2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

Towards Hardware-Assisted Security for IoT

Systems
(Invited)

Yier Jin
Department of Electrical and Computer Engineering
University of Florida
yier.jin@ece.ufl.edu

Abstract—As computing devices become more commonplace
in every day life, we have seen an increase of possible attacks
on commercial devices and critical infrastructure. As a result,
both academia and industry have proposed solutions to mitigate
or outright eliminate the ever expanding set of viable targets.
Initially, this resulted in an influx of software-based defenses
against these emerging threats. Unfortunately, it was found
that software solutions could be bypassed with more advanced
attacks and often resulted in high performance overhead. As
such, hardware-assisted security defenses have been developed to
provide improved security while keeping performance overhead
to manageable levels, especially for IoT devices. In this paper,
we will provide a survey of prominent hardware-assisted security
defenses. We will enumerate the attacks these defenses aim
to protect, as well as their effectiveness. We will also discuss
the implications in both performance and system design. A
comparison between approaches that target the same set of issues,
and possible directions for future research will be presented.

I. INTRODUCTION

With the advent of inexpensive and low-power processors,
we have seen an explosive growth in interconnected embedded
devices. These devices are categorized under the umbrella
term [Internet of Things (IoT). The rate of penetration of
these devices in the market has exhibited accelerated growth,
with Gartner predicting over 20 billion devices by 2020 [1].
This popular trend has made IoT devices a viable target
for attackers. For example, the Mirai botnet exploits weak
credentials in IoT devices to install malicious payloads [2].
However, we have found that security issues in IoT go beyond
weak credentials and software vulnerabilities.

As the complexity of emerging devices increases, new attack
surfaces are exposed. A wide array of vulnerabilities, such as
improper data validation [3], [4], [5], memory corruption [6],
[7], [8], and improper permission checks [9] are surfacing as
a result. Responding to this, both industry and academia have
developed new and novel defenses to protect newly developed
devices against these emerging attack vectors.

To help researchers better understand the challenges and
the state-of-the-art of IoT security, in this paper, we will
summarize popular IoT attack categories, as well as present
some of the defenses that have been developed as a result.
We also discuss a few security primitives provided by the
industry to ameliorate the security burden placed in IoT device
manufacturers and their developers. We will describe the
functionality of the defense as well as a discussion on the

applicability of these defenses to modern devices and their
deployment requirements.

The remainder of this paper is structured as follows: Section
II introduces popular attack categories which have been used
in the wild to compromise devices. Section III presents a
series of hardware primitives which offer the means of building
secure systems. We follow this with a discussion of defenses in
Section IV, then present a discussion of their applicability and
deployment issues in Section V. Lastly, we present concluding
remarks in Section VI.

II. ATTACKS

In this section, we will introduce the emerging attacks
on IoT devices. Some of these attacks are derived from
general purpose computing platforms due to the increasing
complexities of [oT systems.

A. Code-Reuse Attacks

Code-reuse attacks are attacks that utilize code already
existing in the device to deploy a malicious payload [10]. To
deploy this kind of attack, possibly remote attacker corrupts
and injects code pointers in a device to alter control-flow in a
running application. For example, in most architectures when a
function calls another function, the return address for the caller
is stored in the stack. An attacker with access to a memory
vulnerability that allows for corrupting stack values can change
the stored return address. When the function returns, it no
longer goes back to the caller, but to an attacker controlled
program location.

Snippets of code targeted this way are called gadgets.
Gadgets end in indirect call or jump instructions. An attacker
needs a way to control the value used by the indirect control-
flow instructions, otherwise the attack is much harder to pull
off. Some popular IoT architectures, such as ARM and MIPS,
store the return address to the caller in a register rather than
the stack. However, the contents of the register must be spilled
to the stack before the called function calls another function.
In these architectures even though the return address is stored
in a register, non-leaf functions spill this value into the stack,
where it can be subject for corruption.

Another common technique for attackers to utilize are use
after free allocation errors. In this case, the attacker has the
program allocate an object over a previously allocated object.
Due to an error in the program, the previously deallocated

978-1-7281-3391-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ISVLSIL.2019.00118

632

IEEE
computer
psoaety

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

object is reused. The program utilizes the contents of the newly
allocated object as part of the old one. An attacker can utilize
this method to, for example inject virtual pointer tables to
perform code reuse attacks.

B. Firmware Modifications

Firmware modification attacks are more invasive than code-
reuse attacks. This style of attack involves physically changing
the software being run in the device. Firmware modifications
can utilize vulnerable update facilities, exposed debug inter-
faces, fault injections, etc. Through firmware modification an
attacker can run arbitrary code on the device without the
limitations present in a code reuse attack. No longer does
the attacker need to find a gadget catalog to utilize, nor an
exploitable memory vulnerability to launch the attack itself.

Cui et al demonstrate the ability and effects of remotely
modifying the firmware of an HP printer by exploiting the
firmware update procedure [11]. The update process utilizes
a specially crafted print job containing the update image.
Unfortunately, insufficient checks were done on the update
image, allowing anything to be written as device firmware.
This allows an attacker capable of sending a print job to
the device to replace the firmware with a malicious one,
for example allowing to transmit the documents printed to a
remote location.

Ronen et al discovered a flaw on the update procedure used
in the Phillips Hue smart bulb [12]. The flaw was caused
by a vulnerability in the ZigBee stack provided by Atmel
Corporation, one of the main vendors behind the technologies
used in the bulb. The authors demonstrate how a single device
can be compromised and the malware spread to its neighbors
by only requiring being physically near the first victim.

C. Brute Forcing

Brute forcing is a relatively uncommon type of attack where
the attacker will try random combinations to bypass a security
mechanism. This attack is often impractical, in the sense
that its theoretical computational runtime is O(n). However,
popular IoT devices often ship with a default username and
password for remote management purposes. These default
credentials for different devices are enumerated and stored in
a database. To launch the attack against a device, the attacker
continuously tries the stored credentials until a valid login is
achieved. At this point, the attacker has local access to the
device, often with administrator privileges.

This style of attack is centerpiece in the popular Mirai
botnet [2]. The Mirai botnet targets exclusively IoT devices.
Infected devices scan the IPv4 address space for possible
attack targets. Once a device is found, it is scanned for known
administrator interfaces by looking at common ports. If known
ports are found, then the target device is bombarded with
credentials until valid credentials are found. The attacking
device then commands the victim device to download and
execute a payload, resulting in a firmware modification attack.
The payload has two major functions. First, it integrates
the device into the Mirai botnet which makes it capable of
receiving remote commands from the botnet operator. Second,

633

it makes the device scan for new targets as means to further
expand the botnet.

III. SECURE HARDWARE PRIMITIVES

In this section we describe a few commercialized security
hardware primitive designs that system-on-chip (SoC) vendors
have been including in their devices. Device manufacturers are
given the option of utilizing them to build defenses.

A. ARM TrustZone

The ARM Security Extensions, popularly known as Trust-
Zone, is a mechanism that provides hardware-backed isolation
of program data and code [13]. This is accomplished by
defining a new operation mode, or world, in the CPU: secure
mode, or secure world. The fabric of the AMBA/AXI bus
is also extended to allow for bus peripherals to properly
respond to requests depending on the mode the CPU is in. SoC
vendors licensing the Security Extension have the option of
gating certain peripherals to be accessible only when the CPU
is executing in secure mode. Accesses to these pre-defined
regions of memory result in an access violation and trigger an
interrupt.

When a TrustZone-enabled SoC starts up, the CPU begins
executing code in secure mode. The CPU can then set up
attributes for a few regions of memory, gating them from non-
secure mode, or normal world, access. The size and number
of regions that can be defined are dependent on the memory
controller present in the platform. The software must also
create an interrupt vector table for the secure world. Then,
the software drops privileges to normal mode and continues
to execute. Requests done by the normal world to the secure
world are done through the secure monitor call instruction,
smc.

In effect, platforms that make use of TrustZone can be
seen as having two operating systems running in parallel: the
normal world and the secure world operating systems. The
secure world operating system is often smaller, and provides
a limited number of security-related services. This is done to
reduce the potential attack surface. In contrast, the normal
world operating system is much larger and feature-rich. A
popular example that makes use of this technology is the
Android operating system. The secure world software manages
operations such as storing fingerprints, performing fingerprint
verification, and digital rights management (DRM) related
tasks.

B. ARM TrustZone-M

The often called ARM TrustZone-M, is the version of the
security extension present in the ARMv8-M profile [14]. Al-
though the bus matrix in the SoC is subject to changes similar
to those in regular TrustZone, the overall mode of operation
is different. The ARMv8-M security extension makes use of a
Secure Attribute Unit (SAU) and an optional, implementation
defined attribute unit (IDAU). The SAU and IDAU define
a set of regions in the address space an ARMv8-M based
microcontroller, flagging them as secure, non-secure, and

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

secure and non-secure callable. As their name imply, the
secure region can only be accessed by secure software, the
non-secure region can only be executed from by non-secure
software, whereas the secure and non-secure callable region
can be executed with the CPU in either mode.

When software starts up, it begins executing with the CPU
in secure mode. Software is then responsible for setting up
the SAU, and if present, the IDAU. The software then sets
up the stack pointer for the non-secure program, and uses
a veneer trampoline to jump to it. This region is flagged
as secure and non-secure callable. Non-secure software can
request services from the secure software by trampolining to
it using the veneer region. These trampolines contain a secure
gate instruction, sg, which changes the CPU mode and allows
transitions between states. The sg instruction also serves as a
basic protection against unintended use of secure software, as
it also acts as the entry point to all secure software.

C. Trusted Platform Modules

The Trusted Platform Module (TPM) is a series of specifi-
cations which establish the working mechanisms of a stan-
dalone integrated circuit which provides cryptographic and
secure storage services to applications [15]. TPM-provided
services include facilities to generate random numbers, secure
generation of cryptogrpahic keys, remote attestation, and the
binding and sealing of keys. Software must be made aware of
the TPM in order to utilize it.

TPMs expose a series of registers that can be modified
by software through calls to TPM routines. This is usually
done through a concatenate-hash-store primitive. At first, the
software resets the contents of the TPM registers to zero.
Then, the software computes a hash which is then sent to the
TPM. The TPM concatenates this hash to one of its internal
registers, then performs a hash of the concatenation, and stores
the results. As more code is loaded and executed, hashes are
sent to the TPM, which proceeds to process them in the same
fashion. When software requests a key from the TPM, the
contents of the registers must be the same as they were when
the key was generated. If not, the key can not be unlocked and
sent out by the TPM. The idea behind this process is not to
release secrets from the TPM if the software is in an unknown
execution state.

IV. DEFENSES

In this section we describe a few defense approaches that
have been proposed to defend against attacks in IoT devices.
These defense approaches target different style of attacks, and
should be viewed orthogonal to each other.

A. Control-Flow Integrity

Control-flow integrity (CFI) is a powerful defense mecha-
nism that aims to prevent code-reuse attacks by enforcing an
application’s control-flow graph (CFG). Under a CFI policy,
deviations from the intended CFG results in an error that
can be handled by either the hardware or some supervisor
software. The major CFI implementations can be categorized

634

in heuristic-based and instrumentation-based. Heuristic-based
CFI policies examine the behavior of the software to determine
whether a CRA is under progress. Instrumentation-based CFI
policies add checkpoints or instructions to program code to
signal the CPU or some form of supervisor of control-flow
transfers that need to be tracked. Both types of policies may
require specialized hardware support to gather the necessary
runtime information. We now describe a few CFI policies.

1) HAFIX and derivatives: HAFIX [16] and its successors
[17], [18] modify an embedded LEON3 SPARC CPU, and
Intel Siskiyou Peak core in the case of HAFIX. These ap-
proaches add new instructions and a dedicated subsystem to
dynamically track a properly instrumented program’s control-
flow while keeping state metadata in a secure memory loca-
tion. We enumerate the added instructions for the approach
in [18] in Table I. Hereafter we refer to this approach as
HAFIX++.

The HAFIX++ model also requires the introduction of
a label shadow stack and a label state register. These are
directly accessible to the operating system, but not to a running
process. That is, non-privileged code can only modify the
contents of the label shadow stack and label state register
through the CFI instructions, whereas the operating system
can use move and load/store instructions to change state in
these two components.

TABLE I
BAsiCc HAFIX++ INSTRUCTION SET. INSTRUCTION ENCODINGS ARE
HARDWARE DEPENDENT AND TO BE DECIDED BY THE IMPLEMENTATION.
IMMEDIATE FIELDS MUST BE AT LEAST 16 bit WIDE AND MUST MATCH
THE SIZE OF THE ENTRIES IN THE LABEL SHADOW STACK.

Mnemonic Action

Pushes an immediate value into the label shadow stack.
Must be issued by a compiler two instructions before an
indrect call. Hardware must enforce this instruction order.
Pops from the label shadow stack and compares obtained
value with an immediate value. Raises interrupt if values
are not equal. Must be issued by compiler after a call
instructions. Hardware must enforce this instruction is
executed after a return.

Set the label state register to an immediate value, discarding
any previous value. Instruction must be issued prior to an
indirect jump instruction. The hardware must enforce this
execution order.

Set the label state register to an immediate value, discarding
any previous value. Instruction must be issued prior to an
indirect call and after a cfibr. The hardware must enforce
this execution order.

Compare an immediate value to the value stored in the
label state register. Raises an interrupt if values are not
equal. Must be issued by compiler at the prologue of every
function. Instruction must be executed after an indirect call.
The hardware must enforce this execution order.

cfibr

cfiret

cfijmp

cficall

cfichk

HAFIX++ instrumentation requires compiler support, in
that compiled binaries must be generated with instructions
in proper places. Figure 1 shows how instrumentation for
HAFIX++ proceeds. After linking binaries, a tool is run to
instrument labels. Function returns are trivially instrumented,
but indirect calls and jumps require extra work.

In the example in Figure 1, the program starts executing
on the main () function. The function is instrumented. The
values for labels are arbitrarily assigned, with the exception

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

fn_a:

cfichk 3 ;; ©
save %sp, -96,
%$sp
int fn_a(void) { O ret
int a, Dbj restore
scanf ("%d %d", <«
&a, &b); main:
return a + b; cf:;.chk PEEPEPY
! save %sp, —-96,
. . . $sp
int main (void) { cficall 3 :: @
int i = fn_a(); cfibr 4 .. ®
return i + 1; call fn a rr
! O nop
cfiret 4 ;; @
P
ret
restore

Fig. 1. HAFIX++ instrumentation. The compiler inserts new instructions
before and after call/jump instructions, as well as in function entries and
targets for indirect jumps.

being for the entry point in main () . This is represented by @.
The runtime expects the entry point to be instrumented with
the value of 2. This instruction causes the immediate label to
be checked against the contents of the label state register. As
the softare continues to execute we prepare to make a function
call. First, the cficall instruction is executed, @, storing
the value 3 in the label state register. Then, the instruction
cfibr is executed pushing the value 4 into the label shadow
stack, ®. The call is then executed. Upon entering fn_a (),
the cfichk instruction is executed, @. Its immediate label,
3, is checked against the contents of the label state register.
After the function returns, we execute the cfiret in @.
This instruction pops the last value in the label shadow stack
and compares it to the immediate value of 4. A successful
comparison indicates that we are at the proper return site.

Comparison failures in the HAFIX++ model indicates that a
code-reuse attack is underway. For this reason, it is imperative
that software instrumentation is properly done, with unique
labels for call-return pairs, and for function entries jump
targets. To deal with the situation where multiple callers
target the same function, HAFIX++ suggests the usage of
trampolines, where trampolines can be uniquely instrumented
for each function.

2) CFI CaRE: Nyman et al. propose CFI CaRE [19] as
means of providing an interrupt-aware CFI policy for ARM
microcontrollers without the need for any hardware modifica-
tions. CFI CaRE requires code to be instrumented, replacing
all control-flow instructions with calls to a Branch Monitor.
Furthermore, it leverages the security extensions introduced in
the ARMv8-M architecture as means of storing control-flow
metadata.

B. Firmware Attestation

Firmware attestation is a technique that is utilized to make
a claim about the properties of a device’s software. In an
attestation scheme, two mutually exclusive parties are in-

635

volved. The verifier in an attestation scheme is a trusted party
which can determine whether a device is operational or not
given information received about a device. The information is
collected by a prover, which usually resides on the device
itself. The main challenge in attestation approaches is the
design and implementation of the prover. The prover must
collect enough information about a device, as well as provide
it to a verifier in a way so that the provided information can
not be forged by an attacker. In this section, we summarize
previous attestation works.

1) SMART: Eldefrawy et al. propose a small root of trust for
embedded devices in SMART [20], providing a static remote
attestation solution. It incorporates the prover into a small on-
chip ROM. This code cryptographically hashes and computes
an HMAC [21] over a range of code based on the attestation
request. The computed HMAC is sent to a remote verifier to
ensure correctness. The HMAC is computed using a pre-shared
attestation key that is securely stored in the device, as well as
a nonce that is sent by the verifier as part of the attestation
request with the objective of avoiding replay attacks. Leakage
of secrets is avoided by ensuring memory erasure whenever the
ROM code finishes executing. Further precautions are taken
to avoid indirect leakage by controlling execution within the
ROM, allowing only a single point of entry and a single exit
point. Since ROM code is formally verified to be memory safe,
no code reuse attacks are possible to leak the secret key.

o

Verifier

1
®

(2]
Prover ROM ‘4‘—> program code
Il
|

Fig. 2. Flow of operations in SMART. A remote verifier sends a request
to a device, to which the prover responds by securely hashing the requested
portion of program code using a pre-shared key.

We show the basic flow of SMART in Figure 2. When the
prover receives an attestation request from the remote verifier
@, the prover suspends the currently running task and hashes
the requested portion of code memory, ®. The result of the
hash operation is sent to the verifier, ®. Using the returned
HMAC, the verifier can determine whether program code on
the device has been mutated.

2) C-FLAT: Abera et al demonstrated in [22] that it is insuf-
ficient to use only the device code as means for attestation as
code-reuse attacks are able to bypass attestation mechanisms
that use this type of system. They proposed Control-Flow
Attestation (C-FLAT) [22]. C-FLAT is a remote attestation
mechanism that statically aggregates the execution path of
a running program, including branches and function returns.
The prover collects control-flow information as code executes
and hashes it to compute a measure of the device. On an
attestation request, the verifier receives the hashed control-flow
information and compares to the expected behavior on its end.
The device passes attestation if the expected hash matches the
obtained one. Loops and conditional branches in C-FLAT are
treated and checked as subprograms. Doing otherwise causes
the possible number of valid measures that the verifier has to

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

compute to check device operation increase at an exponential
rate.

Normal World Secure World

insn_a
k?ne b1 C-FLAT TrustZone
insn_b)
1bl: insn_c library Kernel
insn_d
(1 trampolines 4@"—‘» hash ‘
T ®

Fig. 3. C-FLAT test implementation model. Trampolines are used to enter
the Secure World and perform control-flow attestation.

C-FLAT was implemented and tested in a Raspberry Pi 3
single board computer. We show a simplified view of the
implementation in Figure 3. Code is instrumented so that
control-flow instructions target a trampoline section which
belongs to a runtime tracer. The branch instruction in question
target the trampoline area @. The trampolines allow software
to transition to a BLAKE2 [23] Measurement Engine which
resides in a TrustZone environment, ®. The Measurement
Engine is part of the device’s prover and is responsible for
hashing control-flow. When the hash engine finishes executing
it returns control to the trampolines, &, which ultimately
returns control flow to the program @. When the remote
verifier sends an attestation request to the device, the prover
replies with the collected information. The authors report
that as the number of control-flow events increase, overhead
increases linearly.

3) ATRIUM: Zeitouni et al demonstrated how Time of
Check Time of Use (TOCTOU) attacks can bypass attestation
schemes, compromising the attestation result. As a result, the
authors propse ATRIUM [24]. ATRIUM borrows concepts
from C-FLAT and SMART in that it utilizes control-flow and
code being executed as part of the information collected by the
prover to generate a measure of the device. However, unlike
C-FLAT and SMART, ATRIUM dynamically collects this
information by tapping into the processor’s pipeline to extract
both control-flow and instruction information. This allows live
analysis of the code being executed by the CPU. The obtained
information is hashed using a hardware implementation of the
BLAKE2b cryptographic algorithm.

A RISC-V PULPino core [25] was extended to include
ATRIUM. The modified core was synthesized and tested
targeting a Virtex-7 XC7Z020 FPGA with minimal hardware
overhead. Under the configured conditions, the authors report
a total resource utilization of 15% of the total slice registers,
20% of slice LUTs, and 18kbit of BRAM. Performance
overhead ranged from 1.7% to 22.69%, depending on the
amount and frequency of control-flow instructions in the tested
algorithms.

C. More Defenses

ARM mbed uVisor is a self-contained software hypervisor
gives programmers the ability to create secure compartments
with the characteristic of being independent of each other [26].

636

ARM uVisor targets the popular Cortex-M3 and Cortex-M4
microcontrollers. Containers execute in non-privileged mode,
and with the use of the ARM Memory Protection Unit (MPU)
access to critical system resources is restricted. Resources are
exposed to containers through the service call interface.

In a similar vein, Minion [27] provides guarantees close to
those of uVisor. Minion ensures that the real-time constraints
of an embedded operating system are not violated. Much like
in uVisor, Minion dynamically reconfigures the ARM MPU
whenever a task switch occurs. This way, Minion creates a
separation between running processes. MPU information is
encoded in a bitmap-like data satructure, which is associated
to every task at compile time. As further precaution, only a
small codebase is executed with privileges.

Raj et al. propose fTPM as a software implementaiton of
a Trusted Platform Module utilizing ARM TrustZone in [28].
Authors note that portions of the TPM specification cannot
be fully implemented without contributing factors from the
SoC vendor. For example, authors note that a secure clock
cannot be properly made, nor the case with secure storage.
This is because in order to provide a secure clock or storage,
the SoC vendor must have designed their product with this
in mind: a real-time clock module and a non-volatile memory
must be gated inside the TrustZone environment. However,
authors were capable of implementing a large portion of
the TPM specification within the TrustZone environment,
demonstrating that even without full SoC support, advanced
security functions can still be provided with the ARM Security
Extension.

V. DISCUSSION

In this section we discuss the matter of deployability of
these defenses in terms of the requirements from device
manufacturers, SoC vendors, and IP core licensors.

Most of these defenses require some form of change to the
hardware platform they run on. CFI CaRE, as well as Minion
and uVisor are exceptions to this. Hardware changes are not
well within the scope of most vendors. For example, devices
built around ARM-based cores rely on SoC vendors for the
main component of their device. In turn, SoC vendors license
the CPU core in their integrated circuit from ARM. Device
manufacturers who wish to deploy defenses that require hard-
ware modifications need for ARM to implement the required
hardware primitives or additions to the instruction set into the
IP that is eventually licensed from SoC vendors.

We note that in the case of SMART [20], Texas Instruments
(TI) controls the processor core IP and also designs and sells
microcontrollers using this core. It is reasonable to believe that,
if there was interest on their side, a defense mechanism such as
SMART can be implemented!. We should mention that similar
primitives already exist in the MSP430 architecture. Some
microcontrollers offered by TI include the IP Encapsulation
option which is capable of isolating sensitive code with
different permissions [29]. This feature can be extended by TI
to provide the necessary functionality to implement SMART.

IPlease be aware that ARM does not allow for any customized micropro-
cessor architecture modifications so far.

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

In contrast, mechanisms such as CFI CaRE, Minion, and
uVisor do not require currently unavailable hardware primi-
tives to be implemented. CFI CaRE makes use of the ARMv8-
M Security Extension, while Minion and uVisor make use of
the ARM Memory Protection Unit, which can be found in
popular embedded platforms such as the STM32F407.

Control-Flow Integrity approaches also require full knowl-
edge of the control-flow graph (CFG) of the program at hand.
Unfortunately, it is impossible to provide an algorithm to
compute the CFG in the general case, as this would involve
solving the halting problem. However, for individual cases,
with manual intervention, a CFG can be obtained for a
program. This, however, requires time and money in part of the
device’s manufacturer. Further compounding this issue is the
asynchronous nature of embedded devices. Interrupts generate
unexpected control-flow transfers which must be handled by
the CFI policy at hand. CFI CaRE addresses this to a degree,
but with a limitation: CFI CaRE’s policy does not allow for an
interrupt vector to return to a different position in code, as it
would be the case with schedulers on a Real-Time Operating
System (RTOS).

Moreover, the overhead of some of this approaches, such
as C-FLAT, prove to be prohibitive for performance critical
applications. C-FLAT reports an overhead of 72% to 80%
when testing performance with Open Syringe Pump. ATRIUM
halts the CPU whenever the prover needs time to finish the
hash process. This may be detrimental for systems that require
a 100% uptime.

VI. CONCLUSION

In this paper, we briefly introduced the emerging threats
to IoT systems. While these attacks are not new to general
computing systems, the ever increasing complexities of IoT
systems makes these attacks applicable to IoT devices. A
series of hardware-assisted protection mechanisms were also
summarized which, compared to software-based solutions, are
more effective countering attacks and cause less performance
overhead. We expect that more hardware-oriented solutions
will be proposed. In parallel, we hope that microprocessor
and SoC providers will quickly adopt these hardware based
methods for IoT security.

ACKNOWLEDGEMENT

This work is partially supported by the Department of
Energy through the Early Career Award and the National
Science Foundation (CNS-1801599). Any opinions, findings,
conclusions, and recommendations expressed in this material
are those of the author and do not necessarily reflect the views
of the U.S. Department of Energy or the National Science
Foundation.

REFERENCES

[11 A. Nordrum, “Popular internet of things forecast of 50 billion devices
by 2020 is outdated,” 2016.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
1093-1110.

[11]

[12]

[13]

[14]
[15
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Rosenberg, “Reflections on trusting trustzone,” BlackHat USA, 2014.
Mitre Corporation, “CVE-2015-4421: Huawei tzdriver Module Vulner-
able checks,” 2015.

——, “CVE-2015-4422: Huawei TEEOS Vulnerable Checks,” 2015.

, “CVE-2015-6639: QSEE - PRDiag* Commands Privilege Esca-
lation,” 2015.

, “CVE-2018-16522: AWS secure connectivity modules — uninitial-
ized pointer free,” 2018.

, “CVE-2018-16526: usGenerateProtocolChecksum memory cor-
ruption,” 2018.

, “Cve-2017-13209: Insecure permissions check that allows hal
service change,” 2017.

P. Larsen and A.-R. Sadeghi, Eds., The Continuing Arms Race: Code-
Reuse Attacks and Defenses. New York, NY, USA: Association for
Computing Machinery and Morgan & Claypool, 2018.

A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “lot goes
nuclear: Creating a zigbee chain reaction,” in Security and Privacy (SP),
2017 IEEE Symposium on. 1EEE, 2017, pp. 195-212.

ARM, “Building a secure system using trustzone technology,” ARM
Limited, 2009.

ARM Limited, ARMv8-M Architecture Reference Manual, 2019.
ISO/IEC, ISO/IEC 11889:2015 Trusted Platform Module, 2015.

L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “Hafix: Hardware-assisted flow integrity extension,”
in Proceedings of the 52nd Annual Design Automation Conference.
ACM, 2015, p. 74.

N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“Hcfi: Hardware-enforced control-flow integrity,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy.
ACM, 2016, pp. 38-49.

D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,
“Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. 1EEE, 2016, pp. 1-6.

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259-284.

K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: Secure
and minimal architecture for (establishing dynamic) root of trust.” in
NDSS, vol. 12, 2012, pp. 1-15.

M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using
hash functions: The hmac construction,” RSA Laboratories’ CryptoBytes,
vol. 2, no. 1, pp. 12-15, 1996.

T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 743-754.
J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“Blake2: simpler, smaller, fast as mdS,” in International Conference on
Applied Cryptography and Network Security. Springer, 2013, pp. 119—
135.

S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under mem-
ory attacks,” in International Conference On Computer Aided Design
(ICCAD), 2017.

E. Zurich and U. of Bologna, “PULP Platform,” http://www.pulp-
platform.org/.

M. Meriac, “Practical real-time operating system seecurity for the
masses,” 2016, https://www.mbed.com/en/technologies/.

C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized mem-
ory view switching,” in Network and Distributed Systems Security
Symp.(NDSS), 2018.

H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon et al., “ftpm: A software-only
implementation of a TPM chip,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 841-856.

Texas Instruments, MSP Code Protection Features, 2015, slaa685.

Authorized licensed use limited to: University of Florida. Downloaded on June 29,2020 at 18:43:57 UTC from IEEE Xplore. Restrictions apply.

