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Abstract
This paper proposes and analyzes a novel clustering algorithm, called learning by
unsupervised nonlinear diffusion (LUND), that combines graph-based diffusion ge-
ometry with techniques based on density and mode estimation. LUND is suitable
for data generated from mixtures of distributions with densities that are both mul-
timodal and supported near nonlinear sets. A crucial aspect of this algorithm is the
use of time of a data-adapted diffusion process, and associated diffusion distances,
as a scale parameter that is different from the local spatial scale parameter used
in many clustering algorithms. We prove estimates for the behavior of diffusion
distances with respect to this time parameter under a flexible nonparametric data
model, identifying a range of times in which the mesoscopic equilibria of the un-
derlying process are revealed, corresponding to a gap between within-cluster and
between-cluster diffusion distances. These structures may be missed by the top
eigenvectors of the graph Laplacian, commonly used in spectral clustering. This
analysis is leveraged to prove sufficient conditions guaranteeing the accuracy of
LUND. We implement LUND and confirm its theoretical properties on illustrative
data sets, demonstrating its theoretical and empirical advantages over both spectral
and density-based clustering.

Keywords: unsupervised learning, clustering, spectral graph theory, manifold
learning, diffusion geometry

1. Introduction

Unsupervised learning is a central problem in machine learning, requiring that data
be analyzed without a priori knowledge of any class labels. A common unsupervised
problem is clustering, in which the data is to be partitioned into clusters so that each
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cluster contains similar points and distinct clusters are sufficiently separated. Even
with suitable definitions of “similarity” and “separation”, this problem is typically ill-
posed, requiring various geometric, analytic, topological, and statistical assumptions
on the data and measurement method be imposed to make it tractable. Feature
extraction is often combined with these standard methods (e.g. K-means) to improve
clustering performance.
In particular, spectral methods construct graphs representing data, and use the spec-
tral properties of the resulting graph Laplacian to produce structure-revealing fea-
tures in the data. Graphs often encode pairwise similarities between points, typi-
cally at a local “spatial” scale, often determined by a parameter σ. For example
only points xi, xj within distance 4σ of each other may be connected, with weight
exp(−‖xi − xj‖2

2/σ
2). From the graph, global features on the data may be derived,

for example by considering the eigenfunctions of the random walk on the graph.
Alternatively, graphs may be used to introduce data-adaptive distances, such as dif-
fusion distances, which are associated to random walks and diffusion processes on
graphs. Diffusion distances do not depend only on the graph itself, but also on a
time parameter t that determines a scale on the graph at which these distances are
considered, related to the time of diffusion or random walk. Choosing σ in graph-
based algorithms, and both σ and t in the case of diffusion distances, is important in
both theory and applications. However, their role is well-understood only in certain
regimes (e.g. asymptotically for σ, t → 0+) which are of interest in some problems
(e.g. manifold learning) but not necessarily for clustering.x
We propose the Learning by Unsupervised Nonlinear Diffusion (LUND) scheme for
clustering, which combines diffusion distances and density estimation to efficiently
cluster data generated from a nonparametric model. At the same time, we advance
the understanding of the relationship between the local “spatial” scale parameter σ
and the diffusion time parameter t in the context of clustering, demonstrating how
the role of t can be exploited to successfully cluster data sets for which K-means,
spectral clustering, or density-based clustering methods fail. We provide quantitative
bounds and guarantees on the performance of the proposed clustering algorithm for
data that may be highly nonlinear (i.e. non-convex, elongated, ellipsoidal, etc.) and
of variable density.

1.1 Major Contributions and Outline

This article makes two major contributions. First, explicit estimates on diffusion
distances for nonparametric clustered data are proved: we obtain lower bounds for
the diffusion distance (see Definition 2.1, or Coifman et al. (2005)) between clusters,
and upper bounds on the diffusion distance within clusters, as a function of the time
parameter t and suitable properties of the clusters. These bounds yield a mesoscopic—
not too small, not too large—diffusion time-scale at which diffusion distances separate
clusters clearly and cohere points in the same cluster. These results, among other
things, show how the role of the time parameter, which controls the scale “on the
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data” of the diffusion distances, is very different from the commonly-used scaling
parameter σ in the construction of the underlying graph, which is a local spatial scale
measured in the ambient space. Relationships between t and σ are well-understood in
the asymptotic case of n→ +∞, σ → 0+ (at an appropriate rate with n; see Coifman
et al. (2005), Lafon et al. (2006), and Von Luxburg (2007)) and t → 0+ (essentially
Varadhan’s lemma applied to diffusions on a manifold; see Den Hollander (2008),
Jones et al. (2008), and references therein). These asymptotic relationships at small
scales imply that the choice of t is essentially irrelevant, since in these limits diffusion
distances are essentially geodesic distances. However, the clustering phenomena we
are interested in are far from this regime, and we show that the interplay between t,
σ, and n becomes crucial.
Second, the LUND clustering scheme is proposed and shown to enjoy performance
guarantees for clustering of certain non-parametric mixture models. We prove suffi-
cient conditions for LUND to correctly determine the number of clusters in the data
and to have low clustering error. Computationally, we present an efficient algorithm
implementing LUND, which scales near-linearly in the number of points n, in the
ambient dimension D, and exponentially in the intrinsic dimension of the data. We
verify the properties of the LUND scheme and algorithm on synthetic data, studying
the relationships between the different parameters in LUND, in particular between
σ and t, and compare with popular and related the graph-based spectral clustering
and fast search and find of density peaks clustering (FSFDPC) (Rodriguez and Laio,
2014) algorithms, illustrating weaknesses of these methods and corresponding advan-
tages of LUND. LUND may be understood as a combination of these two methods,
in that it integrates diffusion distances (which are graph-based) and an outlier ro-
bustness procedure into the FSFDPC framework, which uses Euclidean distances.
Indeed, our experiments illustrate how LUND combines the benefits of graph-based
and density-based methods.
The outline of the article is as follows. Background is presented in Section 2. In
Section 3, motivational data sets and a summary of the theoretical results are pre-
sented and discussed. Theoretical comparisons with related clustering methods are
also made in Section 3. Estimates on diffusion distances are proved in Section 4.
Performance guarantees for the LUND algorithm are proved in Section 5. Numerical
experiments and computational complexity are discussed in Section 6. Conclusions
and future research directions are given in Section 7.

2. Background

2.1 Background on Clustering

Given the wide variety of data of interest to scientific practitioners, many approaches
to clustering have been developed, whose performance is often wildly variable and
data-dependent.
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2.1.1 K-Means

A classical and popular clustering algorithm is K-means (Steinhaus, 1957; Friedman
et al., 2001) and its variants (Ostrovsky et al., 2006; Arthur and Vassilvitskii, 2007;
Park and Jun, 2009), which is often used in conjunction with feature extraction
methods. K-means partitions the data into K (a parameter) groups, {Ck}Kk=1, chosen
to minimize within-cluster dissimilarity: C∗ = arg min{Ck}Kk=1

∑K
k=1

∑
x∈Ck ‖x− x̄k‖

2
2,

where x̄k is the mean of the kth cluster (for a given partition, it is the minimizer of the
least squares cost in the inner sum). While popular, K-means and its variants may
perform poorly for data sets that are not the union of well-separated, near-spherical
clusters, and are sensitive to outliers.

2.1.2 Hierarchical Clustering Methods

Hierarchical methods iteratively merge or split clusters in order to produce a mul-
tiscale family of partitions known as a dendrogram (Friedman et al., 2001). More
precisely, a dendrogram for n data points is a family of clusterings {Ci}ni=1 such that
C1 is the clustering of n singleton clusters, and Ci is related to Ci+1 in that the two
clusters minimizing some linkage function in Ci are merged in Ci+1. Single linkage
clustering (SLC) (Sneath, 1957; Gower and Ross, 1969; Friedman et al., 2001) is a
particular hierarchical clustering method that iteratively merges clusters according
to the linkage function LSLC(C1, C2) = minx1∈C1,x2∈C2 ‖x1 − x2‖2; metrics other than
the `2 norm may be used. For clusters that are well-separated, single linkage cluster-
ing is known to perform well (Arias-Castro, 2011), despite lack of strong statistical
consistency in dimensions greater than 1 (Hartigan, 1981).

2.1.3 Density and Mode-Based Methods

Density and mode-based clustering methods detect regions of high-density and low-
density to determine clusters. The DBSCAN (Ester et al., 1996) and DBCLASD
(Xu et al., 1998) algorithms assign to the same cluster points that are close and have
many near neighbors, and flag as outliers points that lie alone in low-density regions.
The mean-shift algorithm and variants (Fukunaga and Hostetler, 1975; Comaniciu
and Meer, 2002; Chacón, 2012; Genovese et al., 2016) push points towards regions of
high-density, and associate clusters with these high-density points, sometimes called
modes. Both DBSCAN and mean-shift clustering suffer from a lack of robustness to
outliers and depend strongly on parameter choices.
The fast search and find of density peaks clustering algorithm (FSFDPC) (Rodriguez
and Laio, 2014) proposes to address these weaknesses. This method characterizes
cluster modes as points that are far in Euclidean distance from points of higher
density. FSFDPC has been widely applied (Spitzer et al., 2015; Wiwie et al., 2015;
Sun et al., 2015; Rossant et al., 2016; Wang et al., 2016; Jia et al., 2016), and correctly
clusters the data in Figure 1. However, we show that the standard FSFDPC method,
while very popular in scientific applications, does not correctly cluster data unless
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strong geometric and statistical assumptions on the data are satisfied. The main
reason is that Euclidean distances are used to find modes, which is inappropriate
for data drawn from mixtures of distributions supported near nonlinear sets (see, for
example, Figure 18). Moreover, FSFDPC is not robust to outliers, which may be far
from other points but be of low-density.

2.1.4 Spectral Methods

Spectral clustering methods compute features that reveal the structure of data that
may deviate from the spherical, Gaussian shapes ideal for K-means, and in particular
may be nonlinear or elongated in shape. This is done by building local connectivity
graphs on the data that encode pairwise similarities between points, then computing
a spectral decomposition of adjacency or random walk or Laplacian operators defined
on this graph.
Let X = {xi}ni=1 ⊂ RD be a set of points to cluster. Let G be a graph with
vertices corresponding to points of X and edges stored in an n × n symmetric
weight matrix W. Often one chooses Wij = K(xi, xj) for some (symmetric, of-
ten radial and rapidly decaying) nonnegative kernel K : RD × RD → R, such as
K(xi, xj) = exp(−||xi − xj||2/σ2) for some choice of scaling parameter σ > 0. The
graph G may be fully connected, or it may be a nearest neighbors graph with respect
to some metric. Let D be the diagonal matrix Dii :=

∑n
j=1 Wij. The graph Laplacian

is constructed as L = D−W. One then normalizes L to acquire either the random
walk Laplacian LRW = D−1 L = I −D−1W or the symmetric normalized Laplacian
LSYM = D−

1
2 L D−

1
2 = I −D−

1
2 WD−

1
2 . We focus on LSYM in what follows. It can

be shown that LSYM has real eigenvalues 0 = λ1 ≤ · · · ≤ λn ≤ 2 and corresponding
eigenvectors {φi}ni=1. The original data X can be clustered by clustering the em-
bedded data xi 7→ (φ1(xi), φ2(xi), . . . , φM(xi)) for an appropriate choice of M ≤ n.
In this step typically K-means is used, though Gaussian mixture models may (and
perhaps should) be used, as they enjoy, unlike K-means, a suitably-defined statistical
consistency guarantee in the infinite sample limit (Athreya et al., 2017).
Spectral clustering relaxes a graph-cut problem: for a collection of subsets X1, . . . , XK ⊂
X, the corresponding normalized cut is Ncut(X1, . . . , XK) =

∑K
k=1 cut(Xk, X

c
k)/vol(Xk),where

cut(A,B) =
∑

xi∈A,xj∈B Wij, vol(A) =
∑

xi∈A
∑n

j=1 Wij. Minimizing Ncut yields

clusters that are simultaneously separated and balanced (Shi and Malik, 2000). This
NP-hard problem may be relaxed by analyzing the first K eigenvectors of LSYM (Shi
and Malik, 2000; Ng et al., 2002), or via a semidefinite programming problem (Ling
and Strohmer, 2018).
Weaknesses of spectral clustering were scrutinized by Nadler and Galun (2007). They
show the top eigenvectors of the random walk matrix P—defined on {xi}ni=1 sampled
from p(x) proportional to e−U(x)/2 for some potential function U(x)—converge under
a suitable scaling as n→∞ to the top eigenfunctions of the Fokker-Planck operator
Lψ(x) = ∆ψ −∇ψ · ∇U = −µψ(x). The characteristic time scales of the stochastic
differential equation (SDE) ẋ(t) = −∇U(x)+

√
2ẇ(t), w a Wiener process, determine
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(a) Data to Cluster (Nadler
and Galun, 2007)
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(b) Spectral clustering (Shi
and Malik, 2000)
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(c) Spectral clustering (Ng
et al., 2002)
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(d) Eigenvector 2
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(f) Eigenvector 4
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(g) Eigenvector 5
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(h) Eigenvector 6

Figure 1: In (a), three Gaussians of essentially the same density are shown. Results of spectral
clustering are shown in (b) (Shi and Malik, 2000) and (c) (Ng et al., 2002). In (d) - (h), the first five
non-trivial eigenvectors are shown. As noted by Nadler and Galun (2007), the underlying density
for this data yields a Fokker-Planck operator whose low-energy eigenfunctions cannot distinguish
between the two smaller clusters, thus preventing spectral clustering from succeeding: higher energy
eigenfunctions are required. For this example, the sixth non-trivial eigenvector localizes sufficiently
on the small clusters to allow for correct determination of the cluster structure; this eigenvector is
not used in traditional spectral clustering algorithms.

the structure of the leading eigenfunctions of L (Gardiner, 2009): they correspond to
the time scales of the slowest transitions between different clusters and the equilibrium
times within clusters. The relationships between these quantities determine which
eigenfunctions of L (or P) reveal the cluster structure in the data. Gavish and Nadler
(2013) further analyze related connections between normalized cuts and cluster exit
times. Nadler and Galun (2007) present data which cannot be clustered with spectral
clustering (Shi and Malik, 2000; Ng et al., 2002); see Figure 1.

2.2 Background on Diffusion Distances

One of the primary tools in the proposed clustering algorithm is diffusion distances,
a class of data-dependent distances computed by constructing Markov processes on
data that capture its intrinsic structure (Coifman et al., 2005; Coifman and Lafon,
2006; Lafon et al., 2006; Coifman et al., 2008; Singer and Coifman, 2008; Rohrdanz
et al., 2011; Zheng et al., 2011; Lederman and Talmon, 2018; Lederman et al., 2015;
Czaja et al., 2016; Li et al., 2017). We consider diffusion on the point cloud X =
{xi}ni=1 ⊂ RD via a Markov chain (Levin et al., 2009) with state space X. Let P be the
corresponding n×n transition matrix. The following shall be referred to as the usual
assumptions on P: P is reversible, irreducible, aperiodic, and therefore ergodic. A
common construction for P, and the one we consider in the algorithmic sections of this
article, is to first compute a weight matrix W, where Wij = exp(−‖xi−xj‖2

2/σ
2), i 6=
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j for some appropriate scale parameter σ ∈ (0,∞). The parameter σ encodes the
interaction radius of each point: σ large allows for long-range interactions between
points that are `2-far, while σ small allows only for short-range interactions. Then
P = D−1W, where D is the diagonal degree matrix with Dii =

∑n
`=1 Wij. This1

row-normalizes P:
∑n

j=1 Pij = 1, ∀i = 1, . . . , n. Since it is ergodic, P has a unique
stationary distribution π satisfying πP = π, given by πi = Dii/

∑n
j=1 Djj.

Diffusion processes on graphs lead to a data-dependent notion of distance, known
as diffusion distance (Coifman et al., 2005; Coifman and Lafon, 2006). While the
focus of the construction is on diffusion distances and the diffusion process itself,
we mention that diffusion maps provide a way of efficiently computing and visual-
izing large-time diffusion distances in Euclidean space, and at the same time may
be understood as a type of nonlinear dimension reduction, in which data in a high
number of dimensions may be embedded in a low-dimensional space by a nonlinear
coordinate transformation. In this regard, diffusion maps are related to nonlinear
dimension reduction techniques such as Isomap (Tenenbaum et al., 2000), Laplacian
eigenmaps (Belkin and Niyogi, 2003), and local linear embedding (Roweis and Saul,
2000), kernel PCA (with a data-adapted kernel), among many others.

Definition 2.1 Let X = {xi}ni=1 ⊂ RD and let P be a Markov process on X satisfying
the usual assumptions and with stationary distribution π. Let π0 be a probability
distribution on X. For points xi, xj ∈ X, let pt(xi, xj) = (Pt)ij, for some t ∈ [0,∞).
The diffusion distance at time t between x, y ∈ X is defined, for ν = π0/π, by

Dt(x, y) =

√∑
u∈X

(pt(x, u)− pt(y, u))2 ν(u) = ||pt(x, ·)− pt(y, ·)||`2(ν) .

If the underlying graph is generated from data sampled from a low-dimensional man-
ifold, then diffusion distance parametrizes this low-dimensional structure (Coifman
et al., 2005; Jones et al., 2008; Singer et al., 2009; Singer and Wu, 2012, 2016; Talmon
and Wu, 2018). Indeed, diffusion distances admit a formulation in terms of the (right)
eigenfunctions of P:

Dt(x, y) =

√√√√ n∑
`=1

λ2t
` (ψ`(x)− ψ`(y))2, (2.2)

where {(ψ`, λ`)}n`=1 are the right eigenpairs of P, ordered so that 1 = λ1 > λ2 ≥ λ3 ≥
· · · ≥ λn > −1, and noting that ψ1 is constant by construction.
Diffusion distances are parametrized by t, which measures how long the diffusion
process on G has run. Small t allows a small amount of diffusion, which may prevent
the interesting geometry of X from being discovered, but provides detailed, fine scale

1. Note that with some abuse of notation we denote the entries of P by Pij , reserving the notation
Pij for block submatrices of P that will be introduced and used later.
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information. Large t allows the diffusion process to run for so long that the fine
geometry may be washed out, leaving only coarse scale information. We will relate
properties of clustered data X to t.

3. Data Model and Overview of Main Results

Among the main results of this article are sufficient conditions for clustering certain
discrete data X ⊂ RD. The data X is modeled as a realization from a probability
distribution

µ =
K∑
k=1

wkµk, wk ≥ 0,
K∑
k=1

wk = 1, (3.1)

where each µk is a probability measure. Intuitively, our results require separation
and cohesion conditions on {µk}Kk=1. That is, each µk is far from µk′ , k 6= k′ and
connections are strong (in a suitable sense) within each µk. X = {xi}ni=1 is generated
by drawing, for each i, one of the K clusters, say ki, according to the multinomial
distribution with parameters (w1, . . . , wK), and then drawing xi from µki . The clusters
in the data are defined as the subsets of X whose samples were drawn from a particular
µk, that is, we define the cluster Xk := {xi ∈ X : ki = k}. Given X, the goal of
clustering is to estimate these Xk, and to estimate K. Throughout the theoretical
analysis of this article, we will define the accuracy of a set of labels {Yi}ni=1, Yi ∈
{1, . . . , K}, learned from an unsupervised algorithm to be |{i | Yi = ki}|/n, i.e. the
proportion of points correctly labeled.
The model (3.1) is nonparametric and makes few explicit assumptions on µ. We will
allow µk to be supported near a non-linear set (e.g. a nonconvex subset, or a subman-
ifold in RD) and be multimodal (i.e. with multiple high-density regions). These fea-
tures may cause prominent clustering methods to fail, e.g. K-means, which requires
near-spherical or well-separated clusters (Dasgupta and Schulman, 2007; Mixon et al.,
2017); Gaussian mixture models, which handle well spherical and ellipsoidal clusters,
but may struggle with clusters exhibiting different, non-elliptical geometries (for ex-
ample those shown in Figure 2 (b)); spectral clustering, which can fail for highly
elongated clusters or clusters of different sizes and densities; density-based methods,
which are sensitive to noise and clusters of very different densities, and may require
care in setting parameters or implementing adaptive parameters. Two simple, mo-
tivating examples are in Figure 2. They feature variable densities, variable levels of
connectivity, both within and across clusters, and (for the second example) nonlinear
cluster shapes.
The estimates for the behavior of diffusion distances that we derive will then be
leveraged to prove that the LUND clustering scheme correctly labels the points and
also correctly estimates the number of clusters, while other clustering schemes fail to
cluster these data sets correctly.
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(a) Bottleneck data
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(b) Nonlinear data
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Figure 2: Subfigures (a) and (b) show two data sets—linear and nonlinear—colored by log10(p(x)),
where p(x) is the empirical density. In (c), (d), we show the corresponding Markov transition ma-
trices P, with entry magnitudes shown in log10 scale. We sorted the rows and columns so that the
structure in these matrices become apparent (of course, the algorithms are independent of the sort-
ing). The Markov chains are ergodic, but close to being reducible. Indeed, these transition matrices
show hierarchical structure, with large within-cluster transitions and uniformly small probabilities
of transition between clusters. The analysis of Section 4 makes this intuition precise. The transition
matrices were constructed using the Gaussian kernel as in Section 2.2, with Euclidean distances and
σ = .25

3.1 Summary of Main Results

Our first result shows that the within-cluster and between-cluster diffusion distances
can be controlled, as soon as Pt is approximately block constant in some sense. Define
the (worst-case) within-cluster and between-cluster diffusion distances as:

Din
t = max

k
max
x,y∈Xk

Dt(x, y), Dbtw
t = min

k 6=k′
min

x∈Xk,y∈Xk′
Dt(x, y) . (3.2)

Our results guarantee that Din
t is small and Dbtw

t is large in terms of a constant ε, for
all t in some time interval T . The interval T depends on both data-driven quantities
of the matrix P (which may be understood as geometrically intrinsic to the underlying
cluster structure), as well as ε. This simplification of Theorem 4.12 holds:

Theorem 3.3 Let X =
⋃K
k=1 Xk and let P be a corresponding Markov transition

matrix on X, inducing diffusion distances Dt. Then there exist non-negative constants
{Ci}5

i=1 such that the following holds: for any ε > 0 we have

C1 ln

(
C2

ε

)
< t < C3ε =⇒ Din

t ≤ C4ε, Dbtw
t ≥ C5 − C4ε.

The constants {Ci}5
i=1 are defined precisely in Section 4, but to get a sense of them,

let S be an idealized version of P in which all edges between clusters are deleted and
redirected back into the cluster; this will be made precise by the notion of stochastic
complement in Definition 4.7. Let S∞ be a block diagonal matrix consisting of K
rank 1 blocks, corresponding to the equilibrium transition matrices of the the blocks
of S. The constants {Ci}5

i=1 may be interpreted as follows:

• C1, C2 are related to the compactness or irreducibility of the clusters Xk, in
terms of the rank of each block of S. In particular, if S is constant on each
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diagonal block corresponding to a cluster, then C1 = 0 and C2 = O(1), inde-
pendently of n.

• C3 is related to the transition probabilities between clusters in P. In the ide-
alized case that there are no transitions between any of the clusters, C3 = ∞.
More generally, if the probabilities of transitions between clusters are small,
then C3 will be large.

• C4 is related to the balance of S∞ relative to P. If each row of S∞ − P is
constant, then C4 = 1/

√
n.

• C5 is related to how balanced the equilibrium distributions are on each cluster.
If S∞ is block constant with blocks of the same size, then C5 = 1/

√
n.

The time interval T := [C1 ln
(
C2

ε

)
, C3ε] depends on ε, and there is tension in the

role of ε between the condition t ∈ T and the conclusion that Din
t ≤ C4ε, Dbtw

t ≥
C5−C4ε. For large ε, T may be quite wide, but the conclusion on diffusion distances
is weak (or even trivial if ε > C5/C4). On the other hand, ε small induces strong
separation between within-cluster diffusion distances and between-cluster diffusion
distances, at the expense of shrinking T . Indeed, for 0 < C1, C2, C3 < ∞ fixed, T
shrinks to the empty set as ε→ 0+.
Suppose indeed that the each cluster is compact (C1 small, C2 = O(1)), the clusters
are well-separated (C3 large), and balanced in the sense that S∞−P is constant and
S∞ is block-constant with blocks of the same size (C4 = C5 = 1/

√
n). Then for ε > 0,

t ∈
[
C1 ln

(
C2

ε

)
, C3ε

]
=⇒ Dbtw

t

Din
t

≥ C5 − C4ε

C4ε
= O

(
1

ε

)
,

which suggests strong separation with diffusion distances independently of n when
ε is small. In particular, as the clusters become more separated (C3 increases) the
time interval on which the Dbtw

t /Din
t remains large widens on the right. Similarly, the

more compact or irreducible the clusters become (C1 becomes smaller), the wider the
interval becomes on the left. In the ideal case that C1 = 0 (clusters are localized at
single points), C3 =∞ (infinite separation between clusters), the ratio Dbtw

t /Din
t =∞

for all t, due to the fact that Dbtw
t is bounded away from 0 for all t while Din

t = 0. We
remark that as long as ε can be taken sufficiently small, due to the geometric properties
of the data as determined by C1, C2, C3, the lower bound on Dbtw

t is positive. In the
idealized case when C4 = C5 = 1/

√
n, then the lower bound is positive as long as

ε < 1. We note that C1, C2, C3 are close to geometrically intrinsic, as will be discussed
in Section 4.1.
The LUND scheme characterizes modes of the clusters {Xk}Kk=1 as high-density points
that are far in diffusion distance from other points of high-density, regardless of the
shape of the support of the distribution. Once modes are learned, remaining points
are subsequently assigned to a mode in an iterative fashion. To detect the modes,
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we introduce two quantities: p(x) is related to data density, while ρt(x) is related to
diffusion geometry.
Let p be a kernel density estimator (KDE) on X, for example p(x) = 1

Z

∑
y∈NN(x) exp(−‖x−

y‖2
2/σ

2
0), for some choice of σ0 and set of nearest neighbors NN(x), normalized by Z

so that
∑

x∈X p(x) = 1. Given Dt defined on X, let

ρt(x) =


min
y∈X
{Dt(x, y) | p(y) ≥ p(x)}, x 6= arg max

y∈X
p(y),

max
y∈X

Dt(x, y), x = arg max
y∈X

p(y).
(3.4)

The function ρt measures the diffusion distance of a point to its Dt-nearest neighbor
of higher empirical density. LUND proceeds by analyzing

Dt(x) = p(x)ρt(x),

which is large only for high-density points that are far from their nearest diffusion
neighbor of higher density. The function Dt serves two important purposes. First,
its decay estimates the number of clusters in the data. Indeed, as will be shown in
Section 5, under a flexible data model, Dt has K very large values with the rest very
small, where K is the number of latent clusters. Second, the modes of the data are
estimated as the maximizers of Dt. Once these modes have been learned, they are
given unique labels. Then, in order of decreasing density, points are assigned the
same label as their Dt-nearest neighbor of higher density. In this sense, the labels of
the modes are distributed—from high to low density—to the rest of the data. The
LUND algorithm is detailed in Algorithm 1. A simpler variant of LUND, when K is
known a priori, is detailed in Algorithm 2.
Functions of p(x), ρt(x) other than multiplication could be used to construct Dt(x).
The primary reason to consider the multiplication of these factors is to gain robustness
to outliers. Indeed, an outlying point xo may be very far from all other points in
diffusion distance, simply because its Euclidean coordinates are very far from the
rest of X. In this case, one would have ρt(xo) very large, and p(xo) very small. By
constructing Dt as the product of the density and diffusion geometric measurements,
Dt(xo) = p(xo)ρt(xo) is not large (under a suitable regime of variation between p(xo)
and ρt(xo)), ensuring that a far outlier is not be selected as a data mode. More
precisely, suppose that diffusion distances and p(x) are computed with the same choice
of scaling parameter σ and collection of nearest neighbors, so that the stationary
distribution of P is equal to p: for all x ∈ X, p(x) = π(x). Suppose that X is fixed
except for the outlier point xo, which we assume to be the element of X with lowest
empirical density. Letting xNNo be the nearest neighbor of xo of higher empirical
density and π0 an arbitrary initial distribution,

Dt(xo) = ρt(xo)p(xo) =

√√√√ n∑
`=1

(pt(xo, x`)− pt(xNNo , x`))
2 π0(x`)π(xo)2

π(x`)
≤
√
nπ(xo).

11
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Algorithm 1 Learning by Unsupervised Nonlinear Diffusion (LUND) Algorithm

Input: X (data), σ0 (kernel density bandwidth), σ (diffusion scaling parameter), t
(time parameter), τ (threshold)
Output: Y (cluster assignments), K̂ (estimated number of clusters)

1: Build Markov transition matrix P using scale parameter σ.
2: Compute KDE p(x) for all x ∈ X using kernel bandwidth σ0.
3: Compute ρt(x) for all x ∈ X.
4: Compute Dt(x) = ρt(x)p(x) for all x ∈ X.
5: Sort X according to Dt(x) in descending order as {xmi}ni=1, n = |X|.

6: Compute K̂ = inf

{
k

∣∣∣∣ Dt(xmk )

Dt(xmk+1
)
> τ

}
.

7: Assign Y (xmi) = i, i = 1, . . . , K̂, and Y (xmi) = 0, i = K̂ + 1, . . . , n.
8: Sort X according to p(x) in decreasing order as {x`i}ni=1.
9: for i = 1 : n do

10: if Y (x`i)=0 then
11: Y (x`i) = Y (x∗), x∗ = arg miny{Dt(x`i , y) | p(y) ≥ p(x`i) and y is labeled}.
12: end if
13: end for

Noting lim‖xo‖2→∞ π(xo) = 0, it follows that lim‖xo‖2→∞Dt(xo) = 0, so that as out-
liers move farther away from the rest of the data, they become less likely to be
detected as modes. We remark that if outlier detection is performed on the data as
a pre-processing step, this problem is less significant, since densities become more
comparable across points. In this case, other constructions for Dt may be sufficiently
robust, for example constructions that are additive in p, ρt.
The LUND algorithm combines density estimation (as captured by p) with diffusion
geometry (as captured by ρt). The crucial parameter of LUND is the time parameter,
which determines the diffusion distance Dt used. Theorem 3.3 may be used to show
that there is a range of t for which applying the proposed LUND algorithm is provably
accurate. The first concern is to understand conditions guaranteeing these modes
are estimated accurately, the second that all other points are consequently labeled
correctly. The following result summarizes Corollaries 5.4, 5.5, corresponding to the
case when K is unknown a priori and must be estimated (as in Algorithm 1) or is
known a priori (as in Algorithm 2).

Theorem 3.5 Suppose X =
⋃K
k=1 Xk as above. Let M be the set of cluster density

maxima:

M = {p(x) | ∃k ∈ {1, 2, . . . , K} such that x = arg max
y∈Xk

p(y)}.

(a) Let {xmi}ni=1 be the points {xi}ni=1, sorted so that Dt(xm1) ≥ Dt(xm2) ≥ · · · ≥
Dt(xmn). Then Algorithm 1 correctly estimates K and labels all points correctly

12
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Algorithm 2 LUND Algorithm, K Known

Input: X (data), σ0 (kernel density bandwidth), σ (diffusion scaling parameter), t
(time parameter), K (number of clusters)
Output: Y (cluster assignments)

1: Build Markov transition matrix P using scale parameter σ.
2: Compute a KDE p(x) for all x ∈ X using kernel bandwidth σ0.
3: Compute ρt(x) for all x ∈ X.
4: Compute Dt(x) = ρt(x)p(x) for all x ∈ X.
5: Sort X according to Dt(x) in descending order as {xmi}ni=1, n = |X|.
6: Assign Y (xmi) = i, i = 1, . . . , K, and Y (xmi) = 0, i = K + 1, . . . , n.
7: Sort X according to p(x) in decreasing order as {x`i}ni=1.
8: for i = 1 : n do
9: if Y (x`i)=0 then

10: Y (x`i) = Y (x∗), x∗ = arg miny{Dt(x`i , y) | p(y) ≥ p(x`i) and y is labeled}.
11: end if
12: end for

for any τ satisfying

max(M)

min(M)

maxi=1,··· ,K ρt(xmi)

mini=1,··· ,K ρt(xmi)
< τ <

min(M)

max(M)

Dbtw
t

Din
t

. (3.6)

(b) If K is known a priori, then Algorithm 2 labels all points accurately provided that

Din
t

Dbtw
t

<
min(M)

max(M)
. (3.7)

Theorem 3.3 suggests that the conditions (3.6), (3.7) will hold for a wide range of t,
depending on max(M)/min(M) and the underlying data geometry. Indeed, in the
case that C4 = C5 = 1/

√
n, and the clusters are irreducible (C1 small) and well-

separated (C3 large), the time interval guaranteeing Din
t /D

btw
t < ε is [C1 ln(C2

ε
), C3ε],

which is wide even for ε small. Indeed, setting ε = min(M)/(2 max(M)) is sufficient
to guarantee (3.7) holds for a wide range of t (always for C1 sufficiently small and
C3 sufficiently large). Of course, the smaller the ratio min(M)/max(M), the harder
(3.7) is to satisfy.
Together with Theorem 3.5, this implies the proposed method (Algorithm 1) cor-
rectly labels the data and estimates the number of clusters K correctly. Note that
(3.7) implicitly relates the density of the separate clusters to their geometric proper-
ties. Indeed, if the clusters are well-separated and cohesive enough, then Din

t /D
btw
t

is very small, and a large discrepancy in the density of the clusters can be tolerated
in inequality (3.7). Note that Din

t , D
btw
t ,min(M), and max(M) are invariant to in-

creasing n, as long as the scale parameter in the kernel used for constructing diffusion
distances and the KDE adjusts according to standard convergence results for graph

13
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Laplacians (Belkin and Niyogi, 2005, 2007; Garcia Trillos et al., 2016, 2018). In this
sense these quantities are properties of the mixture model (3.1), and neither of n nor
the scale parameter of the diffusion process σ.
We note moreover that Theorem 3.5 suggests t must be taken in a mesoscopic range,
that is, sufficiently far from 0 but also bounded. Indeed, for t small, Din

t is not
necessarily small, as the Markov process has not mixed locally yet. For t large, Pt

is close to global stationarity, and the ratio Din
t /D

btw
t is not necessarily small, since

Dbtw
t will be small. In this case, clusters would only be detectable based on density,

requiring thresholding, which is susceptible to spurious identification of regions around
local density maxima as clusters.
We remark that a LUND prototype adapted to image data was proposed for the
empirical study of high-dimensional hyperspectral images by Murphy and Maggioni
(2018a,b, 2019b), where it is shown to enjoy competitive performance with state-of-
the-art clustering algorithms on specific data sets. The LUND algorithm presented
in the present work is more general and, in contrast with earlier related methods,
appropriate for general point cloud data, not just images.

3.2 Comparisons with Related Clustering Algorithms

LUND combines graph-based methods with density-based methods, and it is therefore
natural to compare it with spectral clustering and FSFDPC among other methods.

3.2.1 Comparison with Spectral Clustering

The normalized graph-cut problem in spectral clustering is related to the probability
of transitioning between clusters in one time step (Meila and Shi, 2001). LUND
uses intermediate time scales to separate clusters, namely the time scale at which
the random walk has almost reached the stationary distribution conditioned on not
leaving a cluster, and has not yet transitioned (with sizable probability) to a different
cluster.
Spectral clustering enjoys performance guarantees under a range of model assump-
tions (Chen and Lerman, 2009a,b; Arias-Castro, 2011; Arias-Castro et al., 2011; Vidal,
2011; Zhang et al., 2012; Elhamifar and Vidal, 2013; Wang et al., 2015; Soltanolkotabi
et al., 2014; Arias-Castro et al., 2017; Little et al., 2017). Under nonparametric as-
sumptions on (3.1) with K = 2, Shi et al. (2009) show that the principal eigenfunc-
tions and eigenvalues of the associated kernel operator K(f)(x) =

∫
K(x, y)f(y)dµ(y)

are closely approximated by the principal spectra of the kernel operators Ki(f)(x) =∫
K(x, y)f(y)dµi(y), i = 1, 2, possibly mixed up, depending on the spectra of K1,K2

and the weights w1, w2. This allows for the number of classes to be estimated accu-
rately in some situations, and for points to be labeled by determining which distri-
bution certain eigenvectors come from.
The related work of Schiebinger et al. (2015) provides sufficient conditions under
the nonparametric model (3.1) for the low-dimensional embedding of spectral clus-
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tering to map well-separated, coherent regions in input space to approximately or-
thogonal regions in the embedding space. This in turn implies that K-means clus-
tering succeeds with high probability, thereby yielding guarantees on the accuracy
of spectral clustering. These results depend on two quantities: with µ as in (3.1)
and K a kernel, they define separation and cohesion quantities, respectively, as
S(µ) = maxi6=j S(µi, µj),Γmin(µ) = mini=1,...,K Γ(µi), where

S(µi, µj) =
1

p(X)

∫
X

∫
X

K(x, y)dµi(x)dµj(y),Γ(µi) = inf
S⊂X

p(X)

p(S)p(Sc)

∫
S

∫
Sc
K(x, y)dµi(x)dµi(y),

p(S) =
∫
S

∫
X
K(x, y)dµ(x)dµ(y). A major result of Schiebinger et al. (2015) is that

spectral clustering is accurate with high probability depending on a confidence pa-
rameter β and the number of data samples n if√

K(S(µ) + C(µ))

mini=1,...K wi
+

(
1√
n

+ β

)
. Γ4

min(µ) , (3.8)

where C(µ) is a “coupling parameter” that is not germane to the present discussion.
Condition (3.8) holds when the within-cluster coherence Γmin(µ) is large relative to
the similarity between clusters S(µ). Fixing the separation Γmin(µ), (3.8) is more
likely to hold if the clusters are relatively spherical in shape. For example, in Figure
3 we represent two data sets, each consisting of two clusters, with comparable S(µ),
but substantially different Γmin(µ). Also note that in the finite sample case when 1√

n

in (3.8) is non-negligible, the importance of Γmin being not too small increases. The
geometric parameters S(µ),Γmin are comparable to C3 and C1 in Theorem 3.3.
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(a) S(µ) = 0.0533,Γmin(µ) ≈ 0.9550.
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(b) S(µ) = 0.0523, Γmin(µ) ≈ 0.2560.

Figure 3: In (a) and (b) two different mixtures of Gaussians are shown. The two mixtures have
roughly the same measure of between-cluster distance S(µ), but significantly different within-cluster
coherence Γmin(µ). Spectral clustering will enjoy much stronger performance guarantees, according
to Schiebinger et al. (2015), for the data in (a) compared to the data in (b), for a range of relevant
choices of the parameter σ.
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It is of related interest to compare LUND to spectral clustering by recalling (2.2). In
the generic case that λ2 > λ3, the (ψ2(x) − ψ2(y))2 term dominates asymptotically
as t → ∞. Hence, as t → ∞, LUND bears resemblance to spectral clustering with
the second eigenvector alone (Shi and Malik, 2000). On the other extreme, for t = 0,
diffusion distances depend on all eigenvectors equally. Using the first K or the 2nd

through (K + 1)st eigenvectors ψl is the basis for many spectral clustering algorithms
(Ng et al., 2002; Schiebinger et al., 2015), and is comparable to LUND for t = 0,
combined with a truncation of (2.2). Note that clustering with the kernel K alone
relates to using all eigenvectors and t = 1. By allowing t to be a tunable parameter,
LUND interpolates between the extremes of the K principal eigenvectors equally
(t = 0 and truncating the eigendecomposition after the Kth or (K+ 1)st eigenvector),
using the kernel matrix (t = 1), and using only the second eigenvector (t→∞). The
results of Section 6 validate the importance of this flexibility.
An additional challenge when using spectral clustering is to robustly estimate K.
The eigengap K̂ = arg maxi λi+1 − λi is a commonly used heuristic, but is often
ineffective when Euclidean distances are used in the case of non-spherical clusters
(Arias-Castro, 2011; Little et al., 2017). In contrast, Theorem 3.5 suggests LUND
can robustly estimate K, which is shown empirically for synthetic data in Section 6.
It is also of interest to compare the guarantees of Theorem 3.3 to the analysis of
spectral clustering of Nadler and Galun (2007); see Section 2.1.4. In particular, the
guarantees of LUND require balancing two quantities: the within cluster mixing times
and the between-cluster transition probabilities. These are analyzed precisely in Sec-
tion 4, and are quantified in Theorem 3.3 by C1 (within cluster mixing propensity) and
C3 (between cluster transition propensity). In the framework of continuous Fokker-
Planck equations, these notions are closely related to relaxation time and first exit
time, respectively. Nadler and Galun (2007) argue that as long as the first passage
exit time is greater than the relaxation time within a cluster, for all clusters, then
spectral clustering has a hope of achieving good results. The LUND algorithm relies
on a similar fundamental observation, and the delicate balance between these two
notions (within cluster mixing and between cluster transitions) are analyzed in a pre-
cise, quantitative sense for discrete Markov chains in Section 4, leading in Theorem
4.12 to a guarantee on the behavior of diffusion distances in terms of these quantities.
Computationally, LUND and spectral methods are essentially the same, with the
bottleneck in complexity being either the spectral decomposition of a dense n × n
matrix (O(Mn2) where M is the number of eigenvectors sought), or the computation
of nearest neighbors when using a sparse diffusion operator or Laplacian (using an
indexing structure for a fast nearest neighbors search, this is O(CdDn log(n)), where
d is the intrinsic dimension of the data).

3.2.2 Comparison With Local Graph Cutting Algorithms

The LUND algorithm bears some resemblance to local graph cutting algorithms
(Spielman and Teng, 2004; Andersen et al., 2006, 2008; Andersen and Peres, 2009;
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Spielman and Teng, 2013, 2014; Yin et al., 2017; Fountoulakis et al., 2017). These
methods compute a cluster C around a given vertex v such that the conductance of C
is high (see Definition 4.3), and which can be computed in sublinear time with respect
to the total number of vertices in the graph n, and in linear time with respect to |C|.
In order to avoid an algorithm that scales linearly (or worse) in n, global features—
such as eigenvectors of a Markov transition matrix or graph Laplacian defined on
the data—must be avoided. The Nibble algorithm (Spielman and Teng, 2013) and
related methods (Andersen and Peres, 2009) compute approximate random walks for
points nearby v, and truncate steps that take the random walker too far from already
explored points. This accounts for the most important steps a random walker would
take, and avoids considering all n vertices of the graph. In this sense, Nibble and
related methods focus on local diffusion in order to compute a local cluster around a
prioritized vertex v, while LUND focuses on both finding good starting points and a
globally consistent partition of the whole graph, using nonlinear, typically large-time
diffusion to uncover multitemporal structure.

3.2.3 Comparison with FSFDPC

The FSFDPC algorithm (Rodriguez and Laio, 2014) learns the modes of clusters in
a manner similar to the method proposed in this article. In FSFDPC, the diffusion
distance-based quantity ρt is replaced with a corresponding Euclidean distance-based
quantity:

ρEuc(x) =


min
y∈X
{‖x− y‖2 | p(y) ≥ p(x)}, x 6= arg max

y∈X
p(y),

max
y∈X
‖x− y‖2, x = arg max

y∈X
p(y).

Moreover, the modes are estimated using only ρEuc(x), rather than Dt(x) = p(x)ρt(x)
as proposed in the LUND algorithm. As in LUND, FSFDPC iteratively assigns points
the same label as their nearest Euclidean neighbor (LUND uses diffusion nearest
neighbor) of higher density.
The differences between LUND and FSFDPC are fundamental. Theoretical guaran-
tees for the FDFDPC using Euclidean distances do not accommodate a rich class of
distributions and the guarantees proved in this article fail when using ρEuc(x) (as in
Rodriguez and Laio (2014)) or Deuc(x) = p(x)ρEuc(x) for computing modes. This is
because for clusters that are multimodal or supported near non-spherical sets, there
is no reason for high-density regions of one cluster to be well-separated in Euclidean
distance. In Section 6, we shall see FSFDPC fails for the motivating data in Section
3. Moreover, the use of the product Dt(x) = p(x)ρt(x) to determine modes gives
LUND robustness to outliers that FSFDPC lacks. Indeed, outlying points may admit
very large ρt(x) or ρEuc(x) values, but very small p(x) values. In this sense, the den-
sity factor in Dt ensures that outlying points are not labeled as modes. This tension
between geometry and density is highlighted in Theorem 3.5.
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In addition, the LUND algorithm is able to correctly estimate the number of clusters
in the data, even for nonlinear or elongated clusters, using the ratio (or decay) of
Dt(x). A similar criterion for FSFDPC is not available for clusters that are nonlinear
or elongated, due to the fact that high density regions connected by many paths
in the data may be very far apart in Euclidean distance, leading heuristics based
on the decay of ρEuc(x) or Deuc(x) to fail; see Section 6. We remark that for simple,
spherical data sets, using these heuristics for FSFDPC may work well; this is observed
for isotropic Gaussian data in Section 6.3.

3.2.4 Comparison with Single Linkage Clustering

LUND is related to SLC in the sense that the underlying density of the data is an
important determinant in the clusterings. However, LUND also incorporates geomet-
ric structure in the data when determining clusters, which can be especially powerful
when density is uninformative. In Figure 4, data with constant density but significant
geometric structure is analyzed. LUND succeeds in learning an accurate clustering
with respect to the latent data geometry, while SLC fails. A theoretical analysis of
the bottleneck phenomenon is presented in Section 4.3.

4. Analysis of Diffusion Processes on Data

In this section, we derive estimates for diffusion distances. Let Din
t , D

btw
t be as in (3.2).

The main result of this section is to show there exists a time interval T ⊂ [0,∞] so that
∀t ∈ T , Dbtw

t > Din
t , that is, for t ∈ T , within cluster diffusion distance is smaller than

between cluster diffusion distance. Showing that within-cluster distances are small
and between-cluster distances are large is essential for any clustering problem. The
benefit of using diffusion distance is its adaptability to the geometry of the data: it
is possible that within cluster diffusion distance is less than between cluster diffusion
distance, even in the case that the clusters are highly elongated and nonlinear. This
property does not hold when points are compared with Euclidean distances or many
other data-independent distances.
Compared to existing methods for analyzing diffusion distances, the proposed method
does not require an analysis of the localization properties of eigenfunctions of P,
which may be challenging for small or elongated clusters (Shi et al., 2009). The pro-
posed method has analogy to the analysis of Fokker-Planck equations of Nadler and
Galun (2007), in that both approaches attempt to characterize the tension between
within-cluster similarity and between-cluster separation for clustering with spectral
methods. Unlike that analysis of the continuum stochastic PDE, our analysis provides
explicit estimates on the behaviors of the discrete diffusion distances for finite data.
Our analysis is based on the notions of near-reducibility and stochastic complement,
which make precise the tension between within-cluster mixing and between-cluster
transitions.
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(b) Learned LUND Labels
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(d) Modes Learned with LUND
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Figure 4: Geometric data with roughly constant empirical density is shown in (a). The spherical
clusters are connected with thin bottlenecks. In (d), the modes learned by LUND are shown in
red, indicating that one mode per cluster is learned. This is because although the density is roughly
constant, the thin bottlenecks force the four circular clusters to be far apart in diffusion distance. The
corresponding labels learned by LUND are in (b), showing that the cluster structure is accurately
inferred. In (c), the matrix of pairwise diffusion distances is shown with diffusion time t = 103 and
diffusion scaling parameter σ = .5. The four blue blocks on the diagonal indicate that within-cluster
diffusion distances are small, while between cluster diffusion distances are large. The connecting
bottlenecks correspond to the final rows and columns of this matrix, where the diffusion distances
are less informative. In (e), labels learned from pruning the single linkage dendrogram at the third
highest merge (producing four clusters) is shown, indicating this method is not appropriate for this
data. Indeed, in (f), the purity of the hierarchical clustering is shown as a function of how many
leaves (i.e. clusters) are used from the dendrogram. The purity remains low until ∼ 25 clusters
are used, indicating that the single linkage dendrogram is unable to efficiently separate the four
spherical clusters until ∼ 25 clusters are used. The fundamental reason for the failure of SLC on
this data is the fact that the density is essentially constant and the data set is connected, which are
the properties driving SLC. Unlike LUND, SLC does not incorporate geometric information, e.g.
bottlenecks, which is quite discriminative for this data set.

4.1 Near Reducibility of Diffusion Processes

Let P be a Markov chain defined on points X satisfying the usual assumptions with
unique stationary distribution π. We will sometimes consider π as a function with
domain X, other times as a vector with indices {1, . . . , |X|}.
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For any initial distribution π0, limt→∞ π0P
t = π and moreover for any choice of

ν = π0/π, Dt(x, y) → 0 uniformly as t → ∞. One can quantify the rate of this
convergence by estimating the convergence rate of P to its stationary distribution.

Definition 4.1 For a discrete Markov chain with transition matrix P and stationary
distribution π, the relative pointwise distance to π at time t is ∆(t) = max

i,j∈{1,...,n}
|P t
ij−

πj|/πj.

The decay of ∆(t) is regulated by the spectrum of P (Jerrum and Sinclair, 1989;
Sinclair and Jerrum, 1989). Indeed, let 1 = λ1 > λ2 ≥ · · · ≥ λn > −1 be the
eigenvalues of P; note that λ2 < 1 follows from P irreducible and λn > −1 follows
from P aperiodic (Chung, 1997). Let λ∗ = maxi=2,...,n |λi| = max(|λ2|, |λn|), πmin =
minx∈X π(x).

Theorem 4.2 (Jerrum and Sinclair, 1989; Sinclair and Jerrum, 1989) Let P be the
transition matrix of a Markov chain on state space X satisfying the usual assumptions.
Then ∆(t) ≤ λt∗/πmin.

Instead of analyzing λ∗, the conductance of X may be used to bound ∆(t).

Definition 4.3 Let G be a weighted graph on X and let S ⊂ X. The conductance
of S is ΦX(S) =

∑
xi∈S,xj∈Sc

πiPij/min
(∑

xi∈S πi,
∑

xi∈Sc πi
)
. The conductance of G

is Φ(P) = minS⊆G ΦX(S).

Methods for estimating the conductance of certain graphs include Poincaré estimates
(Diaconis and Stroock, 1991; Diaconis and Saloff-Coste, 1993) and the method of
canonical paths (Jerrum and Sinclair, 1989; Sinclair and Jerrum, 1989; Aldous and
Fill, 2002). These approaches estimate Φ(P) by showing that certain simple paths
may be used as surrogates for generic paths in the graph. The conductance is related
to λ2; see Chung (1997):

Theorem 4.4 (Cheeger’s Inequality) Let G be a weighted, undirected graph with tran-
sition matrix P. Then the second eigenvalue λ2 of P satisfies Φ(P)2/2 ≤ 1 − λ2 ≤
2Φ(P).

Combining Theorem 4.2 and Cheeger’s inequality relates ∆(t) to Φ(P).

Theorem 4.5 (Jerrum and Sinclair, 1989; Sinclair and Jerrum, 1989) Let P be the
transition matrix for a Markov chain on X satisfying the usual assumptions. Suppose
Pii ≥ 1

2
, ∀i = 1, . . . , n. Then ∆(t) ≤ (1− 1

2
Φ(P)2)t/πmin.
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Note that any Markov chain can be made to satisfy Pii ≥ 1
2
, ∀i = 1, . . . , n, simply by

replacing P with 1
2
(P + I). This keeps the same stationary distribution and reduces

the conductance by a factor of 1
2
.

Whether Theorem 4.2 or 4.5 is used, the convergence of P towards its stationary
distribution is exponential, with rate determined by λ∗ or Φ(P), that is, to how close
to being reducible the chain is. This yields estimates on diffusion distances; indeed,
for x, y ∈ X and any initial distribution π0,

Dt(x, y) =||pt(x, ·)− pt(y, ·)||`2(ν) ≤ ||pt(x, ·)− π(·)||`2(ν) + ||pt(y, ·)− π(·)||`2(ν)

≤2

√∑
u∈X

max
z∈X

|pt(z, u)− π(u)|2
π(u)2

π(u)π0(u)

≤2∆(t)

√∑
u∈X

π(u)π0(u) ≤ 2∆(t) ≤
2(1− 1

2
Φ(P)2)t

πmin

.

Thus, as t → ∞, Dt → 0 uniformly at an exponential rate depending on the con-
ductance of the underlying graph; a similar result holds for λ∗ in place of Φ(P).
This gives a global estimate on the diffusion distance in terms of λ∗ and Φ(P). Note
that a similar conclusion holds by analyzing (2.2), recalling that ψ1 is constant and
λ2 = maxi6=1 |λi| = λ∗.
Unfortunately, a global estimate on diffusion distances may be too coarse for unsuper-
vised clustering. To obtain the desired separation of Din

t , D
btw
t , we need to study not

the global mixing time, but the mesoscopic mixing times, corresponding to the time
it takes for convergence of points in each cluster towards their mesoscopic equilibria,
before reaching the global equilibrium. For this purpose, we use results from the
theory of nearly reducible Markov processes (Simon and Ando, 1961; Meyer, 1989).
Suppose the matrix P is irreducible; write P, possibly after a permutation of the
indices of the points, in block decomposition as

P =


P11 P12 . . . P1m

P21 P22 . . . P2m
...

...
. . .

...
Pm1 Pm2 . . . Pmm

 , (4.6)

where each Pii is square and m ≤ n. Let Ii be the indices of the points corresponding
to Pii. Recall that if the graph corresponding to P is disconnected, then P is a
reducible Markov chain. Recall that ‖A‖∞ = maxi

∑
j |Aij| is the maximal row sum

of A = (Aij). Suppose that ‖Pij‖∞ is small but nonzero for i 6= j, that is, most
of the interactions for points in Ii are contained within Pii. This suggests diffusion
on the blocks Pii have dynamics that converge to their own, mesoscopic equilibria
before the entire chain converges to a global equilibrium, depending on the weakness
of connection between blocks. Interpreting the support sets Ii as corresponding to
the clusters of X, this suggests there will be a time range for which points within
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each cluster are close in diffusion distance but far in diffusion distance from points in
other clusters; such a state corresponds to a mesoscopic equilibrium. To make this
precise, consider the notion of stochastic complement.

Definition 4.7 Let P be an n× n irreducible Markov matrix partitioned into square
block matrices as in (4.6). For a given index i ∈ {1, . . . ,m}, let Pi denote the principal
block submatrix generated by deleting the ith row and ith column of blocks from (4.6),

and let P∗i =
[
P1iP2i . . .Pi−1,iPi+1,i . . .Pmi

]T
and Pi∗ =

[
Pi1 Pi2 . . . Pi,i−1 Pi,i+1 . . . Pim

]
.

The stochastic complement of Pii is the matrix Sii = Pii + Pi∗(I−Pi)
−1P∗i.

One can interpret the stochastic complement Sii as the transition matrix for a reduced
Markov chain obtained from the original chain, but in which transitions into or out
of Ii are masked. More precisely, in the reduced chain Sii, a transition is either direct
in Pii or indirect by moving first through points outside of Pii, then back into Pii at
some future time. Indeed, the term Pi∗(I−Pi)

−1P∗i in the definition of Sii accounts
for leaving Ii (the factor Pi∗), traveling for some time in Ici (the factor (I − Pi)

−1),
then re-entering Ii (the factor P∗i). Note that the factor (I−Pi)

−1 may be expanded
in Neumann sum as (I−Pi)

−1 =
∑∞

t=0 Pt
i, showing that it accounts for exiting from

Ii and returning to it after an arbitrary number of steps outside of it.
The notion of stochastic complement quantifies the interplay between the mesoscopic
and global equilibria of P. We say P is primitive if it is non-negative, irreducible
and aperiodic. The following theorem indicates how P may be analyzed when it
is derived from cluster data {Xk}Kk=1 sampled according to (3.1); a proof appears
in the Appendix for completeness. This result, which produces estimates related
to the diffusion operator P in the `1 norm, is used to prove results on diffusion
distances, which are defined in an `2 sense, partially in order to take advantage of
spectral decompositions for fast computations. This discrepancy will be discussed
and controlled in Section 4.2.

Theorem 4.8 (Meyer, 1989) Let P be an n × n irreducible row-stochastic matrix
partitioned into K2 square block matrices, and let S be the reducible row-stochastic
matrix consisting of the stochastic complements of the diagonal blocks of P:

P =


P11 P12 . . . P1K

P21 P22 . . . P2K
...

...
. . .

...
PK1 PK2 . . . PKK

 , S =


S11 0 . . . 0
0 S22 . . . 0
...

...
. . .

...
0 0 . . . SKK

 .
Suppose each Sii is primitive, so that the eigenvalues of S satisfy λ1 = λ2 = · · · =
λK = 1 > λK+1 ≥ λK+2 ≥ · · · > −1. Let Z diagonalize S, and let

S∞ = lim
t→∞

St =


1π1 0 . . . 0
0 1π2 . . . 0
...

...
. . .

...
0 0 . . . 1πK

 ,
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where πi is the stationary distribution for Sii. Then ‖Pt − S∞‖∞ ≤ tδ + κ|λK+1|t,
where δ = 2 maxi ‖Pi∗‖∞ and κ = ‖Z‖∞‖Z−1‖∞. Moreover, for any initial distribu-
tion π0 and s = limt→∞ π0S

t = π0S
∞, ‖π0P

t − s‖1 ≤ tδ + κ|λK+1|t.

Note that this result does not require the Markov chain to be reversible, and hence
applies to diffusion processes defined on directed graphs. The assumption that S
is diagonalizable is not strictly necessary, and similar estimates hold more generally
(Meyer, 1989).
The estimate tδ + κ|λK+1|t consists of two terms. The tδ term corresponds to ‖Pt −
St‖∞, which accounts for the approximation of Pt by the reducible Markov chain St.
In the context of clustering, this term accounts for the between-cluster connections
in P. The term κ|λK+1|t corresponds to ‖St − S∞‖∞, which accounts for propensity
of mixing within a cluster. In the clustering context, this term quantifies the within-
cluster distances.
It follows from Theorem 4.8 that, given ε sufficiently large, there is a range of t
for which the dynamics of Pt are ε-close to the dynamics of the reducible, low-rank
Markov chain S∞.

Corollary 4.9 Let λK+1, δ, κ be as in Theorem 4.8. Suppose that for some ε > 0,

ln
(

2κ
ε

)
/ln
(

1
|λK+1|

)
< t < ε

2δ
. Then ‖Pt−S∞‖∞ < ε, and for every initial distribution

π0, ‖π0P
t − s‖1 < ε.

In contrast with t, the values λK+1, δ, κ may be understood as fixed geometric pa-
rameters of the data set which determine the range of times t at which mesoscopic
equilibria are reached. More precisely, as n→∞, δ, κ converge to natural continuous
quantities independent of n, and Garcia Trillos et al. (2018) proved that as n→∞,
there is a natural scaling for σ → 0+ in which the (random) empirical eigenvalues of
P converge in a precise sense to the (deterministic) eigenvalues of a corresponding
continuous operator defined on the support of µ as in (3.1). Thus, the parameters
of Theorem 4.9 may be understood as random fluctuations of geometrically intrin-
sic quantities depending on µ. In the context of the proposed data model, these
quantities may be interpreted as follows:

• λK+1 is the largest eigenvalue of S not equal to 1. Since S is block diagonal and
each Skk is primitive, it follows that λK+1 = maxk=1,...,K λ2(Skk). As discussed
above, {λ2(Skk)}Kk=1 is related to the conductance Φ(Skk) and the mixing time
of the random walk restricted to Skk. If the entries of Skk are very close to the
entries of Pkk, then a perturbative argument yields λ2(Skk) ≈ λ2(Pkk).

• The quantity δ = 2 maxk=1,...,K ‖Pk∗‖∞ is controlled by the largest interaction
between clusters. If the separation between the {Xk}Kk=1 is large enough, δ will
be small. To get a sense of this parameter, let C1, C2 be clusters with n/2
points uniformly sampled from the balls B1(0, 0), B1(2 + η, 0) ⊂ R2. Then, for
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n sufficiently large, dist(C1, C2) = minx1∈C1,x2∈C2 ‖x1− x2‖2 ≈ η. Note that the
point in B1(0, 0) nearest B1(2 + η, 0) is (1, 0). Then modulo the variance from
the random sampling,

δ ≈
2

∫
B1(2+η,0)

exp(−‖(x, y)− (1, 0)‖2
2/σ

2)dxdy∫
B1(2+η,0)

exp(−‖(x, y)− (1, 0)‖2
2/σ

2)dxdy +

∫
B1(0,0)

exp(−‖(x, y)− (1, 0)‖2
2/σ

2)dxdy

≤ 2 exp(−η2/σ2)

exp(−(η2 + 4η)/σ2) + 1
.

(4.10)

Figure 5 illustrates empirically how δ depends on σ and dist(C1, C2) for such
data.
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(a) Uniform, spherical clusters C1, C2 with
dist(C1, C2) ≈ .1
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(b) δ as a function of dist(C1, C2) and σ.

Figure 5: In (a), data drawn uniformly at random from the union of two balls in R2 is shown. In (b),
it is shown that for such equal sized, spherical, constant density clusters, the separation parameter
exhibits rapid decay as σ → 0+, for fixed separation. The experiments confirm that the decay of δ
is essentially logistic in −(η2/σ2), as estimated in (4.10).

• The quantity κ = ‖Z‖∞‖Z−1‖∞, with Z = (φ1| . . . |φn), is a measure of the
condition number of diagonalizing S. If Z,Z−1 are orthogonal matrices, then
each row of Z,Z−1 have `2 norm 1, hence κ ≤ n. We remark that κ is bounded
independently of n in the case that all the data live on a common manifold,
using convergence of heat kernels and low-frequency eigenfunctions together
with heat kernel estimates on manifolds. In the clustering setting, if each cluster
is a manifold, similar results would hold in this case, albeit this analysis is a
topic of ongoing research.
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4.2 Diffusion Distance Estimates

Returning to the proposed data model X =
⋃K
k=1 Xk ∼ µ as per (3.1), let P be a

corresponding Markov chain on X satisfying the usual assumptions. We estimate the
dependence of diffusion distances on the parameters δ, λK+1, κ above. We also intro-
duce a balance quantity that quantifies the difference between the `1 norm (the setting
of Theorem 4.8) and the `2 norm (the setting of diffusion distances). Throughout this
section, let pt(xi, xj) = Pt

ij, s∞(xi, xj) = S∞ij .

Definition 4.11 Let P,S∞ ∈ Rn×n be as in Theorem 4.8. Define

γ(t) = max
x∈X

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− s∞(x, u)|
‖pt(x, ·)− s∞(x, ·)‖2

− 1√
n

∣∣∣∣2
)−1

.

Botelho-Andrade et al. (2019) show that for any vector v ∈ Rn, ‖v‖2 = cv√
n
‖v‖1, where

cv =

(
1− 1

2

n∑
i=1

∣∣∣∣ |vi|‖v‖2

− 1√
n

∣∣∣∣2
)−1

.

In this sense, γ(t) measures how the `1 norm differs from the `2 norm across all rows
of Pt−S∞. In particular, when each row of Pt−S∞ is close to uniform, γ(t) is close
to 1; when some row of Pt − S∞ concentrates all its mass around one index, then
γ(t) =

√
n. Note that 1 ≤ γ(t) ≤

√
n for all t.

Theorem 4.12 Let X =
⋃K
k=1 Xk and let P be a corresponding Markov transition

matrix on X. Let δ, λK+1, κ,S
∞ be as in Theorem 4.8. Let Dt be the diffusion distance

associated to P and counting measure ν. If t, ε satisfy

ln
(

2κ
ε

)
ln
(

1
λK+1

) < t <
ε

2δ
,

then

(a) Din
t ≤ 2

ε√
n
γ(t).

(b) Dbtw
t ≥ 2 min

y∈X
‖s∞(y, ·)‖`2(ν) − 2

ε√
n
γ(t).

Proof By Corollary 4.9, ‖Pt−S∞‖∞ < ε, that is, maxx∈X
∑

u∈X |pt(x, u)−s∞(x, u)|ν(u) <
ε. To see (a), let k be arbitrary and let x, y ∈ Xk. Then:

||pt(x, ·)− pt(y, ·)||`2(ν)

≤||pt(x, ·)− s∞(x, ·)||`2(ν) + ||pt(y, ·)− s∞(y, ·)||`2(ν) + ||s∞(y, ·)− s∞(x, ·)||`2(ν)
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=
1√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− s∞(x, u)|
‖pt(x, ·)− s∞(x, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

||pt(x, ·)− s∞(x, ·)||`1(ν)

+
1√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(y, u)− s∞(y, u)|
‖pt(y, ·)− s∞(y, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

||pt(y, ·)− s∞(y, ·)||`1(ν)

+||s∞(y, ·)− s∞(x, ·)||`2(ν)

≤ 2ε√
n

max
x∈X

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− s∞(x, u)|
‖pt(x, ·)− s∞(x, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

+ ||s∞(y, ·)− s∞(x, ·)||`2(ν) ,

where t satisfies ln
(

2κ
ε

)
/ ln

(
1

λK+1

)
< t < ε/(2δ). The line relating the norm in

`1(ν) and `2(ν) follows from Theorem 1 in Botelho-Andrade et al. (2019). Note
that S∞ has constant columns on each cluster, and in particular for x, y ∈ Xk,
s∞(x, u) = s∞(y, u) = πk(u) for all u ∈ X, so that ||s∞(y, ·) − s∞(x, ·)||`2(ν) = 0.
Statement (a) follows.
To see (b), suppose that x ∈ Xk, y ∈ X`, k 6= `. Then

‖pt(x, ·)− pt(y, ·)‖`2(ν)

=‖pt(x, ·)− s∞(x, ·) + s∞(x, ·)− s∞(y, ·) + s∞(y, ·)− pt(y, ·)‖`2(ν)

≥‖s∞(x, ·)− s∞(y, ·)‖`2(ν) − ‖pt(x, ·)− s∞(x, ·)‖`2(ν) − ‖pt(y, ·)− s∞(y, ·)‖`2(ν)

=‖s∞(x, ·)− s∞(y, ·)‖`2(ν)

− 1√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− s∞(x, u)|
‖pt(x, ·)− s∞(x, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

||pt(x, ·)− s∞(x, ·)||`1(ν)

− 1√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(y, u)− s∞(y, u)|
‖pt(y, ·)− s∞(y, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

||pt(y, ·)− s∞(y, ·)||`1(ν)

≥‖s∞(x, ·)− s∞(y, ·)‖`2(ν) −
ε√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− s∞(x, u)|
‖pt(x, ·)− s∞(x, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

− ε√
n

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(y, u)− s∞(y, u)|
‖pt(y, ·)− s∞(y, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

≥‖s∞(x, ·)− s∞(y, ·)‖`2(ν) − 2
ε√
n

max
z∈X`∪Xk

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(z, u)− s∞(z, u)|
‖pt(z, ·)− s∞(z, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

≥2 min
w∈Xk∪X`

‖s∞(w, ·)‖`2(ν) − 2
ε√
n

max
z∈X`∪Xk

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(z, u)− s∞(z, u)|
‖pt(z, ·)− s∞(z, ·)‖`2(ν)

− 1√
n

∣∣∣∣2
)−1

,

where in the last step, to lower bound the first term we used that s∞(y, ·) = πl(·),
s∞(x, ·) = πk(·), and recalled that since k 6= l the supports of s∞(x, ·) and s∞(y, ·)
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are disjoint. Minimizing this lower bound over all clusters Xk, X` yields the desired
result.

Heuristically, if ε is small and the reduced equilibrium distribution s∞ is roughly
constant on each cluster, there will be a range of t for which Din

t � Dbtw
t . The notion

of s∞ being roughly constant on each cluster is equivalent to nodes in the same
cluster having roughly constant degree. These theoretical estimates are compared to
empirical bounds computed numerically in Section 6.
If P is very close to S in Frobenius norm, then pt(x, y) is very close to s∞(x, y) and
ε may be taken close to 0. In particular, for the ideal case ε = 0, the estimates of
Theorem 4.12 reduce to

Din
t = 0 , Dbtw

t ≥ 2 min
y∈X
‖s∞(y, ·)‖`2(ν). (4.13)

One can define a natural notion of diffusion distance between disjoint clusters in a
reducible Markov chain as the sum of the `2 norms of their respective stationary
distribution, which agrees with both the definition of diffusion distances upon taking
the limit t → +∞ and with the lower bound (b) in Theorem 4.12 when ε → 0+.
Hence, while the estimates in the proof of Theorem 4.12 may not be optimal, they
are quite natural for ε→ 0+.
Away from the asymptotic regime ε → 0+, the estimates of Theorem 4.12 may be
further simplified by placing additional assumptions on the data. Indeed, if the
equilibrium distributions in S∞ are balanced and uniform, the following result holds:

Corollary 4.14 Suppose that s∞ is uniform on each Xk, and the cardinality of each

Xk is n/K. Then for any t, ε satisfying ln
(

2κ
ε

)/
ln
(

1
λK+1

)
< t < ε

2δ
,

Din
t ≤

2√
n
εγ(t) , Dbtw

t ≥ 2√
n

(√
K − εγ(t)

)
.

Proof If S∞ has constant rows on each cluster (i.e. the stationary distribution on
each cluster of the reduced Markov chain is uniform), and the clusters are of constant
size n/K, then 2 miny∈X ‖s∞(y, ·)‖`2(ν) = 2

√
K/n. Then Theorem 4.12 yields

Dbtw
t ≥2 min

y∈X
‖s∞(y, ·)‖`2(ν) − 2

ε√
n
γ(t)

=2

√
K

n
− 2

ε√
n
γ(t)

=
2√
n

(√
K − εγ(t)

)
.
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In particular, if ε �
√
K/(2γ(t)), within cluster distances will be small since Din

t �√
K/n, and also there will be clear separation between clusters since Dbtw

t = Ω(
√
K/n).

Note that when Pt − S∞ is balanced, γ(t) is O(1) with respect to n, so that the as-
sumption on ε is independent of n.
We remark that in general if S∞ and Pt − S∞ are balanced in the sense of having
approximately uniform rows, then miny∈X ‖s∞(y, ·)‖`2(ν) scales like 1/

√
n and γ(t) =

O(1), respectively. In this (generic) case, the bounds of Theorem 4.12 are on the
order 1/

√
n. This is natural, since diffusion distances are computed in the `2 sense,

while Pt and S∞ have rows with `1 norm equal to 1.

4.3 Relaxing Separation Between Clusters

The analysis of diffusion distances in Section 4.2 depends on δ, a parameter charac-
terizing separation between clusters. When δ is large, the estimates on Din

t and Dbtw
t

from Theorem 4.12 are poor. However, δ is defined as the maximum over all points
of the probability of transitioning to a new cluster in one time step. The formulation
in terms of the maximum is convenient for analysis, but is pessimistic in the case
of clusters cores that are separated by bottlenecks or low density noise regions. In-
deed, for these data, δ may be large—there are some points quite close to the cluster
boundaries—but the probability of transition between clusters cores is low.
The conservative estimates based on δ may be improved by considering some data
points not as part of a cluster, but rather as noise or transition points. Let X =⋃K
k=1 Xk ∪N be a decomposition of X into cluster points (

⋃K
k=1 Xk) and noise points

(N ). Decompose P as

P =


P11 P12 . . . P1K P̃1,N
P21 P22 . . . P2K P̃2,N

...
...

. . .
...

...

PK1 PK2 . . . PKK P̃K,N
P̃N ,1 P̃N ,2 . . . P̃N ,K P̃N ,N

 (4.15)

in a manner analogous to (4.6). Interpreting the final block rows and columns as noise
or bottleneck points that are not part of clusters, Theorem 4.12 may be generalized
to allow for clusters that are not well-separated, by accounting for the geometric
properties of noise and bottlenecks which do not admit transitions between clusters
over short time scales. This more generalized analysis does not make use of the
reduced Markov chain S, and some slightly new notation is required.

Definition 4.16 For P as in (4.15) define

γmin(t) = min
x,y∈X,x6=y

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− pt(y, u)|
‖pt(x, ·)− pt(y, ·)‖2

− 1√
n

∣∣∣∣2
)−1

,
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γmax(t) = max
x,y∈X

(
1− 1

2

∑
u∈X

∣∣∣∣ |pt(x, u)− pt(y, u)|
‖pt(x, ·)− pt(y, ·)‖2

− 1√
n

∣∣∣∣2
)−1

.

The following result is more general than Theorem 4.12, in that it allows for bot-
tlenecks in the data, but is not interpretable in terms of the near reducibility of P.
Let Din

t , D
btw
t be as in (3.2); note that these quantities ignore N and only consider

distances within and between the clusters {Xk}Kk=1.

Theorem 4.17 Let X =
⋃K
k=1 Xk∪N and let P be a corresponding Markov transition

matrix on X, decomposed as in (4.15), and let ν be the counting measure. Let

δ(t) =2 max
1≤k≤K

‖(Pt)k∗‖∞, where Pk∗ = [Pk1Pk2 . . .Pk,k−1Pk,k+1 . . .PkK ],

α(t) = max
1≤k≤K

max
x,y∈Xk

∑
u∈Xk

|pt(x, u)− pt(y, u)|,

β(t) =2 min
1≤k≤K

min
x∈Xk

∑
u∈Xk

|pt(x, u)|,

ζ(t) = max
1≤k≤K

max
x,y∈Xk

∑
u∈N

|pt(x, u)− pt(y, u)|.

Then:

(a) Din
t ≤ γmax(t)(α(t) + δ(t) + ζ(t)).

(b) Dbtw
t ≥ γmin(t)(β(t)− δ(t)).

Proof To see (a), suppose x, y ∈ Xk. Then

‖pt(x, ·)− pt(y, ·)‖`2(ν)

≤γmax(t)‖pt(x, ·)− pt(y, ·)‖`1(ν)

=γmax(t)

(∑
u∈Xk

|pt(x, u)− pt(y, u)|+
∑
`6=k

∑
u∈X`

|pt(x, u)− pt(y, u)|+
∑
u∈N

|pt(x, u)− pt(y, u)|

)
≤γmax(t)(α(t) + δ(t) + ζ(t)).

On the other hand, suppose x ∈ Xk, y ∈ X`, k 6= `. Then

‖pt(x, ·)− pt(y, ·)‖`2(ν) ≥γmin(t)‖pt(x, ·)− pt(y, ·)‖`1(ν)

≥γmin(t)

(∑
u∈Xk

|pt(x, u)− pt(y, u)|+
∑
u∈X`

|pt(x, u)− pt(y, u)|

)

≥γmin(t)

(∑
u∈Xk

|pt(x, u)| − |pt(y, u)|+
∑
u∈X`

|pt(y, u)| − |pt(x, u)|

)
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≥γmin(t)(β(t)− δ(t)).

The quantities δ(t), α(t), β(t) in Theorem 4.17 are analogous to those in Theorem 4.12,
albeit without the aid of the analysis in terms of S∞. The quantity ζ(t) pertains to
the noise N , and hence has no analogy in Theorem 4.12.

• The quantity δ(t) is an upper bound on the probability mass that transitions
between clusters at time t. It does not consider the mass transfer from clusters
to the noise region. In Theorem 4.8, when the clusters are well-separated and
N = ∅, δ(t) ≤ δ(1)t = δt is a worst-case, though intuitive, upper bound.
Generally, δ(t) may depend on time nonlinearly and in particular it may stay
small for a long time, before the global equilibrium time of the underlying
Markov chain P is approached, at which point it grows essentially linearly in
t before stabilizing around the global mixing time. This occurs, for example,
in data with bottlenecks between clusters. We remark that considering δ(t) in
these more general terms is possible even in the noiseless case of Theorem 4.8.
Indeed, this may allow for a better estimate than the worst-case estimate of
δ(t) ≤ δ(1)t = δt, though at some loss of simplicity.

• The quantity α(t) controls how close the diagonal blocks are to having constant
rows, that is, how close to mesoscopic equilibria the random walker is on each
individual cluster. In the case that all individual clusters are near their meso-
scopic equilibria by time t, α(t) is close to 0. In the simpler context of Theorem
4.8, α(t) is governed by λtK+1, that is, by the second largest eigenvalue of the
blocks of the stochastic complement of P. This is because the second smallest
eigenvalue on each block controls the rate of convergence to local equilibrium
of that block in the stochastic complement S.

• The quantity β(t) measures the row sums of the transition matrices localized to
each cluster. It is analogous to the term involving the norm of the stationary
distribution in the lower bound on Dbtw

t in Theorem 4.12.

• The quantity ζ(t) is a measure of the impact of the noise region in the compu-
tation of diffusion distances. When the number of noise points is small relative
to the number of cluster points, this term is negligible. It is also negligible
when the noise region impacts a cluster in a uniform way, in particular when
the cluster has reached a mesoscopic equilibrium.

Theorem 4.17 suggests that for data in which, with high probability, the clusters reach
mesoscopic equilibria before the random walker exits the clusters and crosses the noise,
there exists a range of parameters t such that Din

t is small and Dbtw
t is large. At this

time scale, α(t) is small since the individual clusters are near mesoscopic equilibria,
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and δ(t) is small and β(t) large because most of the mass is still localized on the
distinct clusters.
An important class of examples exhibiting this behavior is clusters connected by
narrow bottlenecks, as shown for example in Figure 4 (a). In that example, consider
the four balls as clusters {Xk}4

k=1 and the bottlenecks as N . The behavior of Din
t and

Dbtw
t as a function of t, as well as several transition matrices for different t values are

shown in Figure 6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-5

-4

-3

-2

-1

0

(a) Dbtw
t , Din

t versus t.

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

0

0.05

0.1

0.15

0.2

(b) Diffusion distances, t = 1
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(c) Diffusion distances, t =
103
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(d) Diffusion distances, t =
106

Figure 6: Plots illustrating that the bottleneck data in Figure 4 exhibits mesoscopic equilibria,
despite the lack of any strict separation between the four clusters. Indeed, (a) shows that for a large
time range, Din

t is much less (note that the vertical axis is in log10 scale) than Dbtw
t . This is further

illustrated by the fact that for different ranges of time t, the blocks in the diffusion distance matrix
corresponding to the cluster sets become essentially all 0—see (b), (c). For large time, the diffusion
distances start to converge uniformly to 0, as shown in (d). Note that the last rows and columns of
P correspond to the bottleneck points.

Theorem 4.12 does not provide useful estimates for this bottleneck data, because
of the lack of strict separation between the clusters. Indeed, if bottleneck points
are assigned to their nearest clusters, then δ is nearly 1, rendering Theorem 4.12
essentially useless. However, Theorem 4.17 supplies useful estimates on the diffusion
distances within and between clusters (e.g. that Din

t � Dbtw
t ). This is because δ(t)

is small and β(t) large for long time scales, until the random walk has explored from
one cluster to another. That it takes a long time for the random walk to reach global
stationarity due to the bottleneck can be argued in terms of graph conductances
(Chung, 1997). We sketch a combinatorial argument below, in order to observe how
the data dimensionality affects the bottlenecks. For simplicity, we consider just two
clusters.
Consider the following model of bottleneck data in RD. Let L > 0 and X = X1 ∪
X2 ∪ N , where X1 = [0, 1]D,X2 = [0, 1]D + (L, 0, 0, . . . , 0) are clusters connected at
the centers of faces by a cylindrical tube N of length L and D− 1 dimensional radius
ε. Let X be generated by sampling uniformly at random from X . To simplify the
analysis, consider a random walk on X such that x ∈ X transitions to points in Bσ(x)
with equal probability, and not to any other points, for some σ > 0.
For ε < σ, a point x∗ at the boundary interface between X1 and N is such that most
of its near neighbors lie inside the cluster, rather than in the bottleneck. Indeed,
up to geometric constants, volD(X1 ∩ Bσ(x∗)) � σD, while volD(N ∩ Bσ(x∗)) �
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σεD−1. In particular, the probability of a random walker transitioning from x∗ into
the bottleneck in one time step is upper bounded by (ε/σ)D−1, so that the expected
number of times a random walk reaches the boundary interface before exiting X1

is lower bounded by (σ/ε)D−1. Supposing that the random walker spends time T
exploring X1 before returning to the boundary interface, the expected time it takes
for a random walker to exit from X1 into the bottleneck is (σ/ε)D−1T . Moreover,
once the random walker transitions from X1 to N , the expected number of steps it
takes to cross the bottleneck to get to X2 may be lower bounded by bL/σc. Indeed,
if all the one-step transitions are optimal in the sense of being distance σ exactly in
the direction parallel to (1, 0, . . . , 0), then at least bL/σc steps are required to cross;
better estimates on the expected number of steps to cross are also possible (Levin
et al., 2009).
In particular, the random walker will, with high probability, exit X1 then return to
X1 Ω(bL/σc) times, before exiting X1 and making it all the way to X2. Thus, the
expected time to transition from an arbitrary starting point in X1 to any point in X2

may be crudely estimated to be Ω(bL/σc(σ/ε)D−1T ), which is large when L is large
and ε is small, i.e. the bottleneck is long and thin. In particular, Dbtw

t will remain
large for t . bL/σc(σ/ε)D−1T . Noting that T is comparable to the mixing time on
X1 (and thus X2) alone, this suggests that there are time scales at which the random
walker is at equilibrium on the distinct clusters (albeit with small leakage into the
bottleneck at each time step) but at which global equilibrium is not reached. At
such time scales, diffusion distances within a cluster are small, and between the two
clusters are large.
We remark that this property of diffusion distances for bottlenecks also allows LUND
to correctly learn the clusters in the data, since the density is constant on this data
set. Indeed, in Figure 4, LUND learns four modes in the four distinct clusters, and
consequently labels all points correctly. It is interesting to note that depending on the
random sample, LUND may learn three modes in distinct clusters and a fourth mode
either in the fourth cluster (as in Figure 4 (a)) or at the intersection of the bottlenecks
(a possibility not shown in Figure 4). Whether the fourth mode is in a cluster or in
the middle of the bottleneck depends on random fluctuations in the empirical density
of the data. Regardless of if fourth mode is in the bottleneck region or in a cluster,
the consequent LUND labeling of the data is correct. Indeed, if one of the modes is
the bottleneck, then the cluster without a mode will have points assigned the label
associated to the bottleneck mode, leading all the clusters to be given correct labels.

4.4 Example: A Simple Gaussian Mixture Model

The major parameters controlling the estimates in Theorem 4.12 are δ, λK+1, and κ.
To illustrate the key quantities of this theorem, we consider the simple example of
a mixture of Gaussians µG = 1

2
N (x1,Σ) + 1

2
N (x2,Σ) in R2 with diagonal isotropic

covariance matrix Σ = 1
10

I. We construct the diffusion transition matrix P using the
Gaussian kernel with σ = .2, as described in Section 2.2.
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As ‖x1 − x2‖2 increases, Theorem 4.12 becomes more informative. In Figure 7,
samples are drawn from µG with different amounts of separation (and hence different
δ, λK+1, κ values) and we show the dependence on ε of the bounds

Din
t = 2

ε√
n
γ(t), Dbtw

t = 2 min
y∈X
‖s∞(y, ·)‖`2(ν) − 2

ε√
n
γ(t).

and the permissible time interval [ln
(

2κ
ε

)
/ ln

(
1

λK+1

)
, ε

2δ
]. For Theorem 4.12 to be

meaningful, ε must be such that simultaneously Din
t < Dbtw

t and ln
(

2κ
ε

)
/ ln

(
1

λK+1

)
<

ε
2δ

. As ε → 0+, Din
t < Dbtw

t holds if the clusters are internally well-connected and

separated, as articulated in (4.13), while ln
(

2κ
ε

)
/ ln

(
1

λK+1

)
→ ∞ and ε

2δ
→ 0+; a

similar but reversed dichotomy occurs as ε → ∞. Figure 7 illustrates this tension
between the hypotheses of Theorem 4.12 and the strength of its conclusion.

4.5 Robustness to Geometric Deformations

LUND depends mainly on the intrinsic geometric constants δ and λK+1, so clustering
performance with LUND is robust to small amounts of geometric deformation, for
example the action of a bi-Lipschitz map. This is illustrated in Figure 8, in which
two circular clusters in R2 are distorted by stretching the second coordinate. The
results of LUND as a function of t and the amount of stretching are shown. It can be
seen that the more the clusters are stretched, the larger t needs to be to achieve good
accuracy. This is because as the clusters are stretched, the parameter λK+1 increases
towards 1, meaning that t must be larger to ensure that mesoscopic equilibria on the
distinct clusters are reached. Note that the relationship between domain geometry
and the eigenvalues of the Laplacian is well-studied in classical settings (Szegö, 1954;
Weinberger, 1956), and its role in graph-based clustering is noted in contexts other
than LUND (Ng et al., 2002; Arias-Castro, 2011; Schiebinger et al., 2015; Little et al.,
2017).
We note that transformations that push the clusters closer together can strongly
impact LUND, since this will dramatically change the δ value. This is true of all
clustering algorithms; the primary benefit of LUND compared to a range of existing
methods is its robustness to distorting the shape of the clusters.

4.6 Relationship Between Time and Scaling Parameter in Diffusion
Distances

The Markov chain underlying diffusion distances is typically constructed using the
heat kernel K(x, y) = exp(−‖x−y‖2

2/σ
2), for some choice of (spatial) scale parameter

σ. Once P = Pσ is constructed, the time parameter t enters. For data sampled
from a common manifold, there exists an asymptotic relationship between t and σ as
n→∞:

lim
σ→0

PT0/σ
σ = e−T0∆, (4.18)
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Figure 7: 2000 data points sampled from µG, for two sets of means are shown in (a), (d). In

(b), (e), the range between Din
t and Dbtw

t —as a function of ε—is shown. Plots (c), (f) show the t
interval guaranteed by Theorem 4.12, indicating the existence of a non-empty range of t for which
the conclusions of Theorem 4.12 apply whenever the red curve is above the blue curve. As the means
x1,x2 move apart, the time interval in which Theorem 4.12 guarantees good separation between the
clusters expands. This is makes sense intuitively, since as the clusters move apart, the unsupervised
learning problem becomes easier. We remark that the separation for the data in (a) is insufficient for
Theorem 4.12 to guarantee a large time range in which Din

t < Dbtw
t . This is because the δ constant

is large for this data set, since δ is determined by the points in distinct clusters that are nearest,
and in particular is a worst-case bound. Relaxing the δ separation condition is discussed in Section
4.3.

where e−T0∆ is the infinitesimal generator corresponding to continuous diffusion with
canonical time T0 (Lafon et al., 2006). So, asymptotically as n → ∞, and requiring
σ → 0+ and t = T0

σ
, using (t, σ) is equivalent to using (Ct, σ/C) for any constant

C > 0. This suggests that asymptotically as n → ∞, the performance of LUND
with respect to σ, t should be constant if tσ is constant as σ → 0+. As we shall
see observe in Section 6, working with finite data in the cluster setting, rather than
the asymptotic regime on a common manifold, may lead to more subtle relationships
between t and σ.
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Figure 8: In (a), uniform spherical data is shown. In (b), the data in (a) has been geometrically
deformed by dilating the second coordinate by a factor of 3. We consider the robustness of LUND
to the natural geometric transformation (x, y) 7→ (x, αy), where α is understood as a stretching
parameter. In (c), the results of LUND are shown as a function of t and the dilation factor α. As α
increases, the cluster stretches and taking larger t allows LUND to accurately label the data. This is
because the random walker requires more time to explore a high elongated cluster than a compact,
spherical one.

5. Performance Guarantees for Unsupervised Learning

We consider now how the LUND algorithm (Algorithm 1) performs on data X =⋃K
k=1 Xk. Let p(x) be a KDE for x ∈ X, let ρt be as in (3.4), and recall Dt(x) =

p(x)ρt(x). The LUND algorithm sets the maximizers of Dt to be the modes of the
clusters. Requiring potential modes to have large ρt values enforces that modes
should be far in diffusion distance from other high-density points, and incorporating
p(x) downweighs outliers, which may be far in diffusion distance from their nearest
neighbor of higher empirical density.

Theorem 5.1 Suppose X =
⋃K
k=1 Xk. If Din

t /D
btw
t < min(M)/max(M), then the

K maximizers {x∗i }Ki=1 of Dt(x) are such that x∗i is a highest empirical density point
of Xki for some permutation (k1, . . . , kK) of (1, . . . , K).

Proof We proceed by induction on 1 ≤ m ≤ K. Clearly x∗1 = arg maxy∈X p(y) is
a highest empirical density point of some Xk. Then suppose x∗1, . . . ,x

∗
m,m < K,

have been determined, and are highest empirical density points of distinct classes
Xk1 , . . . , Xkm . We show that x∗m+1 must be a highest density point among the re-
maining Xk, k /∈ {k1, . . . , km}.
First, suppose x ∈ Xkr for some r ∈ {1, . . . ,m} is any point in the classes already
discovered, not of maximal within-class density. Then ρt(x) ≤ Din

t , since x∗r ∈ Xkr

has p(x) < p(x∗r), and hence for any x a highest density point in a cluster not already
discovered,

Dt(x) < p(x∗kr)ρt(x) ≤ max(M)Din
t ≤

max(M)

min(M)

Din
t

Dbtw
t

p(x)ρt(x) < p(x)ρt(x) = Dt(x).
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Thus, x∗m+1 6= x.
Now, suppose x ∈ Xk, k 6= k1, . . . km. If x 6= x an empirical density maximizer of Xk,
then:

Dt(x) = p(x)ρt(x) < p(x)ρt(x) ≤ p(x)Din
t < p(x)Dbtw

t ≤ p(x)ρt(x) = Dt(x).

Hence, x∗m+1 6= x, and thus x∗m+1 must be among the classwise empirical density
maximizers of Xk, k /∈ {k1, . . . , km}.

A similar method proves that the ratios of the sorted Dt values determine the number
of clusters K. The problem of estimating the number of clusters is a crucial one, but
few methods admit theoretical guarantees; see Little and Byrd (2015) for an overview.

Corollary 5.2 Let {xmi}ni=1 be the points {xi}ni=1, sorted in non-increasing order:
Dt(xm1) ≥ Dt(xm2) ≥ · · · ≥ Dt(xmn). Then:

(a)
Dt(xmj )

Dt(xmj+1 )
≤ max(M)

min(M)

maxi=1,··· ,K ρt(xmi )

mini=1,··· ,K ρt(xmi )
for j < K.

(b)
Dt(xmK )

Dt(xmK+1
)
≥ min(M)

max(M)

Dbtw
t

Din
t

.

Proof Statement (a) is immediate from the definition. To see (b), we compute

Dt(xmK ) ≥ min(M)Dbtw
t =

min(M)

max(M)

Dbtw
t

Din
t

Din
t max(M) ≥ min(M)

max(M)

Dbtw
t

Din
t

Dt(xmK+1
).

Hence if
Din
t

Dbtw
t

maxi=1,··· ,K ρt(xmi )

mini=1,··· ,K ρt(xmi )
�
(

min(M)
max(M)

)2

, there will be a sharp drop-off in the val-

ues ofDt after the firstK maximizers. Note that the ratio mini=1,···K ρt(xmi)/maxi=1,···K ρt(xmi)
will be insignificant unless the clusters are arranged at different scales (i.e. some clus-
ters are very close to each other but far from others). Similarly, (min(M)/max(M))2

will be nearly 1 if the maximal densities of the clusters are comparable. These ob-
servations suggest to estimate the number of clusters by selecting a cutoff τ and
setting

K̂ = inf

{
k

∣∣∣∣ Dt(xmk)Dt(xmk+1
)
> τ

}
, (5.3)

as in Algorithm 1. Once the modes have been learned correctly, points may be
clustered simply by labeling each mode as belonging to its own class, then requiring
that every point has the same label as its nearest neighbor in diffusion distance of
higher density.
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Corollary 5.4 Suppose X =
⋃K
k=1 Xk. Let {xmi}ni=1 be the points {xi}ni=1, sorted so

that Dt(xm1) ≥ Dt(xm2) ≥ · · · ≥ Dt(xmn). Then Algorithm 1 labels all points correctly
for any τ satisfying

max(M)

min(M)

maxi=1,··· ,K ρt(xmi)

mini=1,··· ,K ρt(xmi)
< τ <

min(M)

max(M)

Dbtw
t

Din
t

.

Proof By Corollary 5.2, the algorithm correctly estimates K̂. Then, by Theorem
5.1, the algorithm correctly learns the empirical density maximizers of each of the
{Xk}Kk=1. It remains to show that the subsequent labeling of all points is accurate.
For an unlabeled point x ∈ Xk, its nearest diffusion neighbor of higher density, x∗,
must be in the same cluster Xk, since Din

t < Dbtw
t . Moreover, that point is already

labeled as Y (x∗) = k, since p(x∗) ≥ p(x). Hence, Y (x) = k and by induction, all
points are labeled correctly.

The dependence on τ is somewhat unsatisfying, and in practice, this quantity can be
removed from the inputs of Algorithm 1 by instead setting K̂ = arg maxkDt(xmk)/Dt(xmk+1

).
This provably detects K accurately by noting that the ratios Dt(xmj+1

)/Dt(xmj) are
small for j > K under a range of reasonable assumptions, for example the assump-
tions that the density of each cluster is bounded away from 0 and the ratio of the
minimal and maximal within-cluster diffusion distance is bounded.
Algorithm 2 describes the LUND algorithm in the simpler case that K is known a pri-
ori. This algorithm achieves perfect accuracy under milder conditions than Algorithm
1.

Corollary 5.5 Suppose X =
⋃K
k=1 Xk and K is known. If

Din
t

Dbtw
t

< min(M)
max(M)

, then

Algorithm 2, labels all points correctly.

Proof This follows from Theorem 5.1, along with Din
t < Dbtw

t .

6. Numerical Experiments

We return to the motivating data sets of Section 3. The diffusion distances are
computed by truncating (2.2) to sum only over the largest (in terms of modulus
of the eigenvalues) M = 100 � n eigenpairs, and the KDE p(x) uses 100 nearest
neighbors with σ0 = 1.
We compute a number of statistics on the data to test our theoretical estimates
and to verify the efficacy of the proposed algorithm. For the first two data sets we
examine, we plot Din

t , D
btw
t as functions of t, to observe the multitemporal nature of

our clustering algorithm. We also compute the theoretical estimates on ‖Pt − S∞‖∞
as guaranteed by Theorem 4.8. The tightness of the theoretical estimates is evaluated
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by comparing to the empirical values. We moreover plot the diffusion distances from
a fixed point for a variety of t values, to illustrate the multitemporal behavior of these
distances.
After these evaluations, we cluster the data with the proposed LUND algorithm
and compute the accuracy, comparing with spectral clustering and the FSFDPC
algorithm. We moreover compute the estimates of K with both the proposed method
K̂ = arg maxkDt(xmk)/Dt(xmk+1) where {xmi}ni=1 are the points {xi}ni=1 sorted so

that Dt(xm1) ≥ Dt(xm2) ≥ · · · ≥ Dt(xmn), and spectral clustering eigengap K̂ =
arg maxi λi+1−λi, as a function of the crucial parameters of the respective algorithms.
In particular, we evaluate the robustness of spectral clustering methods with respect
to σ, and LUND with respect to σ and t. For spectral clustering, we consider the
variant in which just the second eigenvector ψ2 is used (Shi and Malik, 2000), as well
as the variant in which the first K eigenvectors {ψi}Ki=1 are used (Ng et al., 2002). All
experiments are conducted on randomly generated data, with results averaged over
100 trials.

6.1 Bottleneck Data

We first analyze the linear, multimodal data set of Figure 2, in which two of the
clusters feature two high-density regions, connected by a lower density bottleneck
region. Theorem 4.8 upper bounds ‖Pt − S∞‖∞ < ε in terms of δ, λK+1, κ, which for
this data have values δ = 6.2697× 10−8, λK+1 = 1− 1.7563× 10−4, κ = 2.6738× 102

when P is constructed with σ = .15. As shown in Figure 9, the theoretical estimate
correctly illustrates the overall behavior of the transition from initial distribution, to
mesoscopic equilibria, then to a global equilibrium.
The distance from a high-density point across time scales appears in Figure 10. For
small time values, the diffusion distance scales similarly to Euclidean distance. How-
ever, by time t = 108, a mesoscopic equilibrium has been reached, and all points
in the cluster are rather close together. By t = 1016, a global equilibrium has been
reached.

6.1.1 Bottleneck Data Clustering Evaluation

Comparisons with spectral clustering appear in Figures 11 and 12. In Figure 12 (a),
it is shown that for all values of the spatial scale parameter σ, the eigengap estimated
number of clusters K̂ is 1, i.e. always incorrect. On the other hand, Figure 12
(b) shows that there is a range of (σ, t) values—mesoscopic in t—for which LUND
achieves perfect accuracy. Indeed, after an initial phase in which the number of
clusters is estimated as 1, the LUND estimate for K is decreasing in t, corresponding
to the mixing of different clusters over time.
The LUND algorithm and FSFDPC are compared in Figure 13. Due to the non-
spherical shapes of the clusters, FSFDPC is unable to learn the modes of the data
correctly, and consequently assigns modes to the same cluster: the modes learned
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Figure 9: In (a), Dbtw
t , Din

t are plotted against t. For t < 104.5, Din
t > Dbtw

t , since for small time,
Dt is essentially the same as Euclidean distance. Around t = 104.5, there is a transition, in which
Din

t � Dbtw
t . This corresponds to the Markov chain reaching mesoscopic equilibria in which the chain

is well-mixed on each cluster, but not well-mixed globally. The approximate times of convergence
towards the mesoscopic and global equilibrium are denoted with dotted black vertical lines. In (b),
we plot three quantities against t: the theoretical bound on ‖Pt − S∞‖∞ guaranteed by Theorem
4.8; the empirical quantity ‖Pt−S∞‖∞; and the empirically computed quantity λ2(P)t/πmin, which
estimates the distance to the stationary distribution. Notice that ‖Pt − S∞‖∞ gets small, both the
theoretical bound and the empirical value, around t = 104.5. It then increases. Around t = 1013.75,
λ2(P)t/πmin decays exponentially to 0, indicating that the global equilibrium has been reached.
Note that the theoretical estimate on ‖Pt − S∞‖∞ is not tight, though it accurately captures the
overall behavior of the quantity with respect to t. Moreover, the global decay estimate λ2(P)t/πmin

is somewhat conservative in estimating the mixing time of towards the equilibrium distribution, as
can be seen by comparing the second vertical lines in (a) and (b). In order to keep the plots at the
same scale, the plots in (a) are extended to be constant for roughly t > 12.

by FSFDPC and subsequent labels appear in subfigures (a), (b), respectively. In
contrast, LUND learns one mode from each cluster, as shown in (c). Consequently,
all points are labeled correctly, as shown in (d).
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(c) t = 108
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(d) t = 1016

Figure 10: A high-density point is shown in red, and all other points are colored by the Dt distance
from this point in log10 scale. The transition from initial distribution (a), to mesoscopic equilibrium
(c), to global equilibrium (d), is illustrated as t grows.
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Figure 11: Accuracy of two variations of spectral clustering compared to LUND as functions of σ.
While spectral clustering with ψ2 performs nearly perfectly for σ < .4, its performance degrades as
σ increases. Classical spectral clustering using ψ2, ψ2, ψ4 achieves perfect clustering of the data for
roughly σ < .35. LUND is able to achieve perfect clustering accuracy for a wide range of (σ, t) pairs,
mainly for those σ values which allows spectral clustering with just ψ2 to succeed. As σ increases,
the mesoscopic regime in which perfect accuracy is achieved shrinks before disappearing entirely
around σ = .45. In this data, spectral clustering with just ψ2 performs about as well as LUND in
terms of accuracy, assuming K is known.
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(a) Estimates of K̂ using
eigengap statistic.
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Figure 12: In (a), we see the estimates of K̂ using the eigengap statistic, as a function of spatial
scale parameter σ. The eigengap consistently estimates K̂ = 1 < 3 = K, indicating that the
multimodal nature of this data is too complicated for the spectral clustering eigengap to handle. A
quantized version of these estimates is shown in (b), in which entry 0 indicates correct estimation,
-1 indicates K̂ < K and 1 indicates K̂ > K. There is a regime of (σ, t) values in which LUND
correctly estimates the number of clusters, as shown in (c) and (d). After an initial time, this regime
is essentially monotonic decreasing in t, and the mesoscopic region in which K̂ = K is decreasing in
σ.

6.2 Nonlinear Data

We now consider the nonlinear multimodal data of Figure 2 (b). The innermost circle
is filled-in, and has only one high-density region. It is surrounded by two circles, each
with two high-density regions connected by low-density regions. The paths connecting
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Figure 13: Comparison of FSFDPC to LUND. In (a), the modes learned from FSFDPC—with
Euclidean distances—are plotted. Due to the eloganted, non-spherical nature of the data, the
modes are learned incorrectly. The subsequent labels, shown in (b), illustrate FSFDPC is not able
to capture the structure of this data. In (c), the modes learned from LUND are shown. One mode
is learned from each cluster, which allows for a correct labeling of all data points with LUND, as
shown in (d). LUND used parameters (σ, t) = (.15, 106) for these data.

antipodal points on the outer circles are long, which suggests these sets will have low
conductance. In the context of Theorem 4.8, the parameters for this data have values
δ = 1.7225×10−4, 1−λK+1 = 6.8350×10−5, κ = 2.655×102 with σ = .2. Comparison
of theoretical and empirical estimates appear in Figure 14, and the diffusion distances
from one of the high-density points appear in Figure 15, illustrating the transition
from initial distribution, to mesoscopic equilibrium, to global equilibrium.
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(a) Plot of Dbtw
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Figure 14: In (a), we plot Dbtw
t , Din

t against t. For roughly t < 104.25, Din
t > Dbtw

t ; around
t = 104.25, there is a transition, in which Din

t � Dbtw
t . This corresponds to the Markov chain

reaching mesoscopic equilibria in which the chain is well-mixed on each cluster, but not well-mixed
globally. The approximate times of convergence towards the mesoscopic and global equilibrium are
denoted with dotted black vertical lines. In (b), we plot three quantities against t: the theoretical
bound on ‖Pt−S∞‖∞ guaranteed by Theorem 4.8; the empirically computed quantity ‖Pt−S∞‖∞;
and the empirically computed quantity λ2(P)t/πmin, which estimates the distance to the stationary
distribution. Notice that ‖Pt − S∞‖∞ gets small, both the theoretical bound and the empirical
value, around t = 104.25. It then increases. Around t = 109, λ2(P)t/πmin decays exponentially to
0, indicating that the global equilibrium has been reached.
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(c) t = 108

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-6

-5

-4

-3

-2

-1

0

(d) t = 1016

Figure 15: A high-density point is shown in red, and all other points are colored by Dt distance
from this point in log10 scale. The transition from initial distribution (a), to mesoscopic equilibrium
(c), to global equilibrium (d), is illustrated as t grows.

6.2.1 Nonlinear Data Clustering Evaluation

LUND is compared with the two spectral clustering variants in Figures 16 and 17.
In terms of overall accuracy, LUND with the correct choice of t outperforms both
methods of spectral clustering—using ψ2 only and using ψ2, ψ3, ψ4—for a range of
σ values. The strong performance of LUND in the mesoscopic range, away from
t = 0, t = ∞, confirms the theoretical results, and demonstrates LUND’s flexibility
compared to classical spectral methods. Beyond accuracy, the LUND estimator for
K is empirically effective for a range of (σ, t) values, while the eigengap is much less
effective.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) Accuracy spectral clustering
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(b) Accuracy of LUND

Figure 16: Accuracy of two variations of spectral clustering compared to LUND as functions of
σ. While spectral clustering with ψ2 performs well for very small σ, its performance degrades as
σ increases; classical spectral clustering using ψ2, ψ3, ψ4 performs similarly though for a smaller
range of σ. LUND is able to achieve perfect clustering accuracy for a wide range of (σ, t) pairs, in
particular for pairs (σ, t) such that spectral clustering fails. As σ increases, the mesoscopic regime
in which perfect accuracy is achieved shrinks before disappearing entirely around σ = .4. LUND
outperforms spectral clustering with (ψ2, ψ3, ψ4) roughly for σ ∈ (.3, .4), and outperforms spectral
clustering with ψ2 alone roughly for σ ∈ (.35, .4).

In Figure 18, LUND is compared to FSFDPC. LUND correctly learns the modes of
the data and labels points correctly, as shown in (c), (d). FSFDPC, however, fails to
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Figure 17: In (a) and (b), we see the eigengap consistently misestimates the number of clusters in
the data, first estimating K̂ = 1, before oscillating between various numbers of clusters, including
ending on K̂ = 3 for one value of σ. LUND is able to achieve an accurate estimate for K̂ for a
range of (σ, t) values, with generally more t values yielding a correct estimate for smaller σ. We
note that the vertical lines in (c), (d) around σ = .45 and σ = .5 that deviate from the surrounding
values are due to using the mode as the summary statistic across the trials. If the mean is used, a
much smoother plot emerges, though one that is less meaningful in terms of estimating the number
of clusters.

learn the modes of the data correctly, leading to erroneous labeling—see subfigures
(a), (b) respectively.
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Figure 18: In (a), the modes learned from FSFDPC—with Euclidean distances—are plotted. The
nonlinear nature of the data causes the modes to be learned incorrectly. The subsequent labels,
shown in (b), illustrate FSFDPC is not able to capture the structure of this data. In (c), the modes
learned from LUND are shown. One mode is learned from each cluster, which allows for a correct
labeling of all data points with LUND, as shown in (d). LUND used parameters (σ, t) = (.175, 105)
for these data.

6.3 Gaussian Data

As a final synthetic example, we consider the Gaussians of Figure 1, which were
constructed by Nadler and Galun (2007) to be data on which both variants of spectral
clustering fail. These data are not sufficiently separated for Theorem 4.12 to apply,
but LUND still is able to perform well, owing to the incorporation of density, which
allows to easily estimate the modes of the data. Comparisons to spectral clustering in
terms of overall accuracy are reported in Figure 19. It is also enlightening to consider
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performances of LUND and spectral clustering in terms of average accuracy, in which
the overall accuracy on each of the clusters is computed separately, and these class-
wise accuracies are then averaged. Compared to the overall accuracy measure, the
average accuracy measure discounts large clusters and increases the significance of
small clusters. Results for average accuracy are in Figure 20.
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Figure 19: The overall accuracy of the two spectral clustering variants, as well as LUND, are
shown for the Gaussian data. In terms of overall accuracy, LUND is able to achieve near-perfect
results for a range of parameter values. Nearly all errors made were due to a point being generated
from one Gaussian and landing very close to another Gaussian, which is essentially an unavoidable
identifiability issue from which any unsupervised clustering method would suffer. Neither of the
spectral clustering methods is able to match LUND’s performance, which can be attributed to
fundamental issues with the use of only the first small number of eigenvectors when performing
spectral clustering, as shown by Nadler and Galun (2007) and illustrated in Figure 1.

In Figure 21, LUND is compared to FSFDPC. LUND correctly learns the modes of
the data and labels points correctly, as shown in (c), (d). FSFDPC also learns the
modes correctly, due to the unimodality of the Gaussian clusters and their isotropic
covariance matrices.

6.4 Experimental Conclusions

In all three synthetic examples, LUND performs well. On the bottleneck data, it gives
the same accuracy as spectral clustering with ψ2 but better estimates on K̂; on the
nonlinear data, it gives the best range of accuracies with respect to σ, while also giving
the best estimates of K̂; on the Gaussian data, LUND performs as well as FSFDPC
while both spectral methods fail. These results suggest that LUND combines the
best properties of spectral clustering with density-based clustering, while enjoying
theoretical guarantees. We remark that extensive experiments with a variant of LUND
adapted to high-dimensional images were performed on real hyperspectral image data
(Murphy and Maggioni, 2018a,b, 2019b), demonstrating the competitiveness of LUND
with a range of benchmark and state-of-the-art clustering algorithms.
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Figure 20: The average accuracy of the two spectral clustering variants, as well as LUND, are shown
for the Gaussian data. The results are qualitatively similar to overall accuracy, but with reduced
performance for spectral clustering, since most of the errors made by the spectral clustering variants
are on the small cluster, which is washed out by spectral clustering. LUND achieves essentially
perfect performance for a range of parameter values, excepting identifiability issues.
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Figure 21: For the Gaussian data, both LUND and FSFDPC learn the data modes correctly, and are
subsequently able to label the data with high accuracy. The lack of difference in their comparative
performances is attributed to the fact that the data in this case are Gaussians with isotropic covari-
ance matrices, and in particular have simple spherical supports, which confers diffusion distances
little advantage compared to Euclidean distances. LUND used parameters (σ, t) = (1, 103) for these
data.

As shown in Figures 11, 12, 16, 17, 19, 20, the relationship between σ and t is not as
simple as suggested by equation (4.18). Indeed, in the non-asymptotic case, and in
particular in the case of well-separated clusters, the relationship between t and σ does
not obey a strict exponential relationship, as suggested by (4.18). Instead, t appears
to interact with scales locally on each cluster, as can be seen by the bifurcations in
these plots. Gaining a complete understanding of the relationship between σ and t
in the cluster case is a topic of ongoing research.
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6.5 Computational Complexity

The proposed algorithm enjoys essentially linear computational complexity. This is
achieved through the indexing structure cover trees (Beygelzimer et al., 2006), which
allows for efficient nearest neighbor searches under the assumption that data has low-
dimensional structure. Indeed, for data {xi}ni=1 ⊂ RD, the computation of each of the
n data point’s knn nearest neighbors can be achieved at a cost of O(knnDC

dn log(n)),
where d is the intrinsic dimension of the data. This allows for the computation of
each point’s empirical density estimate p(x) in O(knnDC

dn log(n)), where knn is the
number of nearest neighbors used in the density estimate. In addition, if the Markov
chain is computed not on a fully connected graph, but on a knn nearest neighbors
graph, the cost of computing diffusion distances with the eigenvector approximation
is O(knnDC

dn log(n) + knnM
2n), where M eigenvectors are used in the approxima-

tion. In the case that knn = O(log(n)),M = O(1), these complexities simplify to
O(DCdn log(n)2). Computing all ρt(x) values is O(n log(n)), under the assumption
that, except for the O(log(n)) class modes, each point has among its O(log(n)) near-
est neighbors a point of higher empirical density. Subsequent sorting of p and Dt are
O(n log(n)), so the overall algorithm is O(DCdn log2(n)), which is linear in n, up to
logarithmic factors.

6.6 Discussion and Tuning of Parameters

The LUND algorithm depends crucially on the parameters σ, t, and also potentially
on the cutoff parameter τ used to estimate K as in (5.3). Our experiments have
demonstrated that LUND is robust to σ and t, and that the parameter τ may be
dispensed with by estimating K̂ = arg maxkDt(xmk)/Dt(xmk+1

).
We remark that σ may be set locally in an automated way by replacing a global
σ with a point-dependent σ based on distances to near neighbors (Zelnik-Manor
and Perona, 2005). This approach modifies the construction of P by setting Wij =
exp(−‖xi−xj‖2

2/σiσj), where σi = ‖xi−NN(xi, kNN)‖2, where NN(xi, kNN) is the kthNN

Euclidean nearest neighbor of xi. Which nearest neighbor to use, kNN, is a function
of the data dimension, but the approach is practically quite robust to this parameter.
This has the effect of adapting to the local density near each point. Moreover, it
suggests that if the underlying density is smooth and bounded away from 0, then for
all xi, there is a natural scaling σi → 0+ as n→∞, with rate depending on the data
dimensionality.
Regarding t, this parameter determines the time scale at which the diffusion is run.
The theoretical results guarantee that if a certain clustering of the data admits suit-
able separation and geometric properties, then there will be choices of t for which
LUND accurately labels the data. In practice, choosing t without supervision can
be performed in several ways. One approach is to choose the t which maximizes the
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ratio between successive values of Dt(x):

t∗ = arg max
t

{
arg max

k
Dt(xk)/Dt(xk+1)

}
.

This is analogous to the method for selecting the optimal parameters for ultrametric
spectral clustering in Little et al. (2017). A different approach is to select t∗ such
that clustering with LUND at time t∗ is “stable” (Wan and Meila, 2016; Meila, 2019)
with respect to small perturbations in the underlying data. Relatedly, it is natural
to select t such that the clustering results are stable to small perturbations in t.
We remark that in some sense, multiple choices of t, leading to different clusterings,
may be reasonable. This is because there may be hierarchical cluster structure in the
data, parametrized by t. Developing extensions and theoretical analyses of LUND in
this context is the subject of ongoing research.

7. Conclusions and Future Work

In this article, new methods for bounding diffusion distances, based on nearly-reducible
Markov chains, are deployed to provide sufficient conditions under which clustering
of data can be guaranteed. The theoretical results rigorously show that diffusion
distances exhibit multitemporal behavior, even in the case that clusters have multi-
ple regions of high-density or nonlinear support. These estimates on diffusion dis-
tance allow to prove performance guarantees on the LUND algorithm. This may be
interpreted as a critique of the popular FSFDPC algorithm, for which theoretical
guarantees require unrealistic assumptions on the shapes of the clusters. Numerical
experiments on bottleneck, nonlinear, and Gaussian data indicate that the theoretical
results correspond with empirical performance, and that LUND enjoys advantages of
both spectral clustering and FSFDPC while tempering their weaknesses.
While the results presented in this paper for diffusion distances are, we believe, novel
and useful for developing performance guarantees for unsupervised learning, they fall
short of a full finite sample analysis. It is of interest to understand how the estimates
on δ and λK+1, which govern the estimates of Theorem 4.12, and consequently the
performance guarantees for clustering, scale with the number of sample points. Devel-
oping such precise estimates would require new mathematical methods for analyzing
the spectra of random operators on graphs. Such an analysis is suggested by recent
works in discrete-to-continuum spectral analysis (Garcia Trillos et al., 2018), though
handling the factor (I−Pii)

−1 may provide for new challenges.
As remarked in Section 6, diffusion distances are Euclidean distances in a new coor-
dinate basis, given by the (right) eigenvectors of P. A different approach to proving
the clustering properties of Dt with respect to time would be to show that different
eigenvectors localize on particular clusters, and show that there are gaps in the eigen-
values λ` which account for the emergence of mesoscopic equilibria. This approach
is related to the analysis of eigenvectors corresponding to small eigenvalues for the
symmetric Laplacian (Shi et al., 2009), and may provide new insights.
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In Section 4.6, the asymptotic relationship between σ and t for diffusion distances is
discussed (Lafon et al., 2006). As shown in Section 6, LUND exhibits a more delicate
relationship between σ, t in the finite sample case. This is potentially due to the
incorporation of empirical density into the diffusion geometry framework that LUND
uses to estimate the data modes. Analyzing this phenomenon mathematically is a
topic of future research.
In LUND, the modes are learned sequentially, by selecting the K maximizers of Dt. It
is of interest to consider whether jointly selecting the modes, based on a criterion that
optimizes over K points simultaneously, leads to different and in some cases improved
clustering results in particular situations. Such a formulation may force the modes to
be better spread throughout the data, and in particular would force the modes in the
bottleneck data in Figure 4 to localize on the clusters, regardless of the fluctuations
in empirical density. For this data, it does not affect the clustering accuracy if the
fourth mode is in the middle of the bottleneck or in a cluster, but it is intuitive that
the modes should localize on the four cluster cores rather than anywhere along the
bottleneck. Developing a joint mode selection criterion may enforce this.
The proposed method also lends itself to the semisupervised setting of active learning
(Chapelle et al., 2006; Dasgupta, 2011), in which the user is allowed to query a small
number of points for labels. By estimating which points are most likely to be modes
of clusters, the LUND algorithm presents natural candidates to query for labels.
Recent work has suggested this approach is feasible (Murphy and Maggioni, 2018b,
2019a; Maggioni and Murphy, 2019), and it is an ongoing research effort to optimally
integrate diffusion geometry into an active sampling scheme.
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Appendix A. Proof of Theorem 4.8

Notice ‖Pt−S∞‖∞ ≤ ‖Pt−St‖∞+‖St−S∞‖∞. For all t ≥ 0, Pt−St =
∑t

i=1 St−i(P−
S)Pi−1, so that

‖Pt−St‖∞ =

∥∥∥∥∥
t∑
i=1

St−i(P− S)Pi−1

∥∥∥∥∥
∞

≤
t∑
i=1

‖St−i‖∞‖(P−S)‖∞‖Pi−1‖∞ = t‖(P−S)‖∞ ≤ tδ.

To bound ‖St − S∞‖∞, notice that after diagonalizing S,

St = Z

[
IK 0
0 Dt

]
Z−1, S∞ = Z

[
IK 0
0 0

]
Z−1,
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where D is a diagonal matrix with λK+1, λK+2, . . . , λn on the diagonal. Hence, ‖St−
S∞‖∞ ≤ ‖Z‖∞λtK+1‖Z−1‖∞ = κλtK+1, as desired. The second result of the theorem
follows similarly.
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