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Incentivizing Crowdsensing-based Noise
Monitoring with Differentially-private Locations

Pei Huang*, Xiaonan Zhang,* Linke Guo,* and Ming Lif

Abstract— Mobile crowd sensing is a technique where a crowd sensing server outsources sensing tasks to the crowd for mobile data
collection. In mobile crowd sensing, some tasks require location information to achieve their objectives, such as road monitoring, indoor
floor plan reconstruction, and smart transportation. This required information incurs severe concerns on location privacy leakage and
threatens workers’ properties as well as public safety. In some cases, even sensing data itself can be used as auxiliary information
resulting in location privacy breaches. Many existing works apply differential privacy mechanisms for location privacy preservation
to tackle this problem, but they cannot efficiently fulfill privacy goals because each worker only considers his own privacy. As a
consequence, the accumulated privacy budget will lower down the composed privacy level of all the workers’ locations. In addition,
deploying differential privacy is costly for workers and it will degrade the quality of data required in crowd sensing task. How to balance
the cost and provide accurate aggregated data while fulfilling privacy objectives becomes a challenging issue. In this paper, we propose
a group-differentially-private game-theoretical solution, which addresses these limitations in a privacy-preserving and efficient way. Our
scheme enables the indistinguishability of workers’ locations and sensing data without the help of a trusted entity while meeting the
accuracy demands of crowd sensing tasks. The effectiveness and efficiency of our scheme are thoroughly evaluated based on real-
world datasets.

Index Terms—Mobile crowd sensing, location privacy, game theory, differential privacy.
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1 INTRODUCTION spreading over the increasing area of a sphere. The sound
pressure levels of various random and uncorrelated noise
sources can be added together [5]. Given this knowledge,
since the server knows the exact locations of noise sources
and even has the open access to estimated noise level
online (e.g., Manhanttan noise map [6]), it can estimate the
noise levels at locations with different distances to noise
sources. Workers’ actual distances to the noise centers can be
reckoned, and finally their actual locations can be inferred.
Thus, noise level data should also be protected. To address
these issues, every worker should incorporate a privacy-
preserving mechanism to both their locations and sensing
data. However, anonymizing workers’ data alone is not
helpful in the sense that anonymized data still can be used
to infer daily pattern and other information [7, 8].
Differential privacy [9] is a mechanism applied in numer-
ous systems to protect data privacy. In our noise-monitoring
crowd sensing scenario, if everyone simply deploys a differ-
ential privacy mechanism to himself without cooperating
with others, the group privacy level of their locations at one
time will be far lower than their individual privacy levels
due to the composition property of differential privacy [9].
To achieve a low composed budget, the simplest way is
decreasing each worker’s privacy budget, but it will bring
large variances in workers’ perturbed data and hinder the
completion of tasks. Differential privacy can also be embed-
ded in the sensing data for location protection because noise
level data possesses some location-related characteristics as
mentioned above. Obviously, protecting privacy is bound to
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Mobile crowd sensing is an emerging sensing paradigm that
outsources the collection of data to a crowd of participating
workers with mobile devices. Mobile devices are equipped
with a plethora of on-board sensors (e.g., compass, ac-
celerometer, gyroscope, camera, GPS) to sense various types
of data. Specifically, location data sensed by GPS has been
applied to serve a wide spectrum of location-based mobile
crowd sensing applications, including road monitoring [1],
indoor floor plan reconstruction [2], and smart transporta-
tion [3]. Workers who participate in the location-centric
mobile crowd sensing usually have to upload data con-
taining their location information. For example, in a noise-
monitoring mobile crowd sensing system, the server collects
the noise level data at preset time slots near noise sources to
estimate the noise exposure, and further provides references
to noise control methodologies. McAlexander et al. in [4]
set up a process for collecting and analyzing noise data
throughout New York City from the crowd. Workers in the
area near noise sources will provide their locations together
with time and sensed noise levels to the crowd sensing
server. However, the disclosure of actual locations that a
worker visited with timestamps will compromise his loca-
tion privacy and be used to infer his daily routines, personal
interests, etc. Another aspect of privacy breaches resides in
the noise level data itself. For a single, non-directional noise
source, its noise power will diminish inversely to the square
of distance from the source because the sound energy is
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while guaranteeing task accuracy, workers will be reluctant
to participate in location-based mobile crowd sensing tasks
and the crowd sensing server cannot make desired profits
from collected data nor provide sound data services.

Our Contributions: Our work enables location-related
differential privacy for a group of workers. The Bayesian
game [10] is deployed to model workers” behaviors and
costs, giving a practical basis for formal decision making
and algorithm development. We list our contributions as
follows:

e Our scheme fulfills indistinguishability for locations
without the help of a trusted entity. Moreover, lo-
cations cannot be inferred from workers’ sensing
data. Sensitive information leakage can be effectively
restricted even for a group of workers.

o The server receives data with desired accuracy when
workers’ data is protected.

e Our scheme enables workers to make proper choices
for cost minimization while being aware of malicious
workers during decision making.

The remainder of this paper is organized as follows.
Section 2 introduces several preliminaries. Section 3 presents
the system architecture and the adversary model. A new
location inference attack is proposed and analyzed in Sec-
tion 4. Then, we describe the detailed game in Section 5,
followed by the privacy preservation scheme. The protocol
is evaluated in Section 6. In the following Section 7, we
briefly review some relevant works and their deficiencies.
Finally, Section 8 concludes the paper.

2 PRELIMINARIES
2.1 Physics of Sound and Noise Control

As introduced in the Noise Manual [5], the decibel notation
of sound pressure level (SPL) is:

2
L, = 20log <£) = 10log (p—z) : (1)
Do by

where p is the measured root-mean square (rms) sound
pressure and pg is the reference rms sound pressure. The
reference distance to the sound source is set to be ry. The
effectiveness of a noise control method is usually evaluated
from the arithmetic difference between the SPLs measured
at two locations as Lj,, — L,,, one on either side of a noise
control device, or at the same fixed measuring location
before and after a noise control method has been applied.

Sound levels can be added together in decibels when
there are multiple noise sources. An example is the estima-
tion of the total SPL due to the addition of a new machine
of known sound output to an existing noise environment of
known characteristics. The addition equation of the sound
levels for N random, uncorrelated sounds is:

N 2 N2
Lp =10log (Z?j p2> = 10log <Z pQ>

0 i=1 +0

Lp;
From Equation (1), we find that p? /p2 = 10710 . Hence,

AN
Lp=10log (> 10710 |, )

i=1

2

where L p is the total SPL in decibels generated by IV sources
and L,, represents the individual SPLs to be added.

Many noise-control problems require the knowledge of
the relationship between sound fields and SPL. We only
introduce the free field here for simplicity. A free field exists
when sound radiates into space from a source and there
is nothing to impede the sound energy as it flows from
the source. Considering a small and nondirectional sound
source that is radiating sound equally in all directions, the
SPL will be the same at any point on the surface of a sphere
centered on the source. The sound intensity diminishes
inversely as the square of distance, r, from the source since
the sound energy is spreading over the increasing area of
the sphere (47r7“2). Thus, the decrease of noise level with
respect to the distance from a nondirectional noise source is
proportional to 10log | %|.

2.2 Differential Privacy

Differential privacy is first introduced in database, where a
database can be viewed as a set of rows. Databases D; and
D, differ in at most one element if one dataset is a proper
subset of the other and the larger database contains just one
additional row [9].

Definition 2.1 (Differential Privacy). A randomized function
IC gives e-differential privacy if for all data sets Dy and Dy
differing on at most one element, and all S C Range(K),

PriK(D,) € S] < exp(e) x Pr[K(Ds) € S]. 3)
The probability is taken is over the coin tosses of K.

Differential privacy can also be interpreted to be (a, 3)-
accurate as introduced in [9].

Definition 2.2 ((«, 8)-Accuracy). For two random variables Y1
and Yo within the range, Y1 is (o, B)-accurate to Yo if and only
if Pr[|Y1 — Ya| > o] < 3, where 8 € (0,1).

Geo-indistinguishability [11] is a formal notion of pri-
vacy for location-based systems to protect the actual loca-
tion of a user (worker), while still allowing approximate
information needed for a certain desired service to be re-
leased. The indistinguishability of locations is achieved so
that an adversary cannot tell a random location from the
actual location. Geo-indistinguishability is an extension of
the generalized version of differential privacy.

Definition 2.3 (Geo-indistinguishability). For any radius
r > 0, a mechanism K satisfies er-geo-indistinguishability iff
the worker enjoys er-privacy within r.

The er-geo-indistinguishability is mathematically de-
fined as: a mechanism satisfies er-geo-indistinguishability
iff for all observations in a set of possible reported values S,
the probability that the worker is assumed to be located at
x and 2’ are bounded as:

]]j((;f_l)) <e",Vr>0,Vz,2 : dlz,z’) <r. (4

One property of geo-indistinguishability is that the pri-
vacy level at a location is smaller when it is farther away
from the worker’s location. Within a small radius, for in-
stance, 7 = 1 km, er is also small, which guarantees that
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the attacker cannot infer the worker’s location. When r
increases, such as r = 10 km, er becomes very large, and
the attacker can infer that the worker is located within a
city with high probability. Adding noise is a way to fulfill
the requirements of geo-indistinguishability, which is the
same as traditional differential privacy. However, since the
location is a two-dimension coordinates including longitude
and latitude, we should add a planar Laplace distribution
in the polar coordinate system to the location. For example,
given an actual location z = (s, 1), we need to pick a point
(re, ) from the polar Laplacian. Then, the obfuscated point
will be z = (s + r.cosf,t + r.sin0).

3 SYSTEM MODEL
3.1 System Overview

Our system shown in Fig. 1 consists of a LBS server and a set
of participating workers, denoted as W := {W1,--- , Wy, }.

LBS Server
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Figure 1: System model

e LBS Server: The LBS server publishes a set of K
sensing tasks, denoted as 7 = {T1,--- ,Tk}, and
corresponding rewards, e.g., a fixed or flexible (de-
termined by the workload of each worker) amount of
financial compensation, for workers to participate. It
is also responsible of distributing public parameters
for privacy preservation to workers and aggregating
data collected by workers. One practical scenario is a
noise controlling one: the server is notified of several
newly coming noise sources and wants to check
how these sources impact the neighborhood. The
workers’ locations and noise data are not required
to be exactly the same as ground truth, but should be
bounded in a certain range (the locations are in the
wanted neighborhood and the noise data can reflect
the impact) to retain the task utility.

o Workers: A bunch of workers in one sensing region is
required to report noise levels at their locations for
each task. If a worker W; accepts the task T, he will
provide his location and noise level as {l; ;, X; ;} to
the server (cheating, e.g., accept a task but do not
report sensing data, is not related to information pri-
vacy concerns in this paper, so it is not considered).
However, directly reporting data to the server will
impair workers’ privacy. So, in our scheme, workers
only report perturbed locations and falsified noise

levels {l} ;, X} via differential privacy. In case

workers have to collaborate to fulfill privacy goals,

3

a master is selected to collect information from all
members.

o Wireless Infrastructures: Workers communicate with
the server and each other via cellular networks, such
as 4G/LTE. The communication is done via network
access points such as base stations, so they do not
need to be in close physical proximity for direct
communication. The server also relies on cellular
networks to release tasks and collect data from the
workers. The base station is assumed to be honest for
relaying messages, and it does not reveal workers’
location information from physical properties, such
as signal strength, during the packet relay. However,
it is not a centralized trusted third party and does not
contribute to the privacy protection process except
for packet relaying.

3.2 Adversarial Model

o Server: The server is assumed to be honest but curi-
ous. It will follow rules when announcing tasks, giv-
ing out rewards, and computing the aggregated data.
However, it tries to get workers’ private information
and make profits from it. The server should not learn
the worker’s private information from uploaded lo-
cations and sensing data.

e Workers: Workers are curious about other workers’
information and may misuse their location and data
information, so a worker’s actual location and sens-
ing data should be kept confidential from others
and hard to be inferred from his/her uploaded data.
There are also malicious workers, who are going to
cheat and make the privacy goal fail.

3.3 Notations and Definitions

For clarity, we summarize the important notations in the
following Table 1 and list their corresponding definitions.

Table 1: Notation Table

Notations Definitions

T; the j-th crowdsensing task in the task set 7~

WiTj the i-th worker in the group W% for T}

li,; the location of worker i when carrying out task T}
X5 the sensing data reported by worker i for task T);

Ui X, the perturbed versions of I; ;, X; ;

e, R; the privacy budget for location privacy protection

I3 the accuracy requirement of the reported sensing data
Gp, the privacy gain for i-th worker if participate in game
Gg, the privacy gain for i-th worker if deceive in game
Si the strategy chosen by the i-th worker in the game
S_; the strategies chosen by all workers other than ¢

pi the type assigned to the i-th worker

U; the utility gained in the game for i-th worker

F the distribution of privacy requirements

7 the expected Cooperate probability of worker 7

oy the fan-out for parent nodes at height h in the tree
Cih—1 the value of the i-th node at height ~ — 1 in the tree
D¢, (z0)(z) | the planar Laplace noise that perturb location zo to
Ce, () the cumulative function of D¢, (xo)(x)

rt.ol the noises added to location I; ; in polar coordinates
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4 LOCATION INFERENCE ATTACK

In the example of noise monitoring crowd sensing, workers
are required to report noise levels with location information,
which further compromises their location privacy. Here,
we identify a new location inference attack to illustrate
this additional location privacy leakage in mobile crowd
sensing.

4.1 Attack Description

This attack is similar to trilateration with auxiliary knowl-
edge. Because the noise level is closely related to the dis-
tances between the noise sources and measuring devices, an
entity that has knowledge of the noise sources’ locations
can deduce a noise map. Assume that the server broad-
casts one sensing task in one round to the target area. We
conduct a simulation with 100 x 100 grids as an example,
in which exist three noise sources at the squared regions
with coordinates [20,45], [42,40], and [23, 37]. The SPLs of
noise sources measured at the reference distances r¢ within
the red regions are 100 dB, 90 dB, and 80 dB, respectively.
The theoretic SPLs distributed in each grid without con-
sidering the specific environments (e.g., building, traffic,
and etc.) can be computed from Equation (1) and (2). For
a spot whose distances to the three red regions are 7y,
r9, 73, the SPLs incurred by each individual noise source

are Ly, = 100 — [20log 22|, L,, = 90 — [20log 2|, and
L,, = 80— ‘20 log 72|. Therefore, the SPL after taking all
Lp;

three sources into accountis Lp = 10log (Zle 10710 ).We
simulate each grid’s SPL on MATLAB and list parts of them
in Fig 2, where grids containing noise sources are painted
red. Suppose there is a worker resides at the yellow grid
and reports his true noise level data 69.81427 dB. With the
help of differential privacy and geo-indistinguishability, he
intends to hide himself in a circled area colored in green.
However, his noise level data is closer to those in the blue
grids, indicating that he is more likely to appear in the blue
region. Thus, his location information is further revealed.
As a result, we need to randomize workers’ sensing data to
avoid location information leakage.

x/y 36 37 38 39 40 41 42 43 44 45
19 70.13624 71.10184 72.18349 73.43516 74.92418 76.74026 79.0266 82.02641 86.00053 89.0(
20 70.32591 71.29677 72.35507 73.59476 75.11047 77.00862 79.48494 82.99468 89.00952'
21 70.59573 71.58633 72.47626 73.55685 74.9692 76.7567 79.03257 82.02844 86.00114 &
22 71.31369 72.97867 72.83085 73.36147 74.53857 76.06975 77.90401 79.99485 82.02775

23 72.30724_ 73.40365 72.98703 73.89339 75.12527 76.50755 77.8993 79.02824

24 70.94009 72.58731 72.1654 72.34005 73.10704 74.07916 75.10272 76.04688 76.73974

25 69.71265 70.49131 71.00951 71.5578 72.25386 73.02795 73.79326 74.45705 74.91611

26 68.97068 69.61052 70.19693 70.78247 71.3983 72.02251 72.60644 73.09023 73.41181

27 68.40084  68.96509 71.08683 71.54176 71.90548 72.13999

28 | 67.90252 68.40325 68.89089 7059111 70.87114 71.04678

29 | 67.44873| 67.89314 68.32279 68.73236 70.09805

30 67.03554 67.43102 67.80865 68.16257 68.4856 68.76874 69.17265 69.27243

31 66.66777 67.02255 67.35605 67.66259 67.93594 68.16925 68.35524 68.48676 68.55763 68,
32 66.35467 66.67841 66.977 67.2448 67.47639 67.66675 67.81136 67.90633 67.94859 67.9.
33 66.10902 66.41386 66.68883 66.92741 67.12429 67.27585 67.38028 67.4371 67.4467 67.409.

34 65.947 66.24956 66.51621 66.73757 66.90675 67.02086 67.08131 67.09241 67.05949 66.98728
35 65.888 66.21263 66.49396 66.71567 66.86559 66.94013 66.94543 66.89418 66.8003 66.67491
36 65.9533 66.33698 66.67018 66.92141 67.06473 67.09219 67.0186 66.8734 66.68688 66.48086

37 66.16166 66.6609 67.10862 67.44215 67.60138 67.56431 67.36432 67.06783 66.73707 66.41048|
38 66.51945 67.21764 67.88701 68.40499 68.62594 68.4847 68.06208 67.51258 66.95865 66.45869|
39 67.00224 68.01024 69.08121 69.99688 70.38762 70.04227 69.19099 68.21411 67.32994 66.59892|
40 67.52873 68.95639 70.69925 72.49634 73.38327 72.51748 70.7621 69.09319 67.77201 66.77245|
a1 67.94487 69.80372 72.44624 76.17852 79.10139 76.18607 72.48137 69.89811 68.13098 66.88923
42 68.06453 70.13517 73.30604 79,09179_ 79.09503 73.33027 70.20886 68.21761 66.85382]
43 67.78543 69.69397  72.3835 76.15075 79.08664 76.15613 72.40882 69.76305 67.92407 66.61067|

Figure 2: Noise-Location table

4.2 The Defending Capability of Differential Privacy

Suppose that the worker applies geo-indistinguishability to
perturb his location / as I’. Then, we will analyze how the
inference ability is restricted by geo-indistinguishability in
traditional inference attacks and how the ability is enhanced
in our proposed attack. The attacker’s goal is to infer the
user’s actual location [. We assume that the adversary has
prior knowledge of the location obfuscation mechanism,
which is named as informed adversary in [12].

4.2.1 Defending against Traditional Inference Attacks

Since that the adversary knows the distribution of location
obfuscation scheme and the set of possible locations after
observing I’, he can perform the optimal inference attack
and Bayesian inference attack [13] by computing the highest
posterior probability Pr(I|l’) and minimizing the expected
inference error as introduced in [14]. The posterior probabil-
ity distribution follows:

D)
P = = Do (D

where ¢ is the prior distribution of the set S of possible
locations, D, is the distribution of the added noise in geo-
indistinguishability, and ¢; is the privacy budget.

Based on the probability distribution, the expected infer-
ence error is formulated as the expected distance between
the estimated location [ and the actual location I:

> min > (1) D, ([1)d(L,1) ()

I'eS les

Thus, the optimal inference attacker guesses a lo-
cation [ by minimizing the expected distance: | =
argmin ), o Pr(I[l’ )d(I,1). A Bayesian inference attacker
chooses an estimated location by maximizing the posterior
probability: | = arg max Pr({|l").

According to the analysis in [14], the capability of geo-
indistinguishability for defending against optimal inference
attack and Bayesian inference attack are bounded. The lower
bound of inference error is e~ min ) | %d(i ,x) and the

€] SD(T)

upper bound of posterior probability is where x
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Figure 3: Attack Demonstration

Obviously, the defending capability is influenced by
the size of protected region and the privacy budget. Our
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noise-level-involved inference attack can impair the geo-
indistinguishability’s defending capability without chang-
ing the privacy budget, and this negative effect goes
stronger with more noise sources. The adversary in our
proposed attack model considers the noise level data X pub-
lished by the worker and the locations of all noise sources
provided by the crowd sensing server for deducing the
worker’s actual location. How to scale down the protected
region is demonstrated in Fig. 3 and explained as follows:

Scenario 1: Single Noise Source. The worker is r meters
away from one single noise source with noise level data
X and his location is protected in the gray circle by geo-
indistinguishability. The adversary assumes that the worker
locates in the range where all noise levels are X + AX.
According to the relationship between SPL and distance
introduced in Section 2.1, the protected region is cut by two
orange circles, whose radiuses are » — Ajr and r + Agr,
respectively. These radiuses are derived from:

(r+ Agr)?

r2

2
(r—Aqr)?

Thus, the protected region is restricted (the white part of the
gray circle). The lower bound of inference error declines and
the upper bound of posterior probability grows, implying
that the attacker can deduce the actual location more easily.

THEOREM 1. When R < r, the lower bound of infer-
ence error is decreased by min{Aqr, Agr}/R and the upper
bound of posterior probability is increased in relationship with
2R?/[0(A1r + Agr)(2r + Agr — Aqr)], where R is the radius
of original protected region and 0 is the angle shown in Fig. 3.

10log = 10log =AX

Proof When R < r, the shrunk protected region can be
approximated by the area difference between two sectors
with the same angle 6, which is computed according to the
law of cosines:

(r—Ar)? + 172 - R?
2r(r — Aqr)

Therefore, the size of the shrunk region is
O [(r + Aor)? — (r — Ayr)?] /(27), which is simplified as
O(A1r + Agr)(2r + Agr — Aqr) /2.

In the formulation of inference error’s lower bound, the
effects of the region size are canceled out due to the sum
at the denominator and the overall sum, but the minimum
distance between [ and the random location z is reduced
from R to min{Ar, Agr}.

As for the upper bound of posterior probability, p(x) is
not affected because the protect area size is not the prior
knowledge obtained by the attacker. However, the sum of
©(y) over the protected area is lowered due to the side
information: reduction in protected area size. The ratio of
area reduction isby [0(A17 + Agr)(2r + Agr — Ayr)] /2R
Therefore, the upper bound turns out to be larger.

The changes in the bounds are proved. O

6 = 2 arccos

How the attack goes stronger for other R and r can
also be derived by computing the area of shrunk protected
region.

Scenario 2: Multiple Noise Sources. If this attack is
extended to multiple noise sources, the border of the shrunk
region is defined by the noise level as follows:

1 + S |
10log 2 U2 T2 _AX
1 1 1
(r1+Ary)? + (2t A8r2)2 " rntArn)?
1 + 1 1
10log | N=8m)%  (ramfralt - (mn=8m)T ) A x
e aes R

Intuitively, the shrunk region observed by the adversary,
where the noise levels are bounded by X £+ AX, is smaller
than that under single-source scenario and the inference
attack ability is further reinforced.

5 ScHEME DETAILS
5.1 Overview

In our scheme, the server first publishes a set of sensing
tasks 7 = {T1,--- ,Tk} and corresponding rewards, i.e.
money, for workers to participate. A privacy budget for
location privacy ¢; and a sensing data accuracy requirement
§ are announced together by the server. Workers spot these
tasks and decide whether they will accept them according
to the rewards. Then, workers who reside in the task 7;’s
required area and accept this task will form a group W7,
Assume there is a master worker in Wi who is responsible
of collecting information from all members and computing
individual’s parameters to provide differential privacy in
this group. Group members provide needed information
to the master and receive noise parameters back from the
master. Based on all parameters, the "falsified" locations and
randomized noise levels are calculated and uploaded by
workers.

The privacy budgets ¢ and accuracy requirement &
require the server to utilize some existing methods to find
out. Since each worker has his own privacy demands,
the budget should satisfy more workers’ privacy demands
while guaranteeing accuracy, which will enable the mobile
crowd sensing system to collect high-quality data from
the crowd. A game-theoretical approach is necessary to be
incorporated into the design to let the group W7 choose
a proper master, because how to effectively achieve the
composed group privacy goals also needs more efforts on
cooperation. After the game, workers collaborate to reach
group geo-indistinguishability and differential privacy on
the sensing data.

5.2 Private Crowd Sensing Game Model

In the game, for one task 7}, all workers who agree to per-
form this task are making decisions simultaneously without
being informed of others’ choices and game utilities. This
activity is modeled as a non-cooperative Bayesian game
denoted as the Private Crowd sensing Game (PCG). In
accordance with the definition of a Bayesian game, the PCG
has the following components:

5.2.1 The Player Set and the Finite Strategy Set

The player set W1i = {WZ-Tj li € {1,---,N}} includes all
workers currently present within the service area and accept
privacy budgets when conducting the task 7.
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The strategy set S; of a player refers to all available
moves to the player. In our scheme, a malicious master
cannot get the precise information of workers’ locations, but
he can refuse to return the needed values so that the privacy
goal fails. Other workers can decide whether to cooperate
with the master or decline the task to avoid loss. Therefore,
strategies included in the set are shown in Fig. 4: Master,
i.e., group management and data collection; Deceive, i.e.,
announce to be a master but do not fulfill the requests from
other workers; Cooperate, i.e., to be a group member and
send needed information to the master, do not interact with
other cooperative workers; or Decline, i.e., be suspicious of
a deceiving master and refuse to cooperate. The strategies
for all players are regresented as 8 = {S1,---,Sn}. The
strategy profile of W, ’’s opponents is S_;.

Deceive

Nature

O_ Worker
B
Type B

Decline

@ Type A

Cooperate Master

Figure 4: Strategy set

5.2.2 Game Utility

The game utility of a player depends on the strategies
adopted by all players. When there is a master who helps
preserve privacy, players’ game utilities are their obtained
privacy gains subtracting their costs severally. However, if
none of the players chooses to be a master in the game, or
if the master is a malicious one, the privacy objective fails.
For a player WiTj , we will discuss his privacy gains before
introducing other factors.

Privacy Gains: Following the formulations in Equa-
tion (2) and Equation (4), we define privacy gains for each
worker WZ.Tj as quantitative measures for the probabilistic
ratio of indistinguishability benefits. With a privacy budget
€ R, the probability for an adversary to distinguish the true
location from a falsified one is exp(¢R;). This probability
decreases with the increase of budget value, which indicates
that it becomes more possible for an attacker to guess out the
actual location. Therefore, we formulate the location privacy
gain as an inverse of the aforementioned probability. The
gain for noise level data privacy follows the same fashion
because it is also protected with differential privacy. The
location privacy gain Pé and the noise level data privacy
gain P;' are summed up to represent the privacy gain G,

1 1

+
) exp (‘ 1010g[r§1j>2(<1,<2)]

pi —

exp(eR; D ©)
where ¢; and R; are the privacy budget and WiTj ’s radius re-
quirement in geo-indistinguishability, ¢ is the data accuracy
requirement, ¢; = (1 + R;/k;)? and (o = (1 — Ri/m)2. The
first part on the right side reflects the inverse of posterior
information gain. The posterior information gain is the ratio
of posterior probability and prior probability, so the adver-
sary benefits more and the worker enjoys less privacy with
a larger posterior information gain. How we get the second

6

part in the right side will be introduced in Section 5.3.2.
Briefly speaking, it is the inverse of posterior information
gain for noise level data.

Disruption Gains: The gain of malicious activities comes
from disrupting the privacy goal and wasting the resources
of regular nodes. If player WITJ is a malicious player, he
gains G4, after disrupting the privacy procedure.

Energy Costs and Ratios: A master needs more energy
to communicate and process data than ordinary members as
he needs to exchange information with N — 1 members via
available networks and compute on these data. The commu-
nication cost is the energy spent on accessing network and
sending/receiving data, so it depends on the data packet
size, which is relevant to the number of workers. We denote
the cost for a master as the fraction of energy costs to his
remaining battery. To simplify the expression, we use the
fraction of the expected sum of a group member’s network
connection cost, data sending/receiving cost, and data pro-
cessing cost to the expected master energy consumption as
the degradation factor ¢. The unit costs are defined as the
energy depleted by actions on one data packet. In all, the
costs are formulated as follows:

3(N —1)Es + (N +3)Ex + Eq4

E(Master) = BT (B) ,
. (N - 1)Ecl + E62
E(Deceive) = 55T (B) ,
Ecl + Ec2 + Ed
E(Cooperate) = —Eh®)

E(Decline) = 0,

where E.; is the network connection cost, E.o is the unit
data sending/receiving cost, Fq is the unit energy con-
sumed when processing data, and E77(B) is the remaining
battery capacity when receiving task 7j. For simpler and
clearer formulation, we do not go into the details of data
processing complexity. In Section 5.3.3, we will interpret
how we get these energy costs after presenting the complete
scheme. The ratios of costs and gains ;(-) are derived and
normalized from cost formulations.

Now that every worker knows the expected costs and
gains, the utility functions for a regular player can be
formulated as:

Gp, [1 —7i(Si)], Si = Master,

Ga, [1 —7i(Si)], Si = Deceive,

0, S; = Decline,

Gp, [1 —7i(Si)], S; = Cooperate,
nm(S—’L) > 17

Ui(+ pi, Si, S—i) = na(S_;) =0

—E./E"(B), S; = Cooperate,
nnL(S—i) =0

—E(S5:)/2, S; = Cooperate,
Tlm(S_Z) Z 1,
na(S-i) > 1

where n,,(S_;) denotes the number of masters (excluding
deceiving masters) other than WZ-Tj himself and ng(S_;)
denotes the number of deceiving masters. If there is no
master, the privacy goal fails and the network connection
energy is wasted. If the announced masters are all malicious,

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on June 29,2020 at 18:53:55 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2946800, IEEE

Transactions on Mobile Computing

the cooperative player gains nothing and wastes his energy,
which is less than the energy consumed when actually
cooperating because there is no return data from the master.

5.2.3 Typep

A player does not have complete knowledge about other
players” utilities, so we introduce Nature into the game as
in [15]. Each player is assigned a type p; by Nature, which
is the privacy requirement for geo-indistinguishability, ¢; R;,
and the malicious probability p;. The privacy requirements
are sampled independently from a distribution F with the
probability density function f. In PCG, the strategy space,
possible types, F, and f are known to players, while p; is
W, 7’s private information.

5.2.4 Best Response and Bayesian Nash Equilibrium

In the game, all rational players’ choices are made to
maximize their utilities. We introduce the concept of best
response in [16] to capture this behavior:

Definition 5.1 (Best Response). A player W 's best response
S is the strategy that maximizes his utility U; given S_;:

Si(S,i) = argmax U;(p;, Si, S—i)
Our PCG is a Bayesian game on account of players with
incomplete information. Here we refer to the Bayesian Nash

Equilibrium to describe the steady state, where no player
will get better utility by unilaterally changing his strategy.

Definition 5.2 (Bayesian Nash Equilibrium). A strategy pro-
file S* = 57,85, , S}, is a Bayesian Nash Equilibrium (BNE)
if strategy S} for every player WiTj is the best response that
maximizes their expected utilities. That is, given S_; and players’
beliefs about the types of other players p_;, we have:

S (p7)€argmaXZf XU(pHS;,kaii)7 vpi
p—i

5.2.5 Mixed Strategy Bayesian Nash Equilibrium of PCG
To derive a Bayesian Nash Equilibrium, we assign p; to
each player W, ’ as the probability that this player behaves
maliciously. Then, we use the cooperate probability in [16] as
a reference. Given a type p;, a player I/VqT] has a probability
of d;(p;) to choose Cooperate. The expected probability
that one player chooses Cooperate is:

ni = / di(pi)dF (pi) @)
Then, the expected utility for player WiTj is re-
formulated as:
E [U;(Master; p;, Si, S—i, )]
= (1 —p;)Gp, [1 — vi(Master)],
E [Ui(Deceive; pi, Si, S—i, F)] = piGa, [1 — 7i(Deceive)]

E [Ui(Cooperate; Pis Si7 S—ia ‘F)]

Gp, X 1_H77k XH ETic(lB);;‘[m
(2

ki i
— E(Cooperate) | 1 — H Mk L + ! H (1-p;) |,
ki 225 ’

E [U;(Decline; p;, S;, S—;, F)] =0

7

Since the goal of W ' is to maximize his game utility, the
player chooses to be a master, whether malicious or not, if

K2

E [U;(Master; p;, S;, S_;, F)]

+E [U;(Deceive; p;, Si, S—i, F)]

E [U;(Cooperate; p;, Si, S—i, F)]

[Uz (DeChne piy Si, S_i, ]:)]

His further choice in line with game utilities becomes:

1
d; [1——” (Deceive)]

Master, if p; < —5
1+ — i aster
8 = Gp, [1 Iq,(M ter)] (8)

Deceive, if p; > Gy [, (Deceive)]

Gpi [lf'y,i (Master)]

Otherwise, he decides whether he will cooperate with
the master:

Cooperate, if G, >
E01(1—¢1)+E(Cooperate)¢1(1—%(152)
5 — . . $162E "7 (B)
¢ Decline, if Gp, <
EC1(1—¢1)+E(Cooperate)¢1(1—%¢2)
$162E77 (B)
9
where ¢1 = (1-[];; m) and ¢2 = ][, ,; (1 — p;). If he find

out that the master behave maliciously during cooperation,
he will report this to the crowd sensing platform.

A player will decide to be a master only when
the expected utility of being a master is greater
than not to maximize his utility. Then, he will be-
have maliciously if E [U;(Deceive;p;,S;,S_;, F)] >
E [U;(Master; p;, S;, S—;, F)], which gives out the thresh-
old in Equation (8). The other condition in Equation 9 can
be derived in a similar manner. These equilibriums indicate
that when the additional cost to be a master is smaller
and/or fewer players present in the game, a player is more
likely to become a master. It satisfies the intuitive knowledge
that players want to protect privacy with fewer costs.

THEOREM 2. For supp(F) C [0,1], there exist N pure
strateqy equilibriums that exactly one player chooses Master
or Deceive while all other players choose Cooperate or
Decline.

Proof If all of WiTj ‘s opponents choose Cooperate or
Decline, I,’’s best response is Master. Otherwise, IV,
will receive a payoff of no more than 0. Because players are
symmetric, it does not matter which player is the one that
chooses Master or Deceive. Hence, there exist N pure-
strategy equilibriums. O

The privacy goal fails only if the only master is deceiving
while the other players are cooperating with the master. A
new round of game will start without this master if all other
players choose to decline.

THEOREM 3. The probability of failure is smaller with larger
the privacy gain G p,.

Proof The probability of failure is:

17HQ x

k#i

Pr[failure] =
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p12E75 (B)

;o ) Gy, [1—v; (Master)] )
and ' = Pr |:p2 > Gy, [1—vi(Master)|+Gq, [17'yi(Deceive)]:| 7

and )’ are one-sided p-values given by the complementary
cumulative distribution functions.

Gy, [1—vi(Master)]
The observed value Gp,; [1—v:(Master)|+G 4, [1—vi(Deceive)]

in @' is monotonically increasing w.r.t. G,,, so € is neg-
(1= s ) be-
comes smaller with larger gain because (2; is a p-value in-
creasing monotonically w.r.t. G),,. Therefore, the increasing-
decreasing characteristics of Pr[failure] are proved. O

- oopera (1-1
where Q; = Pr l:ka > E:1(1—¢1)+E(Cooperate) g (1 2¢2):|

atively correlated with privacy gain.

5.3 Group Location Privacy and Sensing Data Pertur-
bation

In this subsection, we discuss the details of how privacy
goals are fulfilled. Our scheme proceeds to privacy preser-
vation after the master is chosen. In one group, locations
of all members satisfy a group geo-indistinguishability
related to the maximum radius requirement for geo-
indistinguishability in the group. The noise level data of
each individual also confronts to differential privacy w.r.t.
locations.

5.3.1 Group Geo-indistinguishability

As mentioned in the introduction, decreasing each worker
privacy budget for a low composed one endures large vari-
ances in workers’ perturbed data. In our design, the master
and his group members deploy differential privacy mecha-
nism via wavelet transformation [17] so that the achieved
group geo-indistinguishability has much lower privacy
bound than simply applying geo-indistinguishability to
each worker without bringing about great variances. We
first decompose a location in polar coordinates to wavelet
coefficients and add noises to these coefficients. Then the
perturbed location can be reconstructed from noisy coeffi-
cients.

Tree Construction: Since radius and angle components
of a location are independent in polar coordinates, the
wavelet transform of a location can be viewed to be separate
for its radius and angle. For radius decomposition, each
worker initially reports a random integer referring to the
radius component of his location in polar coordinates to
the master. The master collects integers from workers and
arranges them as a vector M. A group hierarchy H connects
the master and cooperative workers as shown in Fig. 5,
which indicates that the master can receive information
from all workers and is responsible of processing the re-
ceived information. Based on H, a nominal wavelet decom-
position tree R is constructed from H by attaching a child
node Leaf., to each leaf node Leaf; in H. The value of Leaf,,
is the same as the corresponding entry in M. The nodes
except leaf children are wavelet decomposition coefficients,
which are computed differently: The wavelet coefficient for
the root node (referred to as the base coefficient) is set as the
sum of all leaves in its subtree (the leaf-sum of the node),
while the coefficient for any other internal node equals its
leaf-sum minus the average leaf-sum of its parent’s children.
We illustrate this step with an example in Fig. 5. The left
side is the hierarchy H and random numbers in M. The
master occupies both the root node and one leaf node to
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manage group data and fulfill privacy, while members take
the remaining N — 1 leaf nodes. The decomposition tree
constructed from H is to the right of H. We will continue
using this example in the following sections.

H @ 27

g ecCcego

Workers

M 2 6 4 7 8 2 6 4 7 8

Figure 5: Decomposition tree

Obfuscation: Next, a planar Laplace noise [11] is added
with parameter ¢, to each decomposition coefficient of a

location:
Wom (¢ i))? B
Del (;z:o)(g;) — (QNQMB*EWWNMH(CW)’
T

where r is the distance between x and x(y, which is,
in other words, the noise to perturb location zy to =z.
Whniom(¢i,j) = 1 if ¢;; is the base coefficient, otherwise
Whiom (€i,5) = fj‘)/(ij" —2), where f? is the fan-out of ¢; ;s
parent in the decomposition tree (e.g.,the fan-out fg of the
root node is 5 in Fig. 5). Due to the independency of radius
and angle, the marginal probabilities of D, (xo)(x) are
also independently, whose probability density functions are
D, r(r) and D, o(r) respectively. The angle is randomly
selected in [0, 27), so we only describe how each worker
computes his radius noise and adds it to his occupied
leaf coefficient. In that sampling a random number from
D., r(r) is complicated, the inverse transform sampling is
deployed to draw a value z uniformly in [0, 1) and the noise
is computed as 7 = C_1(2), where C¢, (r) is the cumulative

€
function of D, r(r) and C_;'(z) is its inverse function:

(10)

27

DEL,R(T) = Del (7“, 9)d9 = (elWNom(c))Qre_elTWN"m

0
Ce,(r) =1 — (1 + rWyom)e " Wnom

Then, the noisy coefficients ¢; j,—1 is produced with its
dedicated noise r; as ¢;p—1 = 7Ti + ¢ip—1. Apart from
the leaf coefficient noise, the master computes one more
noise for the base coefficient and announces the noisy base
coefficient ¢y to other workers. All noises are normalized
with Wyom (¢) and-theseforleafeoefficients-are keptprivate
to-workers-themselves. The computation and annunciation
of noisy angle coefficients follow the same fashion. After

that, workers reconstruct their perturbed radius-and-angle
components from noisy coefficients following the equation:

h—2 h—2 1
vi=ena+y (G- ]] F) =Cia+éio/fg, (A1)
j=0 k=0 ’k

where h is the height of H, ¢; ,—1 is the ancestor of v; in
the h level of the decomposition tree, and f is the fan-out
of ¢; . A worker subtracts his orginally reported number
from v; and gets his radius noises 7!. The angle noise 6!
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= [s +1 cos (6] )1+ sin (6] )}

Figure 6: Location obfuscation

is available in the same way. A new location is mapped
from the actual location by adding component noises to
coordinates as illustrated in Fig. 6: suppose a worker WZ»TJ ’s
actual location when conducting task T} is l; ; = (s,t), his
falsified location is I} ; = [s + 7} cos(0}),  + r} sin(6})]. Only
the worker himself knows the total noise, so both the master
and the server cannot learn his actual location from the
obfuscated one even if they collude with each other.
Theoretical Analysis: We analyze some mathematical

properties of group geo-indistinguishability here.

THEOREM 4. The group geo-indistinguishability based on
wavelet transform and Laplace noise has a generalized sensitivity
of 2R ax with respect to Wiom. It can achieve 2¢; Ry ax-geo-
indistinguishability.

Proof According to Lemma 4 in [17], the nominal wavelet
transform has a generalized sensitivity of h with respect
to Wxom, Where h the height of the hierarchy associated
with the input frequency matrix. If we expand the concept
of generalized sensitivity from matrix differs only at one
tuple to locations in a circle with radius R, the gener-
alized sensitivity is also expanded to hR. In the decom-
position tree, the maximum sensitivity can be generated
by a leaf node is Ry ax. Thus the decomposition tree can
have a sensitivity Af of 2Ry,,x, where 2 is the height of
tree in our paper. Therefore, the achieved privacy level is
Af/A=2Rnax/\ = 26 Rpax. O

Starting from a tuple of locations I = (Iy---,1,), if
we independently apply € 1?; geo-indistinguishability to [;,
the achieved privacy level is ) ¢ R; due to composition
property. From Theorem 4, the geo-indistinguishability level
achieved here is far lower.

THEOREM 5. The variance of the added noise increase when the
fan-out f augments, but the variance of the noise in the answer is
always less than 8\2.

Proof In Equation (10), the new €] equals to ¢, Wnom. Then,
for the scale in Laplace noise:
N = ! = A .
€ WNom WNom
As Wiom is monotonicly decreasing to f, the variance 2\’ 2
increases.

The variance of one reconstructed element following
Equation (11) is at most:

(A =1/ +1/F2(f - 1)] - 40 = 1/f)* - 22?
=4(1—1/f)% 2\

(12)

whose approximation is 8A\? for f — oco. O

5.3.2 Sensing Data Perturbation

In this step, the privacy goal is: a worker WZ-Tj ’s reported
noise level cannot be distinguished from others collected
within distance R; with probability bounded by a budget
related to £. The total sound pressure level generated by N
sources follows Equation (2) and the SPL for each source
follows Equation (1). We assume for simplicity that in the
noise monitoring task for one noise source, the sound field is
a free field. Thus, for one location which is x km away from
the source and another random location whose distance

to the noise source differs from x by r.,nq, the difference
f;- 47r(/1i7‘mr,d)2

of measured noise levels shall be T

0log

) 101og (1 + Txand) 2 ‘ Again, the noise controlling application
is considered. The server may announce some known noise
sources and encourage workers to measure the noise levels
around the sources. If x is unknown to the worker, it is
possible for the worker to guess the distance by sight if the
noise source is close enough. Otherwise, the worker chooses
a r larger than the protection range  to confine the accuracy
loss rising from imprecise distance.

Since the worker WiTj wants to protect his location (x;
km from the source) within R;, he assigns his original data

101 x(¢1,C:
Og[rflllal‘g( 1 2)] ‘) to get

X}, where (i = (1+ R;/ki)? and ¢ = (1 — Ri/ki)?. X
can achieve | In £/10log[max ({1, (2)]|-differential privacy in
the dataset of possible noise levels collected within distance
R;.

THEOREM 6. The data perturbation mechanism given above
satisfies the privacy goal and accuracy demand:

X ; with a Laplacian noise Lap (O, ‘

Pr[|X]; — Xi ;| > [10log[max (¢, ()] < € (13)
Proof
«
[101oglmas (G o) =, Vs~ Lap (0, 7).
, « «
X > — | = 1>
Pr 1 = Xl > rg] =P 1> ]
o [l (Dl
o 2a «
O

5.3.3 Energy Analysis

In the tree construction step, every member only exchanges
information with the master once, whereas the master needs
to receive/deliver N — 1 packets from/to members and
compute values of N + 1 nodes in the decomposition tree.
In the perturbation step, every worker spends energy on
computing noises. The master’ computation burden is as
twice as a member’s since he occupies two nodes. Also, the
master has additional communication cost originated from
sending noisy roots to N — 1 members. The last part of
energy consumption stems from sensing data perturbation,
which is the same for all workers. Hence, we can derive the
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ratio of energy consumed by a member and the master after
summing them up as:

E(Cooperate) Ea + Eex + Eqy
E(Master)  3(N —1)E, + (N +3)Ex + Eq4

which corresponds to what we proposed in Section. 5.2.2.

6 EVALUATION
6.1 Experiment Settings

We implement our scheme on a PC with an Intel Core i5
CPU running at 3.20 GHz and 8 GB RAM and use the real-
world datasets, noise collected by Lubin Liu from Microsoft
[18-20] and Yelp [21] to evaluate our scheme. In [18-20],

Figure 7: Manhattan Map segments and experiment regions

authors provide noise level data at 36 locations collected
by six users on Manhattan and draw noise heat maps for
weekdays and weekends. The fine-grained noise situation
is reflected. Usually, areas with more points of interests
(venues in a physical world, like a shopping mall or theatre,
having a name, address, coordinates, category, and other
attributes [18]) expose to more severe noise situations, and
thus, demand more intense noise monitoring. Therefore, we
choose regions near Time Square (red), Columbia University
(yellow), and Washington Square (blue), divided by streets
and avenues, as task regions in Fig. 7. Each location entry
in regions is considered to be reported by an individual
worker.

Besides this small crowd sensing dataset, we implement
another location dataset to evaluate the performance of our
scheme on a large number of workers. The Yelp [21] dataset
contains 70,745 user check-in locations, where check-ins are
logged incontinuously in a relatively low frequency. It fits
our scenario where workers carry out tasks and only report
their locations when presenting at specific spots.

According to [22] regarding smartphones’ energy con-
sumptions, the energy consumed under IEEE 802.11 when
transmitting data at 700kb/s and staying in a dynamic
connection cost 31 mA and 2 mA respectively. The power
consumptions of active CPU can be between 100 and 200
mA. The total battery capacity F(B) is 3000 mAh. Usually
one wireless data packet is sized at 8 kB. We suppose
that a worker has equal probability to use LTE and WiFi
and each round of computation has around 1000 float
operations, so the settings of unit energy deduced from
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above statistics are: E.;/E(B) = 6.67e — 4 for one sec-
ond, E.2/E(B) = 1.18¢ — 5, E4/E(B) = 0.067 for one
second. The distribution F of privacy demands follows
Beta distribution B(0.149,0.109) according to the analysis
of social privacy demand distribution in [16]. For the clarity
of analysis, we confine ¢; to the range from 0.3 to 10 [23],
under which most existing algorithms are evaluated.

6.2 Evaluation Metrics

We define the following metrics in our experiments to
quantify the performance from aspects of PCG, location
obfuscation, and data perturbation.

Game Failure Ratio (GFR): It is the ratio describing how
many failed PCG happen after performing certain rounds of
games. It shows the effectiveness of PCG.

Drift Distances: The drift distance Dg;g; is the difference
between a released location I; ; and its corresponding actual
location [; ;. Both the mean and standard deviation (STD)
are computed to measure the usefulness and stability of the
location obfuscation. The mathematical formulation of its
mean is defined as:

N
1
Do = D dllij = 1), (14)

W;i=1

where d(l; j — I} ;) is the distance between /; ; and [; ;.

Satisfaction Ratio (SR): This metric calculates the ratio
of the number of workers whose new locations are outside
their radius requirements to the total number of workers.

Out-of-range Ratio (ORR): This ratio is to measure the
possibility that workers” perturbed locations are out of the
required task region while they are actually residing inside.

Data Trustfulness: Data trustfulness is the probability
that the shift from perturbed data to truth exceeds the bound
claimed by («, §)-accuracy. Pr[| X[ ; — X; ;| > o] should not
be greater than &.

We construct two application scenarios for the evalua-
tion. One scenario is a crowd sensing application only con-
taining location information and the other has both location
and noise level data. The former is contributed by Yelp
and Microsoft datasets and merely tested for two locations
metrics. The latter is built on Microsoft dataset and provides
extra performance assessment w.r.t. task completion and
data accuracy.

6.3 Experimental Results
6.3.1 PCG Performance

Fig. 8 shows the GFR under varying ¢; and number of work-
ers. Generally, it is climbing up with the growth of ¢;, which
is in correspondence with Theorem 3. Since the probability
that all workers choose to cooperate with a malicious master
is smaller when more workers join in the game, GFR is
declining if the number of participating workers increase.
The GFR is almost 0 with over 20 workers, which proves
the usefulness of PCG in practical applications.

6.3.2 Location Obfuscation Performance

The performance results of location obfuscation in the first
scenario are shown in Fig. 9, Fig. 10 and Fig. 11. The
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Figure 9: Drift distances with different group size, ¢, = 3

group size of workers and the choice of ¢ can influence
the performance.

Impact of Group Size: Fig. 9 demonstrates how the
group size influences the performance of drift distances
when ¢ is fixed. In Fig. 9a, the drift distance averaging from
a group of workers (10 to 500 workers) in Yelp approaches
0.3 km steadily, manifesting the stability of the PCG and
the location obfuscation. On the contrary, the STD climbs
up since the variances of added noises are growing with
the group size. However, the STDs stay in the range con-
fined by the upper bound, which indicates that the service
quality regarding locations will not decline significantly
even when there are many workers. The experiment on
Microsoft dataset starts at the minimum number of workers
(2 workers), which results in a much greater average drift
in Fig. 9b than in Fig. 9a at the beginning. Nevertheless,
it gradually approaches the similar mean value afterwards.
Though STDs are all slightly growing due to the accumu-
lating variance, the increment is comparatively negligible
to the group size. We can conclude that the PCG and the
location obfuscation are stable with a relatively small drift.

As for the satisfaction ratio, more workers indicate a
larger fan-out, which contributes to a larger but bounded
variance according to Theorem 5. Thus, the satisfaction ratio
in Fig. 10 fluctuates greatly due to the increasing variance,
yet it will stay around 0.6 even when more workers partic-
ipate in the task because of the upper bound of variances.
In other words, around 60% of obfuscated locations from
participating workers are located within the area required
by their geo-indistinguishability: Pr[d(l; ;,; ;) < R;] = 0.6.

Impact of ¢;: The impact of ¢; is evaluate and summa-
rized in Fig. 11 and the first row of Table 2. The increasing
of ¢ means the downgrade of privacy demands, which
is a straightforward explanation of the downward trends
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Figure 10: Workers satisfaction ratio, ¢, = 1

of average drift distances. A mathematical explanation for
changes in the STD is that the noise variance m turns
to be smaller, so the added noise is closer to 0, indicating
that the obfuscated location is more like to be in close
physical proximity of the true location. The satisfaction ratio
in Table 2 is a weighted average of results from two datasets
since its trend is the same for two datasets. The influences
from privacy demands and ¢; are combined: most workers’
privacy demands are comparatively small or large as they
follow the Beta distribution; the growing of ¢; scales down
the drift distance but meanwhile reduces all workers’ radius
requirements. Therefore, the distribution of satisfaction ratio
follows neither a complete Beta distribution nor the variety
of €].
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Figure 11: Drift distances under different ¢

6.3.3 Data Accuracy and Task Completion

The second application is run for analyzing how our scheme
can affect the completion of mobile crowd sensing tasks.
Besides drift distance and satisfaction ratio that have already
been discussed, we quantize the effects with other two
metrics, ORR and data trustfulness. The group size is set
as a constant here for valid evaluations.

As revealed in the second row of Table 2, the higher
possibility of close physical proximity stems from larger
€; benefits the out-of-range ratio, implying that workers’
reported false locations are less possible to be out of task
region and thus the completion of a crowd sensing task is
more assured.

We also compute the trustfulness of data, which reflects
the data accuracy a after perturbation. More specifically, it
is the probability that the distance between the perturbed
data and the truth is smaller than &. Theoretically, the data
trustfulness is bounded by Theorem 6. Here, £ is set to be
0.05 in our simulation. The average trustfulness under each
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Table 2: Impact of €, on metrics

€ 0.3 0.5 0.7 1 2 3 5 7 10
Satisfactory Ratio | 0.625616  0.807882  0.660099  0.605911  0.596059  0.522167  0.464532  0.423153  0.589655
ORR 0.972 0.722 0.671 0.556 0.364 0.176 0.111 0.090 0.092
7.1 Cryptographic Approaches
10°
0'26 1| [+ Data Perturbation] Cryptographic or private information retrieval (PIR) ap-
005 proaches use searchable encryption, asymmetric cryptog-
8 raphy, and private proximity testing [25, 26] to provide
20.03) location privacy for users. However, they do not address
Eo0.02fy inference disclosures, and their schemes often incur high
0.01* 104 computation costs. Hence, they cannot be implemented
‘ o— Achieved — Require ‘ I ]I . . . . .

0.00 ———— 1" L x LT directly on mobile devices due to their high memory and en-
epsilon epsilon ergy costs. Moreover, the curious service provider will still

(a) Data trustfulness (b) Data perturbation results

Figure 12: Under different ¢; for £ = 0.05

€ is about 0.25 £ 0.15 in Fig. 12a, which is much lower than
the requirement § depicted by the green line. So the accuracy
demand for crowd sensing tasks is fulfilled.

Fig. 12b shows the levels of noises added during data
perturbation. They are the means and STDs of the numerical
differences between perturbed data and estimated noise
level data from Equation 2 under different settings of €. We
can tell from the graph that the average difference is only
1 db with a choice of € as small as 0.01, and the value goes
even smaller with larger privacy budget e.

From both Fig. 12a and Fig. 12b we can tell that trustful-
ness is not evidently affected by ¢; while the accuracy of data
is boosted with the growth of ¢; (lower privacy demand). In
all, noises added to the sensing data can be lower than 3 dB
when ¢; is greater than 0.7. To conclude from the analysis
above, our scheme will not impede task objectives with a
proper choice of ¢; to balance accuracy and privacy.

6.3.4 Time Efficiency

The time costs for PCG, location obfuscation, and data per-
turbation are listed in Table 3. Obviously, the time consumed
only relates to the number of workers. However, since the
individual computations in PCG and obfuscation process
are parallel, the time differences are relatively subtle. The
time cost of noise data perturbation remains constant at
around 2.65 ms. Overall, our scheme will not bring much
burden to mobile crowd sensing in terms of time consump-
tion.

Table 3: Time costs

3 Workers 13 Workers 23 Workers

PCG 91.398 ms  106.012ms  116.531 ms
Location 5.771 ms 5.721 ms 5.970 ms
Data 2.657 ms 2.651 ms 2.613 ms

7 RELATED WORK

Location privacy preservation is widely considered in var-
ious applications. The approaches can be categorized [24]
as cryptographic methods, k-anonymity, and differential
privacy.

try to decrypt users’ location coordinates even if they are
encrypted, which will cause widespread network latency
because of resource-consuming decryption operations [27].

7.2 k-anonymity and its extensions

In [28], Sweeney et. el. propose the notion of k-anonymity,
which provides protection in a way that the information
of each person contained in the released dataset cannot
be distinguished from at least k individuals’ information
in the dataset. Nonetheless, an attacker can discover the
values of sensitive attributes when there is little diversity in
them. The k-anonymity approaches cannot protect against
attackers with sufficient background knowledge. There are
some extensions of k-anonymity to handle these deficien-
cies like [-diversity [29], p-sensitive [30], and t-closeness
[31]. However, methods in the class of k-anonymity face
plenty of shortcomings, such as relying on trusted interme-
diaries, offering limited privacy guarantees, and revealing
approximate real-world locations to the servers in plain-
text. In [32], authors combine the concepts of differential
privacy and k-anonymity to propose the notions of query-
indistinguishable k-anonymity and differentially private k-
anonymity (DPkA) for query privacy in location-based ser-
vice. In their algorithm, the privacy budget € is minimized
and the major breach of traditional k-anonymity among k
queries reported to service provider is overcome. However,
this work only protects the query privacy and its application
is limited.

7.3 Differential Privacy

Other than methodologies mentioned above, differential
privacy [9] is a new way to bound the probability of dis-
tinguishing between two databases, which has been applied
in location-based services to protect location privacy crowd
sensing. Some works use differential privacy to protect
workers’ locations when performing tasks [33, 34], while
some other works protect the aggregated data in a crowd
sensing task [35]. In particular, existing differentially private
crowd sensing usually unrealistically relies on a trusted
entity. In [36], the authors propose a new definition, ’6-
location set” based differential privacy, to account for the
temporal correlations in location data and a new notion,
sensitivity hull, to bound the error of differential privacy.
This work does not need a trusted entity, but it just protects
a single trajectory. Our scheme effectively protects a group
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of workers’ privacy in one region without a trusted third
party.

Though privacy-preserving schemes provide privacy
gains to mobile workers, they are so costly that mobile
workers may not want to pay for the privacy preserva-
tion. Some works are inspired by the concept of game
theory to tackle the conflict between costs and privacy gains
[16, 35, 37]. Compared to their works, our scheme does not
need complete knowledge and takes more factors like data
trustfulness into consideration to achieve higher efficiency
for mobile crowd sensing.

8 CONCLUSION

In this paper, we propose a game-theoretical approach that
implements differential privacy in location-based crowd
sensing services. It fulfills indistinguishability for both loca-
tions and sensing data, such that sensitive location informa-
tion leakage can be effectively restricted. The Bayesian game
is formulated with regard to the privacy gains and costs,
and the Bayesian Nash Equilibrium is derived from the
game. Then, crowd sensing workers’ privacy are protected
via differential privacy. Based on theoretical analysis and
evaluations on the real-world dataset, we have shown that
sufficient privacy guarantee is achieved and demonstrated
the efficiency and accuracy of our scheme.
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