design,” in Design, Automation& Test in
Europe, 2016.

J. Park and S. Boyd, “A semidefinite programming method for integer
convex quadratic minimization,” Optimization Letters, vol. 12, no. 3, pp.
499-518, 2018.

J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1-30,
1999.

N. V. Sahinidis, “BARON 18.5.9: Global Optimation of Mixed-integer
Nonlinear Programs.” Users manual, 2018.

“GUROBI optimization.” https://http://www.gurobi.com/.

M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the res-
olution of large-scale symmetric traveling salesman problems,” SIAM
review, vol. 33, no. 1, pp. 60-100, 1991.

J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimiza-
tion problems,” Handbook of applied optimization, vol. 1, pp. 65-77,
2002.

M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming, version 2.1,” 2014.

“Stochastic Rounding.” https://en.wikipedia.org/wiki/Rounding.

E. J. Candes et al., “Compressive sampling,” in Proceedings of the
international congress of mathematicians, vol. 3. Madrid, Spain, 2006,
pp. 1433-1452.

“Holder’s inequality.” https://en.wikipedia.org/wiki/Holdersinequality.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 18:08:05 UTC from IEEE Xplore. Restrictions apply.

