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the size of the largest independent pair in a directed graph is 
developed. Our techniques consist in quantifying the impact of 
breaking the Hermitian symmetry of a matrix and are broadly 
applicable.
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1. Introduction

The eigendecomposition is among the most powerful tools for analyzing Hermitian 
matrices B ∈ Cn×n, i.e. matrices satisfying B∗ = B, where B∗ [j, �] = B [�, j]. Several 
classical results in linear algebra can be derived from decomposing a Hermitian matrix 
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B ∈ Cn×n as B = U diag(λ(B))U∗, where U is unitary and λ(B) = (λ�(B))0≤�<n ⊂ R. 
In particular, under the assumption that B is Hermitian, variational estimates on the 
Rayleigh quotient [19] can be stated in terms of λ(B):

∀f ∈ Cn×1, f �= 0, min {λ(B)} ≤ f∗Bf
‖f‖2

2
≤ max {λ(B)} . (1)

In case that B is non-Hermitian, the eigenvalues of B may be complex, or even worse 
the eigendecomposition may not exist at all.

When B is non-Hermitian but diagonalizable, its eigendecomposition is of the form 
B = P diag(λ(B))P−1 for some invertible matrix P and scalars λ(B). Compared to 
the Hermitian case, the columns of P need not form an orthonormal basis. A different 
decomposition that is available to all matrices is the singular value decomposition (SVD): 
B = U diag(σ(B))V∗, where the singular values σ(B) = (σ�(B))0≤�<n are non-negative 
and U, V are unitary matrices. However, it needs not be the case that UV∗ = U∗V = I, 
which is the primary contrast with the eigendecomposition.

Powerful tools of linear algebra can be applied to the study of graphs via spectral 
graph theory [7,3,18]. Indeed, let G = (V, B) be a graph, where V is the set of vertices 
and B ∈ {0, 1}|V |×|V | an adjacency matrix such that B [j, �] = 1 if there is an edge 
between the jth and �th nodes. By analyzing the spectral properties of B, a variety of 
mathematical ideas may be adapted to G, including notions of geometry [25,26], Fourier 
and wavelet analysis [11,21,30], random diffusion processes [10,9], and clusters [28,27]. 
While these tools have contributed to a renaissance in the analysis of data, spectral graph 
methods almost uniformly require the underlying graph G to be undirected, or in linear 
algebra terms, B must be Hermitian. This is a severe limitation in practice, as a variety of 
real data does not lend itself to representation as an undirected graph, for example social 
networks [22], models for the spread of contagious disease in a heterogenous population 
[24], and predator-prey relationships [32].

1.1. Summary of contributions

This article develops new approaches for the analysis of non-Hermitian matrices. The 
primary contributions are twofold. First, we prove a generalized version of the classical 
variational estimates on the Rayleigh quotient. New admissibility conditions are intro-
duced to replace the Hermiticity condition. Second, the Delsarte-Hoffman bound on the 
size of independent sets in undirected graphs is generalized to the directed setting. Our 
major tool consists in quantifying the discrepancy between Hermitian and non-Hermitian 
matrices, and proposing additional hypotheses in the theorems to address this discrep-
ancy. The gap between Hermiticity and non-Hermiticity is made precise, and moreover 
in the case of the Delsarte-Hoffman bound, the gaps between B being Hermitian, di-
agonalizable (with potentially complex eigenvalues) and B arbitrary is considered by 
analyzing the SVD. Our proof methods are flexible, and may be applicable to settings 
not considered in the present article.
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1.2. Related work

Spectral graph theory has been attempted for operators defined on directed graphs in 
a variety of contexts, including for the graph Laplacian [1,8,6,2,5,33,14,12] and for non-
reversible Markov chains [15]. Combinatorial results for directed graphs have also been 
studied [31,4,23,17]. These results do not, however, develop precise characterizations of 
the ways in which classical results can be modified in the non-Hermitian setting. In partic-
ular, the admissibility conditions proposed in this article explicitly illustrate what is lost 
when a matrix is perturbed to deviate from Hermiticity, and suggest how to compen-
sate for the loss of Hermiticity. Moreover, the proposed generalized Delsarte-Hoffman 
bound makes no assumptions of normality of the adjacency matrix of the underlying 
graph.

1.3. Notation

Throughout, bold typography is used to denote matrices and vectors. Let I denote the 
identity matrix with size clear from context. For a collection of points {α�}0≤�<n ⊂ C, 
let diag

{
(α�)0≤�<n

}
denote the n × n diagonal matrix with �th diagonal entry α�. Let 

1m×n and 0m×n respectively denote the m × n matrix of all 1s and all 0s. Let B[j, :] and 
B[:, �] denote the jth row and �th column of the matrix B, respectively. For matrices 
A, B ∈ Cm×n, we denote by A ◦ B ∈ Cm×n the Hadamard product (A ◦ B) [j, �] =
A [j, �] B [j, �]. For matrices A ∈ Cm×n, B ∈ Cp×q, we denote by A ⊗ B ∈ Cmp×nq the 
Kronecker product (A ⊗ B)p(k−1)+v,q(�−1)+w = Ak�Bvw.

2. Generalized Rayleigh quotient estimation

2.1. Rayleigh quotient for complex diagonalizable matrices

Let B ∈ Cn×n. There corresponds to B a (in general non-symmetric) bilinear form 
〈f , g〉B �→ f∗Bg, defined for f , g ∈ Cn×1. The behavior of this bilinear form can be 
analyzed in a scale-invariant manner through the Rayleigh quotient. When B is Her-
mitian, (1) states that the Rayleigh quotient 〈f , f〉B/‖f‖2

2 is controlled for f �= 0n×1 by 
the largest and smallest eigenvalues of B. We extend this result to the case when B has 
complex eigenvalues.

Theorem 2.1. Let B ∈ Cn×n be a diagonalizable matrix decomposed as B =
U diag {λ (B)} V∗ where U−1 = V∗ and λ (B) ⊂ C. Write λ�(B) = |λ�(B)| eiθ� for θ� ∈
[0, 2π). Let f , g ∈ Cn×1 be such that there exist F, G ∈ Cn×1 satisfying F ◦G �= 0n×1 and

f = VF, g = UG s.t. ∀0 ≤ � < n,
(
F [�] G [�] eiθ�

)
∈ R. (2)

Then
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min
0≤�<n

{
|λ�(B)| sgn(F [�] G [�] eiθ�)

}
≤ f∗Bg∑

0≤�<n

|F [�] G [�]|

≤ max
0≤�<n

{
|λ�(B)| sgn(F [�] G [�] eiθ�)

}
.

Proof. Using the eigendecomposition of B we have

f∗Bg =f∗U diag {λ (B)} V∗g

=
(
VF̄

)∗ U diag {λ (B)} V∗ (UG)

=F� diag {λ (B)} G

=
∑

0≤�<n

F [�] λ� (B) G [�] .

Writing each eigenvalue in polar form as λ�(B) = |λ�(B)| eiθ� and applying the admissi-
bility condition (2) yields

min
0≤�<n

{
|λ�(B)| sgn(F [�] G [�] eiθ�)

} ∑
0≤�<n

|F [�] G [�]|

≤
∑

0≤�<n

F [�] λ� (B) G [�]

≤ max
0≤�<n

{
|λ�(B)| sgn(F [�] G [�] eiθ�)

} ∑
0≤�<n

|F [�] G [�]| .

The result follows by algebraic manipulation. �
The condition (2) is an admissibility condition on the vectors f , g. In the case where 

B is Hermitian, the eigenvalues of B are real and V = U is unitary. If F [�] G [�] ≥ 0 for 
all �, then

∑
0≤�<n

|F [�] G [�]| =
∑

0≤�<n

F [�] G [�] = 〈f , g〉

since U = V is unitary. If B is Hermitian and moreover f = g, which implies that 
F = G, we have

∑
0≤�<n

|F [�] F [�]| = ‖f‖2
2,

min
0≤�<n

|λ�(B)| sgn(F [�] F [�] eiθ�) = min{λ(B)},

max
0≤�<n

|λ�(B)| sgn(F [�] F [�] eiθ�) = max{λ(B)},
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which recovers (1). In the general case, f , g must interact in a particular way for Theo-
rem 2.1 to hold, as quantified by the admissibility condition (2).

A slightly more general result holds, using a decomposition that bears resemblance to 
the singular value decomposition, but with negative singular values permitted.

Theorem 2.2. Let B ∈ Cn×n be decomposed as B = U diag {σ (B)} V∗ where UU∗ =
I = VV∗ and σ (B) ⊂ C. Write σ�(B) = |σ�(B)| eiθ� for θ� ∈ {0, π}. Let f , g ∈ Cn×1 be 
such that there exist F, G ∈ Cn×1 satisfying F ◦ G �= 0n×1 and

f = UF, g = VG s.t. ∀0 ≤ � < n,
(
F [�] G [�] eiθ�

)
∈ R. (3)

Then

min
0≤�<n

{
|σ�(B)| sgn(F [�] G [�] eiθ�)

}
≤ f∗Bg∑

0≤�<n

|F [�] G [�]|

≤ max
0≤�<n

{
|σ�(B)| sgn(F [�] G [�] eiθ�)

}
.

Proof. Using the decomposition of B, we have

f∗Bg =f∗U diag {σ (B)} V∗g

=
(
UF̄

)∗ U diag {σ (B)} V∗ (VG)

=F� diag {σ (B)} G

=
∑

0≤�<n

F [�] σ� (B) G [�] .

Writing each element of σ(B) in polar form as σ�(B) = |σ�(B)| eiθ� and applying the 
admissibility condition (3) yields

min
0≤�<n

{
|σ�(B)| sgn(F [�] G [�] eiθ�)

} ∑
0≤�<n

|F [�] G [�]|

≤
∑

0≤�<n

F [�] σ� (B) G [�]

≤ max
0≤�<n

{
|σ�(B)| sgn(F [�] G [�] eiθ�)

} ∑
0≤�<n

|F [�] G [�]| .

The result follows by algebraic manipulation. �
We remark that the decomposition in Theorem 2.2 may be thought of as a singular 

value decomposition in which the singular values are permitted to be negative. This type 
of decomposition will be developed further in Section 3.2.
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2.2. Illustration of admissible vectors via index rotations

Admissible vectors may be constructed as follows. Consider the matrix transformation 
prescribed by performing a rotation to the entry indices of a matrix A ∈ Cn×n:

(
ARθ

)
[j, �] =

A
[(

j − n − 1
2

)
cos θ +

(
n − 1

2 − �

)
sin θ + n − 1

2 ,

(
j − n − 1

2

)
sin θ

−
(

n − 1
2 − �

)
cos θ + n − 1

2

]

where rotation angles are restricted to θ ∈
{

0, π
2 , π, 3π

2
}

. Together with the transpose, 
these transformations generate the dihedral group of order 8. Given a 3 × 3 matrix A, 
we have

AR0 = A =

⎛
⎜⎝ a00 a01 a02

a10 a11 a12
a20 a21 a22

⎞
⎟⎠ ,

AR π
2 =

⎛
⎜⎝ a20 a10 a00

a21 a11 a01
a22 a12 a02

⎞
⎟⎠ , ARπ =

⎛
⎜⎝ a22 a21 a20

a12 a11 a10
a02 a01 a00

⎞
⎟⎠ , AR 3π

2 =

⎛
⎜⎝ a02 a12 a22

a01 a11 a21
a00 a10 a20

⎞
⎟⎠ .

Note that these matrix transformations may be written in terms of the n × n auxiliary 
matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Indeed, a straightforward calculation gives that for any A ∈ Cn×n, AR π
2 = A�Q, ARπ =

QAQ and AR 3π
2 = QA�.

These rotation transformations preserve unitarity:

Lemma 2.3. Suppose A is unitary. Then ∀ θ ∈
{

0, π
2 , π, 3π

2
}

, ARθ is also unitary.

Proof. It suffices to prove that 
(

AR π
2

)∗ (
AR π

2

)
= I; the other angles follow similarly. 

Noting that A� is unitary because A is,
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(
AR π

2

)∗ (
AR π

2

)
=

(
A�Q

)∗ A�Q�

=Q∗ (
A�)∗ A�Q

=Q∗Q

=I. �
Moreover, index rotations obey a convenient multiplicative identity:

Lemma 2.4. Let A, B ∈ Cn×n. Then (AB)R π
2 = B�

((
A�)R 3π

2

)�
.

Proof. Note that

(AB)R π
2 =(AB)�Q

=B�A�Q

=B�(QA)�

=B�
((

A�)R 3π
2

)� �
We now establish the existence of a class of admissible vectors.

Theorem 2.5. Let M ∈ Rn×n be symmetric such that MR π
2 is diagonalizable with

MR π
2 = U diag

{
λ

(
MR π

2

)}
V∗, U−1 = V∗.

Write the eigenvalues of MR π
2 in the polar form λ�

(
MR π

2

)
=

∣∣∣λ�

(
MR π

2

)∣∣∣ eiθ� , � =
0, . . . , n − 1. Then there exist admissible vector pairs f , g ∈ Cn×1 for which

f = VF̄, g = UG, F ◦ G �= 0n×1 s.t. ∀ 0 ≤ � < n,
(
F [�] G [�] eiθ�

)
∈ R.

Proof. For an arbitrary matrix B ∈ Cn×n the following identity follows from Lemma 2.3

f∗Bg = f∗ (
B�)R π

2 Qg,

since for any matrix B we have 
(
B�)R π

2 Q = B. In particular, for a real Hermitian M,

f∗Mf = f∗MR π
2 Qf .

For some fixed j let

f = QU [:, j] , g = U [:, j] .
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Note that there exist a unique pair of vectors F̄, G ∈ Cn×1 such that f = VF̄ and g =
UG. In particular, G = (0, 0, . . . , 0, 1, 0, . . . , 0)�, with the 1 in the jth coordinate. So, to 
show admissibility of the vector pair f , g ∈ Cn×1, it thus suffices to show F[j]G[j]eiθj ∈
R. This follows from the fact that

f∗MR π
2 g = f∗MR π

2 Qf = (f∗Mf) ∈ R

and also

f∗MR π
2 g = F� diag({λ(MR π

2 )})G = F[j]λj

(
MR π

2

)
G[j]. �

We remark that the matrix MR π
2 in Theorem 2.5 is a persymmetric matrix [16], that 

is, MR π
2 = Q 

(
MR π

2

)�
Q.

Note that the rotation operator preserves the magnitude of the eigenvalues of a Hermi-
tian matrix, though their phases may change in general, and the associated eigenvectors 
may also change.

Corollary 2.6. Let M be a Hermitian matrix with spectral decomposition M =
V∗ diag{λ(M)}V, V∗V = I. Then MR π

2 = V� diag {λ (M)}
((

V∗�)R 3π
2

)�
.

Proof. Applying Lemma 2.4 to the factorization V∗ (diag{λ(M)}V) yields the desired 
result. �
3. Estimating independent set cardinalities in directed graphs

As an application of our method to graph theory, we develop estimates on the size of 
the largest independent set in certain directed graphs. We will consider the inner product 
on n × n matrices 〈B, M〉 = tr(B∗M), which has associated norm

‖B‖ = ‖B‖Fro =
√ ∑

0≤j,�<n

|B[j, �]|2.

Definition 3.1. Let G be a directed, unweighted graph on n vertices. The graph G has 
adjacency matrix B ∈ {0, 1}n×n where B [i, j] = 1 if and only if there is a directed edge 
from the ith node to the jth node in G. The graph G is d-regular if all row sums and 
column sums are equal to d. The graph G is undirected if it has symmetric adjacency 
matrix.

The Delsarte-Hoffman bound [13,20] is a classical estimate on the cardinality of the 
largest independent set of an undirected, unweighted, d-regular graph in terms of the 
spectrum of its adjacency matrix. The proof of the Theorem 3.2 is well-known [29]. For 
completeness, it is given in the appendix.
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Theorem 3.2 (Undirected Delsarte-Hoffman bound). Let B ∈ {0, 1}n×n be the adjacency 
matrix of an undirected d-regular graph G with spectral decomposition

B = U diag(λ(B))U∗, UU∗ = I

where λ(B) ⊂ R. Let I be the indices of an independent set in G. Then

|I|
n

≤ − min {λ (B)}
d − min {λ (B)} . (4)

The condition on the maximum size on an independent set may be characterized as the 
maximum value ‖1I‖2

2, where 1∗
IB1I = 0 for some I ⊂ V . The spectral decomposition of 

B decouples the rank-one matrix 1n×n associated with the eigenvalue λ0(B) = d, from 
whence the analysis flows.

Note that the Delsarte-Hoffman bound is sharp. Indeed, let n be a positive integer 
and consider a complete bipartite graph with 2n nodes in which each partition has n
nodes. For such a graph,

max
I independent

|I| = n, min{λ(B)} = −n, d = n.

3.1. Directed Delsarte-Hoffman bound

We now consider independent sets in directed regular graphs and broaden the scope 
to adjacency matrices whose entries are not necessarily binary.

Definition 3.3. Let G be a directed graph with n nodes. A matrix B ∈ Cn×n is a pseudo-
adjacency matrix for G if Bij = 0 if and only if there is no directed edge from the ith
node to the jth node in G. For a real number δ > 0, the pseudo-adjacency matrix B is 
said to be δ-regular if all row sums and column sums of B are equal to δ.

We develop Delsarte-Hoffman-type bounds based on the spectral decomposition and 
the singular value decomposition of the (non-Hermitian) pseudo-adjacency matrix.

Definition 3.4. Let B ∈ Cn×n be a pseudo-adjacency matrix for a directed graph. Let 
S, T ⊂ {0, 1, 2, . . . , n − 1} be subsets of nodes in the graph. The pair (S, T ) is an inde-
pendent pair for B if 1∗

SB1T = 0, where 1S , 1T ∈ {0, 1}n×1 are indicator sets for S, T
respectively. We say 1S , 1T are indicator vectors for the independent pair (S, T ).

The Delsarte-Hoffman bound we prove estimates the maximal size of |S||T |, where 
(S, T ) is an independent pair in a directed graph with (non-symmetric) adjacency matrix 
B.

Theorem 3.5. Let B ∈ Cn×n denote a δ-regular pseudo-adjacency matrix for a directed 
graph G. Let B be diagonalizable and decomposed as B = U diag {λ (B)} V∗ where 
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U−1 = V∗ and the first columns of U, V are constant. Let λ�(B) = α�e
iθ� , α� ∈ R, θ� ∈

[0, 2π) be a polar form of the �-th eigenvalue of B. Let α(B) = (α0, . . . , αn−1). Let 
f , g ∈ {0, 1}n×1 be such that there exist F, G ∈ Cn×1 satisfying

f = VF, g = UG such that ∀0 ≤ � < n,
(
F [�] G [�] eiθ�

)
≥ 0. (5)

Then if f and g denote respectively indicator vectors for an independent pair in B,

‖f‖2
2‖g‖2

2
n

≤
− min{α(B)}

∑
0≤�<n

F [�] G [�] eiθ�

δ − min{α(B)} .

Proof. Note that by δ-regularity, λ0(B) = δ. We also have that U[:, 0] = V[:, 0] =
1√
n

(1, 1, . . . , 1)�. Hence, B = δ
n 1n×n +

(
I − 1n×n

n

)
B. Thus, for all f , g ∈ Cn×1 subject 

to (5),

〈f g∗, B〉 = δ

〈
f g∗,

1n×n

n

〉
+

〈
f g∗,

(
I − 1n×n

n

)
B

〉
.

We analyze the second term of the right hand side as follows:

〈
f g∗,

(
I − 1n×n

n

)
B

〉
=f∗

(
I − 1n×n

n

)
Bg

=f∗
(

I − 1n×n

n

)
U diag(λ(B))V∗g

=f∗

⎛
⎝U diag(λ(B))V∗ − 1

n

∑
0≤�<n

λ�(B)1n×nU[:, �]V∗[�, :]

⎞
⎠ g

=f∗

⎛
⎝ ∑

0≤�<n

λ�(B)U[:, �]V∗[�, :] − λ0(B)U[:, 0]V∗[0, :]

⎞
⎠ g

=f∗

⎛
⎝ ∑

1≤�<n

λ�(B)U[:, �]V∗[�, :]

⎞
⎠ g

=F�V∗

⎛
⎝ ∑

1≤�<n

λ�(B)U[:, �]V∗[�, :]

⎞
⎠ UG

=
∑

1≤�<n

F [�] λ�(B)G [�]

=
∑

α�F [�] G [�] eiθ�
1≤�<n
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≥ min{α(B)}
∑

1≤�<n

F [�] G [�] eiθ�

= min{α(B)}

⎛
⎝−F [0] G [0] +

∑
0≤�<n

F [�] G [�] eiθ�

⎞
⎠

= min{α(B)}

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�] eiθ�

⎞
⎠ .

Note that F [0] = 1√
n

‖f‖1 = 1√
n

‖f‖2
2 follows from the observation that f takes values in 

{0, 1}, U∗f = U∗VF = F, and U[:, 0] = 1√
n

(1, . . . , 1)�. That G [0] = 1√
n

‖g‖2
2 follows 

similarly. Hence,

〈f g∗, B〉 ≥δ

〈
f g∗,

1n×n

n

〉
+ min{α(B)}

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�] eiθ�

⎞
⎠

= δ

n
‖f‖2

2‖g‖2
2 + min{α(B)}

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�] eiθ�

⎞
⎠ .

Since f and g are indicator vectors for an independent pair in B, f∗Bg = 0. It follows 
that

0 ≥ δ

n
‖f‖2

2‖g‖2
2 + min{α(B)}

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�] eiθ�

⎞
⎠ ,

from whence the result follows by algebraic manipulation. �
We note that the condition that the first columns of U, V are constant is unnecessary 

in the case that the eigenvalue δ has multiplicity 1. If it has multiplicity greater than 
1, then this condition is simply to specify that the constant vector of �2 norm 1 is a 
generator for the subspace spanned by the eigenvectors with eigenvalue δ.

In the case that B is the adjacency matrix of a d-regular graph, the result may be 
interpreted as a generalization of Theorem 3.2.

Corollary 3.6 (Directed Delsarte-Hoffman bound). Let B ∈ {0, 1}n×n denote a d-regular 
adjacency matrix for a directed graph G on n vertices. Let B be decomposed as B =
U diag {λ (B)} V∗ where U−1 = V∗ and the first columns of U, V are constant. Let 
λ�(B) = α�e

iθ� , α� ∈ R, θ� ∈ [0, 2π) be a polar decomposition of λ(B). Let α(B) =
(α1, . . . , αn). Let f , g ∈ {0, 1}n×1 be such that there exist F, G ∈ Cn×1 satisfying

f = VF, g = UG such that ∀0 ≤ � < n,
(
F [�] G [�] eiθ�

)
≥ 0. (6)
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Then if f and g are indicator vectors for an independent pair in B,

‖f‖2
2‖g‖2

2
n

≤
− min{α(B)}

∑
0≤�<n

F [�] G [�] eiθ�

d − min{α(B)} .

Note that the quantity bounded in Corollary 3.6 may be interpreted as the size of 
an independent pair (S, T ). Indeed, if f = 1S , g = 1T are the indicator vectors for the 
independent pair, then ‖f‖2

2‖g‖2
2 = |S| |T |.

If B is Hermitian and f = g, the admissibility condition (6) is always satisfied as 
θ� = 0, � = 0, . . . , n − 1. Indeed, in this case,

∑
0≤�<n

F [�] G [�] eiθ� = ‖f‖2
2,

so that the conclusion of Theorem 3.2 holds. Hence, Corollary 3.6 is a strict generalization 
of the classical Delsarte-Hoffman inequality.

3.1.1. Tightness of directed Delsarte-Hoffman bound
When n is a multiple of 4, adjacency matrices of the form

Bn =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ ⊗ 1 n

4 × n
4

show Corollary 3.6 is tight. In the case n = 4, B4 is the adjacency matrix for a n
4 = 1-

regular directed graph, which may be decomposed as:
⎛
⎜⎜⎜⎝

1/2 −i/2 i/2 1/2
1/2 i/2 −i/2 1/2

−1/2 1/2 1/2 1/2
−1/2 −1/2 −1/2 1/2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

−1 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1/2 −i/2 i/2 1/2
1/2 i/2 −i/2 1/2

−1/2 1/2 1/2 1/2
−1/2 −1/2 −1/2 1/2

⎞
⎟⎟⎟⎠

∗

.

In this case, the largest independent pair has size 4, corresponding to the zero block 
on the upper left. Note that the zero block on the lower right also corresponds to an 
independent pair of size 4. Let f4 = g4 = (1, 1, 0, 0)�, so that for coefficients F4, G4
as in (6), F4 = G4 = (1, 0, 0, 1)�. Decomposing the first and fourth eigenvalues as 
α0 = −1, α3 = 1, θ0 = θ3 = 0, it is seen that the admissibility condition is satisfied, and 
that min{α} = −1. Moreover,

∑
0≤�<4

F4 [�] G4 [�] eiθ� = 2

so that the estimate of Corollary 3.6 is
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‖f4‖2
2‖g4‖2

2
4 ≤ 1,

which is tight since ‖f4‖2
2‖g4‖2

2/4 = 1. This shows the maximal size of an independent 
pair in B4 is tightly estimated by Corollary 3.6. Note that a similar argument holds for 
the block corresponding to indicator vectors f4 = g4 = (0, 0, 1, 1)�.

In the general case when n > 4 is a multiple of 4, the above argument generalizes to 
show the size of the largest independent pair in Bn is tightly estimated by Corollary 3.6. 
Let fn = f4 ⊗ 1 n

4 ×1, gn = g4 ⊗ 1 n
4 ×1. Then fn, gn are indicator functions for an indepen-

dent pair in Bn of largest size, and ‖fn‖2
2‖gn‖2

2/n = n
4 . Note that since 1 n

4 × n
4

has eigen-
value n

4 with multiplicity 1 and eigenvalue 0 with multiplicity (n
4 −1), Bn has eigenvalues 

−n
4 , ni

4 , −ni
4 , n4 , each of multiplicity 1, and eigenvalue 0 with multiplicity (n −4). In partic-

ular, the eigenvectors corresponding to the non-zero eigenvalues are just the eigenvectors 
of B4, but appropriately inflated and normalized, namely 2√

n
( 1

2 , 12 , −1
2 , −1

2 )� ⊗ 1 n
4 ×1, 

2√
n

(− i
2 , i

2 , 12 , −1
2 )� ⊗ 1 n

4 ×1, 2√
n

( i
2 , − i

2 , 12 , −1
2 )� ⊗ 1 n

4 ×1, 2√
n

( 1
2 , 12 , 12 , 12 )� ⊗ 1 n

4 ×1. It fol-
lows that for coefficients Fn, Gn as in (6), Fn = Gn = (

√
n
4 , 0, 0, 

√
n
4 , 0, 0, . . . , 0)�. 

Decomposing the first and fourth eigenvalues as α0 = −n
4 , α3 = n

4 , θ0 = θ3 = 0, it is seen 
that the admissibility condition is satisfied, and that min{α} = −n

4 . Moreover,

∑
0≤�<n

Fn [�] Gn [�] eiθ� = n

2 .

Noting that Bn is n
4 -regular, we see that Corollary 3.6 estimates ‖fn‖2

2‖g‖2
2/n as n

4 , 
which verifies the tightness of this estimate.

3.2. A Delsarte-Hoffman bound using the singular value decomposition

Consider the singular value decomposition of B ∈ Cn×n expressed by

B = U diag(σ(B))V∗ s.t. UU∗ = I = VV∗,

where each element of σ(B) is positive. Theorem 3.7 provides a Delsarte-Hoffman esti-
mate on the maximal size of an independent set using a decomposition similar to the 
SVD, which holds for all matrices, not just diagonalizable ones.

Theorem 3.7. Let B ∈ Cn×n be a δ-regular pseudo-adjacency matrix of a directed graph. 
Suppose B has a decomposition B = U diag (σ) V∗ such that UU∗ = I = VV∗, the first 
columns of U, V are constant and σ = (σ1, . . . , σn). Let σmin = min� σ�. Suppose that 
f , g ∈ {0, 1}n×1 are indicator vectors for an independent pair in B, and that there exist 
F, G ∈ Cn×1 such that

f = UF, g = VG, and ∀0 ≤ � < n, F [�] G [�] ≥ 0. (7)

Then
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‖f‖2
2‖g‖2

2
n

≤
−σmin

∑
0≤�<n

F [�] G [�]

δ − σmin
.

Proof. By the SVD and by δ-regularity,

B = δ

n
1n×n +

(
I − 1n×n

n

)
B.

Analyzing the second term for all f , g ∈ Cn×1, subject to (7),

〈
f g∗,

(
I − 1n×n

n

)
B

〉
=f∗

(
I − 1n×n

n

) ⎛
⎝ ∑

0≤�<n

σ�U[:, �]V∗[�, :]

⎞
⎠ g

=f∗

⎛
⎝ ∑

1≤�<n

σ�U[:, �]V∗[�, :]

⎞
⎠ g

=F�U∗

⎛
⎝ ∑

1≤�<n

σ�U[:, �]V∗[�, :]

⎞
⎠ VG

=
∑

1≤�<n

σ�F [�] G [�]

≥σmin
∑

1≤�<n

F [�] G [�]

=σmin

⎛
⎝−F [0] G [0] +

∑
0≤�<n

F [�] G [�]

⎞
⎠

=σmin

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�]

⎞
⎠ .

Note that F [0] = 1√
n

‖f‖1 = 1√
n

‖f‖2
2 follows from U∗f = U∗UF = F and that fact 

that f ∈ {0, 1}n×1, U[:, 0] = 1√
n

(1, . . . , 1)�; G [0] = 1√
n

‖g‖2
2 follows similarly. Thus,

〈f g∗, B〉 =δ

〈
f g∗,

1n×n

n

〉
+

〈
f g∗,

(
I − 1n×n

n

)
B

〉

≥δ

〈
f g∗,

1n×n

n

〉
+ σmin

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�]

⎞
⎠

= δ

n
‖f‖2

2‖g‖2
2 + σmin

⎛
⎝− 1

n
‖f‖2

2‖g‖2
2 +

∑
0≤�<n

F [�] G [�]

⎞
⎠ .
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Since f , g are indicator vectors for an independent pair in B, f∗Bg = 0. For such an f , 
g pair also subject to the admissibility condition (7) we have

0 ≥ δ

(
‖f‖2

2‖g‖2
2

n

)
− σmin

(
‖f‖2

2‖g‖2
2

n

)
+ σmin

∑
0≤�<n

F [�] G [�] ,

from whence the result follows by algebraic manipulation. �
Theorem 3.7 requires a decomposition which bears resemblance to the SVD in the 

fact that B = U diag(σ)V∗, where UU∗ = I = VV∗, but without the condition that 
σ� ≥ 0 for all �. Note that if σ� �→ −σ�, and U[:, �] �→ −U[:, �] or V∗[�, :] �→ −V∗[�, :], this 
still expresses such a decomposition for B. In this sense, there are 2n decompositions to 
consider in Theorem 3.7, corresponding to the 2n possible sign assignments. Thus, one 
can think of the decomposition in Theorem 3.7 as a (non-unique) signed SVD, and the 
condition (7) as an admissibility condition with respect to this decomposition.

If in particular B is the adjacency matrix of a d-regular directed graph, the following 
result holds.

Corollary 3.8. Let B ∈ {0, 1}n×n be a d-regular adjacency matrix of a directed graph. 
Suppose B has a decomposition B = U diag (σ) V∗ such that UU∗ = I = VV∗, the first 
columns of U, V are constant, and σ = (σ1, . . . , σn). Let σmin = min� σ�. Suppose that 
f ∈ {0, 1}n×1, g ∈ {0, 1}n×1 are indicator vectors for an independent pair in B, and that 
there exist F, G ∈ Cn×1 such that

f = UF, g = VG, and ∀0 ≤ � < n, F [�] G [�] ≥ 0.

Then

‖f‖2
2‖g‖2

2
n

≤
−σmin

∑
0≤�<n

F [�] G [�]

d − σmin
.

3.2.1. Tightness of directed Delsarte-Hoffman SVD bound
We note that Theorem 3.7 is tight. Indeed, consider the 2-regular directed graph with 

adjacency matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1
1 1 0 0 0 0 0
1 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The adjacency matrix B is not symmetric and is not even diagonalizable. However, B
admits the SVD decomposition B = U diag(σ)V∗ where U, V are orthogonal and have 
the numerical expression

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
7

7 −1
5

√
10
7 0

√
2
5 0 −

√
2
5 0

√
7

7 −1
5

√
10
7

1√
5−

√
5

√
5
2 (

√
5+1)

5(
√

5+3)

√
5−1

2
√

5−
√

5

2
√

5
2 (

√
5+2)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7 − 1√

5−
√

5

√
5
2 (

√
5+1)

5(
√

5+3) −
√

5−1
2

√
5−

√
5

2
√

5
2 (

√
5+2)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7

√
5−1

2
√

5−
√

5
−

2
√

5
2 (

√
5+2)

5(
√

5+3) − 1√
5−

√
5

−
√

5
2 (

√
5+1)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7 −

√
5−1

2
√

5−
√

5
−

2
√

5
2 (

√
5+2)

5(
√

5+3)
1√

5−
√

5
−

√
5
2 (

√
5+1)

5(
√

5+3) 0
√

7
7

1
2

√
10
7 0 0 0 0 −

√
2

2

√
7

7
1
2

√
10
7 0 0 0 0

√
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
7

7
1
2

√
10
7 0 0 0 0 −

√
2

2

√
7

7
1
2

√
10
7 0 0 0 0

√
2

2

√
7

7 −1
5

√
10
7

√
5−1

2
√

5−
√

5

2
√

5
2 (

√
5+2)

5(
√

5+3)
1√

5−
√

5
−

√
5
2 (

√
5+1)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7 −

√
5−1

2
√

5−
√

5

2
√

5
2 (

√
5+2)

5(
√

5+3) − 1√
5−

√
5

−
√

5
2 (

√
5+1)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7

1√
5−

√
5

−
√

5
2 (

√
5+1)

5(
√

5+3) −
√

5−1
2

√
5−

√
5

2
√

5
2 (

√
5+2)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7 − 1√

5−
√

5
−

√
5
2 (

√
5+1)

5(
√

5+3)

√
5−1

2
√

5−
√

5

2
√

5
2 (

√
5+2)

5(
√

5+3) 0
√

7
7 −1

5

√
10
7 0 −

√
2
5 0 −

√
2
5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and σ = (2, 2, 
√

5
2 + 1

2 , 
√

5
2 + 1

2 , 
√

5
2 − 1

2 , 
√

5
2 − 1

2 , 0). Let Ṽ = V, and Ũ and σ be the same 
as U and σ but with the second of column of U and the second singular value multiplied 
by −1, respectively. Then B = Ũ diag(σ̃)Ṽ∗. This corresponds to a particular signing 
of the SVD, as discussed immediately after the proof of Theorem 3.7.

The largest independent pair in B has size 10, corresponding to f = (1, 1, 1, 1, 1, 0, 0)�

and g = (1, 1, 0, 0, 0, 0, 0)�. For the decomposition B = Ũ diag(σ̃)Ṽ∗, the coefficients for 
f , g are respectively

F =(5/
√

7,
√

10/
√

7, 0, 0, 0, 0, 0)�

G =(2/
√

7,
√

10/
√

7, 0, 0, 0, 0, 0)�.
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Thus, the admissibility condition of Theorem 3.7 is satisfied for the decomposition B =
Ũ diag(σ̃)Ṽ∗. Noting that σ̃min = −2, a short calculation shows the resulting estimate 
on (‖f‖2

2‖g‖2
2)/n is tight.

4. Discussion and future research

This article proposes generalizations of classical linear algebraic and spectral graph 
theoretic results to the case in which the underlying matrix B is non-Hermitian. This 
is done by constraining certain vectors to satisfy admissibility conditions. When B is 
Hermitian, these admissibility conditions hold and the classical results are recovered. The 
admissibility condition take slightly different forms, depending on which decomposition 
is used in place of the spectral decomposition into an orthonormal eigenbasis.

In Theorems 2.1, 3.5, B is assumed diagonalizable as B = U diag(λ(B))V∗ where 
λ(B) may be complex and U, V need not be unitary, merely inverses: UV∗ = V∗U = I. 
The analysis of f∗Bg proceeds by assuming f admits an expansion in terms of the rows 
of V and g an expansion in terms of the rows of U. Of course, when U = V these con-
ditions are the same, and when f = g, this condition always holds. On the other hand, 
Theorem 3.7 takes advantage of the singular value decomposition B = U diag(σ(B))V∗

where U and V are unitary but U �= V. The analysis of B in this situation requires 
a different condition on f , g, namely that f has an admissible decomposition with re-
spect to the rows of U, and g with respect to the rows of V. We remark that in all of 
these cases, the crucial property is that for d-regular unweighted graphs (or δ-regular 
weighted graphs), the first eigenvector or singular vector (both left and right) is the 
vector 1√

n
(1, 1, . . . , 1)� ∈ Rn×1 with corresponding eigenvalue or singular value d. All 

subsequent analysis is downstream from this observation.
Intuitively, as B deviates from being Hermitian, the admissibility conditions will still 

hold for a large class of vectors f , g. A topic of future research is to develop a rigorous 
perturbation theory of Hermitian matrices that quantifies how likely the admissibility 
conditions are to hold in a probabilistic sense. That is, if B is Hermitian, then the 
admissibility condition holds automatically for all f = g. As f deviates from g and B
deviates from Hermiticity, it is of interest to determine which vectors (or, what proportion 
of them in a probabilistic sense) satisfy the admissibility condition.
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Appendix

Proof of Theorem 3.2

Proof. Note that by d-regularity, B has an eigenvalue of d; without loss of generality, let 
λ0(B) = d. Then B = d

n 1n×n +
(

I − 1n×n

n

)
B. Thus, for all f ∈ Cn×1,

〈f f∗, B〉 = d

〈
f f∗,

1n×n

n

〉
+

〈
f f∗,

(
I − 1n×n

n

)
B

〉
.

Let B = U diag{λ(B)}U∗ where UU∗ = I. We analyze the second summand on the 
right-hand side as follows:

〈
f f∗,

(
I − 1n×n

n

)
B

〉
=f∗

(
I − 1n×n

n

)
Bf

=f∗

⎛
⎝ ∑

0≤�<n

λ�(B)U[:, �]U∗[�, :] − λ0(B)U[:, 0]U∗[0, :]

⎞
⎠ f

=f∗

⎛
⎝ ∑

1≤�<n

λ�(B)U[:, �]U∗[�, :]

⎞
⎠ f

=
∑

1≤�<n

λ�(B)|f∗U[:, �]|2

≥ min{λ(B)}
∑

1≤�<n

|f∗U[:, �]|2

= min{λ(B)}
∑

1≤�<n

f∗U[:, �]U∗[�, :]f

= min{λ(B)}
〈

f f∗,

(
I − 1n×n

n

)〉
.

Hence,

〈f f∗, B〉 ≥d

〈
f f∗,

1n×n

n

〉
+ min {λ (B)}

〈
f f∗,

(
I − 1n×n

n

)〉

= d

n
‖f‖4

2 + min {λ (B)}
(

‖f‖2
2 − 1

n
‖f‖4

2

)
.
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To every independent set I, there is a corresponding indicator vector f = 1I for which 
by definition 〈B, f f∗〉 = f∗Bf = 0. For such an indicator vector f , it follows that

0 ≥ d

n
‖f‖4

2 − min {λ (B)}
n

‖f‖4
2 + min {λ (B)} ‖f‖2

2.

Noting that |I| = ‖f‖2
2, we get

0 ≥ d

n
|I|2 − min {λ (B)}

n
|I|2 + min {λ (B)} |I| .

=⇒ |I|
n

≤ − min {λ (B)}
d − min {λ (B)} ,

thus completing the proof. �
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