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Abstract. This article proposes an active learning method for high-dimensional

data, based on intrinsic data geometries learned through diffusion processes on
graphs. Diffusion distances are used to parametrize low-dimensional structures

on the dataset, which allow for high-accuracy labelings with only a small num-
ber of carefully chosen training labels. The geometric structure of the data

suggests regions that have homogeneous labels, as well as regions with high

label complexity that should be queried for labels. The proposed method en-
joys theoretical performance guarantees on a general geometric data model, in

which clusters corresponding to semantically meaningful classes are permitted

to have nonlinear geometries, high ambient dimensionality, and suffer from sig-
nificant noise and outlier corruption. The proposed algorithm is implemented

in a manner that is quasilinear in the number of unlabeled data points, and

exhibits competitive empirical performance on synthetic datasets and real hy-
perspectral remote sensing images.

1. Introduction. Statistical and machine learning techniques are revolutionizing
the sciences. Advances in medical diagnosis [27], automatic game playing [57],
and computer vision [35] have been sparked by seismic advances in computational
power and innovative learning algorithms and architectures. However, many state-
of-the-art machine learning approaches are predicated on the availability of huge
labeled data sets that may be used to train the parameters of the underlying models.
Unfortunately, many important scientific problems do not have large, accurately
labeled training sets readily available. This limits the practicality of many state-of-
the-art supervised methods. Moreover, several fields—medicine and remote sensing,
for example—are not amenable to easily generating new labeled data points at
scale, due to the high cost of labeling data points. This renders the applicability
of many state-of-the-art supervised learning algorithms—including modern deep
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learning methods which may depend on millions of parameters—problematic, as
generating sufficient training data may be resource-intensive.

When training datasets do not exist or are burdensome to generate, alternative
methods may be used to exploit the glut of unlabeled data. Data augmentation
[59, 62] may be used to generate new labeled training points by, for example, per-
turbing existing training points in a suitable manner. Unsupervised methods—those
using no training (labeled) data at all—are ideal when insufficient training data is
available, as they work entirely on the unlabeled data. However, unsupervised
methods may be inadequate for highly complex data. Indeed, such approaches en-
joy performance guarantees only when rigid geometrical or statistical properties are
made on the data [5, 6, 54, 42, 39, 30]. Methods that are semi-supervised [16] pro-
vide a middle ground between the supervised (abundant labeled data for training)
and unsupervised (no labeled data for training) regimes, taking advantage of large
quantities of unlabeled data while still allowing labeled points to influence classifica-
tion. When the unsupervised structure of the data (e.g., its geometric or statistical
properties) is compatible with the labels of the data, semisupervised learning may
improve over unsupervised learning and also over classical supervised learning with
the same fixed labeled training data.

This article proposes an active learning scheme for high-dimensional datasets
exhibiting intrinsically low-dimensional structure. Active learning is a form of semi-
supervised learning in which an algorithm uses the unlabeled data to determine
which data points to query for labels. In the proposed method, the geometry of the
data is parametrized through diffusion processes defined on a data-dependent graph
[23, 22], which are robust to high ambient dimensionality, noise, and non-spherical
cluster shapes. The inferred geometry—which is computed without supervision—
is then analyzed to determine which data points should be queried for labels; the
query points are chosen to have maximum impact, so that relatively few are needed
to achieve good empirical performance. The proposed active learning scheme is
called learning by active nonlinear diffusion (LAND).

1.1. Major contributions and article outline. The major contributions of this
article are twofold. First, LAND is proposed and is proven to perform well for data
generated according to a flexible geometric data model. With only a small number
of queries, LAND achieves perfect accuracy even for data that is high-dimensional,
contains classes that are highly nonlinear or non-compact, and is corrupted by
significant noise and outliers. The theoretical results are derived from an analysis
of the underlying diffusion distances, which in turn are amenable to analysis using
techniques from spectral graph theory and the analysis of Markov chains.

Second, the proposed method is implemented numerically. Taking advantage of
fast nearest neighbor search algorithms and eigensolvers for sparse matrices, the
proposed method is proven to enjoy quasilinear complexity in the number of sample
points under the proposed data model, which supposes that the underlying data has
intrinsically small dimensionality (in the sense of lying close to a low-dimensional
manifold, for example). LAND is demonstrated on synthetic datasets as well as real
hyperspectral images, demonstrating its suitability for high-dimensional geometric
data.

The remainder of the article is organized as follows. Background on active learn-
ing and diffusion geometry are presented in Section 2. The geometric data model
and algorithm are proposed and analyzed in Section 3. Comparisons with related



LEARNING BY ACTIVE NONLINEAR DIFFUSION 273

works are also presented in Section 3. Numerical experiments are in Section 4.
Conclusions and future research directions are in Section 5.

2. Background. The proposed active learning algorithm exploits the underlying
diffusion geometry of data to efficiently determine points to query for labels. In this
section, we review active learning as well as diffusion geometry.

2.1. Background on active learning. Active learning is a type of semisupervised
learning in which unlabeled data is analyzed to determine which points to query for
labels [55]. It differs from traditional semisupervised learning in that the labeling al-
gorithm is permitted to ask for the labels of certain points, instead of being provided
with a random sample of labeled points. Under certain data models and methods
for parsimoniously selecting query points, the active learning approach can perform
as well as traditional semi-supervised or even supervised learning, with far fewer
labels [21, 26]. The crucial theoretical question is how to determine which data
points should be queried for labels. The active learning framework assumes there
is an underlying budget that can be spent to label points. This budget should be
spent carefully, in order to only query points that are most likely to prove significant
for the overall labeling of the data.

Approaches to active learning may be categorized into two general strategies:
hypothesis space reduction and cluster exploitation [24]. The first category con-
ceives of supervised learning as a process of using training points to select a “good”
classifier from a large space of possible classifiers. Asymptotically, as the number of
labeled sample points n` →∞, a consistent supervised learning procedure converges
to an optimal classifier. In practice, the rate of convergence in n` is relevant—the
faster the rate of convergence, the better the learning algorithm. In this frame-
work, active learning is a family of methods for selecting query points such that
the convergence rate towards a good classifier is fast in n`, in particular faster than
passive sampling methods, for example sampling labels uniformly at random. That
is, query points should be influential in distinguishing between different possible
classifiers, and should allow for convergence towards the “optimal” classifier with
fewer points than if the labeled points were selected uniformly at random. These
active learning approaches can, in certain cases, significantly improve the expected
error rate of the classifier as a function of n` [9, 26, 14, 8, 34].

A second category of active learning approaches seek to exploit cluster struc-
ture in the data in order to emphasize sampling near complex regions of the data
with heterogeneous labels, and to avoid oversampling near simple, homogeneous
regions of the data. Indeed, if a cluster—detected through a prescribed clustering
algorithm—can be estimated as relatively pure with respect to its labels, then it
may be efficient to simply give all points in the cluster the same label and to focus
the limited querying resources in more ambiguous regions. A crucial problem in
this framework is to tap the budget in a way that balances two different tasks:
confirming the label homogeneity of particular data regions and exploring new data
regions. Methods based on iteratively pruning hierarchical clustering trees have
been proposed [25] and analyzed in terms of label smoothness with respect to the
scales of the tree [61].

The method proposed in this paper is related to the second category, and exploits
the underlying geometry of the data sample in order to estimate the most impactful
points to query for labels. In order to develop notions of cluster geometry that are
robust to being embedded in a high-dimensional space, to being non-spherical in
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shape, and to corruption by noise and outlier points, the diffusion geometry of
the underlying data is estimated and used as the basis for all subsequent pairwise
comparisons. This provides a set of (essentially) geometrically intrinsic coordinates
for the data that are robust to dimensionality, nonlinearity, and noise.

An example of synthetic toy data for which diffusion geometry notably decreases
the number of active learning queries necessary for good accuracy appears in Figure
1. The role of diffusion geometry is crucial to the proposed method, and it is
reviewed in detail in Section 2.2.
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Figure 1. Data colored by class label. Both the data in (a) and (b) exhibit
cluster structure, which can guide active learning in the case that the labels

are constant on these clusters. Indeed, on the left, using a simple clustering

algorithm such as K-means suggests that only 3 labels are necessary to cor-
rectly label the entire dataset. For the data on the right, many more than three

labels are necessary if K-means is used for the underlying clustering, since the

clusters are highly elongated and nonlinear. Indeed, K-means will split the an-
nular and elongated clusters. On the other hand, if pairwise comparisons are

made with distances other than Euclidean distances, it may be possible that
active learning achieves near perfect results with only 3 labels. The proposed

active learning scheme gains robustness to class shape via diffusion geometry,
and is suitable for data in both (a) and (b).

2.2. Background on diffusion geometry. Let X = {xi}ni=1 ⊂ RD be discrete
data. The diffusion geometry of X is learned through Markov diffusion processes
defined on a graph with nodes corresponding to the points {xi}ni=1 and transition
probabilities proportional to the similarities of these points in some metric [23, 22].
That is, points that are nearby have high probabilities of pairwise transition, and
points that are far apart have low probabilities of transition. By analyzing the
diffusion process across time scales, natural geometric structure in the data can be
inferred.

More precisely, let G = (X,W ) be a weighted, undirected graph with nodes
X and weight Wij ∈ [0, 1] between xi, xj ∈ X. Typically Wij = K(xi, xj) for
some symmetric, radial kernel K : RD × RD → [0, 1]. The weight matrix W is
normalized to produce a Markov transition matrix P = D−1W , where D is the
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diagonal degree matrix with Dii =
∑n
j=1Wij . The matrix P is row-stochastic,

and diffusion distances measure how similar points are according to their transition
probabilities in P .

Definition 2.1. Let P be a Markov transition matrix defined on X = {xi}ni=1. Let
pt(xi, xj) = (P t)ij . The diffusion distance between xi and xj at time t with respect
to weight w : X → [0,∞) is

Dt(xi, xj) = ‖pt(xi, ·)− pt(xj , ·)‖l2(w) =

√√√√ n∑
`=1

(pt(xi, x`)− pt(xj , x`))2w(x`).

The time parameter t is a global time scale at which the diffusion process runs.
For small t, the process has run for a short amount of time, which may prevent
important, large-scale geometric structures in the data from impacting the diffusion
distances. On the other extreme, the diffusion distances all collapse to 0 as t→∞,
under the assumption that P is ergodic, since P t converges to the rank 1 matrix with
the stationary distribution π as rows, where πP = π. When the data has underlying
geometric structure, t parametrizes multiscale hierarchy, with small t realizing fine-
scale structures and t large realizing coarse-scale structures [46, 31, 40].

While P is not symmetric, it is diagonally conjugate to a symmetric matrix:
D

1
2PD−

1
2 = D−

1
2WD−

1
2 . Hence, P admits a spectral decomposition, which can be

exploited for the computation of diffusion distances. More precisely, let {(λ`, φ`)}n`=1

be the eigenvalues and eigenvectors of D−
1
2WD−

1
2 , sorted so that 1 = λ1 > |λ2| ≥

· · · ≥ |λn|. Then

(P t)ij =
n∑
`=1

λt`ψ`(xi)ϕ`(xj),

where ψ`(xi) = φ`(xi)/
√
π(xi), ϕ`(xj) = φ`(xj)

√
π(xj). If {ψ`}n`=1, {ϕ`}n`=1 are

understood as column vectors, this is equivalent to the decomposition P t =∑n
`=1 λ

t
`ψ`ϕ

>
` . In particular, {ϕ`}n`=1 is an orthonormal basis for l2(1/π), so that

diffusion distances with respect to the weight w(xi) = 1/π(xi) may be written in
terms of {ψ`}n`=1:

Dt(xi, xj) = ‖pt(xi, ·)− pt(xj , ·)‖l2(1/π) =

√√√√ n∑
`=1

λ2t
` (ψ`(xi)− ψ`(xj))2.

If the underlying transition matrix P is approximately low rank, the modulus of the
eigenvalues {λ`}n`=1 decays rapidly, so that for t sufficiently large, this sum may be
truncated after M = O(1) eigenpairs yielding the approximate diffusion distances

Dt(xi, xj) ≈

√√√√ M∑
`=1

λ2t
` (ψ`(xi)− ψ`(xj))2.

This truncation has the added benefit of denoising the diffusion distances, since the
eigenvectors associated with eigenvalues away from 1 in modulus (in some sense the
high frequency eigenvectors) correspond not to intrinsic geometric structures in the
data, but to random fluctuations produced by sampling [29]. The embedding

xi 7→ (λt1ψ1(xi), λ
t
2ψ2(xi), . . . , λ

t
MψM (xi))

may be understood as a form of nonlinear dimension reduction, and also as a set of
(essentially) geometrically intrinsic coordinates for the data [36].
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3. Proposed algorithm and analysis. Let {xi}ni=1 ⊂ RD. The LAND algorithm
requires determining which points should be queried for labels. This is done by
estimating modes of the nonlinear clusters in the data through a combination of
density estimation and the diffusion geometry of the data.

Let p : RD → [0,∞) be a kernel density estimator, for example

p(x) =
1

Z

∑
y∈NNk(x)

exp(−‖x− y‖22/σ2
0),

where NNk(x) are the k-nearest neighbors of x in Euclidean distance, σ0 is a scaling
parameter, and Z is a normalization constant so that

∑
x∈X p(x) = 1. Let Dt be

the diffusion distance metric on X, and let

ρt(x) =

{
min{Dt(x, y) |p(y) ≥ p(x), x 6= y}, x 6= arg maxz p(z)

maxy∈X Dt(x, y), x = arg maxz p(z)
(1)

be the (t-dependent) diffusion distance between a point and its nearest diffusion
neighbor of higher density if x is not the maximizer of p(x), and the maximum
diffusion distance to another point if x is the maximizer of p(x). The modes of the
data are determined through the quantity

Dt(x) = p(x)ρt(x).

Points will have a large Dt value if they are high density and are Dt-far from
other high density points. Following [40], we characterize the modes of X as the
maximizers of Dt. This notion is robust to data geometry—as captured by diffusion
distances—and provides a multiscale hierarchy to the structure of the data. See
Figure 2 for an illustration of how Dt changes with time.

3.1. Learning by unsupervised nonlinear diffusion. In [40], the maximizers
of Dt were proposed as cluster modes, and diffusion distances and density were used
to label all other points relative to these modes. We summarize this unsupervised
learning algorithm, called learning by unsupervised nonlinear diffusion (LUND) in
Algorithm 1. This algorithm was proven to perfectly cluster certain data, for an ap-
propriate choice of time parameter t, and is robust to non-spherical data geometries
and cluster overlap.

It was shown that, depending on the well-connectedness of the clusters compared
to their separations, the range of t for which Algorithm 1 performs well may be
large [40]. However, developing methods for estimating an appropriate choice of
t without using any labeled data is an important and only partially addressed
problem. Indeed, if the data admits hierarchical cluster structure, then several
choices of t may be appropriate, leading to different reasonable clusterings. In this
context, querying a small number of points for labels can disambiguate between
these different clusterings.

3.2. Learning by active nonlinear diffusion. In the active learning setting, we
characterize potential classes as being composed of Dt-orbits around the maximizers
of Dt. These orbits partition the data, and are comparable to elements of a Voronoi
tessellation [7]. In the case that the labels for the data are smooth with respect to
this partition, querying the maximizers of Dt is a more efficient use of a sampling
budget than uniform random sampling. The proposed algorithm, denoted Learning
by Active Nonlinear Diffusion (LAND) appears in Algorithm 2.
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(a) Computed log10(Dt) values for log10(t) = 2.
The corresponding modes (i.e., the maximizers of
Dt) are circled in red.
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(b) Computed log10(Dt) values for log10(t) = 9.
The corresponding modes (i.e., the maximizers of
Dt) are circled in red.
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(c) Diffusion distances for log10(t) = 2
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(d) Diffusion distances for log10(t) = 9

Figure 2. In (a) and (b), the values of log10(Dt) are shown for synthetic geo-
metric data from Figure 1 (b) for log10(t) = 2 and log10(t) = 9, respectively.

We see that for small values of t, the mode estimation incorrectly places the
first three modes on the highly elongated cluster. For larger time values, the

underlying random walk reaches a mesoscopic equilibrium and correct mode

estimation is achieved. The emergence of mesoscopic equilibria is apparent
in (c), (d), which show the matrix of diffusion distances at time log10(t) = 2

and log10(t) = 9, respectively. When log10(t) = 2, P t has not mixed, and
there are still substantial within-cluster distances. For log10(t) = 9, P t has

reached mesoscopic equilibria, so that within-cluster distances are quite small,

yet between-cluster distances are still large [40].

3.2.1. Analysis of LAND. From a theoretical standpoint, it is of interest to know
when querying a small number of points (Algorithm 2) offers substantial be benefit
compared to unsupervised learning (Algorithm 1). Suppose that the underlying

data consists of distinct classes X =
⋃K
k=1Xk, with all points in Xk having label k.

Let

Din
t = max

k=1,...,K
max
x,y∈Xk

Dt(x, y),
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Algorithm 1 Learning by Unsupervised Nonlinear Diffusion (LUND)

Input:

• {xi}ni=1 (Unlabeled Data)
• {(λ`, ψ`)}M`=1 (Spectral Decomposition of P )
• {p(xi)}ni=1 (Empirical Density Estimate)
• {ρt(xi)}ni=1 (1)
• t (Time Parameter)

Output:

• K̂ (Estimated Number of Clusters)
• Y (Labels)

1: Compute Dt(xi) = p(xi)ρt(xi).
2: Sort the data in order of decreasing Dt value to acquire the ordering {xmi}ni=1.

3: Estimate K̂ = arg maxi
(
Dt(xmi

)/Dt(xmi+1
)
)
.

4: for k = 1 : K̂ do
5: Y (xmk

) = k.
6: end for
7: Sort X according to p(x) in decreasing order as {x`i}ni=1.
8: for i = 1 : n do
9: if Y (x`i) = 0 then

10: Y (x`i) = Y (zi), zi = arg min
z
{Dt(z, x`i) | p(z) > p(x`i) and Y (zi) > 0}.

11: end if
12: end for

Dbtw
t = min

k 6=k′
min

x∈Xk,y∈Xk′
Dt(x, y)

be the maximum within-class and minimum between-class diffusion distances at
time t, respectively. Let

M = {x ∈ X | ∃k such that x = arg max
y∈Xk

p(y)},

max(M) = maxx∈M p(x),min(M) = minx∈M p(x) be the density maximizers of
the distinct classes, the maximum density among such classwise maximizers, and
the minimum density among the classwise maximizers, respectively. In [40], it is
shown that if

Din
t /D

btw
t < min(M)/max(M), (2)

then the data can be labeled in a fully unsupervised manner by Algorithm 1. How-
ever, the underlying density conditions may not be satisfied in practice, particularly
if there are strong discrepancies between the density of the most dense point in each
cluster. Moreover, (2) depends strongly on t. Introducing the active learning scheme
allows to bypass this potentially stringent density condition and still achieve perfect
accuracy, at the cost of querying the labels of a small number of points.

Theorem 3.1. Let X =
⋃K
k=1 be data to classify. Suppose that Din

t < Dbtw
t , and

that the B maximizers of Dt include the elements of M. Then LAND with a budget
of size B achieves perfect classification accuracy.

Proof. If the B maximizers of Dt include all the density maximizers of the distinct
classes, that is, the elements of M, then the LAND queries guarantee these points
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Algorithm 2 Learning by Active Nonlinear Diffusion (LAND)

Input:

• {xi}ni=1 (Unlabeled Data)
• {(λ`, ψ`)}M`=1 (Spectral Decomposition of P )
• {p(xi)}ni=1 (Kernel Density Estimate)
• {ρt(xi)}ni=1 (1)
• t (Time Parameter)
• B (Budget)
• O (Labeling Oracle)

Output:

• Y (Labels)

1: Compute Dt(xi) = p(xi)ρt(xi).
2: Sort the data in order of decreasing Dt value to acquire the ordering {xmi

}ni=1.
3: for i = 1 : B do
4: Query O for the label L(xmi

) of xmi
.

5: Set Y (xmi
) = L(xmi

).
6: end for
7: Sort X according to p(x) in decreasing order as {x`i}ni=1.
8: for i = 1 : n do
9: if Y (x`i) = 0 then

10: Y (x`i) = Y (zi), zi = arg min
z
{Dt(z, x`i) | p(z) > p(x`i) and Y (z) > 0}.

11: end if
12: end for

are all labeled correctly. Then the result follows by induction on the data points
sorted in order of decreasing p(x) value. Indeed, for an unlabeled point x ∈ Xk,
its nearest diffusion neighbor of higher density, x∗, must be in the same class Xk,
since Din

t < Dbtw
t . Moreover, that point is already labeled as Y (x∗) = k, since

p(x∗) ≥ p(x). Hence, Y (x) = k.

Theorem 3.1 asserts that the LAND algorithm achieves perfect accuracy as long
as Din

t < Dbtw
t and B is large enough so that all elements of M are among the B

maximizers of Dt. Compared to LUND, LAND does not require that Din
t /D

btw
t <

min(M)/max(M) to guarantee strong performance. This is an important point in
practice, since the density between different regions of the data may vary consider-
ably. Ultimately, active learning is most useful when the budget B may be taken
very small compared to n; we shown in Section 4 that even a budget of just a few
points may significantly improve accuracy on synthetic and real datasets.

3.3. Comparison with related methods. It is natural to compare LAND with
related cluster-based active learning methods, as well as its unsupervised variant
LUND.

3.3.1. Comparisons with related active learning methods. As discussed in Section
2.1, active learning methods may be categorized as falling into two broad classes:
those based on refining the hypothesis space of classifiers, and those based on ex-
ploiting cluster structure in the data. LAND falls into the second category; it is
thus natural to compare it with existing cluster-based active learning algorithms.
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Many active learning algorithms that exploit cluster structure in the data proceed
by constructing a hierarchical clustering on the data, often represented in the form
of a dendrogram [28]. Given such a structure, sample queries are made in order to
explore heterogeneous regions of the tree (leaves with highly mixed labels) and to
avoid sampling from homogeneous regions of the data (leaves that consist mostly
of a single class). The key challenge is to balance the cost of exploring ambiguous
regions of the data with establishing the homogeneity of other regions.

Efficient algorithms that are statistically consistent have been proposed [25] and
analyzed using the notion of “probabilistic Lipschitzness,” which quantifies purity
of leaves of the hierarchical clustering [61]. These approaches make analyzing the
hierarchical tree the central problem; the problem of whether or not a particular
method for constructing a hierarchical tree is appropriate or not is not directly
considered. Indeed, it is common to construct the underlying hierarchical tree with
standard methods, for example average-linkage clustering [25] or single linkage clus-
tering [28]. Despite their pervasiveness, these methods for constructing hierarchical
trees suffer from a lack of robustness to pernicious chains in the data (single-linkage)
and geometric distortion (average-linkage). Active learning based on hierarchical
trees performs well when the leaves of the tree become pure quickly when descend-
ing from the root node; if the underlying tree does not exhibit pure leaves until
relatively deep in the tree, many samples are required for active learning, and the
method may not improve substantially over random sampling.

Unlike average linkage and single linkage clustering, the proposed LAND method
explicitly incorporates the underlying geometry of the data to construct clusters
of multiscale granularity, which can then be exploited for active querying. The
LAND algorithm may be interpreted as a method for constructing the underlying
hierarchical tree, which has the desirable property that the leaves are essentially
robust to geometric transformations of the underlying clusters (i.e., to making the
clusters elongated or nonlinear). Indeed, given a number of clusters K, one can run
a variant of LUND in which K is input as a parameter; see Algorithm 3.

It is then natural to compare the purity of the nodes of a hierarchical tree at
scale K, with the purity of the clusters learned by Algorithm 3 with number of
clusters equal to K. More generally, let C = {Ck}Kk=1 be a clustering of labeled
data {(xi, yi)}ni=1. Let ȳk be the most common label among the points in Ck. The
purity of the clustering C is defined as

P(C) =
1

n

K∑
k=1

|{xi ∈ Ck | yi = ȳk}|.

Given a hierarchical clustering {C`}n`=1—that is, C1 consists of 1 cluster with all
points, Cn consists of n singleton clusters, and C`+1 is the same clustering as C`, but
with two of the clusters split— the purity of the clustering at the `th scale is P(C`).
Clearly P(C`) is non-decreasing as a function of `, and P(Cn) = 1. If the growth of
P(C`) towards 1 is rapid in `, then an active sampler does not need to search deeply
into the tree to find regions with homogeneous labels. In Figure 3, a plot of P(C`) is
shown for three synthetic datasets with three different families of clusterings: single
linkage clusters, average linkage clusters, and the clusters learned by Algorithm 3.

We see that for the geometric data, the clusters learned from average linkage
clustering achieve high purity much later than the clusterings learned with single
linkage clustering. This is due to the inability of average linkage to account for
the nonlinear and elongated shapes of these clusters. Indeed, the opposite ends of
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Algorithm 3 LUND, K Known

Input:

• {xi}ni=1 (Unlabeled Data)
• {(λ`, ψ`)}M`=1 (Spectral Decomposition of P )
• {p(xi)}ni=1 (Empirical Density Estimate)
• {ρt(xi)}ni=1 (1)
• t (Time Parameter)
• K (Number of Clusters)

Output:

• Y (Labels)

1: Compute Dt(xi) = p(xi)ρt(xi).
2: Sort the data in order of decreasing Dt value to acquire the ordering {xmi}ni=1.
3: for k = 1 : K do
4: Y (xmk

) = k.
5: end for
6: Sort X according to p(x) in decreasing order as {x`i}ni=1.
7: for i = 1 : n do
8: if Y (x`i) = 0 then
9: Y (x`i) = Y (zi), zi = arg min

z
{Dt(z, x`i) | p(z) > p(x`i) and Y (z) > 0}.

10: end if
11: end for

the elongated cluster are quite far apart when measured with the average linkage
metric, but are much closer when diffusion distances are used. On the other hand,
the bottleneck and Gaussian data illustrate how single linkage clusters may take
a long time to achieve high purity, due to the fact that single linkage clustering is
guided only by density, and is not robust to adversarial paths of points connecting
two otherwise well-separated clusters. Compared to single linkage and average link-
age clustering, the clusters learned by LUND are robust to geometric distortions,
adversarial paths, and noise.

3.3.2. Comparison with LUND. The proposed LAND algorithm (Algorithm 2) in-
tegrates an active learning criterion into the LUND algorithm (Algorithm 1). It
has been shown that when the the classes of the data X are sufficiently coherent
and pairwise well-separated, LUND with a good choice of t perfectly labels all data
points [40]. The unsupervised LUND algorithm depends critically on t, and the
robustness of LUND to this choice of parameter suggests its usefulness. However,
developing practical methods for estimating a good choice of t may be challenging in
data that admits hierarchical cluster structure. Indeed, consider the data in Figure
4. For this data, it is ambiguous whether there are two or four clusters. Indeed, as
shown in Figure 4 (c), if log10(t) ∈ [1, 3], LUND estimates there are 4 clusters. If
the time parameter satisfies log10(t) ∈ [4, 6], LUND estimates there are 2 clusters.
This is a fundamental ambiguity in unsupervised clustering, and one can view the
ability of hierarchical clustering algorithms, and of LUND (depending on the time
scale t) to detect the different possibilities for the number of clusters as a strength.
Partial supervision allows for disambiguation in these situations.

Indeed, with a very small number (4) of labeled queries, LAND is able to over-
come this obstacle and determine the labels of the data. This is because even for
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Figure 3. Top row : Three different synthetic datasets in two dimensions are

shown, categorized as geometric, bottleneck and Gaussian. Bottom row: Plots
of node purity for three different multiscale, hierarchical methods of clustering:

average linkage clustering (ALC), single linkage clustering (SLC) and learning

by unsupervised nonlinear diffusion (LUND). As the number of leaves/clusters
increases, purity is non-decreasing. The purity of the LUND clusters converges

more rapidly to the optimal value 1, indicating that high accuracy can be

gained by correctly labeling a smaller number of clusters, compared to ALC
and SLC.
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Figure 4. In (a), data with natural hierarchical structure is exhibited. The

four Gaussians have means (0, 0), (0, 2),
(
3
2
, 0

)
,
(
3
2
, 2

)
. While at one level of

granularity there are 4 clusters (shown in (b)), at a coarser level of granularity

the top 2 and bottom 2 Gaussians form clusters, leading to a clustering with

only 2 clusters (shown in (c)).
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Figure 5. The matrix of pairwise diffusion distances for log10(t) = 1.5 and

log10(t) = 5 are shown in (a) and (b), respectively, illustrating the hierarchical

cluster structure in the data. This hierarchical structure introduces ambiguities
into the estimation of the number of clusters K in LUND, as shown (c). For

small time, K̂ = 4, while for larger time K̂ = 2.

large t, the top four values of Dt correspond to the modes of the four Gaussian
clusters, and the diffusion distances within these clusters are quite small. In the un-
supervised case, for large t, the gap between the within-cluster and between-cluster
distances for the four clusters are dwarfed by the the gap between the within-cluster
and between-cluster distances for the two clusters, leading to ambiguity. That is,
when the underlying data is grouped into 2 clusters, Din

t /D
btw
t is large for large t

and small for small t; when the underlying data is grouped into 4 clusters, Din
t /D

btw
t

is large for small t and small for large t. These lead to inherent ambiguity in how
to choose t in a fully unsupervised manner. However, by bringing in just 4 labels,
LAND is able to correctly label the dataset for both large and small t values, as can
be seen from Figure 6. In this sense, LAND introduces robustness to the time pa-
rameter that may be problematic in LUND, at the cost of querying a small number
of points.

3.3.3. Comparisons with graph subsampling methods. The LAND algorithm maybe
understood as a method of acquiring a subsample X̃ from the full data set X, so
that accurate labels on X may be inferred from X̃ alone. Indeed, the maximizers
of the function Dt : X → [0,∞) determine X̃, whose labels are then propagated to
all of X using diffusion distances. In this sense, LAND bears similarity to graph
subsampling algorithms [56, 17]. In particular, a range of approaches for sampling
smooth (bandlimited) functions on graphs have been proposed [48, 49, 17, 2, 4, 3],
including those based on adaptive sampling driven by the localization properties of
low-frequency Laplacian eigenfunctions [50, 51].

Compared to these methods, LAND explicitly incorporates density into the sam-
pling procedure and does not rely solely on the spectral properties of the underlying
graph Laplacian (or random walk matrix P ). In addition, the time parameter t for
diffusion distances parametrizes multiscale structure in LAND. Note that t is im-
plicitly related to the smoothness of the labeling functions LAND can learn: as t
increases, LAND will only be able to learn labeling distributions that are increas-
ingly smooth with respect to the underlying graph. This is because high-frequency
eigenfunctions contribute negligibly to diffusion distances for large t. Moreover, the
sampling procedure in LAND is deterministic, while many state-of-the-art graph
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Figure 6. LAND labelings of the data with four queries under two different

scenarios: small diffusion time (top row) and large diffusion time (bottom row),
and four latent clusters (first column) and two latent clusters (second column).

The clusters are closer in the horizontal direction than in the vertical direction,

from whence the hierarchical structure is derived. In all cases, LAND is able
to to correctly label the data with just four queries, one for each Gaussian.

subsampling methods are random with a sampling distribution that is non-uniform
and biased in favor of points on which low-frequency Laplacian eigenfunctions local-
ize. An interesting topic of future work is to consider a randomized version of LAND
in which the sampling procedure is not deterministic, but random with nonuniform
sampling distribution proportional to 1/Dt(x).

3.4. Computational complexity and implementation. The proposed Algo-
rithm 2 has computational complexity depending crucially on the number of data
points to label (n), the ambient dimensionality of the data (D), and the intrinsic
dimensionality of the data (d).

Theorem 3.2. Let {xi}ni=1 ⊂ RD be data to label. Suppose all except for O(log(n))
points have a higher density point within its O(log(n)) Dt-nearest neighbors. In
the case that a kNN-sparse matrix P is used, the LAND algorithm has complexity
O(CNN + nkNN + n log(n))), where CNN is the cost of computing all kNN nearest
neighbors.



LEARNING BY ACTIVE NONLINEAR DIFFUSION 285

Proof. The construction of the Markov transition matrix P has complexity O(CNN).
The subsequent kernel density estimation for all points is then O(nkNN). The
computation of ρt for all points is O(n log(n)), where we assume that all except
for O(log(n)) points have a higher density point within their O(log(n)) Dt-nearest
neighbors. To estimate the modes from Dt requires sorting n values, so has complex-
ity O(n log(n)). Once the modes are estimated, labeling all points has complexity
O(n log(n)) by the assumption that all except for O(log(n)) points has a higher
density point within its O(log(n)) Dt-nearest neighbors. The result follows.

In the worst case, CNN = n2, so that LAND has quadratic complexity in n.
When the data has intrinsically low-dimensional structure, fast nearest neighbor
searches reduce this complexity to be quasilinear in n.

Corollary 3.1. Let {xi}ni=1 ⊂ RD be data to label. When the underlying data is
intrinsically d-dimensional structure (in the sense of doubling dimension) and when
kNN � log(n), LAND has computational complexity O(DCdn log(n)2).

Proof. In the case that the data has intrinsically low-dimensional structure in the
sense of doubling dimension, the cover tree indexing structure [10] may be used so
that to compute each points kNN has complexity O(DCdkNNn log(n)). The result
follows.

Corollary 3.1 suggests that the proposed algorithm is appropriate for large num-
bers of data points n in high dimension, provided that the intrinsic dimensionality
of the data is small.

4. Experimental analysis. We perform experiments on three representative syn-
thetic datasets, as well as two real hyperspectral images1. Comparisons are made
between LAND and two related methods:

1. LAND with random query points. This algorithm consists of Algorithm 2,
but with random points selected for querying, rather than the maximizers of
Dt. Comparison with LAND will suggest if the query points determined by
diffusion geometry and density—as captured by Dt—are actually of significant
value.

2. Cluster-based active learning (CBAL). This algorithm [25] is implemented
using a hierarchical tree constructed from average linkage clustering.

Three performance metrics are used to compare the active learning results. Over-
all accuracy (OA) is the ratio of correctly labeled pixels to the total number of pixels.
Average accuracy (AA) averages the OA of each class, equalizing the significance of
small and large classes. Cohen’s κ-statistic (κ) is a measure of agreement between
two labelings that is robust to random chance [20].

4.1. Experiments on synthetic data. Experimental results on the three syn-
thetic datasets introduced in Figure 3 are shown in Figure 7, illustrating the effi-
cacy of LAND. In all cases, LAND achieves near perfect accuracy with fewer than
10 labels, while the comparison methods converge to high accuracy much more
gradually.

1http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(c) Gaussian data results

Figure 7. Experimental results on the synthetic datasets introduced in Figure

3. We see that LAND achieves rapid convergence to perfect labeling accuracy,
compared to much slower convergence for the two comparison methods.

4.2. Experiments on hyperspectral data. In order to illustrate the efficacy
of LAND on real data, we demonstrate its performance on hyperspectral imagery
(HSI), which constitutes an important data type in the remote sensing of the en-
vironment [15]. An HSI is an image consisting of D spectral bands, each localized
to a narrow electromagnetic range. The concatenation of these D spectral bands
provides highly detailed information about the materials being imaged, and can
allow for precise discrimination of specific objects in the scene. While nominally a
3-dimensional tensor, an HSI is often analyzed by collapsing the spatial coordinates
to produce a dataset {xi}ni=1 ⊂ RD, where n is the total number of pixels in the
image and D is the total number of spectral bands. When large training sets of
labeled pixels are available, classification of an HSI scene may be effectively per-
formed using a range of techniques, including support vector machines [41], deep
learning [18], and random forests [33].

Traditional supervised learning has led to strong empirical performance for HSI
classification. However, supervised learning for HSI—particularly state-of-the-art
deep learning—is predicated on the availability of large labeled training sets, which
must be collected and annotated, typically by human experts. The need for large
training sets is exacerbated by the high-dimensionality of the data. The collection
of large training sets may not be practical in the context of HSI, where there is
a huge number of possible classes and large variabilities are introduced by sensing
conditions. Indeed, the task of generating huge training sets for general HSI is quite
onerous, and may even require the deployment of humans to observe physically
the scene that has been remotely sensed, which is very resource intensive. It is
thus crucial to develop methods that can label HSI with no labeled training data
[1, 47, 11, 13, 32, 64, 19, 66, 63, 45, 44] or a combination of labeled and unlabeled
data [12, 53, 38].

Active learning for HSI is an important method for achieving high-accuracy clas-
sification results, without requiring large labeled training sets [52, 60, 37, 58, 65, 43].
These methods typically query for labels points near the boundaries of classes,
thus improving the convergence of the learning algorithm towards a good classifier.
LAND, on the other hand, exploits cluster structure in the data.

4.2.1. Experimental results for HSI. We perform active learning experiments on two
real HSI datasets, shown in Figure 8 and 9, respectively.

Experimental results for the three methods on the Salinas A and Pavia datasets
are shown in Figure 10. For the Salinas A dataset, accuracy with LAND is strong,
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(a) Salinas A (b) Ground Truth

Figure 8. The Salinas A dataset consists of 83× 86 = 7138 pixels in D = 224

dimensions. The image has spatial resolution 3.7m/pixel, and was recorded
over Salinas, USA by the Aviris sensor. The six labelled classes are arranged

in diagonal rows, and are quite spatially regular. The sum across all spectral

bands is shown in (a), and the labeled ground truth is shown in (b), with pixels
having the same class being given the same color.

(a) Pavia (b) Ground Truth

Figure 9. Pavia data consists of a 270 × 50 = 13500 subset of the full Pavia

data set. The image has spatial resolution 1.3m/pixel, and was recorded over
Pavia, Italy by the ROSIS sensor. It consists of 6 spatial classes, some of which

are quite well-spread out in the image. The sum across all spectral bands is

shown in (a), and the labeled ground truth is shown in (b), with pixels having
the same class being given the same color.

with only 10 labels leading to highly accurate empirical results, and subsequent
labels leading to rapid improvement towards perfect accuracy. In particular, com-
pared to using random query labels or CBAL, the improvement of LAND as a
function of the number of queries is fast. For the Pavia dataset, there is a sim-
ilar early jump in accuracy for LAND, while the improvement is slower for the
comparison methods.

5. Conclusions and future work. The LAND algorithm integrates diffusion ge-
ometry and density estimation to efficiently estimate query points that are highly
impactful on overall labeling accuracy in the active learning setting. Our theo-
retical and empirical analyses show LAND’s robustness to geometric distortions of
the underlying data classes, and our experiments on real-world HSI demonstrate
its effectiveness in accurately labeling high-dimensional datasets with a very small
number of query points.

In the context of HSI, developing active learning methods that incorporate spatial
proximity into the underlying diffusion process is of interest. This information may



288 MAURO MAGGIONI AND JAMES M. MURPHY

10 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Salinas A results

10 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Pavia results

Figure 10. The active learning results for the Salinas A and Pavia datasets are

shown in (a) and (b), respectively. In both cases, the LAND algorithm strongly

outperforms the modified LAND variant using randomly selected training data,
and the CBAL algorithm. In particular, LAND is able to achieve a significant

improvement in accuracy with a very small number of labels.

suggest that it is useful to query information in a spatially homogeneous region,
where it can be most impactful. The integration of spatial information into a
variant of the LUND algorithm adapted for HSI has proven effective [43, 44], and
it is likely that such information would similarly boost the effectiveness of LAND.

It is of interest to develop a cross-validation scheme that exploits the active
learning queries in order to iteratively update the optimal choice of time parameter
t. Indeed, as argued in Section 3.3.2, the use of a very small (essentially O(K))
active learning queries can be used to achieve robustness to the parameter t, which
is critically important in the LUND algorithm. However, it may be possible to
update the time parameter in an iterative fashion, by selecting at each time step a
time scale that separates all the modes learned so far, before querying a new point.
This has the potential to require fewer queries to learn all the classes, since the
parameter is being adaptively optimized at each time step, rather than after all
queries have been made.
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