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ABSTRACT

Convolutional neural networks (CNNs) are revolutionizing imaging science for two- and three-dimensional images
over Fuclidean domains. However, many data sets are intrinsically non-Euclidean and are better modeled through
other mathematical structures, such as graphs or manifolds. This state of affairs has led to the development of
geometric deep learning, which refers to a body of research that aims to translate the principles of CNNs to these
non-FEuclidean structures. In the process, various challenges have arisen, including how to define such geometric
networks, how to compute and train them efficiently, and what are their mathematical properties.

In this letter we describe the geometric wavelet scattering transform, which is a type of geometric CNN for
graphs and manifolds consisting of alternating multiscale geometric wavelet transforms and nonlinear activation
functions. As the name suggests, the geometric wavelet scattering transform is an adaptation of the Euclidean
wavelet scattering transform, first introduced by S. Mallat, to graph and manifold data. Like its Euclidean
counterpart, the geometric wavelet scattering transform has several desirable properties. In the manifold setting
these properties include isometric invariance up to a user specified scale and stability to small diffeomorphisms.
Numerical results on manifold and graph data sets, including graph and manifold classification tasks as well as
others, illustrate the practical utility of the approach.

Keywords: geometric deep learning, scattering transform, convolutional neural network, wavelet, graph, man-
ifold

1. INTRODUCTION

The processing of signal-based data such as auditory recordings, images, and videos for learning tasks is often
carried out with convolutional neural networks (CNNs) and related architectures. A primary reason for the
success of CNNs is the use of convolution operators, which reduces the number of learned parameters while taking
advantage of the underlying Euclidean geometry of the data. However numerous data types of interest, including
social networks, molecules in chemistry, two dimensional surfaces as in certain types of medical diagnostic
imaging, and computer graphics, amongst others, do not have an underlying Euclidean structure but do have
an underlying geometric structure. In many such cases, including those just mentioned, this non-Euclidean
structure can be modelled as an abstract graph or Riemannian manifold.

Motivated by the desire to develop learning algorithms for non-Euclidean data and the success of CNNs for
Euclidean data, the nascent field of geometric deep learning! seeks to develop CNN-type architectures for graph
and manifold based data. In order to better understand the theoretical and empirically observable properties of
such architectures, several recent papers, including some by the present authors, have generalized the Euclidean
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scattering transform to graphs and manifolds, which we generally refer to as geometric scattering transforms.?®

A Euclidean scattering transform® has many similarities to CNNs. It consists of an alternating cascade of linear
wavelet convolution operators and nonlinear modulus operations. A geometric scattering transform, analogously,
utilizes graph or manifold wavelet transforms and the absolute value nonlinearity in alternating succession to
extract invariant information from signals defined on graphs and manifolds.

In this letter we review recent results on geometric scattering transforms obtained by the present authors,? %3

which include formulations for both graphs and manifolds. Its construction is inspired by learning tasks for graphs
and manifolds, which can take many forms but have several commonalities. Most such tasks can be placed into,
or are closely related to, one of the following categories: (i) multiple signal classification over a single, fixed graph
or manifold; (ii) vertex or point classification in a single graph or manifold; (iii) vertex or point classification
across several graphs or manifolds; (iv) multiple graph or manifold classification. In all of these cases, though,
one is generally required to process a signal defined on a graph or manifold, even for (ii)—(iv), in which case one
uses a signal or signals that can universally defined for any graph or manifold as an initial feature set. Thus
geometric deep learning is closely related to graph and manifold signal processing.!® As such, the construction of
the geometric scattering transform is based upon the spectral decomposition of the graph Laplacian for graphs
and the Laplace-Beltrami operator for manifolds. These spectral theories facilitate a generalized notion of Fourier
series that are described in Section 2, and which are the foundation of signal processing on graphs and manifolds.
In Section 3 we define geometric wavelet operators for graphs and manifolds, which are then utilized in Section
4 to define the geometric scattering transform. Section 4 also describes some recently proven mathematical
properties of the geometric scattering transform. Finally, Section 5 reviews numerical results obtained in the
last year, while concluding remarks are presented in Section 6.

2. FOURIER SERIES ON GRAPHS AND MANIFOLDS

Let G = (V, E,w) be a weighted, connected graph and let L = I — D~'/2AD~1/2 denote the normalized graph
Laplacian of G, where A is the adjacency matrix of G and D is the diagonal degree matrix. Additionally,
let M be a compact, smooth, connected d-dimensional Riemannian manifold contained in R™ with associated
Laplace-Beltrami operator A. By X we denote either G or M with L5 = L or Ly = —A. In either case,
the Laplace operator Lx is positive semi-definite with a countable (finite, in the case of X = G) number of
eigenvalues and associated real-valued eigenvectors. Let {\;}r denote the ordered, non-unique eigenvalues with
associated orthonormal eigenvectors {¢x }k, i.e.,

O=X <A <X <... and £Xg0k:)\kg0k.

We remark that in the case of graphs the normalized graph Laplacian has the additional property that Ax < 2.

We interpret the eigenvectors of Ly as the Fourier modes of X, and use them to define Fourier series on X.
Let f € L?(X) and define the Fourier series f € £2 of f as

ﬂM:MW=ANWWMM@,kN,

where pg = >y 0, is the uniform discrete measure and jux¢ is the Riemannian volume. The Fourier series of
a signal f € L2(X) decomposes f in terms of the harmonics of X; Figure 1 visualizes these harmonics for graph
and manifold examples. Since {¢y}x is an orthonormal basis for L2(X), the following Fourier inversion formula
follows immediately:

F=>"Tk)ex. (1)
k

Motivated by the Fourier convolution theorem for L?(R™), we define the convolution operation * between f, h €
L?(X) using (1),

Frh=>" Fk)h(k)pk, (2)
k

~

which essentially by definition satisfies f/*\h(k) = F(k)h(k). We will use this definition of convolution to help

define wavelet operators in the next section.
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(a) Minnesota graph harmonics (b) FAUST manifold harmonics

Figure 1. Harmonics corresponding to low, medium, and high frequencies of (a) the Minnesota graph and (b) a manifold
from the FAUST dataset.*!

3. GEOMETRIC WAVELETS

Graph and manifold filters h may be designed spectrally by specifying their Fourier series E(k) for each k > 0.
Using the definition of f(k) and the convolution definition (2) yields

fh(x /<Zh e ()) fy) dux(y),

which has the form of an integral operator with kernel s(z,y) = >, h(k)er(z)or(y). In fact one can use more
general kernels to define convolution type operators on X.

We shall be interested in kernels that yield integral operators corresponding to low pass and high pass filter
operations on a signal f € L?(X). We use diffusion kernels to specify the low pass kernels. For manifolds we
utilize the heat kernel with diffusion time ¢,

prm(t,z,y) : Ze“’“ )k (y) -

When X = G is a graph we define o := D1/2apk and B := D_1/2<pk and utilize the following kernel

pa(t,z,y) = (1= A/2) ak(@)Br(y) ,

k

which one can verify is the kernel of the the ¢-step lazy random walk P! where P := %(I +AD™1). The low pass
operator Ay, ;: L?(X) — L2(X) at the scale 27 is defined as the integral operator with kernel px (27, z,v), i.e.,

Ax.f(z) = /X px (27,2, 9) f (4) dux (y)

Wavelet kernels are obtained by taking the difference of diffusion kernels at consecutive dyadic scales as in
diffusion wavelets.!? On a manifold X = M the wavelet kernel at the scale 27 is defined as>®

Vaalt, z,y) = Z [e—t/\k _ e—2t/\k]1/2 or(@)on(y)

k

whereas on graphs we utilize®*
wG(t7xay) = 'pG(t/Q,III,y) *pG(t,fI?,y) .
The corresponding wavelet high pass operator ¥, : L%(X) — L?(X) at the scale 27 is defined as

Uy if(x /¢X (27,2, 9) f(y) dux(y) .
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(a) Minnesota graph wavelets (b) FAUST manifold wavelets

Figure 2. Geometric wavelets in order of increasing scale for (a) the Minnesota graph and (b) a manifold from the FAUST
dataset.'! Figure 2(a) adapted from [4, Figure 1(a)] and Figure 2(b) adapted from [8, Figure 1].

Finally, the geometric wavelet transform Wy ; : L?(X) — £3(L%(X)) of a signal f € L*(X) is given by
Wx f ={Axsf, ¥x,f:7€Ix s},
where the index sets Ix ; are given by
Igg={j€Z:1<j<J} and Ipmy:={j€Z:j<J}. (3)

The geometric wavelet transform Wx jf averages the signal f at the scale 27 via Ax. f, which captures the
low frequencies of f (as measured by the eigenvalues of Lx). The high frequencies of f are recovered with
Ux ;f by testing the signal f against the difference of diffusions at consecutive dyadic scales, which are made
progressively smaller to capture higher and higher frequencies. In the case of graphs, which are discrete objects
with a finite number of vertices, the number of wavelets is finite and the smallest wavelet is defined as the
difference between the 1-step diffusion and the 2-step diffusion. Alternatively, on manifolds the diffusion time
can be made infinitesimally small which leads to a countably infinite number of wavelets, which is reflected in
the definitions of the index sets in (3). Images of geometric wavelets are given in Figure 2.

4. GEOMETRIC SCATTERING

The construction of the geometric wavelet scattering transform is motivated by the desire to have a representation
of f € L?(X) that is (locally) invariant to graph/manifold isometries while at the same time preserving as much
information in f as possible. It consists of an alternating cascade of geometric wavelet transforms and absolute
value nonlinearities. After each wavelet transform, the low frequency component of the previous layer is extracted,
the collection of which forms the geometric wavelet scattering transform. Remaining high frequency information
is passed on to the next layer, part of which is mapped to the low frequencies via the absolute value nonlinearity.
Formally it is defined as:

Sx,uf ={Ax [ Ax I x VX Gy [Vx j flll :m > 1, 51 € Ix g}

Figure 3 illustrates the geometric wavelet transform as an alternating sequence of geometric wavelet transforms
and absolute values.

By retaining only the low frequency part of the functions at each layer, the geometric wavelet scattering
transform encodes a locally isometric invariant description of the signal f. For manifolds, it is proven in [8,
Theorem 2] that if one computes M < oo layers of the geometric wavelet scattering transform, then

15x.5.f = Sx. g Ve fll < CMYM + 1) 227 ||llc | fllz, V f € L3 (M), ¢ € Isom(M),

where Isom(M) is the isometry group of M, V¢ f(x) := f(¢"1(x)), and [|¢||oo := Supgenq 7(7, ((2)) with r(z,z)
being the geodesic distance between z,z’ € M. An analogous result for graphs is given in [5, Theorem 4.2].
On manifolds, [8, Theorem 3] proves additionally the geometric scattering transform is stable to the action
of diffeomorphisms on bandlimited signals f € L2(M). The stability of the transform with respect to graph
perturbations is also of interest and has been studied in several recent works.> > 7 For brevity we omit the precise
statements of these results in this letter, and instead refer the reader to the original papers.
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Figure 3. The geometric wavelet scattering transform as an alternating cascade of geometric wavelet transforms and
absolute value nonlinearities. At the (m 4 1) layer the low frequencies of the functions from the m™ layer are extracted
(blue), while the remaining high frequency information is passed on to the next layer (black). Figure adapted from 8,
Figure 2].

In practice one must decide, based on prior knowledge or cross-validation, the scale of isometric invariance,
which is indexed by J. In the case of manifold classification, shape retrieval, and graph classification, each
data point is new a graph or manifold with an associated label and one would like to learn a model for the
labeling function. In most cases this labeling function is invariant to isometries, meaning that, for example, the
extrinsic coordinates of the manifold do not matter or the particular labeling of the vertices of a graph does not
affect its label. One must therefore make global comparisons between graphs or manifolds, modulo isometric
transformations. In this case we take J — oo, which leads to the simplified expression

Jim A x5 (X O F@] o 18X (O G - [ fll, - V2 € X (4)

5. EMPIRICAL PERFORMANCE IN LEARNING TASKS

We consider both graph and manifold supervised learning tasks. Section 5.1 describes results on graph classifi-
cation first reported in [4, Section 4.1], while Section 5.2 describes the manifold classification results contained
in [8, Section 4.2]. Finally, Section 5.3 considers signal classification on the 2-sphere S? using the spherical
MNIST dataset; these results are originally from [8, Section 4.1].

5.1 Graph Classification

In [4, Section 4.1] we applied the geometric wavelet scattering transform to graph classification of social network
data,'® which included six social network data sets extracted from scientific collaborations (COLLAB), movie
collaborations (IMDB-B & IMDB-M), and Reddit discussion threads (REDDIT-B, REDDIT-5K, REDDIT-12K).
In each data set, every graph is given a label and the goal is to predict the label of unseen graphs.

Classification with the geometric wavelet scattering representation is carried out by letting J — oo and using
(4) along with other p-norms. For the input signal f we used both the eccentricity and clustering coefficient
of each vertex. The resulting “scattering feature vector” is passed into a support vector machine (SVM) with
Gaussian (RBF) kernel; we call the resulting classifier GS-SVM. Using ten-fold cross validation we compare the
GS-SVM classifier to ten recent graph classification methods, the results of which are given in Table 1. The
comparison methods include four graph kernel approaches, Weisfeiler-Lehman graph kernels [14, WL], Graphlet
kernels [15, Graphlet], deep graph kernels [13, DGK], and Weisfeiler-Lehman optimal assignment kernels [16,
WL-0A], in addition to six geometric deep learning algorithms: deep graph convolutional neural network [17,
DGCNN], 2D convolutional neural networks [18, 2DCNN], Patchy-san [19, PSCN], graph capsule convolutional
neural networks [20, GCAPS-CNN], recurrent neural network autoencoders [21, S2S-N2N-PP], and the graph
isomorphism network [22, GIN]. Additional details are given in [4, Section 4.1].

5.2 Manifold Classification

Manifold classification is analogous to graph classification. In [8, Section 4.2] we considered manifold classification
using the FAUST database,!! which consists of 100 manifold meshes spanning ten people in ten poses. Using
this data one can consider person classification or pose classification. In either case one lets J — oo and uses
(4); unlike in the graph case, we restrict our scattering feature vector to contain only the p = 1 norms as in (4).
This initial signals f consisted of 352 SHOT features.?? Table 2 reports the results, which in both classification
tasks show an improvement over using the SHOT features alone. Classification results are reported for five-fold
cross validation using an SVM classifier with RBF kernel; all hyper-parameters, including the number of layers
in the wavelet scattering transform, were estimated using nested cross-validation.
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Table 1. Comparison of the proposed GS-SVM classifier with leading graph kernel and deep learning methods on social
network graph datasets. Results reported as average classification accuracy plus/minus the standard deviation over ten
folds. Table and results taken from [4, Table 1].

COLLAB IMDB-B IMDB-M REDDIT-B | REDDIT-5K | REDDIT-12K

WL | 77.82+1.45 | 71.60 £+ 5.16 N/A 78.52£2.01 | 50.77 £2.02 34.57+£1.32 Q@
Graphlet | 73.424+2.43 | 65.40 £5.95 N/A 77.26 £2.34 | 39.75£1.36 25.98 £1.29 ﬁ
WL-OA | 80.70 £0.10 N/A N/A 89.30 £0.30 N/A N/A 5
DGK | 73.00 £0.20 | 66.90 4+ 0.50 | 44.50 £0.50 | 78.00 £0.30 | 41.20+0.10 32.20£0.10 g

DGCNN | 73.76 +0.49 | 70.03 £0.86 | 47.83 £0.85 N/A 48.70 £ 4.54 N/A
2D CNN | 71.33£1.96 | 70.40 & 3.85 N/A 89.12+1.70 | 52.21 £2.44 48.13 £1.47 3?
PSCN (k=10) | 72.60 £2.15 | 71.00+2.29 | 45.23 £2.84 | 86.30 £ 1.58 | 49.10 £0.70 41.32 £0.42 N
GCAPS-CNN | 77.71 £2.51 | 71.69 4 3.40 | 48.50 £4.10 | 87.61 £2.51 | 50.10+1.72 N/A ;
S25-P2P-NN | 81.754+0.80 | 73.80+0.70 | 51.19 £ 0.50 | 86.50 £0.80 | 52.28 £ 0.50 42.47 £0.10 U::;

GIN-0 (MLP-SUM) | 80.20£1.90 | 75.10+£5.10 | 52.30 +£2.80 | 92.40 £2.50 | 57.50 & 1.50 N/A

GS-SVM | 79.94+1.61 | 71.20+3.25 | 48.73+£2.32 | 89.65+1.94 | 53.33 +1.37 45.23 £1.25

Table 2. Manifold classification accuracy on the FAUST dataset for pose classification and person classification. “SHOT
only” refers to integrals of SHOT features.?® Table and results taken from [8, Table 1].

Task/Model SHOT only | Geometric scattering
Pose classification 0.92 0.95
Person classification 0.61 0.81

5.3 Signal Classification on a Fixed Non-Euclidean Manifold

Finally we consider classification of the spherical MNIST database, which consists of the the handwritten MNIST
digits projected onto the 2-sphere S?. Using J = —2, two geometric wavelet scattering layers, and RBF kernel
SVM, [8, Section 4.1] reported competitive results with fully learned geometric deep networks designed specifically
for the sphere. A subset of these results are displayed in Table 3.

6. CONCLUSION

In this letter we described the geometric wavelet scattering transform, which we use as a general name for the
generalization of the wavelet scattering transform to graphs and manifolds.2® The geometric wavelet scattering
transform is a type of geometric convolutional network in which the standard notion of convolution is replaced
with graph and manifold analogues, and standard wavelet filters are replaced with geometric versions. Here we
considered diffusion wavelets but more general graph and manifold wavelets may be used. In addition to defining
the geometric wavelet scattering transform, we described its local isometric invariance property and recalled some
of its recent empirical results, but numerous other recent developments, notably manifold and graph stability
properties, were omitted. As the field of geometric deep learning continues to grow in popularity, mathematical
understanding of graph and manifold neural networks will be a key component to advancing the field; we expect
the geometric scattering transform to continue to play a role in this effort.
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Table 3. Spherical MNIST classification accuracy. Table and results taken from [8, Table 3b].

Method Accuracy
S2CNN?? 0.96
FFS2CNN? 0.96
Method from?® 0.99
Harr wavelet scattering?’ 0.90
Geometric wavelet scattering 0.95
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