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Abstract

Body orientation estimation provides crucial visual cues
in many applications, including robotics and autonomous
driving. It is particularly desirable when 3-D pose estima-
tion is difficult to infer due to poor image resolution, occlu-
sion, or indistinguishable body parts. We present COCO-
MEBOW (Monocular Estimation of Body Orientation in the
Wild), a new large-scale dataset for orientation estimation
from a single in-the-wild image. The body-orientation la-
bels for around 130K human bodies within 55K images from
the COCO dataset have been collected using an efficient
and high-precision annotation pipeline. We also validated
the benefits of the dataset. First, we show that our dataset
can substantially improve the performance and the robust-
ness of a human body orientation estimation model, the
development of which was previously limited by the scale
and diversity of the available training data. Additionally,
we present a novel triple-source solution for 3-D human
pose estimation, where 3-D pose labels, 2-D pose labels,
and our body-orientation labels are all used in joint train-
ing. Our model significantly outperforms state-of-the-art
dual-source solutions for monocular 3-D human pose esti-
mation, where training only uses 3-D pose labels and 2-D
pose labels. This substantiates an important advantage of
MEBOW for 3-D human pose estimation, which is partic-
ularly appealing because the per-instance labeling cost for
body orientations is far less than that for 3-D poses. The
work demonstrates high potential of MEBOW in address-
ing real-world challenges involving understanding human
behaviors. Further information of this work is available at
https://chenyanwu.github.io/MEBOW/ .

1. Introduction

Human body orientation estimation (HBOE) aims at es-

*This work was mostly done when Chenyan Wu was an intern at Ama-
zon Lab126.
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Figure 1. Overview of the MEBOW dataset. (a) Distribution of
the body orientation labels in the dataset and examples. (b) Com-
parison of the distribution of the captured human body instance
resolution for our dataset and that for the TUD dataset [6]. The
z-axis represents (v W x H), where W and H are the width and
height of the human body instance bounding box in pixels, respec-
tively.

timating the orientation of a person with respect to the cam-
era point of view. It is important for a number of industrial
applications, e.g., robots interacting with people and au-
tonomous driving vehicles cruising through crowded urban
areas. Given a predicted 3-D human pose, commonly in the
form of a skeleton with dozens of joints, the body orienta-
tion can be inferred. Hence, one may argue that HBOE is a
simpler task compared with 3-D human pose estimation and
directly solvable using pose estimation models. Nonethe-
less, HBOE warrants to be tackled as a standalone problem
for three reasons. First, 3-D pose may be difficult to infer
due to poor image resolution, occlusion, or indistinguish-
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able body parts, all of which are prevalent in in-the-wild
images. Second, under certain scenarios, the orientation of
the body is already sufficient to be used as the cue for down-
stream prediction or planning tasks. Third, much reduced
computational cost for body orientation model compared to
a 3-D model makes it more appealing for on-device deploy-
ment. Moreover, body orientation estimation and 3-D pose
estimation may be complementary in addressing real-world
challenges involving understanding human behaviors.

HBOE has been studied in recent years [6, 8, 10, 14, 18,
19, 27, 33, 45, 53, 54]. A primary bottleneck, however, is
a lack of a large-scale, high-precision, diverse-background
dataset. Previously, the TUD dataset [6] has been the most
widely used dataset for HBOE. But it only has about 5, 000
images, and the orientation labels are of low precision be-
cause they are quantized into eight bins/classes. Hara et
al. [18] relabeled the TUD dataset with continuous orienta-
tion labels, but the scale limitation is left unaddressed. And
we verify experimentally that the model trained on it gener-
alizes much worse to in-the-wild images compared with the
much larger dataset we present here. Because body orienta-
tion could be inferred from a 3-D pose label (in the form of
a list of 3-D coordinates for predefined joints), 3-D human
pose datasets, e.g., Human3.6M, could be used to train body
orientation estimation models after necessary preprocess-
ing. However, those datasets are commonly only recorded
indoors (due to the constraint of motion capture systems),
with a clean background, bearing little occlusion problems,
and for a limited number of human subjects. All of these
limitations make it less likely for the body orientation mod-
els developed on existing 3-D pose datasets to generalize
well to images captured in the wild, in which various oc-
clusion, lighting conditions, and poses could arise. Given
the enormous success of large-scale datasets in advancing
vision research, such as ImageNet [13] for image classifica-
tion, KITTI [15] for optical flow, and COCO [26] for object
recognition and instance segmentation among many oth-
ers, we believe the creation of a large-scale, high-precision
dataset is urgent to the development of HBOE models, par-
ticularly those data-hungry deep learning-based ones.

In this paper, we present the COCO-MEBOW (Monoc-
ular Estimation of Body Orientation in the Wild) dataset,
which consists of high-precision body orientation labels for
130K human instances within 55K images from the COCO
dataset [26]. Our dataset uses 72 bins to partition the 360°,
with each bin covering only 5°, which is much more fine-
grained than all previous datasets while within the human
cognition limit. The distributions of the collected orien-
tation labels and some example cropped images of human
bodies in our dataset are shown in Fig. 1(a). Details and the
creation process will be introduced in Sec. 3.2. For brevity,
we will call our dataset MEBOW in the rest of this paper.

To demonstrate the value of our dataset, we conducted

two sets of experiments. The first set of experiments fo-
cused on HBOE itself. We first present a strong but simple
baseline model for HBOE which is able to outperform pre-
vious state-of-the-art models [53] on the TUD dataset (with
continuous orientation labels). We then compare the perfor-
mance of our baseline model under four settings: training
on TUD and evaluating on MEBOW, training on MEBOW
and evaluating on TUD, training on TUD and evaluating
on TUD, training on MEBOW and evaluating on MEBOW.
We observe that the model trained on MEBOW generalizes
well to TUD but not vice versa.

The second set of experiments focused on demonstrating
the feasibility of boosting estimation performance through
using our dataset as an additional, relative low-cost source
of supervision. Our model is based on existing work on
weakly-supervised 3-D human pose model using both 2-D
pose dataset and 3-D pose dataset as the source of supervi-
sion. And the core of our model is a novel orientation loss
which enables us to leverage the body orientation dataset
as an additional source of supervision. We demonstrate in
Sec. 4.2 that our triple-source weakly-supervised learning
approach could bring significant performance gains over the
baseline dual-source weakly-supervised learning approach.
This shows that our dataset could be useful for not only
HBOE but also other vision tasks, among which the gain
in 3-D pose estimation is demonstrated in this paper.

Our main contributions are summarized as follows.

1. We present MEBOW, a large-scale high-precision hu-
man body orientation dataset.

2. We established a simple baseline model for HBOE,
which, when trained with MEBOW, is shown to signif-
icantly outperform state-of-the-art models trained on
existing dataset.

3. We developed the first triple-source solution for 3-D
human pose estimation using our dataset as one of the
three supervision sources, and it significantly outper-
forms a state-of-the-art dual-source solution for 3-D
human pose estimation. This not only further demon-
strates the usefulness of our dataset but also points out
and validates a new direction of improving 3-D human
pose estimation by using significantly lower-cost la-
bels (i.e., body orientation).

2. Related Work

Human body orientation datasets. The TUD multi-
view pedestrians dataset [6] is the most widely used dataset
for benchmarking HBOE models. Most recent HBOE algo-
rithms, e.g., [6, 18, 19, 53], use it for training and evalua-
tion. This dataset consists of 5,228 images captured out-
doors, each containing one or more pedestrians, each of
which is labeled with a bounding box and a body orien-
tation. The body orientation labels only have eight bins,



i.e., {front, back, left, right, diagonal front, diagonal back
diagonal left, diagonal right}. This labeling is rather
coarse-grained, and many of the images are gray-scale im-
ages. Later work [18] enhances the TUD dataset by pro-
viding continuous orientation labels, each of which is aver-
aged from the orientation labels collected from five differ-
ent labelers. There are also some other less used datasets
for HBOE. Their limitations, however, make them only
suitable for HBOE under highly constrained settings but
not for in-the-wild applications. For example, the 3DPes
dataset [7] (1,012 images) and CASIA gait dataset [41]
(19, 139 frames of videos capturing 20 subjects) have been
used in [53] and [42, 27], respectively. And their body
orientation labels are 8-bin based and 6-bin based, respec-
tively, which are also coarse-grained. Moreover, the human
bodies in the images of these two datasets are all walking
pedestrians captured from a downward viewpoint by one
or a few fixed outdoor surveillance cameras. The MCG-
RGBD datasets [28] has a wider diversity of poses and pro-
vides depth maps in addition to the RGB images. But all its
images were captured indoors and from only 11 subjects.
Because human orientation can be computed given a full 3-
D pose skeleton, we can convert a human 3-D pose dataset,
e.g., the Human3.6M dataset [20], to a body orientation
dataset for HBOE research. However, due to the constraint
of the motion capture system, those 3-D pose datasets of-
ten only cover indoor scenes and are sampled frames of
videos for only a few subjects. These constraints make
them not as rich as our MEBOW dataset, which is based
on COCO [26], in both contextual information and the vari-
ety of background. The size of the Human3.6M dataset [20]
(10K frames) is also much smaller than MEBOW (130K).

Human body estimation algorithms. Limited by the
relative small size and the coarse-grained orientation label
(either 8-bin based or 6-bin based) of existing datasets dis-
cussed above, approaches based on feature engineering and
traditional classifiers [6, 45, 14, 33, 10, 54, 8], e.g., SVM,
have been favored for HBOE. Deep learning-based meth-
ods [42, 12] also treat HBOE as a classification problem.
For example, the method in [42] uses a 14-layer classifica-
tion network to predict which bin out of the eight different
bins represents the orientation given an input; the method
in [12] uses a 4-layer neural network as the classification
network. These methods all use simple network architec-
ture due to the small size of the available datasets for train-
ing. And the obtained model only works for certain highly
constrained environment similar to that was used for col-
lecting training images. Given the continuous orientation
label provided by [18] for the TUD dataset, some recent
work [18, 19, 53] attempted to address more fine-grained
body orientation prediction. Most notably, Yu et al. [53]
utilizes the key-points detection by another 2-D pose model
as an additional cue for continuous orientation prediction.

Still, deep learning-based methods are held back by the lack
of a large-scale HBOE dataset. Direct prediction of body
orientation from an image is valid because not only label-
ing a training dataset is simpler but also better performance
could be achieved by directly addressing the orientation es-
timation problem. As a supporting evidence, [16] shows
that a CNN and Fisher encoding-based method taking in
features extracted from 2-D images outperforms state-of-
the-art methods based on 3-D information (e.g., 3-D CAD
models or 3-D landmarks) for multiple object orientation
estimation problems.

3-D pose estimation. The lack of large training data
covering diverse settings is a major problem for robust 3-
D pose estimation. Efforts [52, 30, 43, 55, 49, 48] have
been made to address this by using additional source of su-
pervision, mainly 2-D pose dataset (e.g., MPII [5]). The
general idea is to design some novel loss for the data with
weak labels (2-D pose) to penalize incorrect 3-D pose pre-
diction on those additional data with much more diverse hu-
man subjects and background variations so that the learnt
model could better generalize to those data. Our work
shows a new direction following this line of research, which
is to use our large-scale, high-precision, cost-effective body
orientation dataset as a new source of weak supervision.
Some other ideas complementary to the above idea for im-
proving 3-D pose estimation include: (1) enforcing extra
prior knowledge such as a parameterized 3-D human mesh
model [17, 24, 9, 23, 22, 35, 38], the ordinal depth [36],
and temporal information (such as adjacent frame consis-
tency) [25, 39]; and (2) leveraging images simultaneously
captured from different views [40, 21], mainly for indoor
dataset collected in a highly constrained environment (e.g.,
Human3.6M).

3. The Method
3.1. Definition of Body Orientation

Image Plane

Figure 2. Definition of body orientation.

Previous datasets including TUD all assume that the hu-
man body orientation is self-explanatory from the image,
which is adequate for small dataset with a consistent cam-
era point of view. For large dataset of in-the-wild images
containing all kinds of human poses and camera points of
view, a formal definition of the human orientation is nec-
essary for both annotation and modeling. As illustrated in



Fig. 2, without loss of generality, we define the human ori-
entation 6 € [0°,360°) as the angle between the projection
vector of the chest facing direction (C) onto the y-z plane
and the direction of the axis z, where the z, y, z vectors are
defined by the image plane and the orientation of the cam-
era. Given a 3-D human pose, the chest facing direction C
can be computed by C = T x S, where S is the shoulder
direction defined by the vector from the right shoulder to
the left one, and T is the torso direction defined by the vec-
tor from the midpoint of the left- and right-shoulder joints
to the midpoint of the left- and right-hip joints.

3.2. MEBOW Dataset Creation

We choose the COCO dataset [26] as the source of
images for orientation labeling for the following reasons.
First, the COCO dataset has rich contextual information.
And the diversity of human instances captured within the
COCO dataset in terms of poses, lighting condition, occlu-
sion types, and background makes it suitable for developing
and evaluating models for body orientation estimation in the
wild. Secondly, the COCO dataset already has bounding
box labels for human instances, making it easier for body
orientation labeling. To make our dataset large scale, after
neglecting ambiguous human instances, we labeled all suit-
able 133, 380 human instances within the total 540, 007 im-
ages, out of which 51, 836 images (associated with 127, 844
human instances) are used for training and 2,171 images
(associated with 5,536 human instances) for testing. To
our knowledge, MEBOW is the largest HBOE dataset. The
number of labeled human instances in our dataset is about
27 times that of TUD. To make our dataset of high pre-
cision, we choose a 72-bin annotation scheme, which not
only is much more fine-grained than former 8-bin or 6-bin
annotation used by other HBOE datasets, but also accounts
for the cognitive limits of human labelers and the variance
of labels between different labelers. Fig. 1(a) shows the dis-
tribution of our orientation labels, along with some example
human instances. It can be seen that our dataset covers all
possible body orientation, with a Gaussian like peak around
180°, which is natural because photos with humans tend to
capture the main person from the front. Another advantage
of our dataset is that the image resolution of the labeled
human instances is much more diverse than all previous
datasets, as shown in Fig. 1(b). This is especially helpful
for training models for practical applications in which both
high- and low-resolution human instances can be captured
because the distance between the camera and the subject
and the weather condition can both vary. We summarize the
main advantages of MEBOW over previous HBOE datasets
in Table 3.2.

Anneotation tool. The annotation tool we used for label-
ing body orientation is illustrated in Fig. A1 of Appendix A.
On the left side, one image from the dataset containing

Dataset ‘ #subjects #bins Diversity Occlusion
TUD*[6] 5K 8 v v
3DPes|7] 1K 8 X X

CASIA[41] 19K 6 X X

MEBOW 130K 72 VY VY
Table 1. Comparison of previous HBOE datasets with MEBOW.
*Continuous body orientation labels of TUD are provided by [18].

human body instance(s) is displayed on the top. The as-
sociated cropped human instances is displayed at the bot-
tom, from which the labeler could select which human in-
stance to label by a mouse click. In the middle, the se-
lected cropped human instance is displayed. On the right
side, a slider is provided to adjust the orientation label in the
range of [0°,360°) (default 0°, step size 5°), together with
a clock-like circle and a red arrow visualizing the current
labeled orientation. The labeler could first mouse-adjust
the slider for coarse-grained orientation selection and then
click either the clock-wise++ or counter clock-wise++ but-
ton (or using associated keyboard shortcuts) for fine-grained
adjustments. The red arrow serves as a visual reference such
that the labeler can compare it with the human body in the
middle to ensure that the final orientation label is an accu-
rate record of his/her comprehension. To maximize label
consistency, on the bottom right corner, the labeler can re-
fer to some example human body instances already labeled
with the same orientation the labeler current selects.

Evaluation method. Given our high-precision 72-bin
annotation, we propose to add Accuracy-5°, Accuracy-
15°, and Accuracy-30° as new evaluation metrics, where
Accuracy-X° is defined as the percentage of the samples
that are predicted within X° from the ground-truth orien-
tation. As discussed in [18], mean absolute error (MAE)
of the angular distance can be strongly influenced by a few
large errors. However, Accuracy-X° is less sensitive to the
outliers, hence deserves more attentions as an evaluation
criterion.

3.3. Baseline HBOE Model

Just as most previous work in HBOE, our baseline model
assumes the human instances are already detected and the
input is a cropped-out human instance. The cropping
could be based on either the ground truth or the predicted
bounding box. And for the ease of experiments, we used
the ground-truth bounding boxes provided by the COCO
dataset in all of our experiments. The overall network archi-
tecture of our baseline model is shown in Fig. 3(a), which
can be trained end-to-end. The cropped images of subjects
are first processed through a backbone network as the fea-
ture extractor. The extracted features are then concatenated
and processed by a few more residual layers, with one fully
connected layer and a softmax layer at the end. The output

are 72 neurons, p = [pg, P2, -+, P71] (220 p; = 1.0), rep-
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Figure 3. Our baseline HBOE model. (a) Network architecture.
We adopt HRNet and ResNet units as the backbone network and
the head network, respectively. Intermediate feature representa-
tions are combined to feed into the head network.(b) Illustration
of 72 orientation bins (black ticks) and our orientation loss for re-
gressing p to the “circular” Gaussian target probability function.

resenting the probability of every possible orientation bin
being the best one to represent the body orientation of the
input image. More specifically, p; represents the probabil-
ity of the body orientation # to be within the i-th bin in
Fig. 3(b), i.e., within the range of [i-5° — 2.5°,4-5° +2.5°].
As for the objective function of the model, our approach
is different from previous approaches that either directly
regress the orientation parameter # (Approach 1 and 2
of [19]) or treat the orientation estimation as a pure classifi-
cation problem (Approach 3 of [19], and [18]), where each
bin is a different class. Instead, we take inspiration from the
heat map regression idea, which has been extremely suc-
cessful in key-point estimation [34, 46], and let the loss
function for p be:

71
L= (pi—¢li,0)), (1)
1=0

where ¢(i,0) is the “circular” Gaussian probability, as il-
lustrated in Fig. 3(b) (red curve):

1

o~ zez (min(li=lg:|,72—[i—lg:]))? )
(2m)o

¢(i,0) =

and [y is the ground-truth orientation bin. Basically, we
are regressing a Gaussian function centered at the ground
truth orientation bin. And the intuition behind this is that
the closer a orientation bin is to the ground-truth orientation
bin label /4, the higher the probability the model should as-
sign to it. We found this approach significantly eased the
learning process of the neural network. And of note, we
have attempted to use standard classification loss function,
e.g. cross entropy loss between p and the ground truth rep-
resented by one hot vector, but the loss could not converge.

Choice of network architecture. We also considered
ResNet-50 and ResNet-101 (initialized from the weights of
the model trained for ImageNet classification task) to be the
architecture of our network. We observe that HRNet+Head
provides much better performance in experiments. This

could be explained by the fact that the HRNet and its pre-
trained model are also trained on COCO images and de-
signed for a closer related task—2-D pose estimation.

3.4. Enhancing 3-D Pose Estimation

It is extremely difficult to obtain 3-D joint labels using
existing technologies, hence models trained on indoor 3-D
pose dataset generalize poorly to in-the-wild images, such
as COCO images. There have been attempts [47, 48] to
leverage 2-D pose datasets, such as MPII and COCO, as a
second source of supervision to enhance both the perfor-
mance and robustness of 3-D pose models. We believe
the orientation labels in our COCO-based dataset can be
complementary to the 2-D pose labels and provide addi-
tional supervision. To that end, we developed a triple-
source weakly-supervised solution for 3-D pose estimation,
the core of which is a body orientation loss for utilizing the
orientation labels.

We choose [48] as the base to build our model. Fol-
lowing their notation, we denote p = [py, Py, Pz] (Ps €
[1,W],p, € [1,H],p. € [1, D]) to be the coordinate of any
location, and I:Ik (of size W x H x D) to be the normalized
heat map for joint k£ output by the backbone network. Then,
the predicted location for joint k is:

. D H w ~
Je=>> > p-Hip). 3)
pz=1py=1py=1

Next, £y loss Lsp = ||J — Ji||? can be used to supervise
the network for images with 3-D pose labels. For images
with 2-D pose labels, 1-D x heat vector and y heat vector is
computed as:

. w D H N
Jhy =Y p-[ > > Hup)| . “

pz=1 pz=1py=1
H D w
Ny ~
Jh,=> p- (Z > Hk(p)> : (5)
py=1 pz=1pz=1

And £, loss Lop = [|Jhy, — JZ[2 + [|Jh;, — JY|2 can
be used to supervise the network for images with 2-D pose
labels.

Let’s define the loss function for images with orienta-
tion labels. For the ease of notation, we use jls, jrs, jlh,
and J ., to denote the predicted coordinates of left shoulder,
right shoulder, left hip, and right hip, respectively, by Eq. 3.
Then the estimated shoulder vector S and torso vector T can
be represented by:

g:j'r‘s_*]ls ) (6)

T=_m+J0m—Jn—Jm), (7



following the definition in Sec. 2 and Fig. 2. And the chest
facing direction can be computed by

. Tx$S
C= "2, ®)
[T > S{l2
where || - ||2 is the Euclidean norm. Since the (estimated)

orientation angle 0 defined in Fig. 2 can be computed by
projecting C onto the y-z plane, we know the following
equations hold:
cos(é) =C*, 9)
sin(f) = CV . (10)

And we define the orientation loss to be:
Loi = HCZ — COS(G)H2 + HCy — sin(@)H2 , an

where 6 is the ground truth orientation label. Finally, Lyp,
L3p, and Ly can be used jointly with proper weighting be-
tween them such that the three sources of supervision, i.e.,
2-D pose labels, 3-D pose labels, and orientation labels, can
all be used towards training a robust 3-D pose estimation
model.

4. Experimental Results

The proposed MEBOW dataset has been tested in two
sets of experiments for demonstrating its usefulness. In
Sec. 4.1, we show how MEBOW can help advance HBOE
by using the baseline model we proposed in Sec. 3.3. In
Sec. 4.2, we show how MEBOW can help improve 3-D
body pose estimation by using the triple-source weakly-
supervised solution described in Sec. 3.4.

Implementation. All the codes used in the experiments
were implemented with PyTorch [1]. For the HBOE exper-
iments in Sec. 4.1, The ResNet backbone is based on the
public codes [2], and is initialized from an ImageNet pre-
trained model. The HRNet backbone is based on the pub-
lic codes [3], and is initialized from a pretrained model for
COCO 2-D pose estimation. The same input image prepro-
cessing steps for the MEBOW and TUD datasets are ap-
plied, including normalizing the input images to 256 x 192,
and flipping and scaling augmentation. We use Adam op-
timizer (learning rate = le—3) to train the network for 80
epochs. For the 3-D pose estimation experiments described
in Sec. 4.2, our codes are based on public codes [4]. The
network is initialized from an ImageNet pretrained model.
Input images are normalized to 256 x 256. Rotation, flip-
ping, and scaling are used to augment Human3.6M and
MPII. To avoid the deformation of orientation, we do not
carry out rotation augmentation for the images in MEBOW.
The network is trained for 300 epochs. The Adam is the
optimizer. The learning rate remains le—3.

4.1. Body Orientation Estimation

First, we validate the baseline model we proposed in
Sec. 3.3. Specifically, we train it on the TUD dataset and
compare its performance with other state-of-the-art models
reported in the literature. The results are shown in Table 2.
Our model significantly outperforms all of other models in
terms of MAE, Accuracy-22.5°, and Accuracy-45°, which
are standard metrics on the TUD dataset. This could be at-
tributed to both our novel loss function for regressing the
target “circular” Gaussian probability and the power of HR-
Net [46] and its pretrained model.

Method MAE Acc.-22.5° Acc.-45°
AKRF-VW [18]| 34.7 68.6 78
DCNN [19] 26.6 70.6 86.1
CPOEHK [53] 15.3 75.7 96.8
ours 8.4 95.1 99.7
Human [18] 0.93 90.7 99.3

Table 2. HBOE evaluation on the TUD dataset (with continuous
orientation label). Qurs was trained on the TUD training set and
evaluated on its test set. We converted the continuous orientation
label to 72-bin orientation label illustrated in Fig. 3.

To show the advantage of MEBOW over TUD in terms
of diverse background and rich in-the-wild environment, we
train our baseline model under four settings to compare the
generalization capability of the same architecture (our pro-
posed baseline model) trained on TUD and MEBOW. Our
experimental results are shown in Table 3. It can be seen
that the performance drop of our baseline model trained on
the TUD training set when it is evaluated on the MEBOW
test set versus on the TUD test set is much higher than that
of the same model trained on the MEBOW training set when
it is evaluated on the TUD test set versus on the MEBOW
test set. This suggests that the improved diversity, and the
inclusion of more challenging cases in MEBOW (compared
with TUD) actually helps improve the robustness of mod-
els. We observe that Accuracy-45° for our model trained on
MEBOW even improved slightly when evaluated on TUD
versus on MEBOW. We also observe that the performance
of our model, which is only trained on MEBOW (row 4 Ta-
ble 3), can even exceed the previous state-of-the-art result
on TUD (row 3 Table 2). Experiments of similar fashion
and motivation have been conducted in Sec. 7 (Table. 1)
of [26] to demonstrate the advantage of the COCO dataset.

Training Testing MAE Acc.-22.5° Acc.-45°
TUD TUD 8.4 95.1 99.7
TUD MEBOW 32.24038 49.7_454 T7.5_222

MEBOW MEBOW 8.4 93.9 98.2

MEBOW TUD 143459 T7.3-16.6 99.040.5
Table 3. Comparison of the generalization capability of the same
model trained on TUD and on MEBOW.



As for the choice of the network architecture and
the parameter o, we conducted ablation experiments for
both of them, with the results summarized in Table 4.
HRNet+Head (initialized with pretrained weights for the
COCO 2-D pose estimation task) gives significant better re-
sults than ResNet-50 or ResNet-101. And setting 0 = 4.0
leads to the best performing model. Hence, we used the
model with the HRNet+Head and ¢ = 4.0 for experiments
associated with Table 2 and Table 3. Some qualitative pre-
diction examples of this model are presented in Fig. 4.

Architecture o MAE  Acc.-5° Acc.-15° Acc.-30°

ResNet-50 4.0 10.465 66.9 88.3 94.6
ResNet-101 4.0 10.331 67.8 88.2 94.7

1.0 8.579 69.3 89.6 96.4
2.0 8.529 69.6 91.0 96.6
3.0 8.427 69.3 90.6 96.7
4.0 8.393 68.6 90.7 96.9
6.0 8.556 68.2 90.9 96.7
8.0 8.865 66.5 90.1 96.6
Table 4. Ablation study on the choice of network architecture and
the effect of different o in Eq. 2. Evaluation is done on MEBOW.

HRNet+Head

M Y O
NN VRN

Figure 4. HBOE results generated by our baseline model (with
HRNet as the backbone and ¢ = 4.0) on MEBOW (row 2, for
respective images in row 1) and TUD dataset (row 5 for respective
images in row 3). Row 4 are prediction results by [18] and they
are directly cropped from the original paper. Red arrow: ground
truth; Blue arrow: prediction.

4.2. Enhanced 3-D Body Pose Estimation

Data. we use the Human3.6M dataset (3-D pose), the
MPII dataset (2-D pose), the COCO dataset (2-D pose), and
our MEBOW orientation labels. We train our triple-source
weakly-supervised model proposed in Sec. 3.4 and two
dual-source weakly-supervised baseline models for com-
parison. Both of the baseline models are trained using a
re-implementation of [48], which uses a combination of
Lop + Lsp (defined in Sec. 3.4). The difference is that

the Baseline-1 only uses Human3.6M dataset (3-D pose)
and the MPII dataset (2-D pose), while the Baseline-2 uses
COCO dataset (2-D pose) on top of the first baseline. Our
method leverages the orientation labels from our MEBOW
dataset on top of the second baseline and uses a combina-
tion of Lop + L3p + L. Following the practice of [48],
within a batch during the stochastic training, we sampled
the same number of images from Human3.6, MPII, and
COCO datasets.

We evaluated and compared our model and the two base-
lines in multiple ways, both quantitatively and qualitatively.
First, we followed the Protocol II in [48] and used the mean
per joint position error (MPJPE) as the metric to evaluate
them on the test set of the Human3.6M dataset. The evalua-
tion results are shown in Table 5, along with the evaluation
results for other competitive models copied from their pa-
pers. We have tried our best to train Baseline-1 but still
cannot obtain a model with a performance as good as that
reported in [48]. This, however, does not hinder us from
making a fair comparison between Baseline-1, Baseline-2,
and our model. From Table 5, we can see that by adding
MEBOW as the third (weak) supervision source and us-
ing our proposed orientation loss L, we can achieve sig-
nificantly better average MPJPE than both Baseline-1 and
Baseline-2. If we break down MPJPE metric into differ-
ent motion categories, our approach also achieves the best
MPIJPE metric in most (12 out of 16) motion categories. We
also did breakdown analysis of the MPJPE metric in terms
of different joints and X-, Y-, Z- part of the joint coordi-
nates in Table 6. For nearly all joints, our method achieves
significant better results. And our method is positive on im-
proving Y- and Z- part of the joint coordinate but neutral for
improving X- part of the joint coordinate. This is not sur-
prising since our orientation loss only considers the Y- and
Z- part of C after the projection on to the y-z plane in Fig. 2.
Some qualitative examples of 3-D pose estimation by our
model, along with the ground truth and the predictions by
the two baseline models are displayed in Fig. 5. Second, we
conduct evaluation of the 3-D pose prediction on the COCO
test set. Since the ground-truth 3-D pose is unknown for the
COCO dataset, we took a step back and conducted the quan-
titative evaluation by comparing the orientation computed
from the predicted 3-D pose against the ground-truth orien-
tation label provided by our MEBOW dataset. As shown in
Table 7, our model significantly outperforms both Baseline-
1 and Baseline-2, which suggests our model for 3-D pose
estimation generalizes much better to in-the-wild images.
Fig. 6 shows a few qualitative results of 3-D pose predic-
tion on the COCO test set.

5. Conclusions

We introduced a new COCO-based large-scale, high-
precision dataset for human body orientation estimation in



Method Dir. Dis. Eat. Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Average

Chenetal [11] 899 97.6 90.0 1079 107.3 139.2 93.6 136.1 133.1 240.1 106.7 106.2 87.0 114.1 90.6 114.2
Tome etal. [50] 65.0 735 76.8 864 863 110.7 689 748 1102 1729 850 858 863 714 73.1 884
Zhou et al. [56] 87.4 109.3 187.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 1142 794 97.7 79.9
Metha et al. [30] 59.7 69.7 60.6 688 764 854 59.1 750 962 1229 708 685 544 820 59.8 74.1
Pavlakos et al. [37] 58.6 64.6 63.7 624 669 70.8 5777 625 768 1035 657 61.6 67.6 564 595 669
Moreno et al. [32] 69.5 80.2 782 87.0 100.8 102.7 76.0 69.7 104.7 1139 89.7 985 824 792 772 873
Sunetal [47] 528 548 542 543 618 53.1 536 71.7 86.7 615 672 534 471 61.6 534 59.1
Sharma et al. [44] 48.6 54.5 542 557 62.6 720 505 543 70.0 783 581 554 614 452 49.7 58.0
Moon et al. [31] 50.5 55.7 50.1 51.7 539 468 50.0 619 680 525 559 499 418 56.1 469 533
Suneral [48] 475 477 495 502 514 438 464 589 657 494 558 478 389 49.0 438 49.6

Baseline-1* |44 (474 49.0 677 50.0 [418] [45:6] 599 929 488 57.1 654 387 50.5 422 534
Baseline-2"*  46.1 47.8 49.1 663 480 435 467 59.3 850 [47.0| [540) 619 (386 50.1 497 524

ours 446 [47.1 [460 (605 (477 (418 400 [578 [823] 472 560 [567| (380 (495 [418| 509 .,

Table 5. 3-D human pose estimation evaluation on the Human3.6M dataset using mean per joint position error (MPJPE). *Our baseline is
a re-implementation of Sun ez al. [48], trained on Human3.6M + MPI]I, as in the original paper. **Our baseline 2 is a re-implementation of
Sun et al. [48], trained on Human3.6M + MPII + COCO (2-D Pose). The - and second best are marked with color.

Method Hip™  Kneet Anklet Torso Neck Head Nose Shouldert Elbow™ Wristt X Y Z (Depth)
Baseline-1* 24.6 49.0 73.8 40.6 51.9 55.6 56.9 52.5 66.8 84.8 14.6 19.4 39.8
Baseline—Z** 23.5_1,1 49.74_0,7 72.6_1,2 36.8_3,8 50.4_1‘5 53-0—246 49.6_743 51.0_145 66.0_0,8 87.6+2,g 14.3_0,3 18.2_1,2 39.8+040

ours 21.673_0 45.773_3 684974_9 3542,5_4 474974.0 51.174_5 52.374_6 49.672_9 65.970_9 87.6+2A8 14.7+0A1 17.1,2_3 39-070.8
Table 6. 3-D human pose estimation per joint evaluation on the Human3.6M dataset using mean per joint position error (MPJPE). T The
error is the average of the left joint and the right joint.
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Figure 5. Example 3-D pose estimation results on the Human3.6M
dataset. (G.T. is the abbreviation for Ground Truth.) More exam-
ple results can be viewed in Appendix E.

Figure 6. Example 3-D pose estimation results on the COCO

the wild. Through extensive experiments, we demonstrated . ; .
g p dataset. More example results can be viewed in Appendix F.

that our dataset could be very useful for both body orienta-
tion estimation and 3-D pose estimation. In the meanwhile,

we presented a simple, yet effective model for human body for other vision tasks, e.g., person re-identification (RelD)
orientation estimation, which can serve as a baseline for fu- and bodily expressed emotion recognition [29].

ture HBOE model development using our dataset. And we

proposed a new orientation loss for utilizing body orienta- Acknowledgments

tion label as the third supervision source. In the future, it

would be interesting to explore how our dataset can be used A portion of the computation used the Extreme Science

and Engineering Discovery Environment (XSEDE), which
is an infrastructure supported by National Science Founda-

Method ‘ MAE  Acc-5°  Acc.-15°  Acc.-30° tion (NSF) grant number ACI-1548562 [51]. J.Z. Wang was
Baseline® | 26239 347 63.7 777 supported by NSF grant no. 1921783.
Baseline 2** | 13.888 31.9 74.5 86.8
ours 11.023 44.8 834 94.2

Table 7. 3-D human pose estimation evaluation on the test portion
of MEBOW.
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CVPR Supplementary Material
A. Labeling Tool

The interface of our human body orientation labeling
tool is illustrated in Fig. Al.
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Figure A1. User interface of the labeling tool.
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Figure A2. Breakdown analysis of the performance of our HBOE
baseline model.
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Breakdown analysis of the errors. First, we show the
cumulative percentage of correct HBOE prediction with re-
spect to the threshold of a correct prediction in Fig. A2 (a)
and (b). Specifically, we compare the performance of our
baseline model trained on the MEBOW dataset and that
trained on the TUD dataset, respectively, using 1) the test
set of the MEBOW dataset (Fig. A2 (a)) and 2) the test
set of the TUD dataset (Fig. A2 (b)). Based on the same
set of experiments in Table 3, these two sub-figures present
a more detailed comparison, and they also support that the
model trained on our MEBOW dataset has much better gen-
eralizability than it trained on TUD dataset. Second, we
show how our baseline HBOE model performs when the
camera point of view is towards the Front, Back, Left, and

Right of the person in Fig. A2 (d). The association of the
ground-truth orientations with the Front, Back, Left, and
Right breakdown categories are shown in Fig. A2 (c). It is
not surprising that our model performs best when the cam-
era point of view is towards the Front of the person because
a larger portion of MEBOW dataset falls into this category,
as shown in Fig. 1 (a) in the main paper.

C. Additional 3-D Human Pose Estimation
Evaluation on the Human3.6M Dataset
We also conducted 3-D human pose estimation experi-

ments with Protocol I in [48]. The evaluation results are
shown in Tabel Al.

Method PA MPJPE
Chen et al. [11] 82.7
Moreno et al. [32] 76.5
Zhou et al. [56] 55.3
Sun et al. [47] 48.3
Sharma et al. [44] 40.9
Sun et al. [48] 40.6
Moon et al. [31] 34.0
Baseline™ 34.7
Baseline 2** 34.3
ours 33.1

Table Al. 3-D human pose estimation evaluation on the Hu-
man3.6M dataset using Protocol I. *Our baseline is a re-
implementation of Sun et al. [48], trained on Human3.6M + MPII,
as in the original paper. **Our baseline 2 is a re-implementation
of Sun et al. [48], trained on Human3.6M + MPII + COCO (2-D
Pose).

D. More Qualitative Human Body Orientation
Estimation Results

More qualitative human body orientation estimation ex-
amples are shown in Fig. A3 to supplement Fig. 4 in the
main paper.

E. More Qualitative 3-D Pose Estimation Re-
sults on the Human3.6M Dataset

More example 3-D pose estimation results on the test set
of the Human3.6M dataset are included in Fig. A4.

F. More Qualitative 3-D Pose Estimation Re-
sults on the COCO Dataset

More example 3-D pose estimation results on the test set
of the COCO dataset are shown in Fig. AS.
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Figure A3. HBOE results generated by our baseline model (with HRNet as the backbone and ¢ = 4.0) on MEBOW (row 1 to row 5) and
TUD dataset (row 6). Red arrow: ground truth; Blue arrow: prediction.
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Figure A5. More example 3-D pose estimation results on the COCO dataset.



