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Abstract

In order to develop successful strategies for coral reef preservation, it is critical that the biology of both host corals and symbiotic algae
areinvestigated. In the Ryukyu Archipelago, which encompasses many islands spread over ~500 km of the Pacific Ocean, four major
populations of the coral Acropora digitifera have been studied using whole-genome shotgun (WGS) sequence analysis (Shinzato C,
Mungpakdee S, Arakaki N, Satoh N. 2015. Genome-wide single-nucleotide polymorphism (SNP) analysis explains coral diversity and
recovery in the Ryukyu Archipelago. SciRep. 5:18211.). In contrast, the diversity of the symbiotic dinoflagellates associated with these
A. digitifera populations is unknown. It is therefore unclear if these two core components of the coral holobiont share a common
evolutionary history. This issue can be addressed for the symbiotic algal populations by studying the organelle genomes of their
mitochondria and plastids. Here, we analyzed WGS data from ~150 adult A. digitifera, and by mapping reads to the available
reference genome sequences, we extracted 2,250 sequences representing 15 organelle genes of Symbiodiniaceae. Molecular
phylogenetic analyses of these mitochondrial and plastid gene sets revealed that A. digitifera from the southern Yaeyama islands
harbor a different Symbiodiniaceae population than the islands of Okinawa and Kerama in the north, indicating that the distribution
of symbiont populations partially matches that of the four host populations. Interestingly, we found that numerous SNPs correspond
to known RNA-edited sites in 14 of the Symbiodiniaceae organelle genes, with mitochondrial genes showing a stronger correspon-
dence than plastid genes. These results suggest a possible correlation between RNA editing and SNPs in the two organelle genomes
of symbiotic dinoflagellates.

Key words: Symbiodiniaceae, mitochondrial and plastid genomes, RNA editing, genetic variation, dinoflagellates, host
coral populations.

Introduction etal. 2018; Gonzalez-Pech et al. 2019). Over the last 20 years,

Symbiotic dinoflagellates in the family Symbiodiniaceae (pre-
viously known as the genus Symbiodinium) live together with
many host organisms in coral reefs, including corals, sea ane-
mones, bivalves, sponges, acoels, and forminiferans, in addi-
tion to existing as free-living cells (Hirose et al. 2008;
Yamashita and Koike 2013; Pochon et al. 2014, Lajeunesse

molecular phylogenetic analyses of the nuclear ribosomal
DNA (rDNA) have revealed the high genetic diversity of
Symbiodiniaceae (Rowan and Powers 1992; Coffroth and
Santos 2005; Pochon et al. 2014). Population genetic analyses
of Symbiodiniaceae have relied on comparisons of the internal
transcribed spacer regions (ITS1 and ITS2) of nuclear rDNA,
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noncoding regions associated with the plastid psbA gene, and
microsatellites (Thornhill et al. 2014). The existence of dozens
of Symbiodiniaceae species has been suggested by phyloge-
netic analysis of these noncoding sequence data. However, in
spite of the existence of draft genomes from Symbiodiniaceae
(Shoguchi et al. 2013; Lin et al. 2015; Aranda et al. 2016; Liu
et al. 2018; Shoguchi et al. 2018), whole-genome shotgun
(WGS) sequence data have not yet been used for population
genomic analysis of these algae.

Genome sequence data from the coral Acropora digitifera
(Shinzato et al. 2011, 2015) have been used as a reference to
study single-nucleotide polymorphisms (SNPs) in WGS reads
from 155 coral individuals. These data revealed the popula-
tion structure of A. diigitifera in the Ryukyu Archipelago, Japan
(Shinzato et al. 2015). Four major clusters or populations were
found in this study: Okinawa (OK), Kerama (KR), Yaeyama-
North (YN), and Yaeyama-South (YS) (fig. 1). There is approx-
imately a distance of 500 km between the northern (OK and
KR) and southern islands (Yaeyama) that were sampled
(fig. 1). In addition, the previous genome-wide population
genetic analysis of A. digitifera showed that these four pop-
ulations had limited connectivity, particularly between OK and
KR (Shinzato et al. 2015). Because KR is often considered a
source for OK population recovery, this result provides an
important cautionary note with regard to local conservation
efforts. Namely, the transplantation of KR corals to OK coasts
may not always be appropriate to facilitate the recovery of OK
wild corals. The fertilized eggs of the coral A. digitifera do not
have the symbiotic dinoflagellates. Acropora digitifera
acquires symbiotic algae horizontally (acquired from the sea-
water environment) when they are in the planula larval stage
(Harii et al. 2009). In the population genetic study of Shinzato
et al. (2015), coral branches, including symbiotic dinoflagel-
lates, were sampled for WGS analysis. It is therefore likely that
Symbiodiniaceae genomes remain in these samples, which
can also be analyzed to gain a perspective on symbiont distri-
bution within the host populations. In particular, high copy
number organelle genomes provide an ideal target for such
an approach.

Among Symbiodiniaceae, mitochondrial (mt) and plastid
(pt) genomes from Breviolum minutum (previously known
as Symbiodinium minutum) are available as reference sequen-
ces (Mungpakdee et al. 2014; Shoguchi et al. 2015).
Transcriptome analyses showed that all organelle protein-
coding genes undergo RNA editing. This process is a posttran-
scriptional modification that is mediated by specific enzymes
(Takenaka et al. 2013). It has been reported that pt RNA
editing in land plants exhibits site-specific sensitivity for tem-
perature and is inhibited by high temperature (Karcher and
Bock 2002). The temperature sensitivity of RNA editing may
also be related to the diversity of the organelle response to a
changing environment in the Symbiodiniaceae, but this issue
is poorly understood.
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Fic. 1.—Schematic diagram showing the sampling sites used for the
population analysis of the coral Acropora digitifera in the Ryukyu
Archipelago, Japan. Using whole-genome SNP analysis of A. digitifera,
four clusters comprising Okinawa (OK), Kerama (KR), Yaeyama-North
(YN), and Yaeyama-South (YS) were identified by Shinzato et al. (2015).
The inset (top left) indicates phylogenetic relationships among the clusters
based on an inferred tree of A. digitifera populations. The numbers in the
parentheses indicate the coral sample numbers at each location. The in-
formation for Okinawa prefecture in white boxes was obtained from the
National Land Numerical Information System (http:/nlftp.mlit.go.jp/ksj/
gmlold/index.html; last accessed January 17, 2019). The following islands,
excluding the sampling locations, are omitted. Hd, Hedo; Ik, Ikei; Irm,
Uehara; IS, Oohama; Isy, Kabira; KrA, Geruma; KrC, Yakabi; KrD, Aka;
KrE, Zamami; Mz, Manza; Od, Ohdo; Ss, Sesoko.

In this study, we analyzed Symbiodiniaceae organelle ge-
nome data from ~150 individuals of A. digitifera. Our study
posed two major questions: 1) do the phylogenies of organ-
elle genes in the Symbiodiniaceae recapitulate host relation-
ships that show the presence of local populations, and 2) do
SNPs among the Symbiodiniaceae organelles have a potential
relationship with RNA-editing events.

Results and Discussion

Diversity of Symbiodiniaceae Organelle Sequences in
A. digitifera

We used B. minutum as the reference to extract
Symbiodiniaceae organelle sequences from the lllumina data-
base (DRA003938) derived from 155 A. digitifera holobionts
(fig. 1). Five samples with low coverage of protein-coding
sequences were removed for each organelle genome analysis,
leaving 150 samples for downstream analysis (see Materials
and Methods). As a result, we recovered 450 representative
sequences from 3 genes in the mt genome and 1,800 repre-
sentative sequences from 12 genes in the pt genome (supple-
mentary data sets S1 and S2, Supplementary Material online).

To determine whether the evolutionary histories of organ-
elle genes in the Symbiodiniaceae populations recapitulate
host relationships, representative sequences from each com-
partment were used to build phylogenies. We hypothesized
that the four clusters found in the population analysis of the
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host A. digitifera were also present in the associated
Symbiodiniaceae populations (fig. 1). The phylogenetic tree
inferred from the three mt genes showed the clustering of the
specimens from YN with high bootstrap support (fig. 2, bot-
tom left). However, we failed to detect the four clusters iden-
tified in the analysis of the host coral. Thus, the mitochondrial
sequence data supported only the presence of the YN group
in the associated Symbiodiniaceae populations. In addition,
seguences from seven YN individuals and three YS individuals
exhibited a long branch (fig. 2). This suggests that A. digitifera
from the Yaeyama islands (YN and YS) harbor a different
Symbiodiniaceae population from those of Okinawa Island
(OK) and the Kerama islands (KR), in addition to a common
population in the Ryukyu Archipelago.

Twelve protein-coding genes (psbA, psbB, psbC, psbD,
psbE, psbl, petB, petD, psaA, psaB, atpA, and atpB) are
encoded in Symbiodiniaceae pt DNA. These have plasmid-
like structures referred to as minicircles (Zhang et al. 1999)
that each encodes a single-gene (1.8-3.3kb) in B. minutum
(Mungpakdee et al. 2014). A ML tree of plastid genes showed
that some of the sequences from YN and YS individuals clus-
ter with high bootstrap support (fig. 2). The four host clusters,
KR, OK, YN, and YS (inset of fig. 1), were also absent from the
pt data, although seven populations from YN are clustered
with an OK population. Many of the Yaeyama samples (YN
and YS) that had a long branch in mt gene trees also had a
long branch in pt gene trees (fig. 2, middle right). The pop-
ulations of YN and YS were clustered with 90% bootstrap
support. These results suggest that some of the southern
A. digitifera individuals maintain different Symbiodiniaceae
populations from the remaining corals. The holobionts from
the southern islands may be more diversified than those of the
northern islands in the Ryukyu Archipelago.

Our analysis of Symbiodiniaceae populations using organ-
elle genomes suggests that the A. digitifera clusters in the
southern region may contain a different, locally adapted pop-
ulation of symbiotic algae. To validate the presence of a dif-
ferent Symbiodiniaceae, we studied ITS2 sequences in the
WGS data (supplementary table 1, Supplementary Material
online). The detected ITS types supporting the majority belong
to the genus Cladocopium (clade C type in previous classifi-
cation). Interestingly, the Durusdinium (clade D in previous
classification) were found only in the WGS data of the
Yaeyama samples, supporting the presence of different pop-
ulations in the southern region of the Ryukyu Archipelago.
Therefore, future studies should focus on both coral and
Symbiodiniaceae populations to understand the establish-
ment of coral reefs in different areas.

Diversity of Organelle Genes and Possible RNA Editing Sites

RNA editing has been analyzed in detail for transcripts from
dinoflagellate mt and pt genes (Lin et al. 2002; Zauner et al.
2004; Zhang et al. 2008; Klinger et al. 2018). The

conservation patterns of edited sites from mt mRNAs have
been studied among core dinoflagellates, including the ba-
sally diverging Amphidinium and the Symbiodiniaceae (Zhang
et al. 2008). A recent report has discussed the dynamics and
evolution of RNA editing in dinoflagellate plastid genomes
using a large data set of dinoflagellates (Klinger et al. 2018).

To examine the relationship between SNPs and RNA edit-
ing sites, we used 2,250 sequences (supplementary data sets
S1 and S2, Supplementary Material online) from each of the
three mt genes and 12 pt genes from 150 samples recovered
from the Symbiodiniaceae organelle genomes. By aligning
sequences from each of the three mt genes and 12 pt genes
from the 150 samples, we determined the percentages of
SNPs in the genes (fig. 3A; table 1; supplementary fig. ST,
Supplementary Material online). Even though the SNP percen-
tages in petB (6.4%) (42/657) and petD (5.2%) (25/477) were
slightly lower than those in the other pt genes (table 1; sup-
plementary fig. S1, Supplementary Material online), the total
SNP percentage of pt genes (9.0%; 1,260/13,959) was higher
than that in mt genes (5.6%; 185/3,288) (fig. 3B).

We did not have transcriptome data from the
Symbiodiniaceae populations, therefore, we studied the
data from B. mimutum (Mungpakdee et al. 2014; Shoguchi
et al. 2015) and defined the known edited sites as possible
RNA editing sites (pPRNAe) in our data. By comparing SNPs and
pRNAe in the three mt genes, we found that 68 sites were
shared between these two data sets (fig. 3B). These account
for 36.8% (68/185) of the SNP sites and 94.4% (68/72) of the
pPRNAe sites (fig. 3B; supplementary fig. S1, Supplementary
Material online). The SNPs of the shared sites potentially con-
tain the nucleotides prior to and after RNA editing (fig. 3A),
suggesting that gain (or loss) of RNA editing sites may cause
the polymorphism.

Within the pt data, the percentages of SNP sites and
pRNAe sites were 9.0% (1260/13,959) and 2.9% (406/
13,959), respectively, with the shared sites totaling 81
(fig. 3B). The reason for the lower percentage of shared sites
in pt MRNA than those in mt mRNA may be explained by a
recent report that suggested individual RNA editing sites in
dinoflagellate plastids are species-specific and not highly con-
served (Klinger et al. 2018). Alternatively, SNPs among RNA
editing sites may be low in the pt genome of the
Symbiodiniaceae. Finally, to characterize the high SNP per-
centage of pt genes, we classified the sites into SNPs with
NnoNsynonymous or synonymous substitutions (ns or ss)
(fig. 3B and supplementary fig. S1, Supplementary Material
online). The sites of synonymous SNPs (809) exceeded those
of nonsynonymous SNPs (451) in pt genes, although synony-
mous sites were less than nonsynonymous sites in mt genes
(fig. 3B; supplementary fig. S1, Supplementary Material on-
line). In land plant organelles, mRNA editing relies on cis-
binding sites for trans-acting editing-site-specific proteins
encoded in the nucleus (Lynch et al. 2006). We hypothesize
that some of the nonsynonymous SNPs correspond to RNA

Genome Biol. Evol. 12(3):203-209 doi:10.1093/gbe/evaa042 Advance Access publication February 27, 2020 205

0202 aunp 6z Uo 1sanb Aq 1929/ G/€02/€/Z L AoeNSqe-0(1LE/aq6/WwOoo"dNo"olWapeo.//:Sdjy WOy papeojumoq


https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa042#supplementary-data

Shoguchi et al. GBE

jMdzC81DGaIID 0.1 OH}fjﬁAgi
. ju]
b oninelEY - =
130 pt genes 0Od157
/N oM ]
OKrE3
4Do roKrCﬁ
z60 oHd5—
rAL50 2
e
rC80
(o]

=
06
L
o

N
(gl

)
0gdo

OKR HOK

AYN AYS

AAAA@AaauAQb
OO%S O

¢

03 0w

>oo ©

FVATATAY AV & ST

OO >0 2>
ON

TXNOXRT
TAx3
205
oo

=

LT
TS ‘%*
e o
DDD'EOQED o

A

1
=

N
iS5
e

OO
o

Favayy}

232
O]

[e)e)

T ‘;QN;og
RO

Irm24 4
Irm22 A

7]
&
>

—Irm4A

Irm3A
\—‘—mmlerA
0.1
P
mt genes

Fic. 2—Maximum likelihood trees inferred from organelle genes of Symbiodiniaceae populations. Only nodes with >70% bootstrap support are
indicated in the tree. Three concatenated mt genes were used to reconstruct the tree on the left side of the figure. Six YN samples are clustered with
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Fic. 3.—The relationship between SNPs and possible RNA editing
(PRNAe) sites. (A) Alignment of a region of the cob sequence in mt
DNA is shown with the RNA editing sites (highlighted in red) of the refer-
ence sequences. The correspondence between SNP and pRNAe is marked
with yellow arrowheads. (B) SNPs from 3,288 sites in mt genes (left) and
from 13,959 sites in pt genes (right) were identified by comparing 150
coral holobiont samples. The numbers in parentheses show the percent-
age of SNPs and pRNAe. The SNP percentage in pt genes was higher than
in mt genes. Comparison with pRNAe shows that many pRNAe sites in mt
genes correspond to SNP sites. The numbers in square brackets indicate
nonsynonymous (ns) and synonymous substitution (ss) SNPs, respectively.
The numbers on each gene are shown in supplementary figure ST,
Supplementary Material online. (C) Hypothesis for the relationship be-
tween nonsynonymous and synonymous SNPs in organelle genomes of
the Symbidiniaceae. As an example, a region of the psaA alignment is
shown and indicates that stretches of ~20 nucleotides in sites upstream of
edited sites may provide a specific sequence context recognized by editing
activity (Takenaka et al. 2013).

editing sites, and that the potential cis-binding sites may relate
to the presence of many synonymous SNPs in pt genes
(fig. 30). The simultaneous sequencing of genomes and

transcriptomes from single-Symbiodiniaceae cells is needed
to better understand pt SNP and the pRNAe data.

In summary, we analyzed the genetic diversity of two or-
ganelle genomes from Symbiodiniaceae hosted by four
A. digitifera populations. Our results show that corals in the
southern sites (YN and YS) contain a different
Symbiodiniaceae population from those in the north (OK
and KR). Some of the same algal symbionts are, however,
shared by these areas (fig. 2). This suggests the presence of
complex relationships among the southern holobiont popula-
tions. Many of the SNP sites in the mt DNA from the symbiotic
dinoflagellates correspond to known RNA editing sites (fig. 3).
The sharing of these sites is apparently at a lower percentage
in pt genes (6.4%) than in mt genes (36.8%) when using
hypothetical RNA editing data. Future studies of the relation-
ship between local climate change and the diversity of organ-
elle genome sequences (including RNA editing) may provide
critical insights into environmental adaptability among
Symbiodiniaceae populations (Baker 2003; Hidaka 2016).

Materials and Methods

WGS Data and Read-Mapping of Symbiodiniaceae
Sequences

We assumed that the WGS sequences [accession no.
DRA003938] in the population genomic analysis of
A. digitifera (Shinzato et al. 2015) include dinoflagellate ge-
nome data, in particular of high copy number organelle
genomes. The sequencing coverage of each WGS data set
from 155 coral individuals was ~7x on average for ~447 Mb
of the reference genome (version 1.1) of A. digitifera
(Shinzato et al. 2015). The deposited WGS reads without fur-
ther processing (DRA003938) were used for mapping. The
reference sequences (~2-291kb) for protein-coding genes
from the organelle genomes of B. minutum are publicly avail-
able [accession nos. LC002801-LC002802; JX094304 and
JX094335]. Using Bowtie v0.7.12 with default parameters
(Li and Durbin 2009), the read data from 155 individuals of
A. digitifera were mapped separately to the reference organ-
elle data. A majority of the mapped sites were gene-encoding
regions. The average mapped read coverage to the organelle
genes were ~35x for mitochondrial genes and ~9x for plas-
tid genes. The dominant nucleotides from the mapped reads
were selected at each site, and the representative gene
sequences determined in each sample. Our method does
not rule out the possibility that representative sequences
may include hybrid data because short-read data (75—
100 bp paired-end reads) were used from the coral holobionts

Fic. 2—Continued

moderate high bootstrap support (72%). Some Symbiodiniaceae sequences from the Yaeyama area have long branches. A total of 12 concatenated pt
genes were used to reconstruct the tree on the right side of the figure. Yaeyama Symbiodiniaceae sequences with long branches also correspond to the
samples with long branches in the mt gene tree (Irm3, Irm4, Irm9, Irm27, Isy15, 151, 1S3, and IS7).
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Table 1

Correspondence between Detected SNP Sites and Potential RNA Editing Sites

Gene Analyzed Site No. of SNPs (%) No. of pRNAe? No. of Correspondences

Mitochondria
cox1 1,455 57 (3.9) 29 26
cox3 771 56 (7.3) 24 24
cob 1,062 72 (1.8) 19 18

Plastid
psbA 1,029 103 (10.0) 3 2
psbB 1,500 137 (9.1) 30 6
psbC 1,359 143 (10.5) 26 7
psbD 1,074 90 (8.4) 8 4
psbE 234 17 (7.3) 9 2
psbl 108 16 (14.8) 3 0
petB 657 42 (6.4) 23 3
petD 477 25(5.2) 33 7
psaA 2,022 153 (7.6) 100 17
psaB 2,094 194 (9.3) 79 12
atpA 1,434 143 (10.0) 43 9
atpB 1,971 197 (10.0) 49 12

aMungpakdee et al. (2014).

(DRA003938). Five samples with low coverage of protein-
coding sequences were removed for each organelle genome
analysis (one mt genome sample from KR and four from OK;
four pt genome samples from OK and one from YS), and 150
samples were used. These representative sequences are avail-
able within the online supplementary materials (supplemen-
tary data sets S1 and S2, Supplementary Material online).
The ITS2 sequences from the Symbiodiniaceae nuclear ge-
nome were initially studied using a BlastN (< 1e-20) search as
queries of the ITS2 databases (Franklin et al. 2012). If a
read hits multiple ITS2 sequences, the ITS2 type with the high-
est BLAST score was assigned to it. A total of 51 of the 151
samples had more than one read with an assigned ITS2 type
(supplementary table 1, Supplementary Material online).

Molecular Phylogenetic Analyses

The mt genome from B. minutum encodes three protein-
coding genes: cox7, cox3, and cob. The nucleotide sequences
of these three mt genes were concatenated. A total of 150
representative sequences from the Symbiodiniaceae popula-
tions associated with the host coral were aligned for each of
the three genes using MAFFT (Katoh and Standley 2013).
Phylogenetic model selection for the aligned and
concatenated organeller genes was performed using
ModelTest-NG version 0.1.5 (Darriba et al. 2019). We per-
formed molecular phylogenetic analyses of the aligned
sequences using the GTR+I+Gamma model suggested by
the evolutionary model selection. Maximum likelihood (ML)
analysis was performed using RAXML version 8.2.10
(Stamatakis 2014) with 100 bootstrap replicates. Similarly, a
molecular phylogenetic tree of pt genes was constructed from

twelve protein-coding genes. Trees were edited using iTOL
5.3 (Letunic and Bork 2019).

Genetic Variation and pRNAe

The nucleotide sites lacking 100% conservation among the
150 populations (supplementary data sets ST and S2,
Supplementary Material online) comprised potential SNPs.
We manually confirmed the alignments with MView
(Chojnacki et al. 2017) and Hyphy in MEGA7 (Kumar et al.
2016). The RNA-edited sites from the reported B. minutum
organelle data (Mungpakdee et al. 2014; Shoguchi et al.
2015) were compared with the SNP data. The numbers of
ns and ss from the 150 aligned sequences were counted using
Hyphy. If both ns and ss were located on a particular codon
SNP site, it was counted as an ns.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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