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Spectral-Spatial Diffusion Geometry for
Hyperspectral Image Clustering

James M. Murphy Mauro Maggioni

Abstract—An unsupervised learning algorithm to cluster hy-
perspectral image (HSI) data that leverages spatially regularized
random walks is proposed. Markov diffusions are defined on the
space of HSI spectra with transitions constrained to near spatial
neighbors. The explicit incorporation of spatial regularity into the
diffusion construction leads to smoother random processes that
are more adapted for unsupervised machine learning than those
based on spectra alone. The regularized diffusion process is sub-
sequently used to embed the high-dimensional HSI into a lower
dimensional space through diffusion distances. Cluster modes are
computed using kernel density estimation and diffusion distances,
and all other points are labeled according to these modes.
The proposed method has low computational complexity and
performs competitively against state-of-the-art HSI clustering
algorithms on real data. In particular, the proposed spatial
regularization confers both theoretical and empirical advantages
over non-regularized methods.

I. INTRODUCTION

As the volume of data captured by remote sensors grows un-
abated, human capacity for providing labeled training datasets
is strained. In order to take advantage of the deluge of
unlabeled remote sensing data, new methods that are unsu-
pervised—requiring no training data—are necessary.

This article makes two contributions to the unsupervised
analysis of high-dimensional remotely sensed hyperspectral
images (HSI). First, spectral-spatial diffusion geometry is
proposed for remote sensing images. This allows for high
dimensional data to be analyzed in a manner that respects
not only intrinsic pixel geometry in the data, but also the
spatial regularity in the two-dimensional image structure of
the pixels. Second, we propose a new algorithm for efficient
unsupervised clustering of HSI, called spatially regularized
diffusion learning (SRDL). This method integrates spectral-
spatial diffusion geometry into the recently proposed diffusion
learning algorithm, which has achieved competitive perfor-
mance versus benchmark and state-of-the-art unsupervised
HSI clustering algorithms [1], [2].

The remainder of this article is organized as follows.
Background on HSI clustering and diffusion geometry is
presented in Section II. The proposed algorithm is described
and evaluated in Sections III and IV, respectively. Conclusions
and discussion are presented in Section V.
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II. BACKGROUND

A. Background on HSI Clustering

Unsupervised clustering of HSI data X = {xi}ni=1 ⊂ RD—
understood as a point cloud—consists in providing labels
{ŷi}ni=1 to each data point without access to labeled training
data. The total number of pixels in the HSI is n, and the data
dimensionality is D, corresponding to the number of spectral
bands. The data dimension D is large for HSI, rendering
standard clustering methods such as K-means clustering,
Gaussian mixture models [3], and density-based methods [4],
[5] ill-suited for HSI, due to the “curse of dimensionality” [3].
Moreover, linear dimension reduction methods such as princi-
pal component analysis [3], independent component analysis
[6], and random projections [7] are of limited use for HSI
clustering, because they may wash out geometric information
that discriminates between distinct clusters.

Fortunately, clusters in HSI typically exhibit intrinsically
low-dimensional structure, which a range of methods have
been proposed to capture, including matrix factorizations [8],
sparse subspace learning [9], [10], and manifold learning
methods based on graph Laplacians [11], [12], [13], [14].
Manifold learning methods have also been applied to the
related unsupervised problems of anomaly and target detection
[15], [16], [17], [18], [19]. However, methods based on matrix
factorizations and subspace learning may struggle to learn
clusters that lack subspace structure (i.e. exhibit nonlinear
structure), while manifold learning methods tend to be overly
sensitive to outliers, and may not account for spatial structure
in the HSI. It is thus critical to develop clustering methods
that not only exploit the manifold structure of the HSI, but
also its spatial regularity.

B. Background on Diffusion Geometry

This article proposes the diffusion geometry [20], [21] of
an HSI as a method to infer clusters. Diffusion geometry
is captured through diffusion distances, which are driven by
time-dependent Markov processes on the underlying data. The
diffusion distance at time t between xi, xj ∈ X , denoted
dt(xi, xj), is a notion of distance driven by latent, low-
dimensional geometry in the point cloud X . Intuitively, points
with many short paths in X connecting them will be close in
diffusion distance. Unlike Euclidean distance, diffusion dis-
tances are data-dependent and account for the global structure
of X when making comparisons between points. Moreover,
unlike shortest-path distances, diffusion distances are robust
to noise and outliers [21], [22].
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Diffusion distances are computed via a weighted, undirected
graph G with vertices X = {xi}ni=1 and edges stored in
the weight matrix Wij = exp(−‖xi − xj‖22/ε2) if xi ∈
NN(xj ; k),Wij = 0 otherwise for some scaling parameter
ε and with NN(xi; k) the set of k-nearest neighbors of xi in
X measured in the `2 metric. Typically ε is chosen adaptively
[23], and k � n is chosen so that W is sparse; we set k = 100
in all experiments. Let P = D−1W be a Markov diffusion
matrix defined on X , where D is the diagonal degree matrix
with Dii =

∑n
`=1 Wi`. Assume P is irreducible and aperiodic.

The diffusion distance at time t is

dt(xi, xj) =

√∑n

`=1

(
Pt
i` − Pt

j`

)2
/π(`), (1)

where π satisfies πP = π. The computation of dt(xi, xj)
involves comparing the transition probabilities of xi and xj
after t time steps, so dt(xi, xj) is small if xi, xj have similar
probabilistic behavior according to Pt. The parameter t is
the time scale of the diffusion process on X: small values
of t correspond to small amounts of diffusion, which may
prevent the exploration of macroscopic geometry of X . On the
other hand, large t may ruin the fine geometry of X through
homogenization. In Section IV, t = 30; see [2] and [22] for
empirical and theoretical analyses of t, respectively.

Under mild assumptions [21], P has (right) eigenvectors
{ψi}ni=1 with real eigenvalues {λi}ni=1 ordered such that
1 = λ1 > |λ2| ≥ · · · ≥ |λn|. This yields

dt(xi, xj) =

√∑n

`=1
λ2t` (ψ`(xi)− ψ`(xj))2. (2)

Note that (2) may be truncated at some 2 ≤ m � n
while retaining good accuracy. This reduces computational
complexity, since only the first m = O(1) eigenpairs need to
be computed. In our experiments, m was set to be the “elbow”
value [2] of the plot of the eigenvalues {λi}ni=1.

C. Background on Spatial Regularity in HSI

If X has structure beyond its D-dimensional spectral co-
ordinates, this may be incorporated into the diffusion maps
construction by modifying the underlying transition matrix P.
In the case of HSI, each point is not only a high dimensional
spectrum, but also a pixel arranged in an image. In particular,
many HSI enjoy spatial regularity, in the sense that points
in a particular cluster are likely to have their nearest spatial
neighbors in the same cluster. This is particularly true for
natural and agricultural scenes, or for scenes with high spatial
resolution. Spatial regularity is powerful a priori information
that can be accounted for in the construction of statistical
and machine learning algorithms. Indeed, P encodes pixel-
wise similarities to infer latent structure in the data; it is thus
natural to incorporate meaningful spatial structure into P.

In this article, we extend the recently proposed diffusion
learning unsupervised clustering framework [2] by directly
incorporating spatial information into the underlying diffusion
matrix P. Incorporating spatial information into machine learn-
ing for remote sensing data has been helpful in supervised
[24] and unsupervised contexts [25], [9], [10]. HSI cluster-
ing methods benefit from spatial regularization not only in
smoothing out speckling errors, but in separating classes that

overlap spectrally, which is a common problem for HSI and
in general for high-dimensional data corrupted by noise.

III. SPATIALLY REGULARIZED DIFFUSION LEARNING

Intuitively, SRDL computes cluster modes, which are well-
separated in both the spectral and spatial domains. These
modes are representative of the distinct clusters in the data,
and all other pixels are labeled according to these modes.

The proposed algorithm first constructs a Markov diffu-
sion matrix, P, under the constraint that pixels may only
be connected to other pixels that are within some spatial
radius R; see Fig. 1 and Algorithm 1. Mathematically, the
incorporation of spatial proximity accelerates the mixing of
the Markov transition matrix P within a spatial cluster and
inhibits between-cluster mixing, which improves the clustering
properties of diffusion distances [22]. The eigenpairs of P with
largest eigenvalues in modulus are computed, so that diffusion
distances are simply Euclidean distances in the new coordinate
system x 7→ (λt1ψ1(x), . . . , λtmψm(x)) as in (2).

Fig. 1: The Salinas A data set was collected over Salinas Valley, CA. It has spatial
dimensions 86 × 83, and consists of 224 spectral bands with spatial resolution 3.7
m/pixel. In order to differentiate between certain pixels that have the same value,
Gaussian noise with variance = 10−4 was added during preprocessing of the HSI.
Top left: ground truth, showing 6 classes. Top right: sum across all spectral bands.
Bottom left: 100 nearest neighbors (yellow) of a pixel (red) without spatial regularization.
Bottom right: 100 nearest neighbors (yellow) of a pixel (red) with spatial regularization.
The spatial regularization forces the random walk P to converge to mesoscopic equilibria
on distinct classes more rapidly, which improves the discriminatory power of diffusion
distances for unsupervised learning [22].

The proposed algorithm first learns cluster modes as the
maximizers of Dt(x) = f(x)δt(x), where f(x) is a kernel
density estimator (KDE) [3] and δt(x) is the diffusion dis-
tance of a point to its nearest neighbor of higher f value
(unless x is the global density maximizer, in which case
δt(x) = maxy∈X dt(x, y)). The mode detection algorithm is
summarized in Algorithm 2; see [2] for details.

From the modes, the rest of the data is labeled in a two
phase process. Points are labeled iteratively—from highest
f value to lowest f value—to have the same label as their
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Algorithm 1: Spectral-Spatial Diffusion Maps

1 Input: X,R.
2 Connect each x ∈ X to its k = 100 nearest neighbors

within spatial radius R, call them y, with weight
exp(−‖x− y‖22/ε2), with ε set adaptively [23].

3 Let D be the diagonal degree matrix and P = D−1W.
4 Compute the m (right) eigenpairs of P with largest (in

modulus) eigenvalues, {(λi, ψi)}mi=1.
5 Output: {(λi, ψi)}mi=1.

Algorithm 2: Spectral-Spatial Mode Estimation

1 Input: X,R,K.
2 Compute spectral-spatial diffusion distances using

Algorithm 1 and (2).
3 For each xi ∈ X , compute a KDE f(xi).
4 For each xi ∈ X , compute δt(xi).
5 Set {zi}Ki=1 to be the K maximizers of

Dt(xi) = f(xi)δt(xi).
6 Output: {f(xi)}ni=1, {zi}Ki=1.

nearest spectral neighbor of higher f value that has already
been labeled, unless it is the case that such a labeling violates
smoothness of the spatial labels. If spatial smoothness of a
point xi is violated, xi is not labeled in the first phase. In the
second phase, an unlabeled point is given the same label as
the most common label among its spatial nearest neighbors;
we call this the consensus spatial label. The spectral-spatial
labeling scheme is summarized in Algorithm 3, and its cru-
cial parameters and the role of spatial consensus labels are
discussed at length in [2].

Algorithm 3: Spatially Regularized Diffusion Learn-
ing (SRDL)

1 Input: X,R,K.
2 Compute {(λi, ψi)}mi=1 using Algorithm 1.
3 Compute {f(xi)}ni=1, {zi}Ki=1 using Algorithm 2.
4 For i = 1, . . . ,K , give zi the label i.
5 Labeling Phase 1: In order of decreasing f value, give

each x the label of its dt-nearest spectral neighbor of
higher density, unless the spatial consensus label
exists and differs, in which case the point is not
labeled.

6 Labeling Phase 2: In order of decreasing f value, give
each unlabeled x its consensus spatial label, if it
exists, otherwise the same label as its dt-nearest
spectral neighbor of higher density.

7 Output: Learned labels {ŷi}ni=1.

The proposed method—described in Algorithm 3—is called
spatially regularized diffusion learning (SRDL).

IV. EMPIRICAL ANALYSIS OF SRDL ALGORITHM

The SRDL algorithm is evaluated on the publicly available1

Kennedy Space Center, Indian Pines, and Salinas A datasets.
The Kennedy Space Center and Indian Pines datasets are

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes

cropped to subsets, due to well-documented challenges of
unsupervised learning for data with a large number of classes
[14]. Since it contains only 6 classes, the full Salinas A dataset
was used. While the proposed SRDL algorithm automatically
estimates the number of clusters based on the decay of Dt,
the number of class labels in the ground truth images were
used as a parameter K for all clustering algorithms to make a
fair comparison with methods that cannot reliably estimate
the number of clusters. Experiments are performed on the
entire dataset, including points without ground truth labels;
only pixels with ground truth labels are used for quantitative
evaluation. Three metrics are used for quantitative comparison
of a clustering with the ground truth. Overall accuracy (OA)
is the ratio of correctly labeled pixels to the total number of
pixels. Average accuracy (AA) is the average of the OA of
each class, which equalizes the significance of small and large
classes. Cohen’s κ-statistic (κ) measures agreement across two
labelings in a manner robust to random chance.

A. Benchmark and State-of-the-Art Comparison Methods

We consider 13 methods of HSI clustering for comparison.
The benchmark methods are: K-means [3] applied to the raw
data X; principal component analysis (PCA) followed by K-
means; independent component analysis (ICA) [6] followed
by K-means; Gaussian random projections (RP) followed
by K-means [7]; spectral clustering (SC) [26]; Gaussian
mixture models (GMM) [3], with parameters determined by
expectation maximization; and DBSCAN [4]. All dimension
reduction methods project into a number of dimensions equal
to the number of ground truth classes K.

Several state-of-the-art HSI clustering methods are also
considered: hierarchical clustering with non-negative matrix
factorization (HCNMF) [8]; sparse manifold clustering and
embedding (SMCE) [12]; a Merriman-Bence-Osher (MBO)
[27] method for minimizing a Mumford-Shah (MS) functional
on a graph [13] denoted MBOMS; the density peaks clustering
(DPC) algorithm [5]; and two variants of the recently proposed
diffusion learning algorithm, in which the labeling process
considers only spectral information (DL) or both spectral and
spatial information (DLSS) [2].

Among these methods, DL and DLSS bear closest re-
semblance to SRDL. These two methods and SRDL differ
critically in how the underlying geometry for clustering is
learned. In DL and DLSS, P considers the HSI only as a
spectral point cloud. SRDL regularizes the construction of P
by incorporating spatial information into the nearest neighbors
construction. The proposed SRDL method also bears similarity
to SC, SMCE, and MBOMS since all these methods use data-
driven graphs. The DPC algorithm uses a mode detection
scheme similar to SRDL, but with neither diffusion geometry
nor spatial information.

B. Experimental Results

The Kennedy Space Center (K.S.C.) dataset used for exper-
iments is shown in Fig. 2 along with ground truth. Clustering
results appear in Table I; for reasons of space, visual results
are not shown. SRDL was run with R = 20. SRDL gives

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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the best results, and in particular outperforms the spatially
unregularized DLSS.

Fig. 2: The Kennedy Space Center dataset was collected in FL, USA. It consists of 176
spectral bands at 18m/pixel spatial resolution. To make the data suitable for unsupervised
learning, a 250 × 100 subset of the full dataset is used for experiments. Left: ground
truth, showing 4 classes. Right: projection onto first principal component.

The Indian Pines (I.P.) data used for our experiments
appears in Fig. 3. Visual results are in Fig. 4 and quantitative
results in Table I. SRDL was run with R = 8. The spatial
regularization in the construction of P leads to a smoother
labeling, and SRDL improves over DLSS. However, a mistake
is still made in the labeling of the proposed method, indicating
that this is a challenging dataset to cluster without supervision.

Fig. 3: The Indian Pines data was collected in IN, USA. It consists of 200 spectral bands
at 20m/pixel spatial resolution. To make the data suitable for unsupervised learning, a
50× 25 subset of the full dataset is used. Left: ground truth, showing 3 classes. Right:
sum across all spectral bands.

(a) K-means (b) PCA+KM (c) ICA+KM (d) RP+KM (e) SC

(f) GMM (g) DBSCAN (h) HCNMF (i) SMCE (j) MBOMS

(k) DPC (l) DL (m) DLSS (n) SRDL (o) GT

Fig. 4: On the Indian Pines HSI, the SRDL method leads to quite smooth spatial labels,
and has accuracy that is optimal among all methods. However, in this case, the ground
truth indicates that the triangular region on the lower right is labeled incorrectly by the
proposed method. The smoothing imposed by SRDL—though beneficial overall—washes
that region out. This weakness could be resolved in a variety of ways, perhaps most easily
by oversegmenting the HSI, then querying the oversegmented class modes to determine
which classes ought to be merged a posteriori.

The Salinas A (S.A.) dataset is shown in Fig. 1, with
visual clustering results in Fig. 5 and quantitative accuracy
results in Table I. The proposed SRDL method was run with
R = 20. SRDL yields the best results, and moreover the labels
recovered by the proposed method are quite spatially regular.
This is likely due to the smooth spatial structure of the Salinas
A crop rows, which SRDL takes advantage of by incorporating
spatial proximity into the underlying Markov process.

As mentioned above, unsupervised clustering algorithms
often struggle to meaningfully cluster HSI with many distinct
clusters [14]. However, HSI with large numbers of classes
(e.g. the full Indian Pines dataset, which has 16 classes)
may be segmented by partitioning the image into smaller
regions, then clustering each subimage separately [2]. In the
case of partitioning the Indian Pines HSI into 16 equal sized
subimages and evaluating each subimage separately before

(a) K-means (b) PCA+KM (c) ICA+KM (d) RP+KM (e) SC

(f) GMM (g) DBSCAN (h) HCNMF (i) SMCE (j) MBOMS

(k) DPC (l) DL (m) DLSS (n) SRDL (o) GT

Fig. 5: For the Salinas A dataset, SRDL is the optimal performer, with the DLSS, DL,
and spectral clustering methods also performing strongly. The spatial regularization
incorporated into the diffusion distances used for the proposed method keeps the diagonal
stripes relatively far apart from each other, leading to accurate mode estimation and
subsequent labeling.

combining, SRDL (OA= .8199) substantially outperforms the
next best competitor, DLSS (OA= .7485). See Fig. 6; we re-
mark that re-combining the clusters learned on the subimages
in a consistent manner is a topic of ongoing research.

(a) GT (b) Band Sum (c) K-means (d) DLSS (e) SRDL

Fig. 6: The full Indian Pines ground truth and sum of all spectral bands are in (a) and
(b) respectively. Segmenting with SRDL (see (e)) leads to smoother and more accurate
partitions than with K-means (see (c)) and the second best performer, DLSS (see (d)).

Regarding computational complexity, it suffices to note that
the bottleneck is in the construction of P (since P is sparse
and only m = O(1) eigenpairs are required). Since k nearest
neighbors are sought and neighbors are constrained to live
within a spatial radius R, as long as R, k = O(1) with respect
to n, the nearest neighbor searches for all points can be done in
O(n). This gives an overall complexity for the algorithm that
is essentially linear in n. When R = Ω(n), indexing structures
(e.g. k-d trees or cover trees) allow for fast nearest neighbor
searches, yielding an algorithm quasilinear in n. The runtimes
for all methods appear in Table II, indicating that SRDL runs
in similar time to SC, DL and DLSS, and is faster than SMCE.

Algorithm K.S.C. OA K.S.C. AA K.S.C. κ I.P. OA I.P. AA I.P. κ S.A. OA S.A. AA S.A. κ
K-means 0.36 0.25 0.01 0.43 0.38 0.09 0.63 0.66 0.52

PCA+KM 0.36 0.25 0.01 0.43 0.38 0.10 0.63 0.66 0.52
ICA+KM 0.36 0.25 0.01 0.41 0.36 0.06 0.57 0.56 0.44
RP+KM 0.60 0.50 0.43 0.51 0.51 0.26 0.63 0.66 0.53

SC 0.62 0.52 0.44 0.54 0.45 0.24 0.83 0.88 0.80
GMM 0.42 0.31 0.10 0.44 0.35 0.02 0.64 0.61 0.55

DBSCAN 0.36 0.25 0.01 0.63 0.62 0.43 0.71 0.71 0.63
HCNMF 0.36 0.25 0.00 0.41 0.32 -0.02 0.63 0.66 0.53
SMCE 0.36 0.26 0.01 0.52 0.45 0.22 0.47 0.42 0.30

MBOMS 0.74 0.70 0.65 0.57 0.50 0.27 0.70 0.81 0.65
DPC 0.36 0.25 0.00 0.58 0.51 0.26 0.63 0.61 0.54
DL 0.81 0.72 0.74 0.67 0.62 0.44 0.83 0.88 0.79

DLSS 0.83 0.73 0.76 0.85 0.82 0.75 0.85 0.90 0.81
SRDL 0.85 0.75 0.79 0.89 0.92 0.83 0.90 0.93 0.87

TABLE I: Quantitative results for clustering HSI are shown, with the strongest performer
shown in bold, and the second strongest performer underlined. SRDL performs best
across all datasets and metrics, and in particular outperforms the DLSS algorithm, which
lacks spatial regularization in the underlying diffusion process. We remark that even if
R is set to a deliberately sub-optimal value, strong results are achieved by SRDL (e.g.
K.S.C.: R = 10, OA = .77; IP: R = 4, OA = .86; S.A.: R = 12, OA = .90);
see Fig. 7 for additional analysis of R.

The crucial parameter in the proposed method is the spatial
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Algorithm K-means PCA+KM ICA+KM RP+KM SC GMM DBSCAN HCNMF SMCE MBOMS DPC DL DLSS SRDL
K.S.C. 4.10 .13 1.09 .34 178.69 6.41 112.4 .97 1315.2 .89 175.76 203.61 327.38 336.23

I.P. .13 .01 .11 .05 .32 .12 .58 .19 3.02 .15 .23 .53 1.48 1.51
S.A. .64 .01 .23 .17 7.08 1.13 13.53 .44 127.61 .29 6.88 8.88 19.17 18.97

TABLE II: Run times in seconds for each method and dataset. The MBOMS method
was run in C, while all other methods were run in MATLAB on a 2.7 GHz Intel Core
i7 processor and 16 GB of RAM.

radius R, which determines how near the nearest neighbors
in the underlying diffusion process must be. The impact of
this parameter in terms of OA, AA, and κ is shown in Fig.
7. The plots exhibit the tradeoff typical of regularization in
machine learning: insufficient or excessive regularization are
both detrimental. The flat regions near the maxima in Fig. 7
suggest the proposed method is robust to the choice of R.
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(a) Kennedy Space Center
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(b) Indian Pines
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(c) Salinas A

Fig. 7: Impact of R with k = 100 nearest neighbors. As R increases, empirical results
improve then decline, illustrating that the optimal spatial regularization is to employ a
moderate R value. Once a good R has been found, results are relatively robust.

V. CONCLUSIONS AND DISCUSSION

Incorporating spatial regularity into the underlying diffu-
sion geometry improves empirical performance of diffusion
learning for HSI clustering in all datasets considered. Our
results suggest that for images whose labels are sufficiently
smooth, there will be a regime of spatial window R in which
incorporating spatial proximity improves the underlying mode
detection and consequent labeling of HSI.

On the other hand, for images with many classes that
are rapidly varying in space—for example, urban HSI—the
proposed spatial regularization may be unhelpful or even
detrimental. This is because if pixels that are nearby spatially
do not have a high propensity to be in the same cluster,
then regularizing the random walk spatially may negatively
constrain its ability to quickly discover meaningful clusters.
Indeed, motifs that are rapidly changing spatially but common
throughout an image (for example urban buildings and streets)
may be better learned without the spatial constraint.

We remark that an alternative approach to incorporating
spatial information is to consider as underlying data points
not individual pixels, but higher order features, for example
image patches. This would integrate into the diffusion process
information about detail features such as edges and textures,
allowing for these fine-scale structures to be learned.
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