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Abstract—The auction mechanism is deemed to be an effective
method to address the problem of spectrum scarcity. Numerous
spectrum auction mechanisms can alleviate spectrum shortage
under the consideration of truthfulness, social welfare maximiza-
tion and spectrum reusability, while the privacy preservation
and preferences of primary/secondary users have not been
fully discussed. In this paper, we propose a matching based
double auction mechanism for spectrum trading with differential
privacy (MastDP) to protect the privacy of buyers/sellers from
the untrustworthy auctioneer, other buyers/sellers and other
potential parties. Each participant adds distributed differential
private noise following Geom(α) distribution to his bid value
and encrypts the noisy bid value. The auctioneer can decrypt
only the sum of all uploaded noisy bid values and determines
the clearing price by using its private key. Based on the
clearing price, the matching theory is adopted to maximize
the winning participants’ revenue while fully considering their
preferences and spectrum reuse. Simulation results show that
MastDP achieves satisfactory performance in terms of economic
properties’ privacy preservation and spectrum trading efficiency.

Index Terms—Cognitive radio network, double auction mech-
anism, matching theory, differential privacy.

I. INTRODUCTION

With the increase of multimedia services, the demand for
bandwidth and data rate is increasing [1]. However, in the past
few decades, the vast majority of available frequency bands
have been exhausted by radio regulatory agencies in various
countries. How to efficiently use limited spectrum resources
has drawn significant attention in both industry and academia.
The cognitive radio (CR) technology has been identified as
a promising solution for the spectrum scarcity because of
its ability to dynamically utilize spectrum resources. Owing
to the fairness and allocation efficiency, auction theory has
been widely applied to solve the spectrum trading in cognitive
radio networks (CRN) [2], [3]. To ensure the performance of
spectrum auctions and maximize the benefits of auction par-
ticipants, strategy-proofness is an important index to evaluate
the performance of auction mechanism [4]. However, different
from the way that an item can only be sold to one buyer in

the traditional auction, spectrum has the reusability in time,
space and frequency domain. Moreover, the heterogeneity of
spectrum resources make the interference relationship among
different buyers in different frequencies different, while the
current researches on spectrum reuse [5]–[7] assume that the
interference relationship of buyers in all spectrum resources
is the same. Obviously, this assumption is rarely valid when
the frequency of the auctioned spectrum is quite different.

Double auction is widely used in spectrum trading, while
existing truthful double auction designs [8], [9], first form a
super buyer by grouping buyers who bid the same channel
for each seller and select a group bid for each super buyer.
After grouping, the double auction was transformed into
multiple single seller-buyer McAfee auctions. It may cause
the auction untruthful, since buyers can manipulate their bids
to reduce their shares in the group bid while the group
also wins the auction. On the other hand, existing spectrum
auction mechanism requires each bidder to report its true
valuation, while once the bidder’s true valuation is reported,
the other bidders can infer the bidder’s private valuation based
on the outcome of the auction. Yet, most existing spectrum
auction mechanisms do not consider the privacy-preserving
auction or merely concentrate on the bidding privacy in single-
sided auctions [10]–[12]. Moreover, how to design a privacy-
preserving double auction mechanism is rarely investigated.

In order to address the above mentioned challenges, in
this paper, we proposed MastDP, a Matching based double
Auction mechanism for Spectrum Trading with Differentially
Privacy. We first consider the market of spectrum trading as
a double auction, in which there are multiple sellers, multiple
buyers, and a single third-party auctioneer. Then, we exploit
the distributed differential privacy mechanism to guarantee
participants’ bid privacy. The main contribution of this work
are as follows:

• MastDP integrates the differential privacy mechanism
with double auction to protect bidders’ privacy without
high computational and communication overheads, and
achieves ϵ-differential privacy.
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• We present a many to many spectrum matching approach
to achieve winning participants allocation in MastDP
considering participants’ preferences and spectrum reuse.

• We theoretically prove that the proposed MastDP is
individual rationality and incentive compatible.

• We implement the proposed MastDP and extensively
compare its performance with existing mechanisms. The
simulation results show that MastDP can achieve better
performance on both spectrum trading efficiency and bid
privacy preservation.

The rest of paper is organized as follows. We present the
system model and some related solution concepts in Sec-
tion II. In Section III and Section IV, we present design details
of our proposed double auction mechanism and theoretically
prove its properties. Section V reports our performance eval-
uation results. Finally, we draw a conclusion in VI.

II. PRELIMINARIES AND SYSTEM MODEL

A. System Model
We consider a double auction market that consists of M

Primary users (PUs) who are the spectrum owners and sellers,
N Secondary users (SUs) who are spectrum buyers, and
an auctioneer who performs the running of double auction
mechanism periodically.
We suppose that there is a set of sellers, denoted by

S = {s1, s2, si, ..., sm} , (1 ≤ i ≤ m). Moreover each seller
si has one channel, denoted by li, in addition, a channel can
be allocated to multiple buyers, if these buyers can commu-
nicate simultaneously. We use Vs = (vs1, v

s
2, v

s
i , ..., v

s
m) and

Bs = (bs1, b
s
2, b

s
i , ..., b

s
m) to represent seller si’s true valuation

profile and bid profile for the channel. Similarly, there is a set
of buyers, denoted by R = {r1, r2, rj , ..., rn} , (1 ≤ j ≤ n).
We use Vr =

(
vr1, v

r
2, v

r
j , ..., v

r
n

)
and Br =

(
br1, b

r
2, b

r
j , ..., b

r
n

)

to denote the buyer rj’s true valuation profile and bid profile
for the sellers’ channels. The auctioneer sets the price to
determine the set of winning sellers who do not interfere
with each other and the set of winning buyers, thereby
maximizing the total revenue. The outcome of an auction
includes an allocation matrix, denoted by A = (aj,i), and a
payment profile P (p1, p2, pj , ..., pn), where aj,i means buyer
j successfully obtain the channel i,

aj,i =

{
1, the channel i is allocated to buyer j;
0, otherwise.

As each seller and buyer are considered selfish and individual
rationality in double auction, after the auction, the utility of all
sellers are the payment they receive minus their true valuation
for all sold channel:

us =
∑

i∈m

∑

j∈n

pjaj,i −
∑

i∈m

vsi .

Similarly, the utility of buyers are the true valuation for the
sold channel minus their total payment:

ur =
∑

j∈n

vrj −
∑

i∈m

∑

j∈n

pjaj,i.

Analogously, the conflict relationship among multiple SUs
over the same band can be defined by the interference range.
We note that spectrum is heterogeneous, so different frequen-
cies have different transmission range, different coverage, and
interference range.
Buyer’s and Seller’s Preference: For the buyer rj , he

prefers to buy a channel to maximize his data transmission
rate. We use ≻rj denote the preference list of buyer rj . For
instance, s1 ≻rj s2 ≻rj s3 indicates that seller s1 is the
largest favorite of rj while rj’s least favorite is seller s3.
Since the buyer’s transmission rate is closely related to the
capacity of the channel [13], the preference relationship of rj
over two given sellers si and s′i can be expressed as

si ≻rj s′i ⇔ ci >rj c′i. (1)

On the other hand, a seller si prefers to sell his channel
to maximize his revenue, since the bid price of each buyer
is different, the preference relationship of si over two given
buyer sets grj and g′rj can be constructed as

grj ≻si g
′
rj ⇔ bgrj >si b

′
grj

. (2)

B. Solution Concepts

1) Privacy Preservation: Differential privacy is a new
model of cyber security that can protect personal data far
better than traditional methods. It ensures that the probability
of a statistical query will produce a given result is (nearly) the
same whether it’s conducted on the first or second database.

Definition 1 (ϵ-differential Privacy [14]). A randomized
mechanism M gives ϵ-differential privacy if for all data
sets D1 and D2 differing on a single user, and all S ⊆
Range (M),

Pr [M (D1 ∈ S)] ≤ exp (ϵ)×Pr [M (D2 ∈ S)] ,

where ϵ > 0 is a small constant.

Definition 2 (Laplace Mechanism [14]). Given a function
f : D → Rd over a dataset D, mechanism M provides the
ϵ-differential privacy if it follow

M (D) = f (D) + Lap (∆f/ϵ) ,

where the noise Lap (∆f/ϵ) is drawn from a Laplace distri-
bution with mean zero and scale ∆f/e .

Definition 3 (l1 -sensitivity). Let f : D → Rd be a
deterministic function. The l1 -sensitivity of f is:

∆f = max
x,y∈Rd

∥f (x)− f (y)∥1

We use l1 -sensitivity to represent the largest difference
between the values of f of any two neighboring datasets.
2) Matching Theory: Matching theory is a promising ap-

proach to provide low complexity and tractable solutions
for the combinatorial problem of matching players from two
distinct sets, while considering the preference of each player.
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Definition 4 (Pairwise Block). Given a matching result µ,
there is a pair (rx, sy) that is said to be a blocking pair if
the following conditions are satisfied:
(i) rx is unassigned or prefers sy to his allocated channel,

and
(ii) sy is under subscribed or prefers rx to his worst

allocated buyer.

Definition 5 (Pairwise Stable). A matching µ is pairwise
stable if it is individual rationality and there is no pairwise
block of µ.

III. AUCTION DESIGN OF MASTDP
A. Distributed Differential Private Participant Bidding
Most of the previous studies assumed that the auctioneer

was trustworthy, while an untrustworthy auctioneer would
manipulate the auction based on the participant’s bid. In order
to prevent the frauds of the auctioneer, we make the auctioneer
merely obtain the sum of the bid values uploaded by all the
participants, and can not learn any part of the information, as
well as employ encryption technology to ensure that multiple
ciphertexts from participants can only be decrypted by the
auctioneer to protect bid values from other buyers/sellers and
other potential parties.
1) Adding Geometric Noise: The previous studies imple-

mented differential privacy protection by adding random noise
that obeys the Laplace distribution. However, if such noise
is added to each participant, the auctioneer may not only
accumulate too much noise, but excessive noise may cause
huge errors to the true bid values. Similar to [15], we attempt
to reduce the noise added by each participant, while the sum
of the noise accumulated in the auctioneer is large enough to
protect the privacy. Each seller/buyer adds a noise esi or erj
following geometrically distribution Geom (α) to their bid
values. Let b̃si denote additive noise esi to seller si’s bid value
bsi , i.e. b̃si = bsi+esi . Analogously, b̃rj = brj+erj denote additive
noise erj to buyer rj’s bid value brj .
2) Encrypting Bid Values: Let G denote a cyclic group of

prime order p, in which the Decisional Diffie-Hellman Prob-
lem is hard to solve. Let H : Z → G denote a hash function.
First of all, the auctioneer chooses a random generator g ∈ G
and m + 1 random secret keys sk0, sk1, · · ·, skm ∈ Zp ,
as well as sk0 = − (sk1 + sk2 + · · ·+ skm). The public
parameter is g . Each seller si obtains the private key ski
and the auctioneer obtains the private key sk0. Similarly, the
auctioneer chooses n+1 random secrets sl0, sl1, ···, sln ∈ Zp

for spectrum buyers. Then each seller si encrypts his noise-
added bid value bsi with the private key ski as:

cs ← gb̃si · H (k)ski ,

Meanwhile, each buyer rj encrypts his noise-added bid value
brj with the private key slj as:

cr ← gb̃rj · H (k)slj .

Finally, all buyers and sellers submit their encrypted bid
values to the auctioneer.

B. Distributed Differential Private Clearing Price Determi-
nation

1) Decrypting Bid Values: The auctioneer obtains the
sum of decrypted sellers’ bid values by summing up these
encrypted values and its own secret key sk0,

As ← H (k)sk0

m∏

i=1

cs,

where,

As = H (k)sk0 ·
m∏

i=1

cs = H (k)
∑m

i=0 ski · g
∑m

i=1 b̃si .

Since the ski sum to zero, H (k)
∑m

i=0 ski = 1.

As = g
∑m

i=1 b̃si .

Consequently, the auctioneer can obtain the sellers’ bid sum∑m
i=1 b̃

s
i by computing the discrete log of As base g, i.e,

m∑

i=1

b̃si = loggAs.

Analogously, the auctioneer obtains the decrypted buyer’s bid
sum by summing up these encrypted values and its own secret
key sl0.

2) Determining Clearing Price: The clearing price for
each participant can be calculated by dividing the bid value
by the total number of all sellers and buyers,

Pc =

∑m
i=1 b̃

s
i +

∑n
j=1 b̃

r
j

m+ n
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

According to the clearing price Pc, the winner candidates can
be selected: all the sellers who bid values less than Pc can sell
and all buyers who bid values larger than Pc can purchase.
Therefore, the final trade price from all winning buyers bwin

j

to the winning spectrum sellers swin
i is the sum of the clearing

price.

C. Winner Allocation with Preferences

After differential private bid values submission and clear-
ing price determination, winning sellers’ spectrum can be
allocated to winning buyers considering their preference by
exploiting matching theory.
1) Generating Conflict Graph and Maximal Independent

Set: Due to the spectrum reusability, multiple non-interfering
winning buyers can be allocated for one spectrum to maximize
seller’s revenue. We use conflict graph G = (V ,E) to
describe the interference relationship of seller among winning
buyers. In graph G, each vertex and edge denote all buyers
bid for the spectrum seller and the interference relationship of
them, respectively. An edge connecting two buyers indicates
they interfere with each other when transmitting via the same
spectrum. Consequently, which buyers can be allocated to one
seller at the same time is transformed into finding maximal
independent set on the conflict graph.
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2) Spectrum Matching with Evolving Preferences: We
achieve a stable and non-interference spectrum matching
for winning participants by using many to many matching
algorithm. We let Φ (i , j ) denotes the procedure of spectrum
matching as follows:

Φ (i , j ) =

{
Fsi

(
µ
(
swin
i

)
, PL

(
swin
i

))
, ∀1 ≤ i ≤ m

Frj

(
µ
(
rwin
j

)
, PL

(
rwin
j

))
, ∀1 ≤ j ≤ n

(4)
The target of our spectrum matching on spectrum seller is
to search the optimal set of winning buyers to maximize its
revenue, given sellers’ preference lists. Note that we set the
clearing price to the final payment price for each winning
buyer, thus winning sellers obtain a uniform price from
each buyer. We perform the procedure of spectrum matching
Φ (i , j ) to choose the buyer with the largest preference for
all winning seller in the first round, and iterative execute
the Φ (i , j ) for the remaining winning buyers who start to
proposed to sellers following the order of preference list
while they do not allocated yet, given the evolved conflict
graph eliminating vertices of already matched buyers and
corresponding edges that no longer exist from the second
round until the current round when there are no winning
buyers/sellers to be matched.
3) Rematching with Participants Exchanging: After all

sellers have completed the above matching process, buyer
rwin
j

∗ will try to be matched to seller swin
i

∗ when buyer
rwin
j

∗ is more inclined to the current matching swin
i , i.e.

swin
i

∗ ≻rwin
j

∗ swin
i . Then, the seller swin

i
∗ verifies whether

accepting buyer rwin
j

∗ and buyers who don not interfere with
rwin
j

∗ will gain more revenue than the current matching. If
the revenue can be increased, the buyer rwin

j
∗ is exchanged

from the current matching result to the seller swin
i

∗, and the
buyers who conflicts with this buyer will be removed.

IV. THEORETICAL ANALYSIS

Theorem 1 (Individual Rationality). The matching result of
the proposed MastDP algorithm is individual rationality.

Proof: It can be easily proved that we select winning
participants with a uniform clearing price, thus on the one
hand each buyer prefers the current set of matched spectrum
sellers who can maximize their communication rate to any
subset of these sellers in the final matching. On the other
hand, each seller prefers the current set of matched buyers
who can maximize their revenue to any subset of these buy-
ers. Therefore, the matching result of the proposed MastDP
algorithm is individual rationality.

Theorem 2 (Pairwise Stability). The matching result of the
proposed MastDP algorithm is pairwise stability.

Proof: We have already proved that the algorithm is
individual rationality. According to Definition 5, to prove
that the matching result of the proposed MastDP algorithm
is pairwise stability, we just need to prove that there is
no pairwise block in the result of the MastDP algorithm.

We suppose that the final matching result exists block-
ing pairs, i.e., for winning buyers, ∃rx, ∃sy , rx /∈ µ (sy),
rx ∈ Frx (µ (sy) ∪ rx, PL (sy)), and for winning sellers,
sy /∈ µ (rx), sy ∈ Fsy (µ (rx) ∪ sy, PL (rx)). Thus it is
obviously true that µ (rx) ̸= Fsy (µ (rx) ∪ sy, PL (rx)), and
µ (sy) ̸= Frx (µ (sy) ∪ rx, PL (sy)). This means that winning
buyer rx prefers to be allocated to another seller rather than its
current matching result, besides winning seller sy prefers to
accept another seller rather than its current matching result for
more revenue. Since the pairwise blocks will be rematched,
we can derive that µ (rx) = Fsy (µ (rx) ∪ sy, PL (rx)) and
µ (sy) = Frx (µ (sy) ∪ rx, PL (sy)). Therefore the matching
result of the proposed algorithm is pairwise stability.

Theorem 3 (Truthfulness). MastDP is truthful for buyers and
sellers.

Proof: We should prove that any participant can not
achieve a better utility through misreporting the true valuation
for one spectrum. We first focus on the buyers and distinguish
the following four cases:
1) We consider the scenario where the buyer does not

selected as a winning buyer when he bids truthfully and
untruthfully. In this case, the same zero utility indicates
that the buyer’s untruthful bidding can not achieve higher
utility.

2) We consider the scenario where the buyer was selected as
a winning buyer only when he bids truthfully. It happens
when rj bids lower than his true value, brj < vrj . In this
case, the buyer rj does not selected as a winning buyer
after the clearing price determination since his bid is too
low, and thereby his utility becomes 0. Each winning
buyer’s bid price brj is higher than the clearing price
Pc, leading to a non-negative utility. Consequently, the
buyer’s untruthful bidding can not achieve higher utility.

3) We consider the scenario where the buyer was selected
as a winning buyer only when he bids untruthfully. It
happens when rj bids higher than his true value, brj > vrj .
In this case, winning buyer’s true value vrj is lower
than the clearing price Pc, resulting in negative utility.
Consequently, the buyer’s untruthful bidding can not
achieve higher utility.

4) We consider the scenario where the buyer was selected as
a winning buyer when he bids truthfully and untruthfully.
In this case, the buyer is charged the same clearing price
when he bids truthfully and untruthfully. Consequently,
the buyer’s untruthful bidding can not achieve higher
utility.

Therefore, buyer rx can not achieve higher utility by misre-
porting his true valuation. Similarly, we can obtain the same
conclusion for sellers. In summary, MastDP is truthful for
buyers and sellers.

Theorem 4 (ϵ-differential Privacy). The proposed MastDP
algorithm satisfies ϵ-differential privacy.

Proof: Let ϵ > 0 be the privacy parameter, and let e1,
e2,..., em+n be random variables independently sampled from
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geometric distribution Geom (exp (ϵ/∆f)). Let the random-
ized function sum such that sum

(
b̃
)

=
∑m+n

l=1 (bl + el).
We consider two neighboring bid values b′ and b′′ dif-
fering in only one bid, and use Pr

(
sum

(
b̃′
)
= z

)
and

Pr
(
sum

(
b̃′′
)
= z

)
to denote the probability density func-

tion at some arbitrary point z ∈ S ∩R. We have

Pr
(
sum

(
b̃′
)

= z
)

Pr
(
sum

(
b̃′′

)
= z

)

=
m+n∏

l=1

⎛

⎜⎝
α−1
α+1 · α−

∣∣∣sum(b̃′)l−zl

∣∣∣

α−1
α+1 · α−

∣∣∣sum(b̃′′)l−zl

∣∣∣

⎞

⎟⎠

≤
m+n∏

l=1

exp

⎛

⎜⎝
ϵ
∣∣∣sum

(
b̃′′

)

l
− sum

(
b̃′
)

l

∣∣∣

∆f

⎞

⎟⎠

= exp

⎛

⎜⎝
ϵ
∥∥∥sum

(
b̃′′

)
− sum

(
b̃′
)∥∥∥

1

∆f

⎞

⎟⎠

≤ exp (ϵ)

Therefore, MastDP algorithm satisfies ϵ-differential privacy.

Theorem 5 (Computational Complexity). The computational
complexity of proposed MastDP algorithm is O

(
KM2N2X

)
,

in which K and X are the secret key size and the computa-
tional complexity of greedy algorithm, respectively.

Proof: The complexity of the proposed MastDP algo-
rithm for M PUs and N SUs consists of three parts: 1) the
complexity of the M PUs and N SUs encrypting their bid
values while the auctioneer decrypting these bid values using
distributed differential privacy scheme, 2) the complexity of
finding maximal independent sets for PUs with their prefer-
ence, and 3) the complexity of matching between PUs and
SUs. First, the complexity of distributed differential privacy
scheme comes from the secret key size and the number of PUs
and SUs, which is O (KMN), in which K is the secret key
size. Then as the complexity of greedy algorithm adopted for
finding maximal independent set, we set it to O (X). Finally,
the complexity of matching is determined by the total number
of PUs and SUs, which is O (MN) [16], [17]. Therefore, the
overall complexity of MastDP algorithm is O

(
KM2N2X

)
.

V. SIMULATION RESULTS

We evaluate the performance of MastDP on spectrum
trading efficiency and the performance on bid privacy preser-
vation. Furthermore, we also compare it with two existing
mechanisms: Grouping and Random. In Grouping algorithm,
the auctioneer groups participants and sorts them based on
the group’s bid price, while Random refers to the randomly
allocation algorithm that does not consider preference of
participants.

A. Simulation Setup
We consider a double auction that a set of PUs offer

spectrum to numbers of SUs, where the number of SUs varies
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(b) Revenue of PUs under different ϵ.

Fig. 2. Performance on bid privacy preservation under different differential
privacy levels, ϵ.

from 5 to 40 with a step of 5, and the number of PUs is set
to be 10. We randomly deploy PUs and SUs in a 1000x1000
m2 area, and set the distance between SU’s transmitter and
receiver is 20m, in addition the distance between any two
SUs is not less than 50m to avoid overlapping, while the
distances between PU and SU are randomly from 20m to
80m. We assume that each PU’s request and each buyer’s
demand are uniformly distributed over (0, 1], while the bids
of them are randomly picked over (1, 10]. All the results are
averaged over 2000 runs.

B. Performance on Spectrum Trading Efficiency

Figure 1(a) demonstrates the comparison results among
MastDP, Grouping and Random on accepted number of SUs.
From the figure we can see that as the number of SUs in-
creases, the accepted number of SUs in MastDP is more than
that of Grouping and Random, and in the linearity increasing
trend. Since the revenue depends on both the clear price and
the number of accepted SUs, as shown in Figure 1(b), MastDP
with more accepted participants gains higher revenue. After-
ward, we evaluate the performance of the matching algorithm
in MastDP by a metric of SUs’ satisfaction, which is the
number of SUs whose first preference are satisfied. Figure 1(c)
illustrates that the satisfaction of SUs almost linearly increases
with the increase of SUs. Since the Grouping and Random do
not consider participant satisfaction, we can draw a conclude
that MastDP can not only obtain better performance, but also
improve SUs’ incentive to participate in the spectrum double
auction.
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Fig. 1. Performance on spectrum trading efficiency comparison of MastDP, Grouping and Random.

C. Performance on Bid Privacy Preservation

Figure 2(a) and Figure 2(b) illustrate the accepted number
of SUs and revenue of PUs under different differential privacy
levels, respectively. We can notice that the performance of
that accepted number of SUs and revenue of PUs after
adding noise are slightly worse than the performance without
considering privacy preservation. In addition, he performance
when ϵ is 1 is closer. The reason is that ϵ indicates privacy
level in difference privacy. When ϵ is small, it means a higher
level of difference privacy, which causes participants to add
more noise to their submitted data.

VI. CONCLUSIONS

In this paper, we have proposed MastDP, a differential
privacy and matching algorithm combined double auction
mechanism for spectrum trading that can achieves both spec-
trum trading efficiency and differential privacy preservation
for individual’s sensitive information. Focusing on protecting
participants’ bid information from the frauds of the auc-
tioneer, other buyers/sellers and other potential parties, we
present a distributed differential privacy mechanism by adding
Geom(α) noise to individual’s bid value, leading to the sum
of all noisy bid values obtained by the auctioneer satisfies
the ϵ-differential privacy protection, as well as utilize the
cryptography technology to enable the uploaded bid values
from all participants to be decrypted merely by the auctioneer.
Then we design a matching based approach to allocate win-
ning buyers to spectrum sellers with considering participants’
preferences while maintaining spectrum reuse to maximize the
revenue of spectrum sellers. The simulation results confirm
that MastDP is able to realize economic properties privacy
and spectrum trading efficiency.
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