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Abstract

We examined oscillatory power in electroencephalographic recordings obtained while
younger (18-30 years) and older (60+ years) adults studied lists of words for later recall.
Power changed in a highly consistent way from word-to-word across the study period.
Above 14 Hz, there were virtually no age differences in these neural gradients. But
gradients below 14 Hz reliably discriminated between age groups. Older adults with the
best memory performance showed the largest departures from the younger adult pattern
of neural activity. These results suggest that age differences in the dynamics of neural
activity across an encoding period reflect changes in cognitive processing that may
compensate for age-related decline.

Introduction 1

Memory impairments are among the most common complaints of older adults [1]. Much 2

effort has been devoted to identifying the neurocognitive causes of age-related memory 3

decline [2, 3]. But one potential source of age differences has received little attention: 4

the ability to sustain encoding processes across a series of events or items that unfold 5

over time [4]. For example, the people you meet during a job interview, the grocery list 6

your spouse dictates over the phone, or which of your medications you have already 7

taken today. 8

Researchers have studied this aspect of memory using the free recall task, in which 9

subjects study a list of sequentially presented items (e.g., words) and then recall the 10

items in any order. The nature of the encoding processes in which subjects engage 11

changes from item-to-item as the list is studied [5]. These changes unfold in the brain 12

without any obvious behavioral correlates—they can only be inferred from which items 13

are subsequently remembered and forgotten. Perhaps for this reason, most cognitive 14

aging theories are silent about the contribution of encoding dynamics to memory 15

impairments [3, 6–8]. 16

We argue, however, that there are two general categories of item-to-item changes in 17

cognitive processing that are likely to show age differences. The first category is 18

processes that become less efficient as the list progresses with time due to fatigue [9]. 19

The second category includes processes that ramp up as the list goes on such as 20

rehearsing early items in the list [10]. Although differences in such processes are 21

difficult to detect from behavior, they should leave a signature in how neural activity 22

changes while studying a list. Indeed, recent evidence suggests that long periods of 23

cognitive engagement are associated with specific neural substrates [11]. 24
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We sought to provide an initial test of the hypothesis that there are age differences 25

in the dynamics of neural activity across the encoding period of a free recall list and 26

that these processing differences may either contribute to, or compensate for, 27

age-related memory impairment. Our approach was to examine electroencephalographic 28

(EEG) recordings taken while subjects study lists for free recall. We analyzed the data 29

by converting raw EEG into the frequency domain and examining how spectral power 30

changes across time during the study period. We then tested for age differences in these 31

across-time changes in spectral power. Finally, we tested whether the neural age 32

differences could predict behavioral age differences in memory performance. 33

Materials and methods 34

This study was approved by the University of Pennsylvania IRB. Written informed 35

consent was obtained from all subjects. The data are from the Penn Electrophysiology 36

of Encoding and Retrieval Study (PEERS), an ongoing project aiming to assemble a 37

large database on memory ability in older and younger adults. 38

Subjects 39

Subjects were recruited for PEERS through a two–stage process. First, we recruited 40

right-handed native English speakers for a single session. Older adults were pre-screened 41

for signs of pathology using a detailed medical history and the Short Blessed Test [12]. 42

The second stage of recruitment focused only on subjects who did not make an excess of 43

eye movements during item presentation epochs of the introductory session and had a 44

recall probability of less than 0.8. These criteria were used to reduce the chance that 45

subjects’ recall performance would reach ceiling across the 7 sessions of Experiment 1. 46

Approximately half of the subjects recruited for the preliminary session satisfied these 47

criteria and agreed to participate in the full study. The present analyses are based on 48

the 172 younger adults (age 17–30) and 36 older adults (age 61-85 years) who had 49

entered the full study and had completed Experiment 1 of PEERS as of September 2015. 50

See [9] for details on these samples. 51

PEERS Experiment 52

The analyses reported here focus on the free recall data from PEERS Experiment 1, 53

which consisted of 7 sessions each of which included 16 free recall lists. For each list, 16 54

words were presented one at a time on a computer screen followed by an immediate free 55

recall test. Each session ended with a recognition test. The first session and half of the 56

remaining sessions were randomly chosen to include a final free recall test before 57

recognition, in which participants recalled words from any of the lists from the session. 58

The recognition data are not examined here, but details on these data can be found in 59

prior publications [9]. 60

Each word was accompanied by a cue to perform one of two judgment tasks (“Will 61

this item fit into a shoebox?” or “Does this word refer to something living or not 62

living?”) or no encoding task. The current task was indicated by the color and typeface 63

of the presented item. There were three conditions: no-task lists (subjects did not have 64

to perform judgments with the presented items), single-task lists (all items were 65

presented with the same task), and task-shift lists (items were presented with either 66

task). The first two lists were task-shift lists, and each list started with a different task. 67

The next fourteen lists contained four no-task lists, six single-task lists (three of each of 68

the task), and four task-shift lists. List and task order were counterbalanced across 69

sessions and subjects. 70
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Each stimulus was drawn from a pool of 1638 words. Lists were constructed such 71

that varying degrees of semantic relatedness occurred at both adjacent and distant 72

serial positions. Semantic relatedness was determined using the Word Association Space 73

(WAS) model [13]. WAS similarity values were used to group words into four similarity 74

bins (high similarity: cosθ between words > 0.7; medium-high similarity, 75

0.4 < cosθ < 0.7; medium-low similarity, 0.14 < cosθ < 0.4; low similarity, cosθ < 0.14). 76

Two pairs of items from each of the four groups were arranged such that one pair 77

occurred at adjacent serial positions and the other pair was separated by at least two 78

other items. This semantic manipulation has been analyzed elsewhere [14] and will not 79

be considered here as it is not relevant to our present focus and the distribution of these 80

pairs across serial positions ensures that they are not confounded with age differences in 81

neural dynamics. For each list, there was a 1500 ms delay before the first word 82

appeared on the screen. Each item was on the screen for 3000 ms, followed by jittered 83

(i.e., variable) inter-stimulus interval of 800-1200 ms (uniform distribution). If the word 84

was associated with a task, subjects indicated their response via a keypress. After the 85

last item in the list, there was a jittered delay of 1200-1400 ms, after which a tone 86

sounded, a row of asterisks appeared, and the subject was given 75 seconds to attempt 87

to recall aloud any of the just-presented items. 88

Electrophysiological Recordings and Data Processing 89

We used Netstation to record EEG from Geodesic Sensor Nets (Electrical Geodesics, 90

Inc.) with 129 electrodes digitized at 500 Hz by either the Net Amps 200 or 300 91

amplifier and referenced to Cz. Recordings were then rereferenced to the average of all 92

electrodes except those with high impedance or poor scalp contact. We identified 93

electrodes that likely had high impedance or poor scalp contact by dividing the epochs 94

of interest into 1000 ms bins and excluding those electrodes for which the range was 95

above 200µV in more than 20% of bins. To eliminate electrical line noise, a fourth order 96

2 Hz stopband butterworth notch filter was applied at 60 Hz. 97

To correct artifacts such as eye blinks or electrodes with poor contacts, we used 98

independent component analysis (ICA [15]) and an artifact detection/correction 99

algorithm based on [16]. Manual identification of artifactual independent components 100

(IC) can be unreliable [16] and would be impractical given the number and length of 101

sessions in the current study. Therefore, we used an automatic artifact correction 102

algorithm [16]. The algorithm starts with raw EEG. For each channel, several statistics 103

were used to identify channels with severe artifacts. First, electrodes should be 104

moderately correlated with other electrodes due to volume conduction, thus the mean 105

correlation between the channel and all other channels was calculated, and these means 106

were z-scored across electrodes. Channels with z-scores less than -3 were rejected. 107

Second, electrodes with very high or low variance across a session are likely dominated 108

by noise or have poor contact with the scalp; therefore, the variance was calculated for 109

each electrode and z-scored across electrodes. Electrodes with a |z| >= 3 were rejected. 110

Finally, we expect many electrical signals to be autocorrelated, but signals generated by 111

the brain versus noise likely have different forms of autocorrelation. Therefore, the 112

Hurst exponent, which is a measure of long-range autocorrelation was calculated for 113

each electrode and electrodes with a |z| >= 3 were rejected. Electrodes that were 114

marked as bad by this procedure were interpolated using EEGLAB’s [17] spherical 115

spline interpolation algorithm. The median number of electrodes interpolated per 116

session was 1 and the maximum number interpolated for any session was 10. The 117

maximum number of ICs that can be reliably estimated depends on the number of 118

samples recorded for each channel. We extracted c = floor(
√
L/k) ICs where L is the 119

number of samples in the session and k is a constant set to 25 (for a discussion of k, 120

see [16,18]) or the number of non-interpolated channels, whichever was smaller. We 121
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then ran EEGLAB’s implementation of infomax ICA [15,17] on the first c principal 122

components of the EEG matrix to decompose it into ICs. 123

ICs that capture blinks or saccades should be highly correlated with the raw signal 124

from the EOG electrodes. Therefore, for each IC we computed the absolute value of its 125

correlation with each of the six EOG electrodes, retained the maximum of those values 126

and z-scored the maximum correlations across ICs. ICs with |z| >= 3 were rejected. ICs 127

that capture artifacts isolated to single electrodes (e.g., an electrode shifting or 128

“popping off”) should have high weights for the implicated electrodes but low weights for 129

other electrodes. To identify such ICs, we calculated the kurtosis of the weights across 130

electrodes and excluded any IC with a z-score above +3. Finally, ICs capturing white 131

noise should have a nearly flat power spectrum (versus the 1/f spectrum expected for 132

neural signals). Therefore, we calculated the absolute value of the slope of the power 133

spectrum for the frequencies included in the analyses (2–200 Hz) and rejected ICs with 134

z >= −3 (i.e., the ones closest to zero slope). Rejected ICs were removed from the 135

matrix and the remaining IC activation time courses were projected back into electrode 136

space. All subsequent analyses were carried out on this corrected EEG data. 137

To compute spectral power, the corrected EEG data time series for an entire session 138

was convolved with Morlet wavelets (wave number = 6) at each of 60 frequencies 139

logarithmically spaced between 2 Hz and 200 Hz. The resulting power time series were 140

downsampled to 10 Hz. We then defined encoding events by extracting the time period 141

from -200 ms to 3000 ms relative to each item’s presentation. For each frequency, a 142

subject’s raw power values were z-scored across encoding events separately for each 143

session and each encoding task (no-task, single-task, and task-shift) to remove the 144

effects of these variables which are known to affect power [19]. Z-scored power was then 145

averaged across the -200 ms to 3000 ms encoding interval to provide one power value for 146

each study event. 147

Results 148

To test for age differences in the dynamics of encoding, we examined 149

electroencephalographic (EEG) signals recorded while the subjects studied the lists. We 150

analyzed spectral power derived from the EEG signals as past research has shown that 151

effective memory encoding is correlated with spectral power in specific frequency 152

bands [20] and that spectral power shows reliable age differences during memory 153

tasks [2]. 154

Figure 1A shows the gradient of spectral power across serial positions in six 155

frequency bands. For younger adults, these gradients are in close agreement with those 156

found in previous work [21]. In the 16–26 Hz, 28–42 Hz, and 44–200 Hz bands, both 157

younger and older adults show high initial power followed by a rapid decline across serial 158

positions, with little age difference. By contrast, the 2–3 Hz, 4–8 Hz, and 10–14 Hz 159

bands all show clear age differences. Just as at higher frequencies, older adults exhibit a 160

steep decline in power across serial positions at lower frequencies, but younger adults 161

exhibit a shallower decline (in the 2–3 Hz band) or a net increase across serial positions 162

(in the 4–8 Hz and 10–14 Hz bands). That is, older adults show higher power than 163

younger adults early in a study list, but the age difference reverses for late-list items. 164

To determine if these neural gradients reliably predict age, we began by condensing 165

the gradients into a single number for each subject by computing the change from the 166

power level at the first serial position to the average power of the last 5 items: 167

∆EEG =

∑LL
i=k SPi

LL− k + 1
− SP1, (1)

where SPi is power during the ith list item, LL is the total number of items in a list 168
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Fig 1. Age differences in spectral power gradients. A: Spectral power in six
frequency bands across serial positions for younger adults versus older adults. Error
bars are one standard error of the mean. B: ROC curves created by varying the
threshold value of ∆EEG (the change from the power level at the first serial position to
the average power of the last 5 items) used to classify a subject as a younger or older
adult. Significance was assessed by comparing the observed AUC value with a null
distribution created by permuting ∆EEG values across subjects 50000 times and
running the analysis on each permuted dataset, with a strict Bonferoni correction to
control α across the six comparisons, any AUC with p < (0.05/6) = 0.008 is significant.
Note that the y-axis scale differs across panels (see the supplemental material for a
version of the figure that uses a common scale for each band). C: AUC values from
electrodes within six regions of interest (see insert of head map for locations). Here,
error bars are 95% confidence intervals.

(here LL = 16), and k is the first item included in the late-item average (k = 5 for the 169

analyses reported here). We then tested whether ∆EEG distinguishes older from 170

younger adults by examining receiver operating characteristic (ROC) curves created by 171

varying the criterion value of ∆EEG used to classify a subject as older if they are above 172

the criterion and younger if they are below. To create the ROC for a given band, we 173

started with a very high criterion value of ∆EEG such that a younger adult is never 174

mis-identified as an older adult (i.e., zero false alarm rate) but older adults are also 175

never correctly classified as older adults (i.e., zero hit rate) and then gradually decrease 176

the criterion, tracing out a curve that shows how hit and false alarm rates change until 177

the criterion is so low that all subjects are classified as older adults (i.e., perfect hit rate 178

but also a 100% false alarm rate). Area under the curve (AUC) can be computed as a 179

measure of sensitivity, with higher values indicating more sensitivity to age group and 180

values near 0.5 indicating the measure is uninformative as to age group. The ROCs and 181

AUCs (Figure 1B) show that the 2–3 Hz, 4–8 Hz, and 10–14 Hz gradients were all 182

highly reliable biomarkers of age group. Significance was assessed by finding where the 183

AUC for the actual ROC curves lay in a null AUC distribution formed by permuting 184

∆EEG across subjects 50000 times and computing a ROC for each permuted dataset. 185

The bottom row of Figure 1 shows the results of the ROC analysis conducted separately 186

for six regions of interest (three areas each on the left and right sides: an anterior 187

superior area, an anterior inferior area, and a posterior inferior area) commonly used in 188

scalp EEG studies [19,22,23]. The results revealed that for the frequency bands that 189

showed a whole-head effect, the effect was also present across all regions of interest. 190

How do these age differences in neural dynamics relate to age age differences in 191

memory ability? To explore this question, we conducted a median split analysis 192

comparing the older adults with the highest memory scores to the older adults with the 193

lowest memory scores (see the insert in the first panel of Figure 2). Previously analyzed 194

free recall data, including studies that have far less data/subjects than our data set, 195

have been shown to be highly reliable measures of individual differences that predict a 196

variety of factors including age, IQ, memory ability, and clinical variables [24–32] 197

suggesting that free recall is good measure of differences in memory ability between 198

sub-groups of older adults. As shown in Figure 2, these subgroups showed distinct 199

neural gradients. 200

In the 2–3 Hz, 4–8 Hz, and 10–14 Hz bands, the older adults with the largest 201

memory impairments showed neural gradients that were more similar to the younger 202

adult pattern of shallowly decreasing (2–3 Hz) or gradual increasing (4–8 Hz and 10–14 203

Hz) power across serial positions. That is, the best performing older adults looked least 204

like younger adults at the neural level. A similar situation is observed at higher 205

frequencies. Young adults show a steep decrease in power in the 28–42 Hz and 46–200 206
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Hz bands, as do the low-performing older adults. But the high-performing older adults 207

show a shallower decrease. Again, the high-performing older adults depart most 208

strikingly from the younger adult pattern of neural dynamics. 209

Fig 2. Spectral power in 6 frequency bands across serial positions for older
adults with recall probabilities above (high-performing) versus below
(low-performing) the older adult median. Error bars are one standard error of
the mean. The insert in the first panel shows kernel density estimates of the
distributions of overall probability of recall values for each group. Note that the y-axis
scale differs across panels.

ROC analyses on ∆EEG values, analogous to those reported in Figure 1, revealed 210

that no individual frequency band reliably discriminated low-performing from 211

high-performing older adults (.06 < p < .20). However, the younger adult pattern is not 212

fully described by any individual frequency band, instead it is characterized by gradual 213

increases across serial positions at 10–14 Hz and sharp decreases for higher frequencies. 214

To capture this pattern we computed the difference between ∆EEG in each lower 215

frequency band, Fi, and the 46–100 Hz band: 216

∆EEGFi
−∆EEG44−200Hz

. (2)

Figure 3A compares this measure among younger adults, low-performing older 217

adults, and high-performing older adults for each of the frequency bands. To ease 218

interpretation the ∆EEGFi
−∆EEG44−200Hz

values, the small curves next to each data 219

point show the full gradients across serial positions for the current frequency (Fi, solid 220

lines) and 44–200 Hz (dotted lines). ∆EEGFi
−∆EEG44−200Hz

represents the difference 221

in the rate of change of these two gradients. At all frequencies, the low-performing older 222

adults are numerically closer to the younger adult pattern than are the high-performing 223

older adults. We conducted an ROC analysis on the ability of this measure to 224

distinguish the two older adult subgroups. The measure for the 2–3 Hz, 4–8 Hz, and 225

10–14 Hz bands reliably discriminated low-performing from high-performing older adults 226

(Figure 3B). It is critical to note that because this measure incorporates information 227

about the 44–200Hz band into the lower frequency bands, it is impossible to attribute 228

these effects to a single frequency band. They must be interpreted as the difference in 229

rate of change across-serial positions of a given band versus the 44–200 Hz band. With 230

this caveat in mind, we can see that larger deviation from the younger adult pattern of 231

neural dynamics across an encoding episode is a biomarker of relatively preserved 232

memory performance. 233

The reason the two sub-subgroups of older adults show different neural patterns may 234

be that the high-performing older adults are compensating for age-related decline. 235

Alternatively, it may be that the pattern exhibited by the low-performing older adults is 236

simply a general feature of low-performing individuals that is not unique to age-related 237

decline. We can test these possibilities by conducting the same median split analysis on 238

the younger adult group. If the differences between the older adult sub-groups are due 239

to age-related decline and compensation, then the younger adults, who of course have 240

no age-related decline to compensate for, should not show these differences. Thus, we 241

conducted the same median split analysis on on the younger adult group. The results of 242

this analysis are presented in Figure 4 and confirm that whereas the neural patterns of 243

low-performing versus high-performing older adults were quite distinct, the patterns of 244

high-performing versus low-performing younger adults were quite similar. This suggests 245

that the effects in the older adult group are specifically related to aging. 246
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Fig 3. Spectral power distinguishes between low-performing and
high-performing older adults. A: Mean values of ∆EEGFi

−∆EEG44−200Hz
for the

2–3 Hz, 4–8 Hz, 10–14 Hz, 16–26 Hz, and 28–42 Hz bands for the younger adults and
older adults with recall probabilities above (high-performing) the older adult median,
and older adults below (low-performing) the older adult median. Error bars are one
standard error of the mean. To ease interpretation of the ∆EEGFi

−∆EEG44−200Hz

values, the small curves next to each data point show the full gradients across serial
positions for the current frequency (Fi, solid lines) and 44–200 Hz (dotted lines).
∆EEGFi

−∆EEG44−200Hz
represents the difference in the rate of change of these two

gradients. B: ROC curves created by varying the threshold value of
∆EEGFi

−∆EEG44−200Hz
used to classify a subject as an low-performing versus a

high-performing older adult. Significance was assessed by comparing the observed AUC
value with a null distribution created by permuting ∆EEGFi

−∆EEG44−200Hz
values

across subjects 50000 times and running the analysis on each permuted dataset, with a
strict Bonferoni correction to control α across the 5 comparisons, any AUC with
p < (0.05/5) = 0.01.

Fig 4. Spectral power does not distinguish between high- and
low-performing younger adults. A: Mean values of ∆EEGFi

−∆EEG44−200Hz
for the

2–3 Hz, 4–8 Hz, 10–14 Hz, 16–26 Hz, and 28–42 Hz bands for the younger adults with
recall probabilities above the younger adult median, and younger adults below the
median. Error bars are one standard error of the mean. ∆EEGFi

−∆EEG44−200Hz

represents the difference in the rate of change of these two gradients. B: ROC curves
created by varying the threshold value of ∆EEGFi

−∆EEG44−200Hz
used to classify a

subject as a high- versus a low-performing younger adult. Significance was assessed by
comparing the observed AUC value with a null distribution created by permuting
∆EEGFi

−∆EEG44−200Hz
values across subjects 50000 times and running the analysis on

each permuted dataset, with a strict Bonferoni correction to control α across the 5
comparisons, any AUC with p < (0.05/5) = 0.01.

Discussion 247

We found evidence of age differences in how neural activity changes while encoding a 248

series of events. For both older and younger adults, high frequency oscillatory power 249

(16–200 Hz) declined rapidly across events [21]. By contrast, power at lower frequencies 250

showed marked age differences. Whereas older adults exhibited rapid power declines at 251

both high and low frequencies, younger adults exhibited shallower decreases (2–3 Hz) 252

and even rapid increases (10–14 Hz) at low frequencies. The rate and direction of 253

change of the gradient at these low frequencies was a highly reliable biomarker of age, as 254

revealed by ROC analyses. These results add neural dynamics across encoding periods 255

to the growing list of age differences in electrophysiology [2, 33–37]. Intriguingly, older 256

adults who performed best on the memory task showed the largest deviation from the 257

younger adult pattern, particularly in the 4–14 Hz range. This finding complements 258

previous work that has suggested that some aspects of age-related differences in 259

processing compensates for, rather than contributes to, behavioral impairments [38–42]. 260

Here, we provide evidence for the general hypothesis that there are age differences in 261

the neural dynamics of encoding. We hope these preliminary results will be useful both 262

in guiding basic science and in designing assessments to detect signs of memory 263

impairment. To conclude, we highlight two important questions for future work and 264

provide some speculations on promising answers. 265

The first question is which cognitive processes are linked to the observed age 266

difference in neural dynamics? Two general categories of processes strike us as likely 267
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candidates: processes that become less efficient as the list progresses with time due to 268

fatigue [5] and processes that ramp up as the list goes on such as rehearsing early items 269

in the list. Of course, although we have emphasized cognitive processes, such as 270

attention and rehearsal, it is important to consider other possibilities. One possibility is 271

that age-related anatomical changes such as a change in the ratio of white to gray 272

matter may change how EEG signals propagate and thereby produce age differences in 273

the patterns observed at the scalp. Future work, perhaps combining imaging techniques, 274

will be needed to pursue these possibilities. 275

The second question is why would age differences in such processes compensate for, 276

rather than exacerbate, memory impairment? In the case of fading efficiency, if older 277

adults are aware they will fatigue across a list, it might make sense for them to strongly 278

engage encoding processes for early items to ensure that at least some items are 279

well-encoded. In the case of rehearsal, it is known that older adults are less likely to 280

rehearse items [10], perhaps because they are impaired on the retrieval processes [4, 43] 281

needed to think back to early list items [44]. If rehearsal is likely to fail, older adults 282

may be well-served by instead focusing on encoding the current item. Indeed, alpha 283

power (corresponding to the 10–14 Hz band used here) has been linked to holding more 284

items in mind [45] and increases in 10–14 Hz power younger adults show across a list 285

may be an index of elaborative encoding or rehearsal [21]. Alpha (and beta) power have 286

also been linked to age-related differences in memory [46]. Therefore, the smaller 287

increase of 10–14 Hz power in high-performing older adult group relative to the 288

low-performing group may indicate that they are not attempting to engage in 289

elaborative encoding or rehearsal. Future research should focus on determining whether 290

the effects we have reported here do indeed reflect compensation and, if so, identifying 291

which specific memory processes are involved. 292
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